
I

!
I -

X”

SU326 P30-21.

PRODUCT FORM OF THE CHOLESKY FACTORIZATION. .
FOR LARGE-SCALE LINEAR PROGRAMMING

BY

MICHAEL A. SAUNDERS--

STAN-CS-72-301
AUGUST 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

PRODUCT FORM OF THE CHOLESKY FACTORIZATION

FOR LARGE-SCALE LINEAR PROGRAMMING

. .

c-
Abstract

L-

I

L-

b
i

(
L

1

L

L

L

Michael A. Saunders
Computer Science Department
Stanford University
Stanford, California $305

A variation of Gill and Murray's version of the revised simplex algo-

rithm is proposed, using the Cholesky factorization BBT = LDLT where B

is the usual basis, D is diagonal and L is unit lower triangular. It

is shown that during change of basis L may be updated in product form.

As with standard methods using the product form of inverse, this allows

use of' sequential storage devices for accumulating updates to L . In

addition the favorable numerical properties of Gill and Murray's algorithm

are retained.

Close attention is given to efficient out-of-core implementation. In

a tile case of large-scale block-angular problems, the updates to L will

remain very sparse for all iterations.

This research was supported by the U. S. Atomic Energy Commission, Project
~1~526 ~30-21. Reproduction-in whole or in part is permitted for any
purpose of the United States Government.

Contents

‘-
L

I-

1

L

1.

3L.

3.

4.

5.

6.

7.

8.

8.1

9.

9.1

9.2

10,

Introduction :'
.

. .

Modification of L during changes of basis

M?IAN and BTRAN .

Computation of 7~
. .

Buffered Input/Output for A, B and L

Summary of algorithm
. .

Numerical considerations
.

l . . .

Sparsity considerations during reinversion
-=.

Numerical aspects of preassignment

Sparsity of updates
. .

General sparse problems
.

Block-angular problems
. .

Conclusion
. .

Acknowledgements
. .

References
. .

1

3

7

11

13

16

17

20

26

29

30

32

34

36

37

L.-_

‘L

--
c

L-

L.

b
i

i

L

1. Introduction

T1r.i :: paper is concerned with numerical solution of the standard linear

pro(l;ra.mmi ui; problem

minimize Tc x

subject to Ax=b, x>O

b\here A is m x n and is usually very sparse. Following the work of

Gill and Murray [63, an algorithm has been described in [lb] which uses

the orthogonal factorization B = LQ to perform the steps of the revised

simplex method [3]. Here B is the usual m x m basis, L is lower

triangular and=.Q satisfies QQT = QTQ = I . Along with the methods of

Bartels and Golub [1], [2] (which are based on the factorization B = LU

where U is upper triangular), the algorithms in [6], [14] constitute

the only numerically stable versions of the simplex method that have yet

been proposed.

An important feature of' Gill and Murray's approach is that the ortho-

gonal matrix Q need not be stored. This follow s from the identity

T TBBT = L&Q L = LLT

which chows that L is the Cholesky factor of BBT , although we stress

that the
.
Cholesky

With

product BBT is never computed. We shall often call L the I

factor associated with B.

I
Q discarded, our principal concern is with maintaining sparsity

in L. In the Explicit Cholesky algorithm of [lb], the emphasis was on

the implications of retaining L in explicit form at all stages. By using

a linked-list data structure to store only the non-zero elements of L,
L

1

it was shown that for in-core systems explicit updating of L can be prac-

tical in certain applications. When the matrix A is very sparse, and

particularly if A has block-angular or staircase structure, the Cholesky
. .

factors remain sparse for all iterations. However, out-of-core implemen-

tation of the explicit algorithm is more difficult than with standard

large-scale methods, since it is necessary to insert elements into the

columns of L during change of basis and this cannot be done efficiently

unless L is wholly contained in main memory.

L
L

In this paper, we show that L can be updated in product form. This

means that L is not modified directly during basis changes; instead,

certain transformations are accumulated in compact form in an update file,

in the same way that eta-vectors are accumulated as updates to the stan-

dard product form of inverse (e.g. see Orchard-Hays [l2]). During itera-

tions, access to the update file is strictly sequential and therefore

the file may extend conveniently onto disk or magnetic tape. It is this

sequential mode of operation that enables product-form systems to deal

with problems of very large size.

In sections 2, 3, and 4 we describe the Product-form Cholesky algorithm

- in mathematical terms. With regard to implementation it is similar to

standard product-form algorithms, except that access is required to the

current basis every iteration, which implies that B should be stored

in a special sequential file of its own. Implementation aspects of this

kind are discussed in sections 5, 6, and 7. Methods for maintaining

sparsity during reinversion (i.e. computation af an initial L) are con-

sidered in section 8. Finally, in section 9 we consider the question of

sparsity within the transformations that modify L during changes of

basis.

'3L. Modil'ication of L during changes of basis

In order to minimize the number of square roots and divisions per itera-

tion, WC‘ choo::e to work with the factorization

BBT = LDLT

c*

L-

L

L
L

b

L

t

L
iL
L

bhere D is a diagonal matrix (D=diag(di),di>O) and L is now unit tri-

angular. An initial orthogonal factorization is computed explicitly

during reinversion. We write this as

QBT = R

hhere Q is a=@roduct of elementary orthogonal transformations and R

is upper triangular. The matrices L and D are obtained by scaling the

rows of R:

LT = diag(?)R , D = diag(r%) l

It can be readily shown that if column as replaces column a inr

B , then the nex basis B* satisfies

B*B*T = BBT + a a T T-aas s rr l

Such a change of basis hi.11 be accomplished in two steps, in each of which

the current. L and D are modified to produce 'f; and 5 satisfying

m-m

LDLT = LDLT + cyvvT , (1)

where we take

1. ct = +l, v = a s to add column as ,

2. 0 = -1, v = ar to delete column ar .

3

c‘

b-.

L

L

kith these applications in mind we now consider the updating in (1) for

a given vector v and any positive or negative a, assuming that the

modified factorization exists.

Method Cl

Let p, M and A be defined by .

Lp = v , MoMT = D + cuppT . (2)

Thus p is obtained by forward substitution, and M and A are the

Cholesky factors of a particularly simple matrix. From (1) we see that

TET = L(D + Q'ppT)LT = L(MA$)LT = (~)A(LM)~

and hence the modified factors are

E =L&I, 5 =A. (3)

It can easily be verified that M in (2) is a special lower triangular

matrix defined by two vectors p,B as follows:

M =

1

p3p2

'rn"2 .

.

1

'm@rn-1

(4)

4

L-

i

L

L

c

w Ll~?l.~C P - (P, P2 l l l p jT
m '

B = (A1 8, l l l qT ,

D = diag(d) 9

A = diag(&) 7

and the quantities f3 6i' i

algorithm:

1. Set al = cy .

are generated according to the following

2. For i = 1, 2, m compute

(a) 'i = di + up:

(b)--. B i = CCL/$

(>c CY
i+l -- ydi/Gi .

This algorithm was derived independently by Gill and Murray [7].
Further

details are given in [8].

Method C2

An alternative method for constructing M and A has been given by

a Gill and Murray [7], using elementary Hermitian matrices. This method

has certain numerical advantages when CY < 0 and LDLT + cvvvT is nearly

singular. It may be summarized in slightly revised form as follows:

1. Set cY1 = my ,

s1 = pTD-'p ,

2. For i = 1, 2, . ..$ m compute

(>ai Cli = P~/di

04 0 i = 1 + oiqi

(>c s
. .

i+l = 'i - 9i

(d) y: = e? + cT;qisi+l

(‘> ‘i = ysdi

(f) Bi = cyiPi/G i

k) CY
i+l

04 Oi+l = Oi(' + 'i)/[Yi(0i + y,)] .

Again, further &iscussion is given in [8].

Both of these algorithms take a, pi and d
i as input, and generate

the appropriate Bi and 6 i which define M and A . When L is dense

we normally use the special structure of M to compute the product LM

explicitly in m2 + O(m) operations. In the present application we simply

wish to record the vectors p,B in packed form and write them out to an

update file for later re-generation of M . We will call the pair (p /3)
9

an update, and a sequence of updates represents the product form of L .

There are two updates to be stored each simplex iteration.

Although each update contains two distinct vectors (namely p and a),

observe that B
i
= 0 whenever p

i
= 0, so the system overhead per update

is essentially the same as for packing just one sparse vector. With

regard to the rate of growth of elements in the update file, our principal

claim for efficiency lies in knowing that with block-angular problems p

is guaranteed to be very sparse for all iterations (see section 9). This

will probably also be true for general sparse problems of sufficiently

low density. .

6

3. FTRAN and BTRAN

Let Lo and Do be the Cholesky factors obtained from reinversion of

a particular basis. The extension of equations (2), (3) to a sequence of

updates should be clear. After k -iterations we will have

Dk= 2k'
A

c

L-

i

I-

i

1

t

where each M
j

is of the form shown in (4), and Dk is available ex-

plicitly.

Suppose at the next iteration that column as replaces column a
r

--_
in B. First we must find p satisfying

Lkp s=a 0)

and then the corresponding 8 must be computed, for compact represen-

tation of M2k+l . The arithmetic implied by equations (5) is best illus-

trated by the following pseudo-Algol program (Method Cl of section 2):

Algorithm 1. Computation of p from p, D

* alpha:= 1;

for i:= 1 until m do

if p(i)#O then

begin

Dsave:= D(i);

temp := alpha*p(i);

J-Hi) := Dsave + temp++p(i);

beta(i):= temp/D(i);
c

7

alpha:= alpha%Dsave/D(i);

end;

i
-

a--

L --

G -

c

-

c

L’

L-

A similar algorithm may be given for Method C2. In practice the test

"if' p(i)#O" would be replaced by "if abs(p(i))>eps", where eps is some

suitable tolerance. Also the elements of p would not be stored expli-

citly in an m-dimensional array but tiould be packed along with the non-

zero elements of p for immediate transfer to the update file.

Once it is determined that column a
r should be dropped from the

basis, we must find a new p satisfying

(4,M2k+l>P = ar l (8)

--.

Given this p we compute B for M2k+2 by essentially the same method

as in Algorithm 1. The first statement should be replaced by alpha:= -1 ,

and a test should be included to give an error exit if any of the new

D(i) elements are negative, or smaller than some specified tolerance.

(The new elements of D could never be negative if Method C2 were used.)

From equations (i;), (7) and (8) it is clear that we must be able to

solve systems of the form

Mjy = z

for as many M.
J

as are currently stored in the update file. Fortunately

.
the structure of each M

3
is so special (see equation (4)) that the forward

substitution in (9) can be done very efficiently. This time (p$) will

already be in packed form, but for clarity we again assume they are stored

in m-dimensional arrays:

c

8

c

E

c

,L
1

‘rL

Algorithm 2. Solution of My = z for m

s:= 0;

for i:= 1 until m doY m

. .

begin

y(i):= y(i) - Sx-p(i)*; -

S := y(i)*beta(i) + S;

end;

Here we assume that y and z occupy the same storage locations, as will

be the case in any implementation. Observe that the elements of (p,B)
--.

are accessed sequentially in a "forward" direction (for i = 1, 2, m)

and that computation of p from (7) requires M
j

before M
j+l l

Thus

repeated use of Algorithm 2 for each Mj 3 J* = 1, 2, 2k , corresponds

to the FTRAN operation of standard linear programming systems using the

product form of inverse (e.g. see Orchard-Hays [12]).

Similarly, an operation corresponding to BTRAN is used for computa-

tion of the simplex multipliers ri from a system of the form

T
bk

T T T T T
l-r = M2kM2k-l . . l M2MlLo~ = Yk (10)

for an appropriate right-hand-side vector Yk . Here we need to solve

Tsystems Mjy = z and again the special structure of each M
3

leads to a

very simple loop:

Algorithm 3. Solution of TM y = z for BTRAN

s:= 0;

for i:=m step -1 until 1 do- -

9

.--
L

c ‘-

if p(i)#O then

begin

y(i):= y(i) - &beta(i);

S:= y(i)x-p(i) + S;

end;
. .

As before we assume y and z share the same storage. Comparison with

Algorithm 2 shows that the roles of p and @ are interchanged, while

their elements are accessed sequentially in reverse order. This is com-

pletely convenient for buffered input/output, as we explain in section 5.

-

10

c

i

c

c

L
L

4 . Computation of 7-f

ADuring reinversion the current basic cost vector c is regarded as

the last row of the basis and is subjected to the same orthogonal trans-

formation as B:
. .

Q rBT \ $1 = [R 1 Q:] ..

Factoring out the diagonal of R gives LT and a vector Y , say:

[R 1 Q;] = diag(rii) [LT 1 YI 3

whereupon the system TB TT =$ is equivalent to TL 7~ = Y , so that TT

can be computed by one back-substitution (i.e. one EQRAN operation). The

general form of this system after k iterations was given in equation (10).

We must store Y explicitly and transform it appropriately each change

of basis. Suppose that column ak is being added or dropped and the

corresponding update (p,6) has been calculated. If the cost element

'k is stored in c(k) and if Y is contained in an array gamma(*),

the following pseudo-Algol program illustrates what arithmetic is involved

in updating Y :

s Algorithm 4. Updating Y for solution of LTn =Y

S:= c(k);

.
for i:=l until m doP w

begin

s s:= - g=-Jma(i)*p(i);

gamma(i):= &beta(i) + ganuna(i);

end; .

11

t

In practice this operation would not be performed separately but would be

merged with computation of 3 . The two statements inside the above loop

should be included as the last two statements of the loop in Algorithm 1.

Notice that all non-zero elements of p and B are required for

modifying Y , whereas close inspection of Algorithms 2 and 3 shows that

the first non-zero element of p and the last non-zero element of p

(say Pf 3 8, respectively) are not required by FTRAN or BTRAN. Once

Y has been modified, pf and 8, can be discarded. The corresponding

elements f3 f and PJ must be written to the update file, but the unused

space for pf and BR could provide convenient storage for some of the

flag and pointer information associated with packed vectors.--.

i

L
L

5. Buffered Input/Output for A, B and L

c

i-

c

‘i

1

In an out-of-core linear programming system, part of' main memory must

bet :lllocntc>d to a number 01' buf'f'cr regions to accommodatf;C? input/output
. .

(I/O) operations. Typically two regions are used for double-buffering the

A-matrix into core during PRICE (when a column is selected for entry

into the basis), while perhaps three-are devoted to the so-called eta-file,

for use during l?TR.AN and BTRAN and for accumulation of updates to B-1 .

The particular algorithm proposed here differs from standard simplex

algorithms in requiring access to the basis every iteration. Therefore

certain differences arise in the organization of both main memory and

auxiliary stora$je. The scheme we shall use is as follows:

1. Three sequential data sets reside on drum, disk or tape:

(a) the A-file (fixed in size) containing A packed column-wise

as usual.

(b) the B-file (extendable) containing an initial basis and a

sequence of columns that have recently entered the basis.

(This is not required with standard methods.)

(c) the L-file (extendable) containing an initial Cholesky factor

L packed column-wise, followed by a sequence of updates to L l

2. (a) Three buffer regions are shared by the A- and B-files.

. (b) Three further buffers are allocated to the L-file.

The A- and B-files may share the same I/O channel, but preferably should

be on separate storage devices. The L-file should be accessed through a

second I/O channel. To minimize the number of I/O operations each buffer

region should be as large as possible, namely one sixth of whatever memory

Ais available after allocation of various m-dimensional arrays to x,

77, etc.

13

--

L

UC. 3u~ of three buf'fer regions for the L-file follows what a typical

implementation of the eta-file might be in a system using the product

form of inverse. We describe the mode of operation briefly. At any parti-

cular stage, two regions are used for double-buffering L into core

during FIRAN and BTRAN, while the third is only partially filled and

contains update vectors for the most recent iterations. (See Orchard-Hays
- c

[12, p. 1133, Smith [15].) When this third buffer becomes filled it is

L=-

i

1
b
L

written out to auxiliary storage as an extension of the L-file, and at this

point the three L-buffers change roles in cyclic order.

With Algorithms 1, 2 and 3 of section 3 in mind we may ask what happens

if an update (P,V cannot fit into the unfilled portion of the third

buffer above. It would be wasteful to write out the buffer half empty,

and in any case even a whole buffer may not be large enough to contain

all of a single update. Fortunately the sequential nature in which updates

are used in FTRAN and BlYRAN provides a simple answer. We can split

P = CP, / P21 > 13 = Ts, / s,l at any convenient point and proceed to

use (Pl'Q (P2>B2) as two distinct updates. It remains to associate

with each update a flag which specifies the initial condition of variable

S in Algorithms 2 and 3. (S is used to accumulate the inner-products
e

T
Y 6

T
and Y P respectively.) Normally S will be initialized to zero,

but if the flag is set then S retains its value from the previous

update.

With regard to the basis file, observe that B is required for

computation of a vector y (satisfying By = as) using the equation

Y = B% . (11)

14

I
i
i

i -

\

._ _

L

Since this is just a matrix multiplication, rather than back-substitution

say, the order in which columns of B are accessed is not important.

In particular the order in which they occur in the B-file is quite accep-

table. Hence it is clear that the--three-buffer scheme previously des-

cribed for the L-file is also an ideal design for the B-file. Two memory

areas are used for double-buffering B into core for the computation in
.s

(11) 9 while the third accumulates columns that have recently entered the

basis. Accumulation will be very slow but the same rotation of buffers

c
can accommodate overflow as before. Columns that are no longer in the

basis need be purged from the B-file only occasionally (e.g. during

i-

I

reinversion), since only a small--.

between reinversions.

During F'RICE the first two

percentage of columns are changed

B-buffers provide access to the A-file

1

in the standard way.

L The single I/O-scheduling problem arises when a specific column must

i be retrieved from the B-file each iteration. (see step 8 in the next
L

section.) Often the requisite column will already be in main memory

L
after computation of TB u , since basis changes frequently involve columns

i -

which entered during recent iterations. Of course it would be ideal if

'r all of the basis could be contained in the three B-buffers, so in practice

this situation may define a main memory size that is workable for a

pa?ticular linear programming problem. ,

Alternatively, complete re-reading of the B-file for selection of a

specific column would provide an excellent opportunity for performing

one iteration of iterative refinement on the system B$ = b . This

point is discussed in section 7 with reference to the main steps of the

simplex algorithm. .

15

c

i-

I
L.

1
‘i

L

1

b. Summary of algorithm

Suppose that k iterations have been performed following reinversion,

that & = b is the current basic solution, and that LkDkc = BBT is the

current Cholesky factorization. The essential steps to be performed at

iteration k+l are:

1. BTRANl (Backward Transformation 1):

= Yk .

2. PRICE: Read A-file to compute reduced costs for non-basic variables.

Select column as for which c - rrTa < 0 .
S S

3. FTRAJ!Jl (Forward Transformation 1):
--_

Solve

4. UPDATEl: Compute w = D-lp
k 1’

5. BTRAN2:

6. READB:

7. CHUZR:
e

8. SEEKR:
c

9- FTRAN2:

10. UPDATE2:

use Pl to compute fll and modify D
k' Pack non-zero

elements of (P,,@l) and add to end of L-file.

Solve LEu = w .

TRead B-file to compute y = B u . Add column a to B-file.
S

use ?c, y and the usual ratio test to determine column a
r

to be removed from B . Find 8
= ^/Y, l

Frequently, column ar will already be in main memory.

If not, position B-file at record containing ar , while

updating Q according to AxtLey.

Solve LkM2k+lp2 = a .r

Compute B
2 9 Dk+l from P2 and add (p,,B,) to L-file.

It is interesting to note that FTRAN and BTRAN require no divisions

at all, since
LO and the M

3
have unit diagonals.

16

L-

E-

1.
I
‘i

1,.

7. Numerical considerations

Suppose that B = LQ for some basis B . (For simplicity of notation

we will temporarily use L in place of L&.) To find the current basic

A
. .

solution x satisfying x =8 b we solve the equivalent system

TBBu=b, 2 T=Bus. .

by the following steps:

Method L: (a) Lp = b

(b) LTu = p

(>C 2 = BTu .

0-a

An error analy.& of this process has recently been given by Paige [l/'

Let H(B) be the usual condition number of B and let "x be the compu '-

approximation to $2 . Paige's surprising result is that the relative

error "xII depends essentially on X(B) and is not dominated

by x2(B) in spite of the occurrence of BBT in (12). This is a very

agreeable property indeed.

During some numerical tests to confirm this result we compared

method L with the more obvious one which retains the orthogonal matrix Q:

e Method Q; (a) Lp = b

These tests involved Hilbert matrices of various order and showed that

method Q is li'kely to give smaller relative error 11% than

method L, and may even give small relative error 1%i - +1/&l in all

components of 4 (which is more than could be asked of'any method). Never-

theless the relative error achieved by method L was as small as could be

expected from the magnitude of u(B) .

17

-_
L

L

A further interesting effect was observed in connection with the process

of iterative refinement (see Wilkinson [19, pp. 255-2631). This process

involves correcting "x by the following steps:

(a) Compute the residual vector r = b - B% .

(b) Solve the system B6x = r , using the same factorization of B

that was used for computing "x .." ,

(c) Take the new approximate solution to be ';; + 6x .

These steps can be repeated. Wilkinson 119, p. 2611 notes the possibility

that single precision may be sufficient for computing the first residual

vector r , if the method used for computing "x is somewhat less than

ideal. (For further iterations double precision is essential.) In our--_

tests r was not computed in double precision, and with method Q no im-

provement to the initial ';i was obtainable. However when method L was

used to compute 2 and a single correction 6x , very significant improve-

ment was obtained. Similar results have been observed by Gill and Murray

in refining the vector y of the system By = as .

This pseudo-refinement has been incorporated in the program discussed

in [1)+] and tested on a rather ill-conditioned staircase problem of dimen-

sion:; 357 x 385 l

e
An IBM 360/91 computer was used (relative machine

preci::ion 16-l' = 2.2X10-l6 an "x') d was corrected after reinversion and

also every 25 iterations between reinversions. Typically, maxlr.1
1

w&s reduced from around 10-9 to lo-l6 . In some cases when the basis

was strongly ill-conditioned, mxI ril was reduced from 10 -5 to lo-l4

by the single correction. (If BBT = LDLT , the condition number of B

can be estimated using the lower bound n(B) > {max(di)/min(di)}*.)

In view of the above observations we suggest that a correction to

9 could be made at every iteration of the product-form Cholesky

-.

-

L

L...

i .-

i

t

Ii

algorithm. Here we are accepting the fact that an I/O hold-up may occur

during the SEEKR operation (step 8 of section 6). Instead of waiting

for the basis file to be positioned at a specific column, we could read

the entire file and compute residuals for the current $ at the same

time.

Several steps of section 6 then need to be modified. Assuming that

r will be computed separately following reinversion, the new steps are

as follows:

3. FTRANl: Solve spl = a and
S Fkp3

=r in parallel.

(Since the overhead of unpacking
% consumes most of the

--.
time, this does not involve much more work than before.)

4. UF'DATEl: Compute w1 = Dklpl and w -1
2 = Dk +j l

5. BTRAJY2

6. READB:
L

7. CHUZR:

8. SEEKR:

use Pl to compute f3, and modify Dk . Pack non-zero

elements of (Pl,Pl) and add to end of L-file.

TSolve Lkul = w
T

1 and Lku2 = w2 in parallel.

TRead B-file to compute y = B u1 and correct $ according

to Q+$ + BTu2 .

Use Q, y and the usual ratio test to determine column a
r

to be removed from B . Find 0
= PrIYr l Update 2

according to Axt$Ley. 1

Read B-file to select column ar while computing residuals

r=b - B$ for the new B .

Vectors r7 P- 9 w3 23u2 may all share the same storage.

19

L‘

L

L

i

i

1
1

8. Sparsity considerations during reinversion

Let PI' P2 be row and column permutations to be applied to some basis

B. The orthogonal factorization PlBP2 = (&)Q is well known to be
. .

numerically stable for all choices of Pl and P
2 , so we are free to

choose whatever permutations might lead to the most sparse L . However,

on eliminating Q to obtain the ass6ciated eholesky factorization we

see immediately that L and D are independent of P2 :

(PlBP2)(P;BTP3 = (&Q)(QTD+LT)

i.e. P BBTPT11 = LDLT .

--

Hence our search for sparsity in L is reduced to finding an optimal

ordering for the rows of B .

The fact that column-ordering is irrelevant was put to good use in

[lb] where L was being updated explicitly. We were led to the seemingly

na'ive strategy of selecting Pl from an initial inspection of the full

A-matrix, on the grounds that this might provide a permutation that would

be reasonably close to optimal for all subsequent bases. By such means

4 we hoped to avoid large fluctuations in the density of L during the

simplex iterations. Although it is not clear which single row-ordering

is best, the strategy is most likely to be successful if P1 transforms

A into block-angular form. (See [14].)

When L is updated in product form we favor the conventional approach

of choosing a new
p1 each time L is re-computed directly from B (i.e.

each reinversion). This is because the sparsity of such an initial L

strongly affects the efficiency of subsequent iterations up till the next

.

20

reinversion. (The other important factor is the sparsity of updates, which

we discuss in section 9.)

A first step towards obtaining a good row permutation is to partition

I.3 into the following familiar form:
. .

B =
CL-

L

‘c-

L

b

-

L

-

c

-

c

5
=F

C

where
LF ' ?3

are triangular columns with non-zeros on the diagonal.

(These are the forward and bac'kward triangles respectively, and finding

them is a straightforward process; e.g. see Hellerman and Rarick [9].)

Partition "B is called the "bump". It is square and in general sparse,

and we have yet to compute its orthogonal factorization. This amounts

to taking linear combinations of the columns of g such that % is

reduced to lower triangular form. We see that fill-in will occur in

partition C , but not in partitions LF or LB .

To minimize fill-in we need to permute the rows of"B in some

optimal fashion. One promising possibility is to make

assigned pivot procedures due to Hellerman and Rarick

use of the pre-

(called 9 and

P4 in [91, DOI). These are algorithms for isolating further bumps

N
within B . Thus after the main bump is located, the next stage of P4

is to find a row and column ordering which arranges g into the form

c

21

c-

5

cl

\

Ll
e,

where
L- Bl ' B2 and B

3
are new square sub-bumps (there may be any number),

P
b.-.

and Ll and L
2 are triangular columns with non-zeros on the diagonal. This

-=.
strategy ensures that there will be no fill-in for at least some of the

columns of 5 and C 7 namely those columns corresponding to L1 and L2 '
Each sub-bump remains to be triangularized, but whatever we do to bump

I
L

1

B1 ’ for example, will have no effect on B
2

or
B3 l

Thus our final

problem is to find optimal row orderings for all bumps, treating each

,
L independently.

At this point it is interesting to note the statistics given by

Hellerman and Rarick in [9] for their algorithm 9 . When applied to

c
basis matrices of dimension ranging from 589 up to 977, the number of

I
bumps that were isolated by 9 ranged from 3 up to 22. This is en-

co-&aging for the following reasons. Suppose a basis B is reduced

to lower triangular form by a sequence of elementary orthogonal trans-

formations &ij (Kj):

B&ilj,&i,j2 l l l &ikjk = L �

22

L”

L

CL

L
Ii
L

Each . .Ql J
represents a linear combination of columns i and j of the

current B (transformed by all previous Qij), and the sparsity struc-

ture of both columns after the transformation is the logical OR of

their sparsity structure before Q;'. is applied.
=J

(In contrast, if

Ql. .J
were just an elementary elimination operation, column j would

be affected in the same way but column i would not change at all.)

This property of orthogonal transformations implies that fill-in is at

least as much as with simple elimination, and it appears that a single

rather dense column in B is potentially capable of propagating non-

zeros throughout the whole of L . Fortunately Hellerman and Rarick's

results indicate that a typical LP basis can be permuted in a way--.

which reveals a number of "fire-breaks." Thus propagation of non-zeros

may occur below each bump but certainly can not spread across the

triangular columns between bumps.

Of course the same is true with the product form of inverse (here-

after called PFI). Our point is that with orthogonal factorization the

effect of propagation can be very serious if allowed to continue over a

large number of columns. We may gain some relief in the knowledge that

propagation must stop at the end of each bump.

We return now to the problem of permuting the rows of each bump.

Th.e strategy of 4
P is to find a permutation of both rows and columns

which reveals a spike structure of this form:

B. =
3

K

\

.

a0

k x
)I K

23

c

L-

i.

A similar spike-finding algorithm has been given by Kalan [ll]. When the

PFI of B
j

is computed the only fill-in that occurs is below the spikes.

The columns between the spikes of any bump are like the lower-triangular

columns between the bumps of "B , and since their sparsity is not altered,

it appears that the spike-finding strategy is ideal for PFI.

On the other hand,orthogonal factorization of such a structure will

be less successful in terms of fill-in, since if B = L Q
j 33

say, we know

that a particularly dense spike is likely to propagate non-zeros through-

out both L
2

and the columns beneath B
j

. As an alternative, consider

the Cholesky factor associated with a bump that has block-angular form:

t

B.
J

= =>

The preservation of zeros in L
j

below the angular blocks leads us to

proposal lookin{: 1'or a rnor<l gcncral structure which WC shall call ncstcd
m

block-angularity. In its simplest form this amounts to isolating two-7

angular blocks (plus a set of coupling rows) and then applying the same

operation to each block recursively, until at all levels of recursion

neither of the blocks is further decomposable. The structure thus

obtained depends on whether or not both blocks are decomposable at each

stage. If just the first block has further structure each time we will

get the following nested pattern:

24

c

L-

This is an extreme case and there are many variations. An algorithm for

detecting block-angularity within a general rectangular matrix has been

L..

I
L-

given by Weil and Kettler [18]7 and it can be applied directly to the

problem of finding nested block-angularity. Cur motivation is that by
--.

L
so doing we can guarantee preservation of zeros inside the angular blocks

as well as below them.

I

b.

F

t

To illustrate that this strategy may sometimes be as good as looking

for spikes, here is an 8x8 bump with nested block-angular structure,

along with its associated Cholesky factor:

12345678

1
2
3
4
5
6
7
8

xx ’
x x’

+---- x-x-7
‘X- -I---q

x-x x-e--w - - -
xb %I:-------a

X x x x -x
IX xx XJ

-.a^_--.----.

X
x x

--I

I -

:X
-lx x

x - x x x xw - w - -

t
-- - I. - ;X-. -I

x x x x x x x
~xxxxxxxx

If the last stage of 4P is applied to the same matrix we get the

following spike structure and a slightly different Cholesky factor:

25

c

2 3 6 4 5 8 7 1

1

z
5
3
8
6
7

X 1
IX

X
5-x7

x ’Lx x:
-x x

IX
I
IX
I

xxx (X

x XI
x x x XIX

.

x x
x x x
x x x xw--w - -

ix x
x x-x x x x

By coincidence both orderings give exactly the same number of zeros in the

lower triangle. Without further experimentation we cannot draw any con-

clusions about the relative efficiency of each approach.

8.1 Numerical aspects of preassignment
--_

L

i

‘L

L

Finally we must look at the numerical implications of preassigning

pivots, Suppose that a basis B is to be "inverted" either by PFI or

by orthogonal factorization (LQ for short). The strategy of isolating

square bumps in B is certainly justified in both cases, since neither

PFI nor LQ alters the triangular columns LF, L17 L
2, 4 l . =B between

and around the bumps. Any near-c'.>lngularity in these columns implies near-

sinkwlarity of B itself',

Similarly (since the bumps are square) 7 near-singularity of any bump

implies that the original B is almost singular, and no amount of re-

ordering or merging of bumps can improve the condition of B . This
.

further justifies our earlier statement that the bumps can be treated

independently.

The only numerical difference between PFI and LQ (during rein-

version) arises in the factorization of each bump. With PFI it is

unlikely that any pivot order assigned to a bump will be completely

26

i

c

L

L

L

satisfactory if that order has been chosen without regard to the magni-

tude of non-zeros in the bump. It may be thought (e.g. 19, p. 214]) that

the: onlS possi blc complication would bo with the spike columns, whenever

the updated pivot element of a spike becomes too small. A strategy

currently being used is to interchange an unsuitable spike column with

some other spike column, on the grounds that at least one of the spikesL

will have an acceptable pivot element. This will often mean moving a

spike and its pivot row out of one bump into the next. The aim is to

retain as much of the preassigned pivot order as possible.

The following example, however, shows that it is unreasonable to

assume that the non-spike columns will have acceptable pivots.--_ Suppose

abump B, is of the form
J

B =
J

If the preassigned pivot order is retained here, the first eta-transformation

will be

r

b

and hence computation

[

10-3

1

1 1

bf PFI will illtrodyce UI

.
1

1 1

in.ecessary nurnelrical error

into an otherwise well-conditioned matrix. Clearly an interchange should

be made between the first and third rows, or between the first and third

columns.

L

I
t

1
L

This problem would be overcome by treating small non-spike pivots in

the same way as small spike pivots. In the extreme case of choosing

maximal pivot:; (i.e. taking the relative pivot tolerance to be l), we

:l:;::Pr't ti1nt PIi‘1 would tw numc5r*icj‘lly stable during reinversion ii' pro-

vision were made to interchange either all of the rows or all of the

columns within each bump, and under these conditions it would never be#a.

necessary to move columns from one bump into another. In practice it may

be feasible to localize interchanges in this way even if the relative

pivot tolerance is somewhat less than 1 .

In any event, numerical precautions must be ta'ken when PFI is

used, and some-revision of a preassigned pivot order will often be neces-

sary. The anticipated reduction in basis matrix I/O may therefore not

always be achieved.

With orthogonal factorization, as we have said before, all pivot

orders are numerically acceptable, and in such a context the philosophy

of preassigning pivots becomes fully justifiable. We are paying the price

of higher density in the basis factorization, but by this means alone

can the advantages of preassignment be fully realized.

28

i

:

L

9. Sparsity of updates

In any algorithm based upon product-form updating, a principal factor

governing reinversion frequency isthe rate of growth of elements in the

update file. It would be pleasing if the energy expended during reinver-

sion had some optimizing effect on the sparsity of subsequent updates.
w

To some extent this proves to be the case with the Cholesky algorithm.

Suppose that column a
s replaces column a in

r % at some

iteration k . In the case of standard PFI updating, the number of

non-zeros in the updated column vector CY 2 -1
% a

S
determines how many

elements are added to the eta-file. Clearly this number is uniquely

determined by Rk and as , and would not be altered by any permutations

to the rows and columns of Rk . Neglecting numerical error we conclude

that with PFI the rate of growth of the eta-file is independent of

whatever sparsity was achieved last reinversion, or how recently that

reinversion was performed.

For the Cholesky algorithm the relevant update vectors are pl and

pz ' as t:iven in FTRAIU and FTRAN2 of section 6:

Lkp1 s’

=a
I!k%k+lP2 = ar ' 03)

Now if P is the row permutation chosen during reinversion of an initial

babis B. ' then Lk is the Cholesky factor associated with P\ (qJ).

A change in P would affect all Lk and therefore would alter p
1 and

p2 above. In other words, the choice of P during reinversion affects

the sparsity of updates for all subsequent iterations. We will discuss

this situation in general terms first, and then specialize to block-

angular problems. -

29

t

‘L

i

t.

9.1 General sparse problems

Given a large sparse linear programming problem, we should bear in

mind the following points:

(>a

w

.

(>C

(d)

. .

In a triangular system of the form Lp =V such as in (13) above,

the first non-zero element of p coincides with the first non-zero

in the right-hand-side vector v" (counting from the top down).

A reinversion algorithm such as Hellerman and Rarick's (section 8)

is usually capable of permuting a basis
BO

into almost lower tri-

angular form. By this we mean that only a small fraction of columns

(viz. the spikes) have non-zeros above the diagonal.

The numberof iterations performed between reinversions is usually

small relative to m (e.g. reinversion every 50 iterations when

m=lOOO gives a ratio of 5%). Hence after k iterations, Bk differs

from B. in only a small percentage of its columns.

Since the Cholesky factor associated with Rk does not depend upon

column order, the row permutation P chosen as optimal for B.

should remain close to optimal for all Bk l

To formalize point (a), f'or any m-vector v , define an integer

M function e(v) 3s i'ollows:

e(v) = k iff IV. = 0
1

for all

Vk#O.

i<k ,

Then Lp = v implies that 0(p) = 0(v) , so the maximum possible number

of non-zeros in p is m - Q(v) . Now points (b) and (c) together show

that all bases
4c

are essentially triangular (for the purposes of this

argument), so on the average it is likely that @(a,) 2 m/2 , where ar

30

I,

L-

i

is the column being deleted from Bk . Hence in (13), e(p2) > m/2 on

average. In words this means that the vector p2 is likely to be less

than 5% dense, even if there is complete fill-in below the first non-zero.

The same may be said about pl in ..(13), since it seems reasonable to

assume that the incoming columns a
S

will in the long run have non-zeros

distributed much like the columns they are replacing.
w .

A similar argument may be applied to the method of Forrest and Tomlin

[53, [16], [17] for updating LU factors of the basis. If the "partially

updated" form of the incoming column is y = L-las , it is likely that

e(y) 2 m/2 on the average.

Even with PFI the same could be said about the vector Q/ = %'a
--_ S

in the case of transportation problems, since then
4c is always a

permuted triangle. With more general problems the size of the forward

triangle of each basis would be the critical factor.

To summarize, at each iteration a strict upper bound on the number of

non-zeros in the updates (pl,pl), (p2,p2) is 4m , and the above dis-

cussion has reduced the bound to a "likely average" of 2m . This is not

entirely satisfactory yet, since a strict upper bound for the cu-vector

in PFI is just m elements. However, just as we expect cy to be
*

sparse in most cases, we also expect that vectors
ply p2 will not be

completely dense below positions eb& eb2) respectively.

Except in the case of block-angular problems (see below), we must

resort to further heuristics by comparing

with

CY = B-'as T -T -1
=BL D pl.

31

i ,-
t

(Equivalently, a/ = QTf+p
1 if Q is retained in the orthogonal factor-

ization B = &LD Q .) Since pl is only "partially updated" by comparison

with CY it seems that if (Y is at all sparse in PFI then pl is likely

I to be even more sparse. Point (d).'above indicates that if pl is sparse
_.

during iterations immediately after reinversion, its density should

increase only slowly during later itgrations.

final assumption that p2 will be as sparse as Pl > we

the following conjecture:

a given problem, if the a/-vectors occurring

Under the

c-
conclude with

For

c in PFI are of low density, the growth of elements

in the L-file of the Cholesky algorithm will be

I

comparable to the growth of elements in the eta-

file of PFI .

r

t

L

As always, such a heuristically-derived conjecture must be verified by

practical experimentation. In addition, comparison must at some stage be

L
made with the method of Forrest and Tomlin [5], [16], [17], since relative

to PFI this method has demonstrated considerably lower growth rate of

the eta-file.

- 9.2 Block-angular problems

The one case where we can guarantee in advance that the update vectors

will be sparse , is when the matrix A has block-angular structure (e.g. [4]):

32

L-

'i

1
1
i

Just a trivial modification to the general algorithm is required to take

advantage of this special structure. Specifically, the reinversion

routine must choose row permutations for each block individually; i.e.

it must not move rows from one block to another. Under such circum-

stances we know that the Cholesky factors '$ will be block-triangular

for all iterations (Saunders [14]).

For simplicity, suppose there are
mO coupling constraints and three

blocks each of dimension m, .
* Suppose also that a column itO is enter-

ing from block 2. Then the system $pl = as

\

I

Lk

IJ

looks like this:

. m

0

mm-
x
X
X
X

-w*

0

--I
X
X
,x>

pl

0

m-
X
X
X
X

mm.

0

.-
X
X
X

a
S

The zeros that are shown in pl follow directly from the zeros in column

a s . The same is true for the second update vector when a column is deleted

from some block. The total number of elements added to the L-file each

iteration can be at most 4(mo + ml), and should be considerably fewer if

the problem is sparse within the blocks. This upper bound is independent

of the number of angular blocks.

33

10. Conclusion

i

I -
Among the many implementations of Dantzig's original simplex method,

\

those which have become established because of their sparseness properties
. .

are unfortunately numerically unstable. The foremost examples are algo-

L rithms based on the product form of inverse. A more recent example is

the LU implementation of Forrest a?id"Tomlin [5], [16], [17]; this has

demonstrated extremely good sparseness characteristics on large practical

L-- problems, but the method used for updating the LU factors cannot be

classed as numerically stable. Conversely, the LU algorithm of Bartels

and Golub Cl], [2] has excellent numerical properties, but because of the

i- difficulty of <nserting new non-zero elements into U during changes of

1
L

basis (see Tomlin [17]), this method cannot yet be applied to large-scale

problems.

f

l-
At present, the algorithm described in this paper represents the only

general linear programming method which is both numerically stable and

L capable of efficient out-of-core implementation. We have shown that

product-form updating of the Cholesky factorization is feasible, and we

have retained the numerical advantages inherent in Gill and Murray's

- version of the simplex method [6].

The aim in writing has essentially been two-fold:

1: To present a mathematical description of the product-form Cholesky

algorithm, along with sufficient practical detail to indicate how

implementation might proceed.

2. TO discuss qualitatively some aspects of orthogonal factorization

in the context of general sparse matrices, in order to gain some

assurance that the expense of a non-trivial implementation might
.

34

i -
-__

--

I

be justified.

WC> anticipate that the class 01' problem<.
L, I’or which the method will prove?

to bc? t?f‘ficient will include those which are extremely sparse and those

which have block-angular structurg.

.

35

Acknowledgements

I wish to thank John Tomlin for many discussions of the implementation

aspects of large-scale systems, including the buffering scheme described

in section 5. I am also very grateful to Walter Murray and Chris Paige

for discussions of the numerical aspects; to Phil Gill, Gene Golub and

Richard Underwood for their valuable criticisms of the first draft; and

to Mary Bodley for her speed and care in typing the manuscript.

34

/

‘c.

c

L--

t,

L
L

Cl1 R. H. Bartels, "A stabilization of the simplex method,"
Mathematik 16 (1-s/l), pp. 414-434.

Numerische

@I R. H. Bartels and G. H. Golub,
gramming using

'The simplex method of linear pro-

275-278.
LU decomposition,"T COG. ACM 12 (1969) pp. 266-268,

c33 G. B. Da&zig,
Press,

Linear programming and extensions, Princeton University
Princeton, New Jersey (1963).

c43 G. B. Dantzig, "Large-scale linear programming," Operations Research
Department Report No.
(1967).

67-8, Stanford University, Stanford, California

c51 J. J. H. Forrest and J. A. Tomlin, "Updated triangular factors
basis to m&ntain sparsity in the product form simplex method,'

of the

Mathematical Programming 2 (1972) pp. 263-278.

161 P. E. Gill and W. Murray,
algorithm,"

"A numerically stable form of the simplex
J. of Linear Algebra and its Applications 6 (1973).

C71 P. E. Gill and W. Murray, "
optimization,"

Quasi-Newton methods for unconstrained
J. Inst. Maths Applications 9 (1972) pp* 91-108,

PI P. E. Gill, G. H. Golub, W. Murray and M. A. Saunders,
modifying matrix factorizations,'

"Methods for

(to appear)
Computer Science Department Report

, Stanford Uni-fersity, Stanford, California (1972).

E. If(:llcrman and D. Rarick,
procedure,"

"Rcinversion with the preassigned pivot
Mathematical Prol:ramming 1 (1.91) pp* 195-216.

- [IO] I(:. Ilc:llc:rmnn and D. liari(:k,
c:ccturcl

"The partitioned prcassi,c:ned pivot pro-
($),'I pp. 07-7ti in Sparse matrices and their application::

D. J. Rose and R. A. Willoughby (Editors), Plenum Press, New York'
(192).

J. E. Kalan, "Aspects of 1arge-scale
proceedings of ACM Annual Conference

in-core linear programming,"

W71) l

, Chicago, Illinois (August 3-5,

W. Orchard-Hays , Advanced linear-programming computing techniques,
McGraw-Hill. New Yor'k (I%%~.

Kelerences

.
37

t-

i-

,I
b-

L

Cl33 C. C. Paige, "An error analysis of a method for solving matrix
equations," Computer o
University,

k,cience Department Report No. CS 297, Stanford
Stanford, California (1772).

cl'/] $1. A. Saunders, "Larg;e-c,calc linear programming using the Cholesky
factorization," Computer 0
Stanford University,

Ocience Department Report No. CS 252,
Stanford, California (1972).

D5

Cl6

] D. M. Smith,
proceedings,

"Data logistics for matrix inversion " in Sparse matrix
Ed. R. A. Willoughby, IBM Research C&ter, Yorktown

Heights, New York (1968) pp. X27-132.

] J. A. Tomlin, ' 'Maintaining a sparse inverse in the simplex method 'I
IBM Journal of Research and Development 16 No. 4 (1972) pp. 415~463.

cl73 J. A. Tomlin, "Modifying triangular factors of the basis in the
simplex method," pp. 77-85 in Sparse matrices and their applications,
D. J. Rose and R. A. Willoughby (Editors), Plenum Press, New York
(Lq.72) .

[18] R. L. Weil%nd P. C. Kettler , "Rearranging matrices to block-angular
form for decomposition (and other) algorithms," Management Science 18
NO. 1 (191) pp. 98408. 3

[19] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University
Press, London (1965).

.
38

