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RI CHARDSON S NON- STATI ONARY

MATRI X | TERATI VE PROCEDURE

R S. Anderssen and G H ol ub

Conputer Centre, Australian National University and
Conput er Science Departnent, Stanford University

ABSTRACT

Because Of its sinplicity, Richardson's non-stationary iterative
schene is a potentially powerful method for the solution of (linear)
operator equations. However, its general application" has more or |ess
been blocked by

(a) the problem of constructing polynonmals, which deviate |east

fromzero on the spectrumof the given operator, and which
are required for the determnation of the iteration para-
meters Of the non-stationary nethod, and

(b) the instability of this scheme with respect to rounding

error effects.
Recently, these difficulties were examned in two Russian papers. In.
the first, Lebedev [15] constructed polynonials which deviate |east from
zero on a set of subintervals of the real axis which contains the spec-
trum of the given operator. |In the second, Lebedev and Finogenov [11]
gave an ordering for the iteration paranmeters of the non-stationary
Ri chardson scheme which makes it a stable nunerical process. Transla-

tion of these two papers appear as Appendices 1 and 2, respectively, in



this report. The body of the report represents an exanination of the
properties of Richardson':; non-stationary schene and the pertinence of
the two mentioned papers along with the results of nunerical experinen-

tation testing the actual inplementation of the procedures given in them



61. | NTRODUCTI ON

O the many nethods proposed for the iterative solution of the
l'inear system

Au

w=l

(1.1)
where Ais an n x n non-singular matrix, the sinplest is the non-

stationary nethod of Richardson [1], viz.

u(kj-l): g(k) = Q’k(AH;(k)‘ D (k=1,2,. . ) (1.2)

-~

wher e @ys Gps . . . are iteration parameters wth @ = “k—N(k > N).

The given fixed integer N is called the period of the iteration (1.2).
Though Richardson's original nmethod was the stationary version of (1.2),
Vi z.

GF 0l g (s const, k=1, 2, L L), (L3

fand ~ ~

he observed that better convergence could be obtained if oy varied
with n. Aong with other methods, Young [2] examined its use for the
iterative solution of elliptic partial differential equations. |In sub-
-sequent papers [3],[4], its numerical properties were examned in sone
detail. It was shown that

(i) in a certain sense, the choice

1

= 2[atb - (b-a) cos((2k-l)n/2N)] " (k =1, 2, . . . . N, (14

A

where a < )\J.(A) <b((j=1,2, ... .n), gives optiml con-

vergence properties to the g(k) defined by (1.2),



(ii) the nmethod, at |east when using the optinal choice (1.4)
with the {ak} in the order given there, is very sensitive
to rounding error effects.
I ndependent studies of the method have been made by Birman [5]
and Gavurin [ 6]. Since the publication of Young's paper [3], the nethod
has been discussed in different contexts by Stiefel [7], Engeli et al [8;
Chapter 11], Golub and Varga [ 9] and Young [10]. An inportant result
obtained during this period is that due to Young [10; §11.4], which
shows that the non-stationary forms of (1.2) are related to sem-iterative

forms of the stationary procedure (1.3):

Definition 1.1. Let {vij}:{vij(i =1 2 ... .j=1 2 ..)1i)x

denote a set of coefficients which satisfy

Jj=1
G ven a sequence {53'} = {ﬁj’j =1, 2, . ..) generated by (1.3), then
k
Y% = Z Vg X5 (5 = 1,2, 00 (1.6)
J=1

_defines a sem-iterative method with respect to the linear stationary

procedure (1.3).

Theorem 1.1. Let A be a non-singular natrix. _G'ven_{aj}, there

exists, for o # O,{Yij} such that (1.5) is valid and such that the

sem -iterative method pbased aon (1.6) _and the {yij} yiel ds the sang

iterates for the starting vector x(l)= E(l) as does Richardson's nethod

2



based _on the {ak} and the starting vector M(l)' Conversely, given

{vij} such that (1.5) is valid, then, for any « # 0 and any i, there

exi sts a set {ozj}, such that the E‘(l), as determined by Richardson's

met hod based on the fozk} and starting with (l),is the sane as v(n)
_— - ~ _ o~

determ ned by the sem-iterative nethod based on (1.3) and the {Yij}
with v(l) =u (l).
_~ ~

Conpared with the sem-iterative method based on (1.3), which
requires the triangular array {Yij} defining (1.6) to be stored, Richard-
son's non-stationary scheme is the sinpler to inplement. However, its
sensitivity to rounding error has nore or |less blocked its general use,
especial 'y since sem-iterative nmethods are |less sensitive.

C oser exam nation of the Richardson scheme indicates that the
mentioned sensitivity is a function of the order in which the {ak} are
taken. This was first observed by Young [3], [4] who exam ned a nunber
of orderings and showed that sonme gave better results than others.
However, the nore fundanental question of the existence of orderings
for which Richardson's nethod defines a stable numerical process was
not exam ned.

W pause to mention further connections of Richardson's nethod
(1.2) with other well known iterative techniques:

((i)) The optinmal choice of the relaxation paraneter for the SOR
"method is only known explicitly in special cases; e.g. the given positive
definite matrix A has Property A {see Varga [19; Chapter 14]}. This is
stronger than positive definiteness which is all that is required for
the application of Richardson's non-stationary method.

((ii)) If the first order method (1.2) is replaced by the second

order (Richardson) method.



u(k+l) :,E(k) N

~

U(k) - u(k'l)} s
~ ~

(k) k-1

algg'™ + g - gy + g
then the problemof numerical instability is found to di sappear {see
Golub [ 18]}. The close connection between this second order method and

the Chebyshev senmi-iterative method, viz.

A i RS- (L)
with

o =1/ (1-p%u/h), (k > 2), 0y = 1, w, = 2/ - 0°),

where p denotes the spectral normof A has been examined in detail
by Golub and Varga [ 19]. See also Varga [19] and Young [ 10; Chapter 16].
This senmi-iterative nethod contains SOR as the special case u)k=2/(l+[l-p2]%),
(k > 1).
((iii1)) The advantage of either method nentioned in ((ii)) over a
stable inplementation of (1.2) is the choice of the iteration paraneters.
For the first order Richardson nethod, it is necessary to specify in
advance the roots of the polynom al of degree N which deviate |east from
zero on o(A) for a given N For the second order nethod, Golub and
Varga [19] have shown that there exists, under a wide range of circum
stances, an optimal choice of « and g, Viz. o = 2/(l+[l-p21%) and
8 =-1. In the case of the Chebyshev sem-iterative method, the o

k
are generated sequentially as and when required.

Recently, Lebedev and Finogenov [11] {A translation is giver in
Appendi x 2} exam ned this question and constructed an ordering of the
oy of (1.4) for which Richardson's method defines a stable nunerical
process. The construction of this ordering will be examned in §2, and

the application of Richardson's nethod based on it for the solution of



different forns of Poisson's equation will be examned in §3. Lebedev
and Finogenov did not exam ne whether their ordering is in any sense
opti mal or whether other orderings exist for which R chardson's method

defines a stable numerical process. .

The other difficulty associated with the efficient inplenentation
of Richardson's nethod is the actual choice of the o) e The choice based
on (L4)is nore or less optimal if
(a) a and b are the exact |ower and upper bounds for o(A),
the spectrum of A (assuming now that Ais positive definite) and
(b) o(A) does not consist of wdely separated disjoint sub-
intervals in which the x,(A) {1 =1, 2 ... n lie

In fact, the optimal choice of the o, are the reciprocals of the roots

k

of the polynomals of the form

N
PN(t) = kfl(l - ozkt) (1.7 )

with
PN(O) -1, (1.8)

which deviate |least from zero on the set o(A). However, the actual

~construction of such polynomals is often blocked by
(@) the lack of know edge about the structure of o(A) {the nuner-
ical determnation of all the xi(A) (i =12 ... .n)in general,
invol ves nmore conputation than the numerical evaluation of A 1f}, and
() the fact that, for a given o(A), the construction of poly-
nomals of the form (1.7) - (1.8)which deviate |east from zero on o(A)

can be a difficult, if not inpossible, task.



For these reasons, the construction of the oy for a given A has been
based on the follow ng approximte procedure:

1. Determne a region Q

((i)) for which o(a) € Q, and

((ii)) such that the polynomials Py(t; @) with P (0; Q) =1
which deviate least from zero on Q are known or can be
construct ed.

2. Set the o (k =1, . . . . N) as the reciprocals of the roots

of the polynom al Py(t; Q).

The oy of (1.4) correspond to the case when Q = [a, b].

A nunber. of authors, including Sanokish [12], Achieser[13] and
Markov [14], have examined cases when Q is disjoint. The npbst recent
analysis is that of Lebedev [15] {A translation is given in Appendix 1},
who exam ned the construction of polynomals PN(t; Q) when Q consists
of a nunber of disjoint subintervals of the real axis. This work is
summarized for the two interval case in §+ and applied to a problemin

8.



§2. THE ORDERI NG OF LEBEDEV AND FI NOGENW

In this section, we describe the ordering of the iteration para-
meters of (1.4) which Lebedev and Finogenov [11] proved mekes the numer-
ical process defined by (1.2) stable.

For a given N, let (<pl,cp2, cpN) denote the basic ordering

of the iteration paraneters defined by (1l.4), viz.
¢; = 2[b+a - (b-a) cos ((2i-l)n/2N)]-l (i =, 2,....N. (2.1)

Then, different" orderings of the {gok} for the o in (1.2) can be defined
as permutations on the set (q;l, Pps vees <pN). In particular, we define

a one-to-one mapping between (p,, @y, - - . - cpN) and (oy; Ups oo aN)

with o = oiy by the permutation

g = (s s gy (2-2)

Thus, any ordering of the iteration parameters (1.4) can be defined in

terms of this pernutation g

Let NE {2, p =0, 1, 2, .. 3. "0 . "y _ (1) and

“2p_l | ('jl’ j2’ o &= 'j;_)p-l) < (2.3)

Then, the pernutation s, which defines the Lebedev-Fi nogenov ordering

N
of (2.1) is constructed inductively with respect to (2.2) and N€{2p, p =0,

1, 2, ...} using



[ = ('ji’ 2P+l"ji: 32, 2p+l'329 o ...

oP

In particular,
ny = (1,2)
), = (1,4,2,3)
ng =(1,8,4,5,2,7,3,6) |

6= (1,16,8,9,4,13,5,12,2,15,7,10,3,14,6,11)

(2.4)

nsp= (1,32,16,17,8,25,9,24 ,4,29,13,20,5,28,12,21,2,51,15,18,7 ,26,

10,23%,3,30,14,19,6,27,11,22).

An ALGOL procedure for generating *.p for a given p is:

Procedure Lebedev-Finogenov-Ordering (P, Kappa);

Value P, Integer P;

| nteger Array Kappa;

Begin Comment For a given "P", this procedure generates the

permut ation "Kappa" of order 2tP which defines the Lebedev-

Fi nogenov ordering of period 2tP. The array "Kappa" nust be

di nensi oned externally with order 21tp;

Integer I, J, INT, INS

KAPPA [1]: = 1;
INT: = 1
For I: =1 step 1 until P do

Begin INT: = 2 X INT;

INS: = INT + 1;

For J: = INT +2 step -1 until

1 do




Begin KAPPA [2 x J1: = INS - KAPPA [J1;
KAPPA [2 x J - 1]: = KAPPA [J]
End

End

End Lebedev- Finogenov O dering;



§3. APPLI CATI ON OF THE LEBEDEV-FINOGENOV CRDERI NG

In order to test the Lebedev-Finogenov ordering, we exanine the
type of matrix equation (1.1) for which iterative nethods are best suited,
viz. Ais a sparse large rank matrix with Ay defined in a systematic
manner which rules out the necessity to store A In particular, we
exanine the follow ng boundary value problem using finite difference
net hods, construct a function u(x,y), continuous on the unit square
S ={(x,y); 0<x<1, 0<y <1} except possibly at the corner points
having first and second derivatives in the interior and satisfying

Poi sson"s equation

232u 32u
7 + 5 = 'g(X,Y) (u = u(x’Y); (X,Y)E S)’ (5-1)
ox oy

and the boundary conditions

u(0,y) = a(y), u(l,y) = aly) (0< vy <1), (3.2)
u(x,0) = p(x), u(x,1) = g(x) (0 <x<1). (3.3)
Ve introduce the grid
G={(ihgn);i =0, 1, . . . . 1,j =01 ....1, Ih=1}
and the notation
uij = u(ih,jn)  ((ih,Jh) € G) |

and we use the central difference approximations

10



[
u(x _ .
_J;éﬂ; = (g5 Wy Uy /5 + o) (5.4)
- 1,4J

2
21l ]: O WA R EULIRRCY (3.5

Lo i,J

which are valid if a—‘ﬁ— and ——-an-uexi st and are bounded for
ox Sy

(x,y) e Interior (S). Substitution of (3.4) and (3.5) in (3.1) vyields,
after neglecting truncation error, the following finite difference scheme

for the approximate solution of (3.1)-(3.3):

BV g T Viel,3 T Vi,gel T Vi, - 1+h g..= Aij =1, 2,0-, I-1), (5.6)

Voj = %3° V1 = aj (=01 ....1), (3.7)

V]’_O:Bi_’ ViI=§i (| :1, 2, I-l) s (j./%@‘
wher e oy = o(jh), EJ = (jh), B; = 8(ih) and g; = B(in), and
vij denotes the cal cul ated val ue of Uy g

Since (5.6)-(5.8) define a linear al gebraic system of order (1-2)°
for the deternmination of the finite difference solution (3.1)-(3.3) on
the grid G it can be solved by the non-stationary scheme (1.2). In

“fact, its inplenentation only involves the use of three matrix arrays

A1) (0)

|J [} VIJ and glJ (I; J = 0’ 1) o I) (5'9)
in the follow ng way:
- (0) _ (©) .- (0 _ L0)
(1) Set Vog Ty Y1z Ty Viot =Bis Vit sl
(j =0,1, 2 . [, i =1, 2 [-1)



vi(jo) = d'l;] (i, ] =21 ....1-) (3.10)

where the djj define the starting solution, and k = 1.

(i) Conpute
1 0 L
ng): V§-j) - ak(rij) and R = n‘ax !rij‘ (1,3:]_’2”.',1_1)’ (311)

i

wher e
i T 4\§ioj) " Vi(fi),j § Vi‘s(ifj . Vi,(§)+)1 : Vi,(?.)l +h 2gij, (3.12)
and then
v o Q) (Lf=12 . ...1-1. (3.13)

(iii) For a given positive value ¢, if R > e, set
k=%k+1and returnto (ii) then back to (iii); if R<e, stop as
Uff) (i, =01 . ... 1) defines an approximte solution with the
required accuracy. The final value of k gives the nunber of iterations required.

Note. Because (3.11) is only a three-level difference schene,
the storage requirement can be reduced to at nost (I+1)2 + 3(1-1)
-l ocati ons.

For the matrix defined by (3.6), the exact bounds for the eigen-

val ues of A are
a =1, (a)=k(l-cos mh), b = h, (A) = b(l+cos mh). (4 )

Since the eigenvalues of A are dense in the interval [a,b], for sufficiently
small h, it is not inapprdpriate to define Q as the single interval [a,b].
The iteration parameters for (1.2) are therefore defined by (1.4). Using

12



84, POLYNOMIALS VH CH DEVI ATE LEAST FROM ZERO ON
DI SJO NT_SUBINTERVALS OF THE HEAL LINE

For the general case, when
n
Q = igl [azi-l, aei] (4.1)

Wth a, < agy (=12 ..., 2n-1) and Of [ays 12 a2i] (i=1, 2,
Lebedev used a method of Markov [14] to construct the pol ynoni al
PN(t; Q), with PN(O;Q) = 1, which deviates |least fromzero on Q.
The construction hinges on the validity of the follow ng assunption
whi ch anounts to a restriction on the way in which the a; (i=1, 2,

are chosen.

Assunption: There exists a pol ynom al Qn(t) of degree n,

with leading coefficient one and Qn(O) = 0, which maps all of the

interval s [aEi-l’ azi] (i =1, 2, . . . . n) onto one and the sane interval

[m, M], with mM > 0, and which nmaps the ends of layy 1> agi] onto the

ends of [m M. Further Q_n(t)nyst be a nonotone function as each of

bhe intervals [a,; ,, ] which varies frommto Mor fromMto m

Let T]i(T)E[aZi-l’ a; ] (i =1, 2 . . . . n) denote the roots of

tke equation

Qn('b) =T (4.2)

for 7€ [m, M]. Then, the required PN(t; g)is defined in terns of

(4.2) using the follow ng sequence of steps:
(i) Let N=jn, where j >0 is an integer, and set

14
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Py(t) =sj(%4t)) (4.3)

wher e SJ.(z) I's the polynom al of degree j which deviates |east from

zeroon [m M and is normalized with respect to the condition sj(o) = 1.

(i1) Observe that

Sj(z) = Tj((EZ - M—m)/(M-m))/Tj(zO) (b.4)

wher e Tj(g) = cos(jarc cos g)is the Chebyshev pol ynonial of degreej,

and
2o = -(MM) (Mm" |zo|>1. (4.5)
(iii) Since
Tj(z) = ﬁ (z-zi) , Z3 = COS ((2i=1)n/23) , (4 .6)
i=1
it follows that
J Qn(t) -7y )
= L.7)
(%) 1E1< Ty (
wher e
Ty = £ (Mim + zi(M-m)). (4.8)

(iv) Using the definition of m,(s), it follows that

“J n t - nS(Ti) j n "
Py(t) =._¥ I =0 1 i I (4.9)

i=1 s=1 dnS(Ti) i=1 s=1 sVl

which is the required PN(t; Q) [see Lebedev [ 15; Lemma] for the proof].

15



Thus, the actual construction of PN(t; ) and the required o

(k=12 . . . . N involves the follow ng steps:

1. On the basis of the restrictions contained within the Assunption,

construct an @ and a corresponding --Q,ﬂ(t).
2. Set N=jn, where j >0 is an integer, and determne all
the roots M (r;) (s =1, 2, . . . . n) of the polynonials

) =y (=12 )

with the v, defined by (4.8).

3, Then PN(t; Q) is defined by (4.9) with the roots
o,}‘(': (M (r )] 7 (k = (i-l)m#s), i = 1,2,...,J, s=0,1,...,n-1). (4. 10)

In order to apply the results of §2, it is first necessary to determne

arranged in descendi ng

I cpN) whi ch corresponds to the o

order of magnitude.
Since, for the case n = 2, Q,(t) = t(at+b) is symetric with
respect to the line t = =b/2a, it can only be used to generate the

required transformation for Q = [a), a,] U [a3, g ] if

8‘2-8‘1 = ah-a'ﬁ = const.

- Hence, given that o(A) c D = [bl, b2] U [bi’ bu]’ it is necessary to
exanine the optinum choice of the a;(i =1, 2 3, %) for this D

Al the possibilities are examined in detail in Lebedev [15]. Ve only
pause to exam ne the case which covers the problemto be considered in

§5. For this problem we have a, - a n =2 and N even.

- L T

5?
Thus, we can use the following explicit expressions for the o of

16



(4.10) which Lebedev [15] derived using the properties of QQ(t):

%og-1 ~ ;c+[7k+c2]§}'1, Yox = {C'[Tk”ceﬁ}-l (k = 1,2,...,3) (411)

with Ty defined by (4.8), M= -aj8,, M= -aya,, and ¢ = (a2+a5)/2.

17



§5. AN_APPL| CATI ON W TH THE SPECTRUM ON
TWO DI SJO NT__SUBREGIONS

In this section, we exam ne fhe use of the Lebedev-Fi nogenov
ordering for the solution of a positive definite sparse matrix Awth
its spectrum contained on two equal-length disjoint subintervals. The
(pi(i =1, 2, .... N of (2.1) will then be defined by the roots B4
of (4.11) arranged in descending order of magnitude.

W do this by exanining the following problem on the unit
square S fwe use the notation of §3}, use finite difference methods to

construct a continuous function u = u(x,y), (x,y)€S, which satisfies

2u 32u
9 > + 2) + Q(x) u = 'g(X>Y) (51)
dX dy

and the boundary conditions (3.2) and (3.3). Following the procedure
of §3, we introduce the grid G and the differencing (3.4) and (3.5).
This yields the following finite difference scheme for the determ na-

tion of u = u(x,y) on the grid G

2 2 _ ——
AV +hqiv,1_+hg.._0 (i, =12, ... .1-1) (52

ij J y

“along with (3.7)and (3.8), where BpVs is defined by

= - - -V, .-V, . -
ByvVig = BVi3 Ve 5o1 T Veogar T Vic1 3T Viel g, (5-3)

For the solution of this difference schene, we use the follow ng

generalization of Richardson's non-stationary method (1.2):

18



]%(.kﬂ_) ) Bf,(k) _ Gk(c}},(k) "£)> (L)

where t he o, are now the reciprocals of the roots of the polynomals

which deviate least from zero on the spectrum of B7'C.
W denote by ir-{and g} the vectors obt ai ned by ordering the

el enent s Vi fand gij} (i, 3=1, 2, «** 1-1)in the follow ng way:

Vi = Vs ke (j-1) + i(z-1) (j=1,2, . . . . 1-1, 4=, 2, .... I-1). (5.5)

Using this ordering, we can wite (5.2) as

- 2. - —
Iv + hg - b= (A+1HQV +hg-b=0 (5 .6)

wher e

e
~—

Q = diag (gL, oI, . . . . g9p )

with T the unit matrix of order I-1,

'A -E - .)4- _1 -
A T -1 b -1
A = A with A= -1 0k -1 s (5.7)
-IA
1 b
and
T
b = [91,923-&0’9:[_1]
where the vectors b (k =1, 2 .... 1-1) are all of order I-1 with

19



Ql [al+Bl’Q’2’ « e e ’aI_g,aI_l + Bl] 5 EI_l - [BI_l-*ulﬁag" .- ’BI"lmI l]

and

b = [Bys 05 eees 0581 (k= 2, 3,...,I-2).

~

Thus, the inplenentation of the generalized Richardson procedure

for the solution of (5.2), (3.7) and (3.8) becones:

((i)) Set k =1, and using the ordering defined by (5.5) set

;(0) -

(dlll d12’ d]j’ ¢ BRE dI-l,I-l) (5-8)

where the d, . define the starting solution.

1]
((i1)) Conpute
T=1 f(o) + hg’é - b, R= mix l;k‘ s (5.9)
and then
E(l) _ '1.7(0) - o, 27T, (5.10)
fol l owed by
-(0) _ 'l;(l)_

((iii)) For a given positive value €, if R> e, set k=k+l
and return to ((ii)) and then back to ((iii)); if R<e, stop
as f(o) defines an approximate solution with the required
accuracy. The final value of k gives the nunber of iterations

required.

20



Note. In (5.10), the actual inversion of A is done using one
of the recently devel oped direct methods which takes into full account
the sparseness of a. See, for exanple, Buzbee et al [19].

For this inplementation, the o, nust be the reciprocals of the

k
roots of the polynom als which deviate | east fromzero on the spectrum
of A'lL. Since the a of (5.7) coincides with the A of (3.14), we

obtain that the spectrum of A'lL must lie on the interval

(L6500 L (/A s (), 19070 (A, (a)]]

min

}‘min(Q) . }imax(q') < 0, ané oa the interval

[1+6°(0 g (/A (DY 1070 (/A ()1

max min

if s (en o (@) 2 oo In, du (5.1) and (5.2), we take

-bk (x <% - 1/kk)
a(x) = g (x) = { K@ - x) G - Y4k < x <3 + 1/bK)
+hk (x >4 + 1/kk)

1

with 2kh > 1 and | odd, then the spectrumof A "L wll be on the

equal -l ength disjoint subintervals
i | gqp OB -2 cos i -2
1.k 2 1.k T2
2 h ? 2 h J‘s
i cos 1B -2
1+ = 2 1+
2 h ’
|

o) |-y
A
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Consequent |y, using the notation and results of §k, the P; of &2
becone the roots B of (4.11) [arranged in descending order of magni -

tude) with

Appl ying the Lebedev-Finogenov ordering to the ®y (as detailed
in §2), the following two problens based on (5.1),(3.7) and (3.8) were

sol ved usi ng the above inpl enentation ((i)), ((ii)), and ((iii)):
Problem 5.1. The honpbgeneous problem

a(y) = @(y) = (x) = B(x) = 0, g(x,y) = O,

which has the exact solution u(x,y) = 0, (x,y)és. Aong with k = 4

and | = 32, the starting solution was taken to be
dij =1 (i, =1, 2, ... . I-1).
Problem 5.2.  The non-honogeneous problemwith
a(y) = p(x) =0, &(y) =sin my, g(x) = sin nx,
g(x,y) = - (F+F) + g (x)} sin Ty

whi ch has the exact solution

u(x,y) = sin ™xy  ((x,y)es).

22



Along with k = 4» and | = 52, the starting solution was taken to be

The actual numerical results-are discussed in §6,
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§6. NUMVERI CAL RESULTS AND CONCLUSIONS

Nurrerical experimentation with Problens 3.1-3.3 using the ordering

of Young [2], [3] as well as that of Lebedev and Finogenov indicated

t hat :
()

(i)

(iii)

Young's ordering allowed (1.2) to behave in'a stable manner
for small N when using the floating point double precision
arithmetic of the iev 360/67 conputer at the Conmputer Science
Departnent at Stanford University. This is easily reconciled
with" Young's finding since his conputations were performnmed
with the low precision fixed point arithmetic of the ORDVAC.
However, with the . chosen in ascending order, even the
use of floating point double precision arithmetic did not
prevent the rapid onset of instability.

For N ~ 100, Richardson's non-stationary scheme (1.2)
behaved in an unstabl e manner when using the ordering of
Young. This is illustrated in Table 1, where we list the
errors arising fromthe use of Young's ordering with N = 128
when Problem 1 was sol ved.

Wien using the Lebedev-Fi nogenov ordering, the non-stationary
scheme (1.2) always behaved in a stable manner. This is
illustrated in Table 2, where we list the errors arising
from the use of the Lebedev-Finogenov ordering with N = 128

when Problem 1 was sol ved

2L



Further support for the validity of (iii) is contained in Tables 3and
4. Here, we list the errors arising fromthe solution of Problens 3.2
and 3.3using (1.2) with the Lebedev-Fi nogenov ordering.

Wiile of interest inits own right, the stability of the non-
stationary scheme (1.2) for the Lebedev-Finogenov ordering raises
Inportant practical questions. For exanple:

(i) Since this stability result applies to a wider class of
matrices than covered by the Property A condition, do
there exist classes of matrices for which Richardson's non-
stationary scheme, with the Lebedev-Finogenov ordering,
yields better results than SOR?

(ii) Do there exist other orderings for which the non-stationary
schene (1.2) is stable?

Though answers to such questions will be of interest, the practical
importance of this result will depend on how good a nmethod it proves
to be for the type of problemand procedure discussed in §5 (see al so
Concus and Gol ub [20]). That it represents a reliable nethod for such
problems is illustrated by the results of Tables 5 and 6. Here, we
list the residuals arising fromthe solution of Problens 5.1 and 5.2
using the generalized Richardson procedure of § with the Lebedev-

.Finogenov ordering applied to the «

k of (4.11) arranged in descending

order of magnitude to formthe set (cp1,c92, . McpN),
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APPENDI X 1.

| TERATI VE METHCDS FOR THE SOLUTI ON OF OPERATCOR

EQUATI ONS W TH THEI R SPECTRUM LYI NG ON SEVERAL | NTERVALS. *

V. |. Lebedev
(Moscow)

Let
Au =f (1)

denote an equation in a Hilbert space Hw th A a bounded self-
adjoint operator. Let o (A) denote the spectrumof A with
0f o(A). W exam ne for the solution of (1) the effectiveness of

the use of cyclic iteration methods of period N [see [1] -[3]}, viz.

RS, S Olk(AU.k - f), (2)
where the @, are numerical parameters such that %N T % . Per form ng
N iterations with (2), we obtain

k+N k -1
ut o= P(A)ut + (1 - P(A))ATTE,
‘where the polynomals PN(t) have the form
N

PN(t) =m (1- afkt) (3)

k=1
P (0) = 1. (%)

*Translator's Note. First published in Zhurnal Vchislitel' noy MatenatiKi

i Matematicheskoy Fiziki 9(6) (1969), 12h7-1252.
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Thus, the error ¢ =u - uk satisfies the follow ng recursive fornul a

ek+N = PN(A) sk. (5)
Hence, if the coefficients in (2) are. chosen so that the polynomals of
the form(3) and (4) deviate least fromzero (PDLZ ~ polynonial which
devi ates least from zero) on the set o(A), then we obtain a sufficiently
ef fective Chebyshev iteration nmethod which gives for N iterations

the maxi mum danping of all the errors ek

eM = {e:||e] |< )

The actual construction of such a polynomal, as a rule, does
not appear to be feasible because either a known structure of o(A) is
not available, or o(A) is such that it is difficult to construct a
PDLZ. It is clear that the problemcan be solved in the follow ng sinple
ninded way: Assume it is known that g(A)éen  where Q is such that

a PDLZ can be constructed for it, then the «_ are the reciprocals

k
of the roots of this polynomal.

Met hods for the construction of iterative methods (2) with
Q = [m,M] and mM > 0 are well known [see [1] - [3]}. In [4], the
choice of the oy with N =1 is based on a conformal mappi ng proce-
dure when o(A) belongs to a set @ in the conplex plane and the
conplement of Q is a connected region. The case, when Q consists
of the region [m M]with mM > 0 and a point » > M was examn ned
in [5]. Methods for the construction of PDLZ on two non-intersecting
regions, with the coefficient of the highest termunity, were devel oped
in[6]. W note that, when these two regions lie on opposite sides of

the origin, the polynonials found in [6] can not be always used a: a

basis for the construction of PpLz of the form(3) and (4). -
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In this article, we examne the construction of PDLZ of the
form(3) and (4) when Q consists of n intervals of the real axis.
Ve make no assunption about whether A is positive or negative.

Case 1: n > 1. Let

n
O = U [a2i_l’ a'2i]’
i=1

where a; < ay,, (i=12 ..., 2n-1), O& [a,5_ 15 8531 (1=1, 2, .. 0, n).
In addition, we require that the a; satisfy the followng algebraic
condition: there exists an n-th degree pol ynon al Qn(t), w th

leading coefficient one and Qn(O) = 0, which maps the intervals

[ayg 15 @3] (i7=1, 29 .*a, n) as a whole onto one and the sane

interval [m, M] with mM > 0 and maps the ends of [ s aei] onto

8. .
2i-1
the ends of [m, M]. W denote by ni(T)E[aei-l’ a2i] (i =1, 2,

.+, Nn) the roots of the equation
Q,(t) =

for T€ [m, M]. It is clear that Qn(t) - (M#m)/2 is a PDLZ on
0 With leading coefficient one. It follows fromthis, that the mod-
ul us of Qn(t) - (Mtm)/2 takes its maxi mumvalue of (Mn/2 on q
and that its sign oscillates with respect to the following n+l point
of Q1 &, 8,5 8,,..., 8, [see[7]}. Below we require the fact
t hat Qn('b) is a nonotone function on each of the intervals [8‘21-1’ aei]
which varies fromm to M or Mto m
For the construction of the PDLZ, we make use of a well-known

net hod [7], which is used in the actual construction of the polynonm al

A-3



and in the proof that it is the required polynomal. et N = jn,

where | > 0 is an integer. W set

wher e Sj(z) is the PpLz on [my, M of degree j which is nornalized
with respect to the condition SJ.(O) = 1. In fact, SJ.(z) satisfies

the followi ng explicit expression [7]

85(z) = Ty((2z - M - m)/(M - m))/T4(2,),

wher e Tj(g) = cOS | arccos g is the Chebyshev pol ynomi al of degree

j and z, = -(I\{&n) (Mn)'l, |zo|> 1. Since

J (21 - L)
TJ'(Z) = (z = zi), z; = COS 53 ,
i=1
it follows that
j (t) - .
P (8) = (Q“ Tl) (6)
i= Ti
wher e
T3 =2+ m+z (M- ). (7)

W transform (6) to obtain
J n /¢t - n (7)) J n t
PN(t)=TT TT( s 1 >=rr T (l--—-—). (8)
i=1 s= g7 i=1 s=1 "s(T5)

Ey = Eg( Q) =t2a3(§ [y (8D

Let

where w,(t) is the PDLZ on g of degree N which is nornalized with

respect to the condition w (0) = 1.

i
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Lemma. Among all polynomals of degree N which are nornalized

with respect to the condition (&), P(t) defined by (8) is the PpLZ

oen Q.

For the proof of the Lemma, we note that P,(t) attains, wth
respect to its nodulus, a maxinum on Q which equals lTj(zo)‘-l: and
has an oscillating sign with respect to the follow ng jn+tl points
Q, of q : 521-1“ =1 2, .a*, n), 8 and (j-1) internal points
on each of the intervals [a2i_l, azi] (i=1, 2, . . . , n). In addition,

P

N®oir1) T Bylepg)s =L 2. -1 (9)

W assune that T’N(t) and not PN(t) is the PDLZ. W& examine the

behavi or of the pol ynom al
ay(t) = By(t) - By(t)
with degree less than or equal to N |t is clear that

oy (0) = O. (10)

On the other hand, (pN(t) h anges sign at the N+ 1 points of Ql,

i.e., q;N(t) has no less than N roots on [e.l, aen], and we concl ude,

as a consequence of (9), that not less than N roots of gpN(t) lie

in €. Taking the degree of pr(t) and condition (10) into account,

"we obtain that (pN('b) = 0. The resulting contradiction proves the Lemma.
Comparing (3) and (8), we see that the o of nethod (2) nust

take the val ues

) (11)



with k =n(i-1)+s (i=1, 2, .., j, s=1 2, .. .. Ilnce,

: ORI R 2 J L
w7 () 2((g t V(zgm = 1)+ (2, ‘\'("o - )T <,

J

and thus, | |ek+N|| < Ey Hek\\. This leads to the problem concerning
the evistence of inplementations of (2) for which the strong accumu-
lation of rounding errors does not occur. 'We note that, for n = 1,
we obtain Chebyshev's method for one interval.

Case 2: n=2., |f the above assunptions regarding q hold,

then for n=2 they inply that ay-a; = & -a; = h. Let
a'c = (82 + a5)1/2 H hl = (35 - a2)/2 2
t hen
Qe(t): t(t -2c), M= =a,8) , M= may8ys (12)

2y = -(ala)f + a2a_,)/(alal+ -628.5),

apgy = et W (ry + N7 ey = fe -V, + A5, 2, -0

1
V¢ eval uate 1Tj(zo)], For this we put 1-,02 = (1 + zo)/E. Cal cul ati ng

to’ we obtain

-1
toz = (1-apa/ag) "

Trerefore,

A-6
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and hence, for to2 > 0, we have t02 > 1 and

By, = offbg + o (57 - 19+ 16y - V(e 2 - 0197 ()

and for Yoz = -2 <0, we have

By = 2T (7 v 1)+ 0] T+ W2 + 1) - 019

For j > 1 and n = 2, we examne the follow ng problem Assune

it is known that o (a) €D = [by, bl U [b3, by] where b, < b, < by < by
OfD . and let &) =b, -by, 4, =b, =D, and A =4, -4,. Hwis the
set  chosen so that the nodul us of 2, is a maxi mun?

Let blgﬁ > 0. It is sufficient to exam ne the case when
b, > 0. If A>0, then we put wy = by and a,,L= b2. [t iS neces-
sary to imbed [ b . ; bh] in an interval [aj, ah] of length L.t
toliow 5 from(12) that for g it is necessary to take the set

If 5 <0, then we put as :bB,au= , and i nmbed [bl, b2] in[a,, a2].

From (12) it follows that
Q= [by, b, = AlUlbgs Byl (15)

In this way, if Q, defined by (1) or (15), i s sinply connect ed,

then it is best to apply the Chebyshev nethod for [bl, bh]. If a, < a_,
2 ?5

it is easy to see that the exam ned nethod converges more qui ckly than

the cyclic method (2) for the interval [bl, bu] with period 2j.



Let byb < 0 and wi thout |oss of generality p > 0. Ve put
a; = bys a, = b, and inbed [b3, bh] in [33, ah]‘ From(12) it follows

that
Q = [b, bg’]u"(by b, *+ Al
Now, we construct a PDLZ on D of the form
By(t) = 1+ 2at + bt°, (16)
Then, for N=2 and o (A) €D, we have for (2) that

2
= -2 f_\/(a - b).

-

As a prelimnary, we introduce the notation

0, ¥y 2) = ~(x +y) (x(y + 2) + 2(y - o L

¥(xs vy 2) =2(x(y + 2) + z(y - 2))""

B1, o(x ¥, 2) = 2(x +y * Vi - 2)7 + (v - "D,

v ¥5 2) = [(¥ - 2) (2 - x) (x(y + 2) + 2(y - 2)) L),

1. Let byb, > 0 and, without |oss of generality, b, > 0.
Then Pe(t) will be a iz, if, on D, it attains on three occasions
t he maxi num nodul us value with changing sign. W actually construct
such a pol ynom al .

a. If by > (bfbu)/g or by 5(b1+ bu)/a, then, as is easily

2
verified, the PDLZ on Dis the sane as the PDLZ on [bl, bh]’ i.e.

oo = 2(1;,+ * by o+ (bLL - bl)/\,é)'l ,
E, = (bh - bl)e((lolL + bl)2 + hbubl)-l )

A-8



b. Let b, < (bl+bh)/2 and b3 > (b1+bh)/2' If A >0,
then the points of oscillation are bys b, and by, -

W tind from ]?Q(bl) = —Pg(be) = Pg(bh) t hat

a = CP(bl: bu: bg)a b = *(bls bi;p b2), 011,2 :Bl 2(bl’ bb,’ b2),

E2 = y(bl, b)-\" bz).

For A <0, the points of oscillation will be the points b, lo3 and

b,. Ve find from P2(bl) = -P2(b5) = Ps(bu) t hat

a = g(bysby5b5), b= ¥(by 50 5b5), o o = Bl’e(bl,bh,bB)
B E, :y(bl,bh,bB).

For the exanmined case 1, the results of [6] and [8] on the con~
struction and eval uation of PpLz of higher degree are applicable.

In particular, in [6], the explicit form of the polynomal of third
degree i S presented.

2. The analysis of the case blb)‘L < 0 is sonewhat nore involved,
since the system tk (k =1, 2, .... n) does not satisfy the Haar
condi tion on [b,,b ] {see [9]}. Initially, we note that E, <1, i.e
t he maxi mum of the nodulus of the PDLZ is not attained inside D,

-but is attained on the ends of the intervals [bl’b2] and [b5,b,+]

Let A> 0. W construct P, (t) under the assunption that
'P’a(bl) = P;z(be) = Pg(b3)' Then a = cp(bg,bj,bl) and b = W(bg,b,j,bl).
The derivative of P, (t) becones zero at the point (b2+b5)/2@, ience,
P2<t) attains its extrene values on D at t = by (i =1, 2, 3,4

Wwith P2(b2) = P2(b3) > 0. As a consequence of the symmetry of Pg(t)
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With respect to the straight line t = (b2+b5)/2 and A > 0, we have
|P2(bu)| <|P2(b3)|, We show that P,(t) is the PpLz. In fact, if
it is not P, (t), then let it be 52(1:)- Then the second degree poly-

nom al
0, (t) = By(t) = B,(t)

changes sign on [bl’bE]’ and hence, there exists a zero of ng(t)
inside [bl,bg]. On [bg,b%] t he pol ynom al cpg(t) has two roots, since
it has the sane sign at the ends of [b2,b5] and cp2(0) = 0.  Hence,
qu('t) = 0. The resulting contradiction shows that Pe(t) is the PpLz

and that

o o =By 2(b2,b5,bl), E, = Y(bg,b5,bl).
Anal ogously, if A <O, then the PDLZ on D is deternmined by
Py(by) = By(bg) = -Py(by),
i.e.
a = (p(ba,bﬁ,bh), b = *(bg,% ,bh), “1,2 _ 31,2 (bg,bj,bu)

E, = Y(b2,b5,bh).

V¢ conpare the exam ned nethod with two known convergent itera-

tion nmethods with blbh < 0. The nethod

o L P - g, (17)

where o is a const ant, has each iteration defined by the operator (1_0[2,3),

V¢ assune that A2uk Is calculated for each iteration by nultiplying
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u© twice with A Anal ogously, the nethod [10]

WK + (-1) kd(Auk - f) (18)

has every two iterations defined by the operator (1 -22A ). Com-
paring (17) and (18) with (5), we see that for the same number of
operations the nethods (17) and (18) guarantee a |ower rate of con-
vergence when either A4 0 or A =0 and |b | % |b]|.

Finally, we note that the examned iterative nethods allow
problens of the followi ng kind to be solved: Let the selfadjoint
operator B have eigenval ues Ay such that either M Sh S
Sy <hyp S e SB,or A2, > e 2 A > Mgy 2o 2B
It is necessary to solve Bu - xu = f for M <% < Mgy by the
iteration method (2). For exanple, such problens arise when cigen

value and funclions are determined Dy a method with shift [2] .

Received by the Editors: 24,05.1968.
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APPENDI X 2.

ON TiE ORDER OF CHOICE OF THE: | TERATI ON PARAMETERS

I N THE cHEBYSHEV CYCLIC | TERATI ON METHQD. *

V. |. Lebedev and S. A Finogenov
(Mbscow)

A solution is given for the problem of ordering the
iteration paranmeters in a cyclic iteration method**
which can be used to solve Au = f. This solution
guarantees a conputationally stable formfor the
net hod.

in the 1950's, when it was proposed that the equation
(1) Au= f

be solved by cyclic iteration nethods [1-4]

2) L e (- py

with the iteration parameters o, (dk+N = °’k) related to the roots
of' the Chebyshev polynomial:;, it was noted that, when solving (1) by
such methods on a computer With a finite word |ength using fixed or
floating point operations, one can estimate, for poorly conditioned A
t.e loss of significant figures in the intermediate and final results
(in uk), and the resulting siznificance of the internediate cal cu-

lations with respect to tne initial accuracy of the data. Marked

*Transl ator's Note. First published in Zhurnal Vychislitel'noy Matenati Ki

i Matematicheskoy Fi zi ki 11(2) (1971), 425-L38.

*-% . .
Translator's Note. In fact, R chardson's non-stationary nethod.
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instability has to a significant degree blocked the w de application of
these methods. It can be shown that this instability depends heavily

on the order in which the iteration paraneters arc used.

'S
In [3] fsee al so [5] and [6]} ‘sone proposal s regarding the use
of the o have been given; but, as we shall explain, they do not
elimnate but only reduce the instability within the nethod. No other
investigations of this particular problemare known to the Authors.
In this article, we are given an ordering for the iteration paraneters
o whi ch guarantees a conputationally stable inplenentation of the
net hod.
W shal I» assune that (1) is defined on a Banach space B,
that u,feB, and that A is a bounded operator which maps from B
into B and has a conplete system of nornalized eigenvectors e
whi ch correspond to its eigenval ues Ay Let o(A) f{the spectrum of A}
lie on the real axis, and mand M denote its exact |ower and upper
bounds with 0 <m< M

Let e = u-uk and N > 0 be sone fixed integer. Then, in (2),

the sct (opa,....5) S a pernutation of the set (Y 5vos . . +5vy) where
: -1
(21 - Lm .
(3) y; =2 {M+ m- (M- m)cos , =1 2 .... N
2N
_The one-to0-one mappi ng between (0’1’ s Q’N) and (yl,vg,..-,vN)

I's defined by the permutation
ny = (s b iy)

Wth o = Ys -
k 1y
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Let N belong to sone increasing sequence o>f inte ers fNi} for

whi ch the pernutations are defined. Qur problem reduces to the

"N,
determi nation of a pernutat ilon My whi ch guarantees a conputational ly
stable inplenmentation of' .(2) for small =/ and NEfN. }.

Perf'orming N iterations with (2) using exact arithnetic, we

obtain t hat

o - PN(A)uO + (1 - PN(A))A'lf,

where the polynonials PN(t) have the form

N T, [(M + m- 2t)/(M - m)]
P_(t) = (1 -~ o, t = s
N I £ 1,8 )
k=1
with W+ m
TN(t) = cos(N arccost), 8 = > 1
M-m
Let
. N
1 g
N 4 - N = -
R, (1) I - ap)s o0 =] l (1 - ap).
J_=1b j=i+l
Teon the errors ¢" (k=1, 2, . . . . N satisfy
K 0
() ‘=R ()",
and if



then We obtain that
- k _ N 0
(5) €, = Rk ()\n)en .

Real conputations on a conputer,. which has fixed or floating
point operations with finite length words, are executed wth rounding

error as a result of which errors arise. This fact can be taken into

account if it is assuned in (2) that W hk Is witten instead of

k

uk, where nh~ is the error added to uk during the cal culation of

Wt I ndependent of the actual rounding procedure on a given conputer,

t he nk

can be interpreted as the result of errors which arise as a
result of the rounding in the conputation of uk and in the fina
result. The nK can be correlated anong thensel ves

Instead of (2), we obtain

(6) NI ork(A(uk £ 05 - )
wth
k-1
(7) ek = RKN(A)GO - E QiN(A)n1 - nE.
i=1
It

t hen
k-1

. N o . .
(8) enK = Ry ( )‘n)sn - Z 9 () nn-1 - My
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¢

(11) r <

W now exam ne two reasons why the iteration process (2) |oses
conput ational stability and the accuracy of the approximte solution
of (1) is reduced. Ouroptimal choice of wy 19 based on the renoval .

from (2) of situations of this type.

Let
N N N
(9) g = max |o(8)], v = mex |R(H)| ,
m<t m<tM
N N N N N
(10) t." = 9 ry s 9 =maxq, o = max rlN.

) I

The first reason: The loss of significant digits in the inter-

medi at e iterations (Wth k < N) which results in the loss of accuracy
inthe final solution and in the growh of []nkH or the accidental
stopping of conputations due to conputer under or overflow.

The loss of significant digits will occur when [juk|| >> |jufl with

1<k<N and N+ ». This is equivalent to the condition
supllef| > [l ws N v es &)

Taking (4), (5), (9) and (10) into account, we see that a substanti al
loss of accuracy due to the growth of \\uk\l does not occur for initial

data which satisfies |fon < Cy, if

N

2!

wher e C, is a constant which depends on mi M but not on N
The second reason: The growth of the quantity.

supa A/ as N e, NEN),
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whi ch characterizes the instability in the conputation.
Taking (7), (8), (9) and (10) into account, we see that the cal-

culation will be stable with respect to pernmissible error, if

(12) ¢ <cj,

wher e C3 is a constant which depends on miM but not on N

Thus, conditions (11) and (12) insure that a substantial |oss
of accuracy in the final solution is avoided. |n fact, they represent
necessary conditions for the stability of any real inplementation of
(2) on a class of initial data which satisfy |]eOH <. Sufficient
conditions for the stability of such an al gorithm depend on the method
and order of thﬁe i npl ementation of (2) and the type of rounding used
as well as (11) and (12).

Initially, we exanine the character of N and qN for the

sinplest pernutations; viz.

N
||1 = (l 2 ,o-o,N) or TT2 = (N,N - l’.co,g,l)o

As a prelimnary, we introduce the notation which will be used

in the proofs of the Lemmas:

o
i

-1, A =28/2, By = (2k - 1)n/2N,

M+m-2t) / (Mn).

N
n

Lemma 1., If 4 corresponds to the pernutation nlN, t hen

—— N
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(J-N)/2
1+
{[ (n/hN) ] [ cos [n(ZN - 2] - 1)/4w] ]j B
J=N
= qj = Q-.F cos [n(N - J)/bkn] }

Procf. |t follows from the conditions of the Lemma and (3)

t hat o =y It is clear that

max |1 - ey t] = (1 - m) <1 (k>0N/2),
m<tM

and hence, qjN&: QJN(m) for j > N2.

W now prove that for j < N2

9" = max | q,"(e)] = o (m).
m<t<M

in order to do this, we exani ne the function

v (o) = ’H (CObcp - COS

(ex - 1)’

k=j+1
N/2
™
(Coscp - COos (2k - 1) cosp + COS (ek - )| =
T - as Y 2N )
k=J+.
N-j
- sin o+ —— (k- 1))
2N
k=j+1

where cosp = Z



Let ¢ = \P + ni/N, where 0 < P <n/N,0<i <N2-1, then

N-i+i
(\P‘r——-l ‘H ( 2k-1)9)
k=j+i+1
N=-j N j+i
= n /\p + (2x ~ 1) I sin /’\P + (ek - l)\
(s )] e
k=j+1+i kK=N-j +l
But
N-j+1
m
sun( +—(2k-1)9 <
2N
k=N-j +l
v
< sin < + (2k - l)) ’
L
k=3+1

and consequently,

( +—"—i) < up.
N

Since v (P) attains its maximmfor Y= 0 and differs from g N-Jd(y)
J

only by a constant factor, it follows that

ag’ = max |o,(8)] = q,"(m).
m<t<M J
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But
N

. 1 - cos[m(2k - 1)/2N]

Qy (m) = =
‘ 8 - cos[n(2k - 1)/2N]
k=j+1
, N. -1
A
= l + =
Si n2 [m(2k =~ 1)/4N]
k=j+1

Ny
2 -1
A
= { + 2 ( / } X
! } [m(2k - 1)/4N]
J_ N cOs
k=1

, -1
A h
x QL+ 7 <
cos [m(2(N - | - k) + 1)/4N] I
N-j
. -1 J-N
: A
= 1+ 5 =gt 5
cos“[n(N - j)/4N] cos™ [m(N - j)/uN]
k=1
On the other hand, . /2 -1
loN(m) | > 1 i
S (m +
J cosz(w/hN) l
k=] 3
\ |
x 1+ 5 =
cos“[n(aN - 2 § -1)/uN]

n- 2 ) ‘-
. (3-w)/ \ \(a N)/2
= 1 + 5 1+ 5 - H )
cos” (n/L4N) . cos”[m(@N - 2} - 1)/4w] /

B-9




Lemma 2. |f ny =nlN , A = m/(M-m) < 1/2 and | <Ny(N) =

/2 + (aN/m) [(1 - A)/E]% , then

.3 ( i+ 1/2
N - m ‘{ T1-nte1 + 1)%160 =
r, _ ‘A + ! '

T 160 J LA+ n2"(21 + 1)2/161\12 _

S N N ;
I ndeed, under the conditions of the Lenma r. = |Ri ()], if
py
2i - 1< (2N/m) arc sin [(1 - a%))F
Noting that

1 + cos By 1- (n_/mg
> -b—8,/2)°— > 1 when g,< V21 - a)],

6 + QSinE( ak/z)

we obtain that

- 1 + cos By 1- xkg
ri = 5 Z — 5 =w
| § + 2sin( Bk/2) A+
k= =
wher e
By 2k - 1 m
x = = s i < N (N)
2 2N 2 0
But
2N
In w = Z,
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wher e

5 Bs
1_Xk¢ i+l 1-X2
z = 1n 5 —— > v = 1n 5 dx =
A+ ox 2N A+ X
k=1 By
1- x2 X Biv1
= { xln ———— + 2 arcsin x - 2v/a arctg >
A+ X Va
1
2 I8 2 2
1~-x" 1+ (B - By) B, B
> xin ——— + i+l 17 P1 Pi41
A+ x 8
1

At this stage, we nake use of the inequality

[ X\ [P 512 B‘il( Bivy = B1)
kﬁtrcsin x - Vo arcty — > = =
VA 8
81
and obtain i+1/2
. 2 "I
X 2N [ 1- (w(ei + 1)/kW)
r. > exp 2 > 5
n |_ A + (m(2i + 1)/4N)
1/2
A+ (m/hm)® |
X 5 (i <3,(M) .
1 - (n/bN)
It follows from Lemma 2 that,for snmall A and large N, the
val ues riN grow strongly for i < NO(N) . Since the quantities

I
ri‘N and qiN for the permutation “eu correspond to the quantities

N N . N
dy.y and ry ., for the permutation m,~, it follows fromlLemas 1 and
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2 that

_ _ N N
Corol lary 1. If my = T, , then

i/2
e A e
1+ 1+ <
cosg(n/hN) cosg(n(Ej - 1)/4N) -

<M< s A a<i<n
-9 ]: cos® (m 3/4N) I

and
5 1/2 N-j+L1/2

n” 1- (/)2 - §)r -1
qjN > [A-’f ————! r 5 - 1) 1
L owv | LA + (m/am)P e - ) + D7

for j > N - NO(N).

Let N =2n. W exam ne the pernutation

an = (n, ntl, n-1, m#2, . . . . . 1, 2n).

Noting that T, (z) = T (T,(z)) and using the above results, we see that

8

(M - m)(26° - 1 - cos® By)

(U +m1 - A wf-f), x=02....2n

Hence, the functions Relf (t) and le; (t) for = N

3
N/2(1:) for the permutations neN/g appl i ed

are equal to the

functions RiN/e(’c) and Q,



to the cyclic nethod (13) for the solution of

((M+ml - = ((M+ml - AfF.

Therefore, for r N and

N
2 %5
of Corollary 1 are valid; viz.

i/f2
JRUNE | S )
cos” (m/2N) cos™(n(2j - 1)/2N)

corresponding to n N

3 the inequalities

N ! :
< . < 1+ 1<j <
=25 = [ cos® (m j/2n) 3 R
1/2 AR
N __“2] 1 - (/207 ((x - 3) + 1) 1 B
a9 >
23 [1 W by + (n/EN)Q((N -j) o+ 1)° J-

for 2j > N - Ny(N) where &, = 92

N 2

- 1. The permutation which corre-

sponds to T in an anal ogous way is

m = (@n, L 20 -1 2 .., 041 o0

In this way, we see that, when using the pernutatians ”2N and
an in the exact iteration process (2), the | |uk| | are suitably
located on the real axis, and ||€k|| in(7)is constantly decreascing,
but that the error due to rounding can grow strongly. These pernuta-

tions were proposed in [3], [5] -~ [7]. For the pernutations ﬂl” and
nh“ the normof the initial errors decreases for subsequent iterations,
however !|uk|| can grow strongly and this can lead to the growth of

||nk]| and further to the accidental stopping of the conputations.

B-13

T—



Let ne {28, p =0, 1, 2, . ..}. For this case, we construct a

pernutation for which
(14) & < 1, o< e

W define a recursive procedure for the construction of the permu-
tation x for N = 2" which insures that (14) is satisfied. For mw =1,
N
the solution is obvious. For N = 2Pl yith p-1 <n, let the required

pernutation be

n_:(j,j:-'-a:j )a

then the pernutation of order 2P s defined i nductively as

®
(15) 2P = (3 2%+ 1-3p, 3,27 ¢ 14, 2P 41

o <o

Jd 12 _)°
oP-1 oP-1

putting p =0, 1, 2, .... we obtain the required set of permutations

For exanple, for N = 16,

wg = (1, 16, 8, 9, 4, 15, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11).

Bel ow, we shall shot. that for this nethod the ordering is such that the
operators (I - akA)\M th large normare uniformy distributed anong
.the operator,. which decrease the norm of the error.

W explain in a different way the nentioned procedure for the

construction of 0 In order to do this, we put PN(t)i n the form
2
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wher e

V¢ assume that the roots of the polynom al rl(l) (z) =T

N/2
(1)

precede the roots of r - TN/2 - C0S g, Ina simlar way, we replace

2

each of' the polynomals rl(l) and r2(1) by the product of two, for

exanpl e

(1) (TN/M(Z) -cos(o'l/B))(TN/u(z) - cos(m - 61/2))

1

(z
(ryyy (8) = cos(o) 2))(Ty ) (8) - coslr - 0,/2)) .

1(2) precede 1"2(2) . We con-

tinue this process and determne by this method a sequence of roots for

and again we assume that the roots of «r

cach r.k(l) (i =1, 2) up to the point where the degree of the poly-

nom al s rk(') become equal to one. As a result, we obtain a pernu-
tation 5 . (Observing that the roots Xy (i =1, 2, ««+, k) of the
N

equation Tk(x) = p satisfy

2(]'. - 1)y 9 2(1 - 1)n
Xy = cos ) —-—‘\}(l - wg ) sin f(i =1,

B-15
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where oy = cos (y/k), y = arccos g, it can be shown that this pernu-
tation oy coincides with the pernutation (15).

Before estimating r' and qN for the permutation (15), we
establish a series of subsidiary inequalities:

a. Ife=1+6, §> 0, then

(i 2 - )

(16) T,(6) > 1+ i + - 8"

In fact,

21, (8) = (8 + V(6° - 1)) + (0 - V(o? - 1)t =

=11+ (6 + Vs + 671 + [1+ (6 -6° + 28))1% =

i(i - 1) )
2 + 2i§ + (46 + 487) + . . .
2

)

1°(1% - 1)5°

.>2 + 2126+
3

b. IfO<w<mw/2, n>2, then

sing(m/E) *ouy sine[(n - w)/2n] + My
(17) > 5 >
cos” (w/2) cos[ (m - w)/2n]
§ sine(co/en) *ouy cose((b/?) o
cos® (w/2n) cos® (w/2),

wher e Wy = Ti(e) - 1.
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The inequality (17) is established once we show that

w T - D w
(18) te tg > tg — ,
o 2n 2n
T sin‘?[ ('n' - a))/?n]
(19) i 5 +
cos” (w/2) cos [(m - w)/2n]
. 2
. u,k sin ((1)/2) S “'k .
cose[ (n - w)/2n] cosg(m/2) - cosz(w/2n)
. 2
) sin” (w/2n) Mo .
cos® (w/2n) cos® (w/2)

For a proof of inequality (18), wreplace w by n/2 - o in

it and chtain

o o n/2 + « /2 - «
(20) cos —— - gin —] sin —————— cos >
2 2 2n 2n
o o n/2 - « /2 + o
> fcos — + sin S+HA cos
2 2 2n 2n

Transform ng (20), we obtain

o o ™ o
cO0g =—— =~ sin — simr—— + sin — >
2 2 2n n -
o o TT o
> fcos — + sin — sin - sin —1},
2 2 2n. n
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which yields

o o o 1
C cos —= Sin — > sin- sin— ,
2 n 2 2n
and thus,
“ sin(a/n) o
(21) >t g -
sin(m/2n) 2
« Ve note that for ¢ = 0 and o = n/2 the inequality (21)
becomes an equality. However, since tg(e/2) |ies above and
sin (o/n) si n'l(n/en) lies below the liney = 24 /m on the interval
o (0, m/2), it follows that (21) nust be satisfied at any interior point
of this interval, and consequently, that (18)is satisfied.
Inequality (19) is equivalent to the follow ng inequality
<«
mn=w w -
Mo o a L w
() ok |sin® 2 - sin’ cos® s
u. 2n 95 2n 2n 2n
K
L G T - W o W w
> cos cos - sin® —— cos
2 2n 2 2n
W show that (22) holds if the following is valid:
V8 ™ =W w
—nk L n2 —_— - Sin2 > cos w .
“‘K 2n 2n
.
. 2 . .
Si nce by >0, the last inequality follows from
2 . o . a .
. (23) n~ sin -- sin >sin o,
2n n
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it o=@ .- qg. Tiisinequality is valid, since f'or ¢4 0O the in-
cquali ty (v ) reduces to an equality, and since the derivative with

respect to o« of' the left hand side is always greater than that of the

right. In this way, we have established inequality 7).
Bemma . |If Moo is defined by (15), and
J J. J
N-1 =2 + 2 2 + + 2 E s
wher e 3y >3, > ---- >jt>_0, 1<t < log, (N-i+1), then
t , -1
N -1 (- 3)°
a; < 2(1 + ngi (8)) < (1 '[ A .
i=1
Proof. It can be shown that
T ;5.(z) - cosg T {,) -cosg
J : by
(24) aiN: B 2d1 1 o o2 2
m<t<M ngl(e) - cosg, T, Jo8) - cosg,

ng‘b( z) - cosg, |

2
ngt(e) - cosgt |

wiere all g o > m/2, and hence, the ith conponent in (24) does not

- . 233 -1
excead 2(1 + ngi(e)) lor, if (6) hol ds, does not exceed (1 +2 “*a)™ .
"But Since
t 2 t
j \ _2_ j 2
|ai| <t a; o
A
i= i=1

it follows that
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4 A .
i=1 i=1 5=~ /
(N - 1)
2 1+ A
t
This proves the Lemma.
Lemma 4. If w, is defined by (15), and
1 i [
=2 1 + 2 2 + +2 8 R
wher e 1l>12> >1S>_0, t hen
. TT2 -1 (i - 1)2 -1
(25) r.. X (—/—=— + & 1+ A .
: 161 S
Proof. It can be shown that
T 4, (2z) - cos Oy
(26)  |Ry (t)\ I ! l = )
T21k(9) - COs O'k
n-i i, - i
where all o, < n/2  and o = n/2.2 1, Opep = 1 - ck/z k L por
5. 1, taking (16) and (17) into account, we obtain from t hat
T-(z)—cosc ()+cosc
(e7) riN < max 27s - max ‘ kl <
-1<z<1 Tgis(e) - cos O |-1<z<1 lk(9) cos oy

S 23 —lﬂy-
2 3 1
< tg 5 +2 S 9 2(1L + T lk(e)) R
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-1
S

n
where o, = mu/2.2 we make =se of the method of estimation con-

S
tained in the proof of Lemma 3. For i = 0 and s >1,(25) follecus:
at once from (26).

For i . 0., taking account of' the follow ng inequality

2
o m 1

= ki 21
tg - + (Ti(e)'1)> — +4) (1 +2 SA),
oo s -
2 16N~

n-i 2

wnich can be verified by means of inequality (16), we obtain from (27) that

5 -1 s .
N n 21, .y
r., < + A (1 +2k 4) <
1=\ e
4
- k=1
2 -1 .2 -1
i 1
+ A L+ A
161\T2 s
In this way, the Lemma is proved.
Corollary 2. If
= (N+l - jN/ga jN/Q’ . LEL I ) N+l = j2$ j23 N+l - ljl’ jl),

wher e I is defined by the recursive nethod (15), then

2 -1
N m (N-l-l)

Corollary 3. If the order of the choice of' the o correspond::

k

to the permutation (15), then for ¥k > i we have

B-21



max (1 - a,t) < r
m<t<M J | 1
J=1i
Lemma 5. If the order of the choice of the o corresponds

to the pernutation (15), then

16 ' 16 62 -1

N -2
(@8) t.] < — N"+8 + - (8 -1)
m TN(G) m

A

In fact, since RiN(t) and QiN(t) al ways contain a pol ynom al

of the form ™

T., (z) + cos(n/21+l) (i = n-1, mPBEss @ n¥., n, > 0)
2
t hen
n n
m il k)
N i I -1 _ 2 2
‘ti _<_2N G_ + COS_;T*'—]_—) TN (8) = 21\]2 COS_2i+2 COS_2n+2.
i=1 i=1
But

1

1 sin(n/b4) 17/2n+2 1
cos i i+2 = +2
2 /b sin(m/277°)  Y2e2%sin(n/2™"°)

i=

and hence,

, 1 16 ¥

t,” < < B
YTl @eM)me) T ff mye)
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Uinge inequality (16), we obtain (28).

Lemma 6. Let VN = z%& qiN. Then
i=1

1
29) V' < exp ( v og/nk) 57V Mk

Proof. Along with VW ve exanine vN/e. It is easy to see that

-1
T /,(8) - 1 2
r < <l+ N/2 VN/2 + VN/2 - VN/2 1+
2 T,i(6) + 1
n-|
2
< 1+
1~ Tgl(e) + 1
i =0
However ,
L4 n-| I
2 2 - :
1n 1+ —— ) < —SE (1+2215)’l,
i =0 i =0 i =0
Together with this, we have
n-1
n-|
; (1+1;15)'15(1+5)'1+J" (1 + pra)'l dx <
£ 0
i =0
§ - 1ns A
< + (1 +8) 7,

| n4

whi ch therefore establishes the validity of (29).
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In the Table, values for r.l16 and qil6 corresponding to

"1( defined by (15), are given with mi M = 0. 01.

rilé Qil6 ril6 qi16
1 79.8 0.418 9 27.0 0.761
2 19.6 0.k23 10 5.63 0.768
3 9.59 0.432 11 5.14 0.790
L 4.63 0.440 12 0.601 0.803
5 28.0 0.479 13 7.66 0.940
6 2.68 0.485 14 1.27 0.%0
7 7.98 0.511 15 2.18 0.980
8 0.907 0.518 16 0.0812 ——

For a nore detailed study of the iteration process(2), it is
necessary to introduce a priori assunptions about the nature of h¥
Concentravring on the situations wiich cause the iteration process to
behave unfavorably {for exanple, when | |uk|| is larger or snaller
than mM and taking into account the final ordering which insures

that ||n®|| is proportionai to ||«*|| for ||[uF||>>||u]|, we make

the assunption that the errors belong to the class

D= fnf ot kg k™S, | < o,

1 2 S

where C k, and k2 ffor exanple, k, =0 (]|u]|) and ky =0 (] |eO||)}

1
are positive constants which are independent of N but depend on m/M,
the ordering in the conputer and the inplenentation of (2).

Then, if W= zu™ g, it follows that

where
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Consequent |y,

N
N N ~N g
||v||_<_C 'kl a; + kg vy
A .
i=1 =1

Taking the results of Lemmas 5 and 6 into account, we are led to the
conclusion that if nKED, then the calculation is stable.

W have al so exanmined the ordering of the coefficients o
when the spectrum o(A) lies on p intervals, the ends of which
satisfy the conditions of [8) {see Appendix 1}. In this case, there
exi sts a polynom al of degree p, Qp(t), wth Qp(o) = 0, which map::

all the intervals onto one [m M withmM > 0. et N = pgn, and

AV

e be a pernutation of the form(1). W denote by J (i=1, 2, . . B

the coefficients of the cycli- method of ordering for [m, M] accordi ng
-1

to wpn. Now, we put o = (Ti), wher e
k = (i-1)p+s (i=1, 2, ® **, 2% s=1,2, @ *= )
and the pS(Ti> are the roots of the equation

T Qp(t) =1

which are ordered with respect to increasing nmodul us.
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It is clear that the above results can be extended to iteration

nethods of the follow ng type {see [9]}

B = B - o (A - 1)

Received by the Editors: 25.03.1970
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