SU326 P30-21

PRODUCT FORM OF THE CHOLESKY FACTORIZATION
FOR LARGE-SCALE LINEAR PROGRAMMING

BY

MICHAEL A. SAUNDERS

STAN-CS-72-301
AUGUST 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

r——

—

PRODUCT FORM OF THE CHOLESKY FACTORI ZATI ON
FOR LARGE- SCALE LINEAR PROGRAMM NG

M chael A Saunders
Conputer Sci ence Department
Stanford University
Stanford, California 94305

Abstract

A variation of GIl and Murray's version of the revised sinplex algo-
rithm IS proposed, using the Chol esky factorization BB' = ot where B
is the usual basis, Dis diagonal and L is unit |ower triangular. It
is shown that during change of basis L may be updated in product form
As with standard nethods using the product formof inverse, this allows
use of' sequential storage devices for accunulating updates to L . In
addition the favorable nunerical properties of GIIl and Mirray's al gorithm
are retained.

Cose attention is given to efficient out-of-core inplenentation. In
the case of |arge-scale block-angul ar problens, the updates to L will

remain very sparse for all iterations.

This research was supported by the U S. Atom c Energy Commi ssion, Project
SU326 P30-21. Reproduction-in whole or in part is pernmitted for any
purpose of the United States Governnent.

ro

9.1
9.2

10.

Contents

Introduction = -
Modi fication of L during changes of basis
FTRAN and BTRAN

Conmput ation of =

Buffered | nput/CUtpﬁt'f;N' A, | é 'aﬁd' L :

Sunmary of algorithm '

Nurerical considerations

Sparsity qonsiderations during reinversion
Nunerical aspects of preassignment S

Sparsity of updates

General sparse problens

Bl ock- angul ar probl ens

Concl usi on

Acknowl edgenent s

Ref er ences

11
13
16
17
20
26
29
30
32
3k

36
37

r—

-

— o

1. Introduction

Thi « paper 1S concerned with nunerical solution of the standard |inear

programmi ng probl em

mnimze c%(

subject to Ax = b, x>0

vhere A is mx n and is usually very sparse. Follow ng the work of
GIll and Mirray [6], an algorithm has been described in [14] which uses
the orthogonal factorization B = LQto performthe steps of the revised
sinplex nethod [3]. Here B is the usual mx mbasis, L is |ower
triangular anda_q satisfies q' = q'q = | . Aong with the methods of
Bartels and Gol ub [1], [2] (which are based on the factorization B = LU
where U is upper triangular), the algorithms in [6], [14] constitute
the only nunerically stable versions of the sinplex nethod that have yet
been proposed.

An inportant feature of' GII and Mirray's approach is that the ortho-

gonal matrix q need not be stored. This follows from the identity

BBT = LoQ TLT = LLT

which chows that L is the Chol esky factor of BBT , although we stress

that the product BBT Is never conputed. W shall often call L the
Chol esky factor associated with B.

Wth ¢ discarded, our principal concern is with naintaining sparsity
in L In the Explicit Cholesky algorithmof [14], the enphasis was on

the inplications of retaining L in explicit format all stages. By using

a linked-list data structure to store only the non-zero elenents of L,

it was shown that for in-core systems explicit updating of L can be prac-

tical in certain applications. Wen the matrix Ais very sparse, and

particularly if A has block-angular or staircase structure, the Chol esky

factors remain sparse for all iterations. However, out-of-core inplenen-

tation of the explicit algorithmis nore difficult than with standard

| arge-scal e nethods, since it is necessary to insert elenents into the

colums of L during change of basis and this cannot be done efficiently
unless L is wholly contained in main menory.

In this paper, we show that L can be updated in product form This

neans that L is not nodified directly during basis changes; jnstead,
certain transformations are accumulated in conpact formin an update file,
in the same way that eta-vectors are accumulated as updates to the stan-
dard product form of inverse (e.g. see Ochard-Hays [12]). During itera-
tions, access to the update file is strictly sequential and therefore

the file may extend conveniently onto disk or magnetic tape. |t js this
sequential node of operation that enables product-form systems to deal
with problens of very large size

In sections 2, 3, and 4 we describe the Product-form Chol esky al gorithm

. in mathenatical terms. Wth regard to inplenmentation it is simlar to

standard product-form algorithms, except that access is required to the
current basis every iteration, which inplies that B should be stored
in a special sequential file of its own. |nplenentation aspects of this
kind are discussed in sections 5,6, and 7. Methods for maintaining
sparsity during reinversion (i.e. conputation af an initial L) are con-
sidered in section 8. Finally, in section 9 we consider the question of
sparsity within the transformations that nodify L during changes of

basi s

-

— ‘“"

r—

J. Moditication of L during changes of basis

In order to mninze the nunber of square roots and divisions per itera-

tion, we choote to Work with the factorization

BBT = LDLT

where D is a diagonal matrix (D=diag0%),di>o) and L is now unit tri-
angular. An initial orthogonal factorization is conputed explicitly

during reinversion. W wite this as

where Q 1S a product of elementary orthogonal transformations and R

is upper triangular. The matrices L and D are obtained by scaling the

rows of R

1t = adiag(

-1 o a 2
rii)R) D = dlag(rii)

It can be readily shown that if colum ag replaces colum a jp
r
B, then the nex basis B* satisfies

T - ppl + aa T a a T
S'S rr

Such a change of basis will be acconplished in two steps, in each of which

the current L and D are nodified to produce T and D satisfying

fJ—)iT = LDLT + ozva , (1)

where we take

1. o = +1,V a to add col um ag

R
n
]

H
<
1]

a, to delete colum ar

[.

wWith these applications in nmnd we now consider the updating in (1) for

a given vector v and any positive or negative o, assuming that the

modi fied factorization exists.
Met hod C

Let p, Mand a be defined by .

p = v, MAMY = D+ oppt ()
Thus p is obtained by forward substitution, and M and 4 are the

Chol esky factors of a particularly sinple matrix. From (1) we see that

51" = 1o + appt)it = pv®)rT = () ()T

and hence the nodified factors are

-

L=11, D=a. (3)
It can easily be verified that Min (2) is a special |ower triangular

matrix defined by two vectors g as follows:

[1]
P8, 1
1
mel meZE ‘ mem—l -

(-

-

—

W liere P = (P, pg_._pn%T ,

- T
B—(8132 .. sm)
= diag(di) >
A = diag(si) s

and the quantities 8. , & are generated according to the following

al gorithm
1. Set @ = .
2. For i =1,2, mconpute

. (5)
(b). 8 = a;p,/8,

(c) ¥ 0= ozid /61
This al gorithm was derived independently by GII and Mirray [7] Fur t her

details are given in [8].

Met hod C2

An alternative method for constructing M and A has been given by
GIll and Mirray [7], using elementary Hermitian matrices. This nethod

has certain numerical advantages when o« < 0 and LT + avv! Qs nearly

singular. It nmay be sunmarized in slightly revised form as follows:

1. Set o, =g

l)
_ Tl
Sl_prl
oy =/[1+Vi+as],

2. For i =1, 2, . .., mconpute
(a)
(b) 8.

| iHi

0]
e}
no
~
Q

1
—
+
Q

£0

(C) Si+1 = g,

(e) o,

[
<
e 1O
o

(f) 8, = @;Dp,/6;
_ 2

Again, further discussion iS given in [8],
Both of these algorithns take o, 1 and di as input, and generate

the appropriate 8, and . which define Mand A. Wen L is dense

we normally use the special structure of Mto conpute the product 1M

explicitly in m + Q(n) operations. |n the present application we sinply

wi sh to record the vectors pg in packed formand wite themout to an

update file for later re-generation of M. W will call the pair (p’a)

an update, and a sequence of updates represents the product formof L .

Therc are two updates to be stored each sinplex iteration.

Al t hough each update contains two distinct vectors (nanely p and 8),
observe that B, =0 whenever p, =0, so the system overhead per update
is essentially the same as for packing just one sparse vector. \win
regard to the rate of growh of elements in the update file, our principal
claimfor efficiency lies in knowing that wth block-angul ar problenms p
is guaranteed to be very sparse for all iterations (see section 9). Thi s

will probably also be true for general sparse problens of sufficiently

low density.

LAl

L
i
|
]

3. FTRAN and BTRAN

Let L, and D, be the Cholesky factors obtained from reinversion of

a particular basis. The extension of equations (2), (3) to a sequence of

updates should be clear. After k -iterations we will have

L = LyMy =oe e My, My s (6)
D = Ay

where each MJ_ is of the form shown in (4), and D, is avail able ex-
plicitly.
Suppose at the next iteration that colum a replaces colum a

r
in B. First we nust find p satisfying

LP =a (7)

S

and then the corresponding 8 nust be conputed, for conpact represen-
tation of M, . The arithnetic inplied by equations (5) is best illus-
trated by the follow ng pseudo-Al gol program (Method O of section 2):

Algorithm 1. Conputation of 8 fromp, D

al pha: = 1;

for i:= 1 until mdo

if p(i)#0 then

begin
Dsave:= D(i);
tenp := alphaxp(i);
D(i) := Dsave + tempxp(i);

beta(i):= temp/D(i);

al pha: = alphaxDsave/D(i);

end;

A simlar algorithm may be given for Method C2. In practice the test
"if" p(i)#0" would be replaced by "if abs(p(i))>eps", where eps i s sone
suitable tolerance. Al'so the elenents of B would not be stored expli-
citly in an mdinensional array but would be packed along with the non-
zero elements of p for inmmediate transfer to the update file.

Once it is deternined that colum a_, shoul d be dropped from the

basis, we nust find a new p satisfying

(Lk 2k+l &r - (8)

-

Gven this p we conpute B for M, .- by essentially the same nethod

as in Algorithm1. The first statenment should be replaced by alpha:= -1,

and a test should be included to give an error exit if any of the new

(i) elements are negative, or smaller than some specified tolerance.

(The new elements of D could never be negative if Method c2 were used.)
From equations (6),(7) and (8) it is clear that we nust be able to

solve systens of the form

My =z (9)

for as nmany MJ as are currently stored in the update file. Fortunately

- the structure of each MJ. IS so special (see equation (4)) that the forward
substitution in (9) can be done very efficiently. This tinme (p,B) will
already be in packed form but for clarity we again assune they are stored

in mdinensional arrays:

Algorithm2. Solution of My = ; for FrRAN

if p(i)#0 then

begin
y(i):=y(i) - Sxp(i);-
S:= y(i)xbeta(i) + S

end;

Here we assume that y and z occupy the sane storage |ocations, as will
be the case in any inplementation. (hserve that the elenents of (p,8)
are accessed seauentially ina "forward" direction (for i =1, 2, n
and that computation of p from (7) requires Mj bef or e Mj+]_. Thus
repeated use of A gorithm 2 for each |\/|(j ,J=1,2 2, corresponds
to the FTRAN operation of standard |inear programming systens using the
product form of inverse (e.g. see Ochard-Hays [12]).

Simlarly, an operation corresponding to BTRAN i s used for conputa-

tion of the sinplex multipliers = froma systemof the form
I _ T T S -
L = Mo Mo p o - MM Ign = Yy (10)

for an appropriate right-hand-side vector Vi Here we need to solve
T . .
systens ng =z and again the special structure of each M. |eads to a
J
very sinple |oop:

Algorithm 3. Solution of MTy = z for BTRAN

S:= 03

for i:=m step -1 until 1 do

it p(i)#0 then

begin
e y(i):=y(i) - &beta(i);
S = y(i)sp(i) + S
— end;
A
B As before we assune y and z share the same storage. Conparison wth
Algorithm 2 shows that the roles of p and B are interchanged, while
-~ their elements are accessed sequentially in reverse order. This is com
-
pletely convenient for buffered input/output, as we explain in section 5.
\'._
[
-
~
-
g.

10

| — " -

. Conmputation of =

During reinversion the current basic cost vector & is regarded as
the last row of the basis and is subjected to the same orthogonal trans-

formation as B:
Q [B" | €] = [R| 0] .
Factoring out the diagonal of Rgives 1T 444 a vector Y | say:
(R | @] = atag(r,,) (L7 | VI,

wher eupon the system BTn =2 is equivalent to LTn =Y, so that =
can be conputed by one back-substitution (i.e. one BIRAN operation). The
general form of this system after k jterations was given in equation (10).
W nust store v explicitly and transform it appropriately each change

of basis. Suppose that colum a s being added or dropped and the
corresponding update (p,8) has been calculated. |f the cost element

¢, is stored in c(k) and if v is contained in an array gamma(x),
the foll owi ng pseudo-Al gol programillustrates what arithnetic is involved
in updating v :

Al gorithm 4. Updating Y for solution of LTn =Y

S:= c(k);

for i:=1 until md_o

if p(i)#0 then

begin
S:=S - gamma(i)xp(i);
gamma(i):= Sxbeta(i) + gamma(i);

end,

11

In practice this operation would not be performed separately but would be

nerged with conputation of 8. The two statements inside the above |oop

shoul d be included as the last two statements of the loop in Algorithm 1.
Notice that all non-zero elenents of p and B are required for
modi fying ¥, whereas close inspection of Algorithnms 2 and 3 shows that

the first non-zero element of p and the last non-zero elenment of B

(say Pf B)Z respectively) are not required by FTRAN or BTRAN. Once
Y has been nodified, Pe and B, can be discarded. The corresponding
el ement s Bf and p, must be witten to the update file, but the unused
space for Pe and B, could provide convenient storage for some of the

flag and pointer information associated with packed vectors.

5. Buffered Input/Qutput for A, B and L

I'n an out-of-core Iinear programmng system part of' main nemory nust
be allocated tO @ nunber of butfer regions t 0 accommodate | Nput/out put
(110 operations. Typically two re‘gi ons are used for double-buffering the
A-matrix into core during PRICE (when a colum is selected for entry
into the basis), while perhaps three-are devoted to the so-called eta-file,
for use during FTRAN and BTRAN and for accumul ation of updates to gl

The particular algorithm proposed here differs from standard sinplex
algorithms in requiring access to the basis every iteration. Therefore
certain differences arise in the organization of both main nemory and
auxiliary storage. The scheme we shall use is as follows:

1. Three sequential data sets reside on drum disk or tape:
(a) the A-file (fixed in size) containing A packed col um-w se
as usual .
(b) the B-file (extendable) containing an initial basis and a
sequence of colums that have recently entered the basis.
(This is not required with standard nethods.)
(c) the L-file (extendable) containing an initial Cholesky factor
L packed colum-w se, followed by a sequence of updates to L.
2. (a) Three buffer regions are shared by the A- and B-files.
(b) Three further buffers are allocated to the L-file.
The A- and B-files may share the same /0O channel, but preferably shoul d
be on separate storage devices. The L-file should be accessed through a
second I/0O channel. To nminimze the number of 1/0 operations each buffer
region should be as large as possible, namely one sixth of whatever menory

Is available after allocation of various mdinensional arrays to R,

M, etc.

13

Usc of three butter regions for the L-file follows what a typical

i mpl enentation of the eta-file nmight be in a system using the product
formof inverse. W describe the node of operation briefly. At any parti-
cular stage, two regions are used for double-buffering L into core
during FTRAN and BTRAN, while the third is only partially filled and
contains update vectors for the nost recent iterations. (See O chard-Hays
[12, p. 113], Smith [15].) Wen this third buffer beconmes filled it is
witten out to auxiliary storage as an extension of the L-file, and at this
point the three L-buffers change roles in cyclic order.

Wth Agorithms 1, 2 and 3 of section 3 in mind we may ask what happens
if an update (p,8) cannot fit into the unfilled portion of the third
buffer above. It would be wasteful to wite out the buffer half enpty,
and in any case even a whole buffer may not be |arge enough to contain
all of a single update. Fortunately the sequential nature in which updates
are used in FIRAN and BTRAN provides a sinple answer. W can split
P =I[p / p,] > B =[B / B,] at any convenient point and proceed to
use (pl,Bl), (pe,Bg) as two distinct updates. It remains to associate
with each update a flag which specifies the initial condition of variable
Sin Algorithms 2 and 3. (S is used to accunulate the inner-products
YTB and YTp respectively.) Normally Swll be initialized to zero,
but if the flag is set then S retains its value from the previous
updat e.

Wth regard to the basis file, observe that B is required for

conputation of a vector y (satisfying By = as) usi ng the equation

Y = Bu . (11)

14

—————t

Since this is just a matrix nultiplication, rather than back-substitution

say, the order in which colums of B are accessed is not inportant.

In particular the order in which they occur in the B-file is quite accep-
table. Hence it is clear that the three-buffer scheme previously des-
cribed for the L-file is also an ideal design for the B-file. Two menory
areas are used for double-buffering B into core for the conputation in
(11), while the third accumulates colums that have recently entered the
basis. Accumulation will be very slow but the same rotation of buffers
can accommodate overflow as before. Colums that are no longer in the
basis need be purged fromthe B-file only occasionally (e.g. during
reinversion), since only a small percentage of colums are changed

bet ween rei nversions.

During PRICE the first two B-buffers provide access to the Afile
in the standard way.

The single 1/0Oscheduling problem arises when a specific colum nust
be retrieved fromthe B-file each iteration. (see step 8 in the next
section.) Oten the requisite colum will already be in main nenory
after conputation of BTu , since basis changes frequently involve colums

which entered during recent iterations. O course it would be ideal if

all of the basis could be contained in the three B-buffers, so in practice

this situation may define a main menory size that is workable for a
particular |inear progranmmng problem

Alternatively, conplete re-reading of the B-file for selection of a
specific colum would provide an excellent opportunity for performng
one iteration of iterative refinenent on the system Bx=b . This
point is discussed in section 7 with reference to the main steps of the

sinplex algorithm

15

-

6. Summary of algorithm

Suppose that k iterations have been perforned follow ng reinversion,
that B = b is the current basic solution, and that LkaLE = BBY is the
current Cholesky factorization. The essential steps to be performed at
iteration k+1 are:

1. BTRAN1 (Backward Transformation I):
T . T T I-T _
Solve Lkn Yk i.e. M2k o e e M2M1LO" = Yk'

2. PRICE Read A-file to conpute reduced costs for non-basic variables.

Sel ect col um a for which ¢ - nTa <0 .
S S

3. FIRANL (Forward Transformation 1):

Solve Lp, = a; i.e. LMM, - .. . M,p = a_ .
4. UPDATEl: Conpute w = DI;lpl .
Use D, to conpute Bl and nodi fy Dk . Pack non-zero

el enents of (pl,Bl) and add to end of L-file.
5. BIRA2: Solve Lu=w.
6. READB: Read B-file to conpute y = BTu . Add colum a tqg B-file.
S

A . .
7. CHUZR: use x, ¥ and the usual ratio test to determne colum a
r

to be renoved fromB . Find ¢ =% /y .
r r
8. SEEKR: Frequently, colum a, Wll already be in main nenory.
If not, position B-file at record containing a, whi | e
updating % accordi ng to Rek - 8y .

9 . FTRAN?2 : Solve LKM2K+lp2 = ?
10. UPDATE2: Conpute 82 > Dy from p, and add (pg,Bg) to L-file.

It is interesting to note that FTRAN and BTRAN require no divisions

at all, since 1, and the MJ. have unit diagonals.

16

-

|

7. Numerical considerations

Suppose that B = LQ for some basis B . (For sinplicity of notation
we will tenporarily use L in place of LD%.) To find the current basic

solution & satisfying BX = b we solve the equivalent system
BBl=b, A gTy (12)

by the follow ng steps:

Met hod L: (a) Lp =D
(b) L'u=p
(c) 8= gl .

s -

An error analysis of this process has recently been given by Paige [1-
Let »(B) be the usual condition nunber of B and let % be the compu '
approximtion to % . Pai ge's surprising result is that the relative

error |x - QHg/HQHQ depends essentially on x(B) and is not donmi nated

by ue(B) in spite of the occurrence of BBT

in (2). This is a very
agreeabl e property indeed.

During some numerical tests to confirmthis result we conpared
method L with the nmore obvious one which retains the orthogonal matrix Q
Method ¢: (a) Lp = b

(b) % =4q'p .

These tests involved Hlbert matrices of various order and showed that
method Q is likely to give smaller relative error || - QHE/HQ”E than
method L, and nay even give snall relative error |§i - é\(i'/lé\(il in all
conponents of 4 (which is nore than could be asked of'any nethod). Never-

theless the relative error achieved by nmethod L was as small as could be

expected from the magnitude of u(B)

17

i&

A further interesting effect was observed in connection with the process

of iterative refinement (see WIkinson [19, pp. 255-263]). This process
involves correcting X by the foll owing steps:

(a) Conpute the residual vector r = b - BX .

(b) Solve the system Béx = r , using the same factorization of B

that was used for conputi ng F(.

(c) Take the new approxinmate solution to be X + 6x .
These steps can be repeated. W/ kinson [19, p. 261] notes the possibility
that single precision may be sufficient for conputing the first residual
vector r, if the nethod used for computing X is somewhat |ess than
ideal. (For further iterations double precision is essential.) In our
tests r was not _conputed in double precision, and with nethod Q no im

provement to the initial X was obtainable. However when method L was

~

used to conpute X and a single correction éx , very significant inprove-
nment was obtained. Similar results have been observed by G| and Mirray
in refining the vector y of the systemBy = 8 -

This pseudo-refinement has been incorporated in the program discussed

in[14] and tested on a rather ill-conditioned staircase problem of dimen-

sion:;; 357 x 385 . An IBM 360/91 conputer was used (relative nachine

- =15 _ -b ~ . -
precicion 1677 = 2.2x1077) a@ X was corrected after reinversion and

also every 25 iterations between reinversions. Typically, max| ri|

was reduced from around 10'9 to 10'16 . In some cases when the basis

was strongly ill-conditioned, maxlril was reduced from 10°° to lo'll‘

by the single correction. (If 88° = 1L’ , the condition number of B

can be estimated using the |ower bound #(B) > {max(di)/min(di)]%.)

In view of the above observations we suggest that a correction to

% could be made at every iteration of the product -form Chol esky

18

algorithm Here we are accepting the fact that an |1/0 hold-up may occur

during the SEEKR operation (step 8 of section 6). Instead of waiting
for the basis file to be positioned at a specific colum, we could read
the entire file and conpute residuals for the current % at the sane
tine.

Several steps of section 6 then need to be nodified. Assuning that

r Wwll be conputed separately follow ng reinversion, the new steps are

as follows:

3. FTRAN1: Solve Lp, =a, and Lps = in parallel.
(Since the overhead of unpacking Lk consunes nost of the

time, this does not involve nuch nore work than before.)

. - 5l -1
4. UPDATEL: Conpute w, = D p, and W, . D, Ps .
Use P, to conpute Bl and nodify D, - Pack non-zero

el enents of (pl,Bl) and add to end of L-file.

T
5. BTRAN2: Sol ve L u, = Wy and L;{Tu2 = w

Uy 2inparaIIeI.
6. READB: Read B-file to conpute y = BTul and correct % accordi ng
to é\u—é\(+ BTug .
7. CHUR Use Q, y and the usual ratio test to determne colum a
r
to be removed fromB . Find & = 4% A
x./v, . Update X
according to % e % -ay .
8. SEEKR: Read B-file to select colum a, whi | e conputing residuals

r=b—B’>\<for the new B .

Vectors r, p.ﬁ, Wy> U, MRy all share the same storage.

19

— o

8. Sparsity considerations during reinversion

Let P,, P, be row and colum pernutations to be applied to some basis

1’ "2

B. The orthogonal factorization P BP, = (LD%)Q is well known to be
nunerical ly stable for all choices of P, and P2 . so we are free to
choose whatever pernutations mght lead to the most sparse L . Hopever,
on elimnating g to obtain the assdciated Cholesky factorization we

see immedi ately that L and D are independent of P,
T T T 1 T
(P,8P,) (FLB'ET) = (1nfq)(q'PLT)

. T_T T
I.e. qu_B P — IDL™ .

Hence our search for sparsity in L is reduced to finding an opti nal
ordering for the rows of B .

The fact that columm-ordering is irrelevant was put to good use in
[14] where L was being updated explicitly. W were led to the seemngly
naive strategy of selecting P froman initial inspection of the full
A-matrix, on the grounds that this night provide a permutation that woul d
be reasonably close to optimal for all subsequent bases. By such neans
we hoped to avoid large fluctuations in the density of L during the
sinplex iterations. Athough it is not clear which single rowordering
Is best, the strategy is nost likely to be successful if P transforns
A into block-angular form (See [14].)

Wien L is updated in product form we favor the conventional approach
of choosing a new Py each time L is re-conputed directly fromB (i.e.
each reinversion). This is because the sparsity of such an initial L

strongly affects the efficiency of subsequent iterations up till the next

20

reinversion. (The other inportant factor is the sparsity of updates, which
we discuss in section 9.)
A first step towards obtaining a good row permutation is to partition

B into the following famliar form

o)]

wher e Lp » Ly are triangular colums with non-zeros on the diagonal.
(These are the forward and backward triangles respectively, and finding
themis a straightforward process; e.g. see Hellerman and Rarick [9].)
Partition Bis called the "bunp". It is square and in general sparse,
and we have yet to conpute its orthogonal factorization. This amounts
to taking linear conbinations of the colums of B such that Bis
reduced to lower triangular form W see that fill-in will occur in
partition C , but not in partitions Lp Of Ly .

To minimze fill-in we need to permute the rows of 8 in sone

optimal fashion. One pronmising possibility is to make use of the pre-

assi gned pivot procedures due to Hellerman and Rarick (called P and

Pu in [9], [10]). These are algorithns for isolating further bunps

within B'. Thus after the main bunp is located, the next stage of PlJL

is to find a row and colum ordering which arranges B into the form

21

B
= B
c, >
Ly
- | c
2 [1,] &,

where B, » B, and Eé are new square sub-bunps (there may be any nunber),

and L, and L, are triangular colums with non-zeros on the diagonal.

strategy ensures that there will be no fill-in for at least some of the

colums of B and C, namely those colums corresponding to L, and L

Each sub-bunp remains to be triangularized, but whatever we do to bunp

B, for exanple, will have no effect on B, or B Thus our fina

2
problemis to find optimal row orderings for all buipé, treating each
i ndependent | y.
At this point it is interesting to note the statistics given by

Hel erman and Rarick in [9] for their aIgorithmP5 . Wen applied to
basis matrices of dimension ranging from 589 up to 977, the number of
bumps that were isolated by P ranged from 3 up to 22. This is en-
conraging for the follow ng reasons. Suppose a basis B is reduced

to [ower triangular formby a sequence of elenentary orthogonal trans-

f ormati ons Qij (i<j):

22

Thi s

2 1

[-

Each .QfJ represents a linear combination of colums i and j of the

current B (transforned by all previous Qij), and the sparsity struc-
ture of both colums after the transformation is the logical OR of
their sparsity structure before %S:is appl i ed. (In contrast, if

QiJ were just an elementary elimnation operation, colum j would

be affected in the sane way but colum i would not change at all.)
This property of orthogonal transformations inplies that fill-inis at

| east as much as with sinple elimnation, and it appears that a single
rather dense colum in B is potentially capable of propagating non-
zeros throughout the whole of L . Fortunately Hellernman and Rarick's
results indica[e that a typical LP basis can be pernmuted in a way
which reveals a nunber of "fire-breaks." Thus propagation of non-zeros

may occur bel ow each bunp but certainly can not spread across the

triangul ar colums between bunps.

O course the same is true with the product formof inverse (here-
after called PFl). Qur point is that with orthogonal factorization the
effect of propagation can be very serious if allowed to continue over a
| arge nunber of colums. W nmay gain sone relief in the know edge that
propagation nust stop at the end of each bunp.

W return now to the problemof pernuting the rows of each bunp.

4

The strategy of P° is to find a pernutation of both rows and col ums

which reveals a spike structure of this form

23

A sinilar spike-finding algorithm has been given by Kalan [11]. \Wen the

PFl of Bj is conputed the only fill-in that occurs is below the spikes.
The col uims between the spi kes of any bunp are |ike the |ower-triangular
col uims between the bumps of B, and since their sparsity is not altered,
it appears that the spike-finding strategy is ideal for PFI.
On the other hand, orthogonal factorization of such a structure will

be | ess successful in terms of fill-in, since if Bj = ngg say, we know
that a particularly dense spike is likely to propagate non-zeros through-
out both Lj and the colums beneath Bj . As an alternative, consider

the Chol esky factor associated with a bunp that has bl ock-angul ar form

14

(o)
- e - -
()

AN

The preservation of zeros in Lj bel ow the angular blocks leads us to

proposc looking for a more general Structure which w shall call nested

bl ock-angularity. In its sinplest formthis anounts to isolating two

angul ar bl ocks (plus a set of coupling rows) and then applying the same
operation to each block recursively, until at all levels of recursion
neither of the blocks is further deconposable. The structure thus
obt ai ned depends on whether or not both blocks are deconposabl e at each
stage. If just the first block has further structure each time we wll

get the follow ng nested pattern:

2k

B e IS

\ !
[T !
|]

Z

This is an extreme case and there are nmany variations. An algorithm fOr
detecting bl ock-angularity within a general rectangular matrix has been

given by Vil and Kettler [18], and it can be applied directly to the
probl em of finding nested bl ock-angularity. Cur notivation is that by

so doing we can guarantee preservation of zeros inside the angular blocks

as well as below them

To illustrate that this strategy may sonetimes be as good as | ooking

for spikes, here is an 8x8 bunp with nested bl ock-angular structure,

along with its associated Chol esky factor:

12545678

1 [xx :

2 X X

N
Lo _J_}‘(__)_(_‘

o L_Xo X .
O SO 4X X
7 X X X x X
8 X X X X

If the last stage of P* g applied to the sane matrix we get the

following spike structure and a slightly different Cholesky factor:

25

23645871

N P x
- X X

Y ,‘3’()8 T X

5 |x xx) 1X X X X X

3 X X . C XXX

8 XXX |IX X X X X X X

6 X X, 7T 3xx

7 X X XXX XXX X-X XXX

By coinci dence both orderings give exactly the sane nunber of zeros in the

lower triangle. Wthout further experimentation we cannot draw any con-

clusions about the relative efficiency of each approach.

8.1 Nunerical aspects of preassignnent

Finally we must |ook at the numerical inplications of preassigning
pivots, Suppose that a basis B is to be "inverted" either by PFl or
by orthogonal factorization (Lqg for short). The strategy of isolating
square bunps in B is certainly justified in both cases, since neither
PFI nor 1q alters the triangular columms LF’Ll’LQ,... Iy bet ween
and around the bunps. Any near-Gingularity in these colums inplies near-
sinpularity of B itself',

Simlarly (since the bunps are square) near-singularity of any bunp
inplies that the original B s alnpst singular, and no anount of re-
ordering or merging of bunmps can inprove the condition of B . This
further justifies our earlier statement that the bunps can be treated
i ndependent | y.

The only numerical difference between PFl and LQ (during rein-

version) arises in the factorization of each bunp. Wth PEl it is

unlikely that any pivot order assigned to a bunp will be conpletely

26

satisfactory if that order has been chosen without regard to the magni-

tude of non-zeros in the bunp. It may be thought (e.g. [9, p. 214]) that
the only POSSi ble conplication would be with the spike colums, whenever
the updated pivot elenment of a spike becomes too small. A strategy
currently being used is to interchange an unsuitable spike colum wth
some other spike colum, on the grounds that at [east one of the spikes
will have an acceptable pivot element. This will often nmean nmoving a
spike and its pivot row out of one bunp into the next. The aimis to
retain as much of the preassigned pivot order as possible.

The follow ng exanple, however, shows that it is unreasonable to
assume that the non-spike colums will have acceptable pivots. Suppose

a bump Bj is of the form

1077 1 « spike
B, = 101 = .
J

1 1 1

If the preassigned pivot order is retained here, the first eta-transformation

will be
~ - -~ - - d -
100 107 1 1 100
ElBJ = 1 1 1 = 1 1
. 100 1 11 1 ' 1 -999
- - - of 3 -
and hence conputation of PFl W || introdyce uiinecessary numerical error

into an otherwi se well-conditioned matrix. Cearly an interchange should
be made between the first and third rows, or between the first and third

col umms.

27

——

This probl emwoul d be overcome by treating small non-spike pivots in

the same way as small spike pivots. |n the extreme case of choosing

maxi mal _pivot:; (i.e. taking the relative pivot tolerance to be 1), we

assert that PFT woul d be numerically stable during reinversion ii' pro-
vision were made to interchange either all of the rows or all of the
colums within each bunp, and under these conditions it would never be
necessary to move colums from one bunp into another. |p practice it may
be feasible to localize interchanges in this way even if the relative
pivot tolerance is sonewhat less than 1 .

I'n any event, nunerical precautions nust be taken when PFI is
used, and some-revision of a preassigned pivot order will often be neces-
sary. The anticipated reduction in basis matrix 1/O may therefore not
al ways be achieved.

Wth orthogonal factorization, as we have said before, all pivot

orders are nunmerically acceptable, and in such a context the philosophy

of preassigning pivots becones fully justifiable. e are paying the price

of higher density in the basis factorization, but by this means al one

can the advantages of preassignment be fully realized.

28

9. Sparsity of updates

In any algorithm based upon product-form updating, a principal factor
governing reinversion frequency is.the rate of growth of elenents in the
update file. It would be pleasing if the energy expended during reinver-
sion had some optimzing effect on the sparsity of subsequent updates.

To sone extent this proves to be the case with the Chol esky algorithm

Suppose t hat columna replaces colum a in B at sone
iteration k . In the case of standard PFl updating, the nunber of
non-zeros in the updated colum vector o = Bl-{las deternmines how many

elenents are added to the eta-file. Cearly this number is uniquely

det ermi ned by B and a,» and would not be altered by any pernutations
to the rows and colums of B . Neglecting nunerical error we conclude

that with PFl the rate of growth of the eta-file is independent of
what ever sparsity was achieved |ast reinversion, or how recently that
reinversion was perfornmed.

For the Cholesky algorithm the relevant update vectors gzre P, and

p, » as given in FrRAN1 and FTRAN2 of section 6:
o

Lp, =ags LMogiaPo = 2y - (13)

Now if P is the row pernutation chosen during reinversion of an initial
basis B, , then L, is the Cholesky factor associated with PBk (k>0).
A change in P would affect all Ly and therefore would alter Py and
P, above. In other words, the choice of P during reinversion affects
the sparsity of updates for all subsequent iterations. We will discuss
this situation in general terns first, and then specialize to block-

angul ar probl ens.

29

9.1 General sparse problens

Gven a large sparse |inear progranmmng problem we should bear in
mnd the follow ng points:

(a) I'n a triangular system of therorm Ip = v such as in (13) above,
the first non-zero element of p coincides with the first non-zero
in the right-hand-side vector v (counting fromthe top down).

(b) A reinversion algorithm such as Hellerman and Rarick's (section 8)
is usually capable of pernmuting a basis B, into alnost |ower tri-
angular form By this we nean that only a small fraction of colums
(viz. the spikes) have non-zeros above the diagonal.

(c) The number of iterations perforned between reinversions is usually
small relative to m(e.g. reinversion every 50 iterations when
m=1000 gives a ratio of 5%). Hence after k iterations, BK differs
from By, in only a smll percentage of its colums.

(d) Since the Cholesky factor associated with B does not depend upon
colum order, the row permutation P chosen as optimal for B,
should remain close to optinmal for all B
To fornmalize point (a), f'or any mvector v , define an integer

function 6(v) as follows:

8(v) = k i ff v, =0 for all i<k,

Then Lp = v inplies that e(p) = 6(v) , so the naxi num possible nunber
of non-zeros in pis m- 6(v). Now points (b) and (c) together show
that all bases B, are essentially triangular (for the purposes of this

argument), so on the average it is likely that e(ar)z m2 ., where a,

30

iz the colum being deleted froms

Hence in (13), e(pg) > m/2 on

-
average. In words this nmeans that the vector P, is likely to be less
. than 5% dense, even if there is conplete fill-in below the first non-zero.

The sane may be said about 12} in (13), since it seens reasonable to

assune that the incomng colums a_ will in the long run have non-zeros
~ distributed nuch like the colums they are replacing.
A simlar argunent may be appli e(; 'to the method of Forrest and Tonlin
[51, [16], [17] for updating LU factors of the basis. If the "partially
“ updat ed" formof the incomng column iS Y = L'las v itislikely that
6(y) > m2 on the average.
Even vw'th-PFI the sane could be said about the vector o = B;'as
b in the case of .transportati on problens, since then B, is always a
3 permuted triangle. Wth nore general problems the size of the forward
triangl e of each basis would be the critical factor.
L To summarize, at each iteration a strict upper bound on the nunber of
L non-zeros in the updates (p,,8,), (p,,8,) is bm , and the above dis-
cussion has reduced the bound to a "likely average" of 2m. This is not
L entirely satisfactory yet, since a strict upper bound for the a-vector
in PFl is just melements. However, just as we expect o to be
. - sparse in nost cases, we also expect that vectors P15 B, will not be
conpl etely dense bel ow positions e(pl), e(pg) respectively.
" Except in the case of bl ock-angul ar problens (see below), we nust

resort to further heuristics by conparing

— —'L
pl—L as
with

-1 Tl
Ba =BL D'p .

R
1}

31

2 . . , .
(Equivalently, o = QTD Epl if Qis retained in the orthogonal factor-

ization B = LD%Q .) Since pl is only "partially updated" by conparison
with « it seems that if o is at all sparse in PF| then 1 is likely
to be even nore sparse. Point (d) above indicates that if pl is sparse
during iterations imediately after reinversion, its density should
increase only slowly during later iterations.
Under the final assunption that D, will be as sparse as p| , we

conclude with the follow ng conjecture:

For a given problem if the a/-vectors occurring

in PFl are of low density, the growth of elenents

in the L-file of the Chol esky algorithmwill be

conmparable to the growth of elenments in the eta-

file of PFI
As always, such a heuristically-derived conjecture must be verified hy
practical experimentation. |n addition, conparison nust at sone stage be
made with the method of Forrest and Tomin [5], [16], [17], since relative
to PFl this nethod has denonstrated considerably |ower growth rate of

the eta-file.

" 9.2 Block-angul ar probl ens

The one case where we can guarantee in advance that the update vectors

will be sparse, is when the matrix A has bl ock-angul ar structure (e.g. [41):

32

L

— r—

Just a trivial nodification to the general algorithmis required to take
advantage of this special structure. Specifically, the reinversion
routine must choose row pernutations for each block individually; i.e.

it must not nove rows from one block to another. Under such circum
stances we know that the Chol esky factors L will be block-triangular

for all iterations (Saunders [14]).

- -

For sinplicity, suppose there are m, coupling constraints and three

bl ocks each of dinension m, . Suppose also that a colum a_is enter-

ing fromblock 2. Then the systemLp, = a_ looks like this

my 0 0
i X X
] X X
M X _ X
L X - X
] - e o - -
]
ot 0 0
]
' -
X X
m
° \ X J
. X J X
Lk pl as

The zeros that are shown in p, followdirectly fromthe zeros in colum

a_ . The sanme is true for the second update vector when a colum is deleted

from some block. The total nunber of elements added to the L-file each
iteration can be at nost h(mO + ml), and shoul d be considerably fewer if
the problemis sparse within the blocks. This upper bound is independent

of the nunber of angular bl ocks

35

10. Concl usi on

Among the many inplenentations of Dantzig's original sinplex nethod,
those which have becone established because of their sparseness properties
are unfortunately numerically unstable. The forenpst exanples are al go-
rithms based on the product form of inverse. A nore recent exanple is
the LU inplenentation of Forrest afid Tomlin [5], [16], [17]; this has
denonstrated extrenely good sparseness characteristics on |arge practical
problems, but the method used for updating the LU factors cannot be
classed as nunerically stable. Conversely, the LU algorithm of Bartels
and Golub [1], [2] has excellent nunerical properties, but because of the
difficulty of inserting new non-zero elenents into U during changes of
basis (see Tomin [17]), this method cannot yet be applied to |arge-scale
probl ens.

At present, the algorithmdescribed in this paper represents the only
general |inear programm ng nethod which is both nunerically stable and
capable of efficient out-of-core inplementation. \W have shown that
product -formupdating of the Chol esky factorization is feasible, and we

have retained the nunerical advantages inherent in GII and Mirray's

- version of the sinplex method [6].

The aimin witing has essentially been two-fold:

1: To present a mathenatical description of the product-form Chol esky
algorithm along with sufficient practical detail to indicate how
i mpl enentation mght proceed.

2. To di scuss qualitatively some aspects of orthogonal factorization
in the context of general sparse matrices, in order to gain sone

assurance that the expense of a non-trivial inplenmentation m ght

34

be justified.

We anticipate that the class or blems)
' P Problems i rwhich the method will prove

to be efficient W Il include those which are extrenely sparse and those

whi ch have bl ock-angul ar structure.

35

Acknow edgenent s

| wish to thank John Tomlin for many discussions of the inplenmentation
aspects of large-scale systens, including the buffering schene described
in section 5. | amalso very grateful to Walter Mirray and Chris Paige
for discussions of the nunerical aspects; to Phil GII, Gene Golub and

Ri chard Underwood for their valuable criticisns of the first draft; and

to Mary Bodley for her speed and care in typing the manuscript.

34

-

(1]

[2]

[3]

[4]

[6]
[7]

[8]
[9]

- [10]
[11]

[12]

References

R H. Bartels, "A stabilization of the sinplex method," Nynerische
Mat hemati k 16 (1971), pp. Llh-bsk, -

R H Bartels and G H Golub, 'The sinplex method of Iinear pro-
g;%rrranrég using LU deconposition,” Comm. AcM 12(1969) pp. 266-268,

G B. Dantzig, Linear programming and extensions, Princeton University
Press, Princeton, New Jersey (1963).

G B. Dantzig, "Large-scale linear programming," Operations Research
Departnment Report No. 67-8, Stanford University, Stanford, California

(1967).

J. J. H. Forrest and J. A Tonlin, "Updated triangular factors of the
basis to maintain Ssparsity in the product form sinplex nethod,"
Mat hematical Programming 2 (1972) pp. 263-278.

P. E GIl and W Mirray, "A numerically stable form of the sinplex
algorithm" J. of Linear Algebra and its Applications 6(1973).

P. 2. GIl and W Mirray, "quasi-Newton Nethods for unconstrai ned
optimzation," J. Inst. Maths Applications 9(1972) pp.91-108.

P. E GIlI, G H Golub, W Mirrray and M A. Saunders, "MNethods for
nodi fying matrix factorizations," Conputer Sci ence Departnent Report
(to appear) , Stanford University, Stanford, California (1972).

E. llellerman and D. Rarick, "Reinversion With the preassigned pivot
procedurc," Mathemati cal Programming 1 (1971) pp.195-216.

I5. tlelicrman and D. Rarick, "The partitioned preassigned Pivot pro-
codure (P*)," pp. 67-7G in Cparse matrices and their application::
D. J. Rose and R A WI|oughby (Editors), Prenum Press, HNew YOTK

(1972).

J. E Kalan, "Aspects of large-scale in-core |inear programing,"

proceedings of ACM Annual Conference Chicago, Illinois (August 3-5,
1971).
W Ochard-Hays , Advanced |inear-programing conputing techniques,

|
MGawH 1. New York (19687,

[13] . C. Paige, "An error analysis of a method for solving matrix
equations,” Conputer Science Departnent Report No. CS 297, Stanford
University, Stanford, California (1772).

[14] M. A Saunders, "Large-scale linear programmng using the Chol esky
factorization," Conputer gSeience Department Report No. CS 252,
Stanford University, Stanford, California (1972).

[15] D. M. Smith, "Data logistics for matrix inversion," i.n Sparse matrix
roceedings, Ed. R A WIIloughby, |BM Research Center, Yorktowr
Hei ghts, New York (1968) pp. 127-132.

[16] J. A Tomin, " Mintaining a sparse inverse in the sinplex nethad,"
| BM Journal of Research and Devel opnent 16 No. 4 (1972) pp. Li5-kes,

[I71J. A Tomin, "Mdifying triangular factors of the basis in the
sinplex nethod," pp. 77-85 in Sparse matrices and their applications,
D. J. Rose and R A WIIoughb ' , ,
(1972).

[18] R L. Weilwand P. C Kettler K "Rearranging matrices to block-angul ar
form for deconposition (and other) algorithns," Mnagement Science 18’

Nno. 1 (1971) pp. 98408.

[19] J. H. WIKinson, The al gebraic eigenvalue problem xford University
Press, London (1965)"

38

