MEMO AIM-175
STAN-CS-307

HADAMARD TRANSFORM FOR SPEECH WAVE ANALYSIS

BY

HOZUMI TANAKA

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY ARPA ORDER NO. 457
 AUGUST 1972

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY

HADAMARD TRANSFOR:1 FOR
 SPEECH NAVE ANALYSIS

by
Hozumi Tanaka

Aostract: Two rethods of speecin wave analysis using tho Hadamaph trarsforn are discussec. The first method is adirectaoolicatif of the Hadamera transfopm for speech waves. Thereason this method yielas poop pesults is discussed. The second metnod is the apolication of the Hadamarctransfopm to a log-magnitude frequency sogetrum. jfter the aprilicatlon of the foonier transform the Hadararc transicem is acflled to detect a pitch deriod or to get a sroctnec specirut. This method shows some oositive aspects of the wadalaro transfcr forthe analysis of a soesch wave with regard to the reacition of orocessing tine pequired for smoothing, but at the cost of ifecision. A formant tracking program for voicad sceach is imolemerted cy using this method and an edje following techniaue used in scene analysis.

The viensagtonclusions contained in this documont are those of the autror ano snodld rist ne intaropeted as necessarily representing the official policies, either expressed or impliea, of the asvanced Reseapch frojects Agency.

This researcn wes subportea in part by the advancedresearch frojects Agercy of the ffice of the secpetary of defence (SD-183)

Gerroouced in the Uea. availail from the National Technical Intarmation servieg. soringfisla, Virginia 2.21.51.

Tre ajtrar voulalike to axperss deepest thanks to Dr. A.L. Samuel and Mr. J. K, \quad icerz, Dr. A.L. Samuel sugosted this pesearen to the author. "........ Sicerzdeveloded a speech wave analysis system which nas been user for this pesearch as a basictool. The author is uratefult $\quad 0 r$. f. Thosar for hls many valuable suggestions to implemen \quad formant tracking program. The author takes this cooorturity of axpressing his adoreciation to prof. John MeCarthy fop the opfortunity te werk at Artificial Intelifgenceppoject as a visitire soholar from 197i August to 197? August. l would also like to thank Mr. anz tris. Pall and Mr.J.E. Gips for thelr halo in zrepariry this peoort.

```
Tanle of conterts
```

```
            Irさrodyction. (:)
            Giroct anpli=asion of ine Hajamard transfor!n ( ?)
            for speoca wave analysis.
    #.1 jeflaition of sequency and sequency oowar.
    E.< Strong shift-sensitivity of the Hadamard sealsency
        spectruit.
    ?.s uifficulties i:l c3|culatinc̣ shift invarignts for
        cequjency 2つwer.
```



```
    3.1 butline.
    3.2 ritsh datèction.
    S.S Smoonninjof a speetrum.
    3.4 A formarit tracking procuram as an apollcation
    S.4.1 l.09ical structure of a formant tracking orogram.
    3.4.2 r.xample.
4. Sonclusion.
    (26)
5. jpんenjix.
    (28)
    う.1 Filtering on trie sequence domaln.
S. Refarences.
(3:)
```

Intpoduction.
recentlypeopleinvarlous fields have oaid much attention to the madarara. transform and naveobtained results from its acol ieation in such tiflds as filter ciesign, voice analyzgp/synthesizer and Tultiplexer equloment [1]. The Hadamard(or discrete walsh) transform is one of the opthogonal transfopms using discrete walsh functions and has a fast algorithm similar to the foupier transform [2., [3].

There are many reasons why the itadamard transform is attractiva. Two rajor reasons are as follows. First, the Fast Hadamard Transform algoritrm - FHT- usas only add / subtract oderation. Multiplication is rotnecoassapy for the fHT, Thlsmakes the calculation of the Fit
 the fourife transforn case one needs multiolication for the sine-cosine coefficients, soretimesevenwith irrational numbers. The FHT offers guite a simole ano an adoropriate algoritnm whep using a aigital comouter.

Seconaly, the iiscrete dalsnfunctions give us a general bask for sisnal analysis, narely the concept of sequency rather than that of trequency. the seguencyoftiscrete Walsh functions is defined by one half of the avepage number of zero crossings per second. This corcept enaoles us to replace the concept of fresuency of the sine-cosine functions.

Eecause of this feature of the Hadamard transform onemay well think of the posslibility that all aroblams which have been solvec using the Foupier transform might ve re-interoreted by the hadamard transform. furtherfure, che might hode for some interesting new eiscoverles since the Hacamard transform mlght revealsonenew aseect of the ropler concernea.

Fromthissoptiristic stanjooint, the authophas attemptẹd an analysis of the srefct nave using the hadamaro transform, similar attemots have ceen rade in the past [4], and they have sugaested some cossibilites arout the application of the hadamard transform to the speech wave cy showing some correspondencebetween tha fieguency snectrur are the sequency spectrum, This repopt will show two rethods of s: Eech wav3 arialysisusingther Hadamardtpansform, the cirect and the indirect methods. These two methods show both the advantages and disadvantages of the Hadamard transform for speech wave: araiysis.
 due to tre strong shift sensitivity of the Hadamapu sequency spectrum. Sona shift invariant tepms of the seauency power seectrum ape known but thayapacomplicatedto calculate or tog simole to provide erough information, Afewexperimental results are shown in this section to somonstrate these facts.

```
section 3 wili exslair the indirect mathod naned tho "napstrum"
tecinicue. ime hapstpun teconique is a similap technimuz to the so
called cepstrym technique EjJ except that tne FHT is aroliej to the
log-\piagnitute fregusnoy spectrum. inis tachniaue is indipact in the
sense that at i irst the FFT (not FHT) is apolied to a short soan of a
speech wzve arit cnem the FrT is used to detect the pitch derlod or to
Get a smcotned soectrum. This technioue shows some dositive asoact of
the Hadamard trensfopm fop the analveis of a soeech wave Nith regard
to smoothlng cf a soectpun. Some experimental results wlll
deronstrate this.
A iormant tras<ing.eroaran nas baen imolemented using the techniaue
of an eace iollower in scene znalisis combinea with tho hopstrum
tecnnivue. Hovever, suc! \ an aporoach always contains a oitfall,
Marely the opoolem of wroni wny 0ntrance. This will oe discussed
in soction 3.3.
Finally, ingsectignfagatentative evaluation will be made of the
```

```
\jmathir3E\tau iunlication of the Haciatard transforn
to speren wave analyzis.
```

 sote coprejwonjence betwefn frequency spectrum and sequeney soectrum ᄀas beer reported on [4]. As a given vocal ic sound can be shapacteri zod by the location of its fipst three formant freauencies, it is worth investigating the existence of formant "sagugnsi=s" in tre Hadamart sequency spectrum instead of formant freauenciles. A few zxcerimentsill demonstrate poor results and the reason will be ziscusser.
?. 1 Uefinitior cf seguenee and sequency.

Tre definition of secuence was introdueed by H. F. Harmuth [3] and it Jives a new oasisfrom which to Investigate the characteristic of sionals. 4 secuence numoer of a walsh function is defined oy the
 numters a(j), $x \leq j<!$ os peppestnted oy a $1 \times \mathrm{x}$ matrix [a(j)]. Tha Hadailary trinsforn of $[a(j)]$ i 3

$$
\begin{equation*}
[A(x)]=(1 / \cup)[a(j)] H(n) \tag{1}
\end{equation*}
$$

where the if x Hadamard matrix $H(n)$ is defined recursively in the Gquatior (2).

$$
\left.n(n-1)=\| \begin{array}{ll}
H(n) & H(n) \tag{2}\\
-(n) & -H(n)
\end{array} \right\rvert\,
$$

$$
H i(\lambda)=\|\mathbb{L}\|
$$

Each column of (n) reppesents one of discpete wal sh functions [7]. ThE examples of $\rightarrow(3)$ and $H(4)$ ape sinown in the fig.2.1.
 pelateo to fresuence or seauency it is desirable to calculate cefinea by oq.(3)

$$
\begin{equation*}
q(k)=[(0(k)+1) / ?] \tag{3}
\end{equation*}
$$

 oetween zepo and $V-1$ and $a(k)$ takesallvalues between zopo and $N / 2$.

$H(3)=$	

--- seauence of each col um: D -- seouency of each columni a_{1}

Flg. 2.1 Examples of the Hadamard matrix.

La: usintraducetwo notations, $A(c, b(k)$ (and $A(s, o(l))$ for $f(\%)$.

$$
f(k)=\begin{aligned}
& A(\operatorname{cog}(k)) \text { if } p(k) \text { is even } \\
& \\
& f(\operatorname{sog}(k)) \text { i folk) is ode. }
\end{aligned}
$$

in analogy of frequency dower spectrum, sequence dower spectrum is defined as follows.

$$
\begin{aligned}
& A^{2}(0,0) \\
& A^{2}(c, a)+A^{2}(s, a) \quad 0<0<N / 2 \\
& A^{2}(s, N / C)
\end{aligned}
$$

The Parseval's relation is ppesepred on the coefficients $A(k)$ and $a(k)$.

2. 2 Strong sififesensitivity of the Hadamard sequence spectrum.
 charge many zonsecuti vo spactra into a visual form, that is the soncgrat of sequencies. A short timesoan (12.8 ms.) of a digitized s_{n} each have (sample rate $=22 \partial \partial \partial \mathrm{~Hz}$.) is directly transformed into seauency spectral. Than the log magnitude of this spectrum is taken, Aa ry short time sequency spectra are calculated in this way, are accumulated, and eventually output to a video screen.

Experimental results are shown in Fig. 2.2. The upoerdart shows a speed wave to ba analyzed, the middle part a sonogram of frequency spectra? ff this speech wave and the lower part a sonogranaf sequence spectra. It is easy to see that the sonogram of seauency spectra (the lowest one) is rougher than that of the frequencies (the mldalaone). The tormantseadency structure is not clear and t appears to be very difficult to build a speech wave analysis system based on the extraction of formant components using the jacamar seauency spectrum.

The reason winy the sonogram of sequence spectra oecomes so rough and irregular ls mede clear by the following experiment. The Hadamard Eecuency spectrum is calculated for fixed time span (iz.8 msec. loner cf a speech wave, the time span is shifted right by 100 ricpuseconds for bach successive calculation of the sequence spectrum. ir other words, calculation of a seduency spectrum is made each 10 tia microsecond tine-shift, A Frequency spectrum of the Fourier trarsfopmi s calculated in the sane way to rake compapision with sacuency sioutrum. The results are shown in fig. ". 3.

Fig. 2.2 Schograt of seduency and freauency spectra,

Sequence spectrum Frame No. 1

No. 3
No, 3

Fig, 2.3 Strong shift-sensitivity of the
Hadamard sequency spectrum Each
frame is calculated each 100
microsecond time-shlft.

Fpor. Fis, 2.3 we can easily understand that although the timeshlft Is limlted to this small value, the shape of consecutive sequency spectra changes rapidiy, The locatlon of a oak whichapoarsto popesent a formant comoonent changes drastically in the next sequeney spectrum, One cannot expect these rapid changes fiom observation of the original speech wave since the sooech nave does not aporeciably change lts shape during igd microseoonds, I n contrast, In the fourier case, a frequency soectrum does not change lts shade so much dupling 100 microseconds, fhls strbns shift-sensitivity of the Hadamard seauency spectrum causes the lpregularlty or rough pattern of a, sequency sonogram and makes Imposslble the apolication Of the sitchesynonponous methodi,

The stpong time-shlft sensltivity of a seauency spectrumalso can be explained theopetically, plohler [6] shows the Hadamape sequency sooctrur. is invariantunder the dyadic thesshifti
[b(j)] is ootalned by the dyadic time-shift t

$$
[b(j)]=[a(j \text { o t) }]
$$

Where je t stands for component-wise modulo two addition(no cariy) for the binary representation of j and t. pichler's result is wrltten as follows,

$$
\begin{equation*}
B^{2}(c, a)+B^{2}(s, a)=A^{2}(c, a)+A^{2}(s, a) \tag{6}
\end{equation*}
$$

Unfortunately the hadamard sequency sooctrum is not invarlant under eipeular time-shift Of the Inout [a(j)]. If [a(j)] is shiftad by \ddot{t} cipculaply forming[c(j)] we obtalni

$$
[c(j)]=[a((J+t))]
$$

whepe ($(j+t)$ is the principal value of $j+t \operatorname{modiloN}$. In general

$$
\begin{equation*}
C^{2}(c, a)+C^{2}(s, a) \neq A^{2}(c, a)+A^{2}(s, a) \tag{7}
\end{equation*}
$$

The expepiment shown In flg. 2.3 ls not the case of clpaulap timeshift but one can easily understand that the pelation of ea (7) oauses the strong shiftsensitvity in the Hadamard sequency spectrum. Note that in contrast to the Hadamard sequency soectrumafreauency soectrum of the discrete fourler transform i s invarlant undep cipculap time-shift since absolute value of a shift operatoris One,

2,3 Difflculties in calculating skift invariants
for the Hadamard transform
Sore attempts havs been mad8 to define circulartimemshifinvariants for the Hadamard tpansform. Ohnsors has defined a completeset of elpculap time-shlit invarlants of the Hadanard transform and alsonas
shown Intermediate forms which are invariant to both clpoular timenshift and dyadic timeshift, Formore detalled derlvatlon of a complete set of cipcular timenshlft invarlants and its intermediate Pormsserc].
As a flpst step, consider intermediate forns, a set $\left\{\begin{array}{l}\text { f(k) } \\ \text { which le a }\end{array}\right.$ sum of groups of comoonents In [A(k)]squared such that

$$
\begin{aligned}
& P^{2}(0)=A^{2}(0) \\
& P^{2}(1)=A^{2}(1) \\
& P^{2}(2)=A^{2}(2)+A^{2}(3)
\end{aligned}
$$

In general

$$
\begin{equation*}
P^{\text {P }}{ }^{2}(m)=\sum_{k} A^{2}(k) \tag{8}
\end{equation*}
$$

Whepe $2^{m-1} \leq k<2^{m}$ for $1 \leq m \leq n$.
Examples of calculations of a set (P) for var lous input waves are shown in Fig, 2.4. In the flgupe the shopt time soan of the speech wave fop the Hadamard transform is fixed to 12.8 msec , Each component of a set (P) Is shown as afunction of timelnthe Ffg, 2.4. Overlap of the time span for the next Hadanard transfopm Is 6.4 msec, The case oi a sinusoldal wave indicates the filtoring chapacteplstlc of a set (P) because the position of each oeak moves to the left as k incpeases In $p(k)$, In other words, the smaller the val ue of k In eq (8), the nore likely it Is that the component $P(k)$ Wll Pass the higher frequency comoonent since prequency incerases with time passing in the oplginal Input wave. However, a s the band Of each fliteris determined by the number N, whlch is the dimension. of a n appay $[A(k)]$, we lose flexibl|lty. Athough the caloulation of a set (P) prom N components of $[A(k)]$ is stralghtforwapd, we canget only $1+n\left(=\log _{2} N\right)$ components of P. For Instance, If $N=256$ one ean get only 9 components of P and one of themis d, c, comoonent. Thls meansagreat deal of infopmation reduction is made and it is doubtful If a set (p) contains enough informatlon to perform speech wave analysis.

Ohnsopg has defined another complete set of the hadamard transform whlch has exactiv (N/2) +1 Invarlants for a clpculap timeshlft. (The discrete Fourier transform -DFT- gives a (N/2) \& i Dolnt spectrum, However it is not a stralghtfopward way to calculate the Invariants slnce it includes many matrix multiolications. According to [7] if we let (J) be aquadpatle invariant set of the Hadamard transform then
in the case when $N=8$

$$
\begin{align*}
& J^{2}(0)=A^{2}(2) \\
& J^{2}(1)=A^{2}(1) \\
& J^{2}(2)=A^{2}(2)+A^{2}(3) \tag{9}\\
& J^{2}(3)=A^{2}(4)+A^{2}(6)-A(4) A(7)+A(5) A(6) \\
& J^{2}(4)=A^{2}(5)+A^{2}(7)+A(4) A(7)-A(5) A(6)
\end{align*}
$$

Fig. 2.4 Calculation of ea(8) for vaplous indutwaves.

```
Although there is no exolanation aoout how these terms (J) are
pe lated to freguence or seaul
Onrsorg's [?] Invariants. As Onnsorg suggests that the prominant
energylines of the discrete fouriersoec.trum tand to be exaggerated
ir the quadratic spectrum (J).
```

 terms, however muitiolicationoy a irpational numoer isincluded in the algorltin and it is mope comolicated than that of Hadamard transform.

Intios section the＂napstrun＂technique is introducede The napstrur tschniaue is a similar teohnlaue to the excest that 治日 inverse fast Hadamardtransform－IFHT－is adolied to tna log－magnitude frequency spectrum nand the output is celled ＂napstrum．＂Thls techniauei sindiroct in the sense that at first the FFT（not FHT）is applied to a short timespanof a speech wave to obtaln the seectrum and then the FHT is used to extract oltch perlod or to set smosthed spectrum．The strong timemshift sonsitivity of the Hadamard transfopmis removed by the first adolication of fourier t，parsfoprito steech waves．
 to tne siogthing of a spactrum．A formant iracking orogram has bean imolemented usimạ tnis tacnniqua．

3.1 uut！ins．

To sion u vin the advantages and disadvantages of the hapstrum tesanique re will aepict the outline of both the ceostrum and the haostrum technlaues．Altho＇sgh there is more than one definitionof tine cevstruf techgijue we aive a tyolcal apolication in the upoer oart Of Fl：3．1．The hanstrun teannlaus is shown in the lower part of Fis．3．1．

Fron tic． 3.1 í one can axsily understand the difference between ooth tecnnlaues．ine feauency spejtrun of a short time span of a sneach wave fllterat oy a tiaming window is ootained by the discrete fourler transforn－jFT，than the log－mannltude of this seectrum is taken． Aftar the $\partial r o g e s s i n g$ ，in the case of the cepstrum techniaue the inverse discrete Fouriar transfopm－lofT－and DFT are adolled to get citenoeriod and singotnedsoectpum，on the other hand，in the case of tne nadstruntachitaue the loft and DFP are reolaceoby the IFlt and FHr，respectively，A naostrum，whichis ordared in seguence fnot seduency），Is ootiined by the IFHT of a log－magnitude spectpum，from the raplacomonts 2 ne jets ths advantage of tne fast caleulatlon of －the Hadariar j transiopn．Jue to the elimination of linear filtoring， coraut lng Cost is zven further peduced by the method．
bot us note that in the capstrum case after the application of the
 lormagrituro fina aiscrete Fowrler transform，By means of low－jassf iltari：ija sioothed spectrum is obtained due to the eiirination of the fire structure of the soectrum．fhis is acoomolisnaj by multiolving the coostrum by a lowmoss filter function。

In contrast to the capstran techniqua， ideal tilter as a low－iass illter im naostpur．Tinerefope ong needs no
the hapstrun techni gue uses an the saquency domal n of the mu！tiplisation to cut higher

Fig. 3.1 The outline of the oepstrum technlaue
and the hapstrum technlaue.
sequence components, The higher sequencecomponents are simoly made zero. This also reduces computing costrthe symbols +/mandx in the flgure indicate the necessity of addlsubtract operationsor multiolicatlons).

From the author's experience the calculation of the FHT is ten times a 3 fast as that of the FFT. This suggests that oy using the hadstpum techniaue we can make the calculation of spectpumsmoothing at most three times as fast as that of spectrum smoothing using the copstpum techniaue.

However, we should be aware that smoothing by the ceostrum gives us a better approximation far an original log-magnitude spectrum in the sense of least-squape erpor cilterion and that smoothlng by the hapstrum degrades resolution of ooak dosition of log-magnitude soectrum, The theopetical reason for thls will be discussed in sectlon 3.3.
3.2 Pitoh detectton,

Toextract a oltch oefiod we have to take a sufficientilme-spanofa speech wave to calculate a lag-nagnitude soectrum, namely long enough to Include at least two glottal pulses,
In our experiments the duration 19 taken to be 25.6 meec coppesponding to 512 samples of aditized soeech wave slinee the sampling rate of a speech wavels 20000 Hz ,

Flg, 3,2-a shows a sepies of cedstrum olots. A series of cedstrum are calculated for each consecutive segnent of speech wave one half of whlchoverlapsthe previoussegment. In the case of the ceostifum, to get a hlgher pesolution 512 zeros apeadded to the next 512 gamples of a digltized speech wave. Thls means the IDFT and DFTape calculated on 1024 ooints.

Fig. 3,2-b shows a series of hapstrum plots, The hapstrum is $c_{a} c_{c} u_{\text {ated }}$ Under the same condition as the cedstrum of Fig, 9, To calculate a hadstrum wo do not add Zero to the next 512 samolosof a speoch wave, sincaone cannot get higherpesolusion of the hapstrum by adding zeros !see 3.3 in thls section). If 512 zeros are added to the next 512 samples of a digltized soe日ch wave on8 wlllget a hapstpum such that the component of the sequence (not soauency) $2 i$ and:2l +1 becomesthe same value, wherellsa dositive integer. In other words a hapstium of a speech wave segment with added zepos Is easliy calculaiedfrom one wlthout added zeros. Thls soeclal feature of the Hadrmapd transform Is utllized by the snoothing of the log-magnitude soectrum in the next section. The proof ls shbwn in the APPENDIX in more a generallzedfopm,

Compaplngfig, 3.2-a with Fig. 3.2-b, ue observe that In the copstíum a shapp Peak appears at approxlmately $4,5 \mathrm{msec}$ but in the case of the


```
Amolitude (do.)
ispectral envelope flne,structure
```

```
Flg.3.3Soectral envelope and soectralilne structure of log-magnitude spectrum of a speech wave.
```

Consloerthemeanings of flltering bya nideal filter inthesequence dorain, Let an apray [a(J)] of dimension $N\left(=2^{n}\right.$, ba a digitized sigral in whlch all components such that $N / 2 \leq J<N$ are set to zero. By the apolication of the FHT Including sequenceordering the array [a(j)] is transformed into an array [B(k)] such that each adjacent corponent becomest he same, name ly:

```
U(D)=B(1)
E(2) = B(3)
```

...........

$$
\begin{equation*}
E(N-2)=2(N-1) \tag{11}
\end{equation*}
$$

Furtherrore, when al lcomponents such that $N /\left(2^{2}\right) \leq J<N$ are set to zaro thearray [a(J)] is transformed into such anarray [B(k)] by the apolication of the fHT including sequence ordering

$$
\begin{gather*}
E(0)=E(1)=B(2)=B(3) \\
H(4)=H(5)=Q(6)=B(7) \\
\cdots(\cdots-\cdots)=B(\because-3)=H(N-2)=B(N-1) \tag{12}
\end{gather*}
$$

Ea (i1) and (iz) are generalized in (A) and (B) of APPENDIX.
Both equations sugcest that if $[B(k)]$ is plottedas afunction of array lndex k the curve becones flat asthe valueof each adjacent corponent is the same. Because of this flatteningeffect lt degrades resclution of peak ossitions in the array [3(k)]. To ciemonstrate this ap examele is shown in fig. 3.4. A segment of a spe日ch waveis shown and is analyzej by the haostrum techniaue. The two lower curves pepresent snelog-nagni tude spectrum and the smoothedresult bythe hapstrum technisue.

The smoothac iogmagnitide soectrum, in Fig. 3.4 demonstrates the sroothing effect statec beforeb yea(11). Many sharo maxima and minlfa caused by g potai oulses (or olten freauency) in the opiginal -log-ragni fudespectpum are dinlnished in the smoothed spectrum. Fror the author's expepience the number of deaks is decreasedto one half that of thooriainal.

The important auestion is whetheror not the prominent ak aksaused by resorance of a vecal tractare preserved by the smoothing. Fpom the examrle snown in Fig. 3.4 we can see that the hapstrum smoothing tecriniaut gives good smoothing with pegard to presepving the first three formants.

Fi3, 3.5 gives angrabe exanple which suggests the formant components are prestrved áver the smoothing oy the hapstrum technigue. The UnDer is a sonogran of spectpa wifhout smoothingand the lower is a sonograr ofsmoothed results using the hadstrum technique.

Smoothed soectpum by the haostrum tochniaue

Fig, 3.4 Soeschwave, the log-magnitude spectrum and the smoothed soectrum by the hapstrum techniaue,

Fla. 3.5 Sonograms of log-magnitude spectra and theip smoothed soecpa. The upper is a sonogramof log-masnltude spectra and the loweris that of smoothed soectra.
tne hapstrun teancìue.

A tormant tracking orggrag nis been implemented using the hapstrum
 ［11j．In principle，the formant tpacking program presented here ascants any kind of smoothing techniaue such as cepstrum or inverse filtarlñ 1 12〕．

Edge followers were first lnolemented to recogmize oojects in 8 sçnコ，An ejaj follower detects a dosition where sharg change of contrast occurs and follows it successively．A sonogram is just such a scane with formant trajectorles represented as dark stpioes．Ry dotecting dark strides wo find thelocations of peaks ln a soectrum sinこe ヨ sonojrainispeopessnteda sasequenceo fspectra，

Tnere are many difficulties in implementing a formant tpacking ppogpam basad on an edge follower．One proolem is that a fopmant trajactory is not a straightiins，out is cupved．Some of the edge followers nave traated objects composed only of straignt lines，such as cubes．inislimitationcanioof Us e tcan edgefollower．For i nstancewa can Erevent the following of the wrong oath by using the critgpion of cupvatupe．Ne also can forecast the existence of edae， winis is hard co fetact necaldse of nolsa，cy usiny straight line inteppolation getnots．as tha dpoduction of a speach wave is 8 oynanic and stochastic oporess，the human speecn wave contains much
．noise．

A secong Droblenis that i t isvery difficult to decise a forinant freguency foom locil information．a wide ranga of overlad exists between the peglon of the first fornant frejuency and that of the second，also detiven tha second fopmant frequency and the third．In the caseo fa nalevoice，the first fopmant frequencyramges fpon 220
 fron 112号 nz．to jozanz．

A Enipaproolem is that if wesee．a sonogram in a microscooio way －there exist tou meny oeaks to ulscriminate the formant components．It is cesipeole co have a tecinniaue to eliminate trivial oeaks while Epesepling oponinent peaks caused oy the first thrae fopmants． Seostpur is sucn a tachnigue．Radiner and Schafer［ibj have implenented a formant tracking nrogram oased on the cepstrum tochnitue． $4 s$ tigirmetnod nakes frame－by－frame decisions for the first tnrew formanzfraquencies，thevise only localinfopmationina sวクวコrâ．it is tesipabl尹 to jtilizemore global information．

[^0] जyt aith asocktracking rochanlsmto recover if r arong osith is †ollowed, If decisions are made frane byframe there is nowrongwav entpance problem. Even ifwemake a wrony jecision in a frame, the eftect ooes not oposagatet o the next. However, if we wse the information from just the previnus frame the effect of a wrong oecision wlll crooagate. To cone with this situation it is necessapy to have a recovary tachnixue which utilizes more global information.
3.4.1 Lỏical structupe of a formant tracking orogram.

Jif fopmant tragking program is comoosed of four modules named PEAK JETECTOR, CANDIJAFE. SELECTIR, TRACKER, and RECOVERY. GENERAI flOW of the orogram is shown in figure 3.6.
A. FEAK UETECTOF́T.

HEAx JETECTJifacceots a digiti zed speech wave of a vocalig sound. calculates a smoothed spactrun by usina the hapstrim tachniaue, and
 usec to decpeasy tho processing time pequiped for smoothing. I can easily be replaced כy anotner teciniaue suen as inverse filtering or the ceostru? tecnnigue.
B. CANUIOATE SELECTGA.

For each region of the first three formant feadencies, CAND lDATESELECTUR selects at most tnpeecandidates from many peaks detected by PEAK DETECTCR and opjers them oy amolitude of peaks. The third canaidate whose anjlitude is 7.5 dbless than that of the second cangidate is removes oy the opdeping process. These candidates selected apsaccumulatedand ape used by TRACKER and RECOVERY, This poutine reouces the search space,

C. TRACKER.

TRACKER takes the pesults from CANDIDATE SELECTOR and makes a -tentatlve aecision for the flrst three formant freauencies. At first TR厶CKER looks for areasonatele nlace to track. There exists a region withlnuhici an overlap of two formant components never oceurs. In the case of a malevoice, only the flrst formant exists detwegn 220 nz. and $\bar{j} \boldsymbol{j}$ hz. and only the second and the third formant exist
 lf the first carsidate for a fopmant frequency is within the first resion it is reasonaole to assume tinat this isthe deak caused by the formant. after making an inltial selection TRACKE? begins tracking fornaro or jackwarć.
izAcnkr uses tho cpiterla to determine formant freayencies of the Deak Eosition from oneframeto the next, This nearest neignbour

 not occur．-s sor．as tersing of two formant freauencies oceurs， TFicker iakes uso cf tis oうmer cpiterion to look for a coint of senaratien fifer meriinot fftar a tentative selfotior af．the next formant congonelts usirg the first criterion，TRACKER looks for a neak wrose position is witnin a peasonasle range from the ceak cne frams before．if TfACKE：can find such a dakitillill seleat thf neah as the aoint of senaration of the two trajectoriss，otherwise the two trajectories remain merged．A wrong decision by tracker is corpected uy tha RESOVERY poutine．

コ．RECUVifir．
HEGOVEM works whon some inoensistenoy is pecognized by a fopmant traciing irograr．tr incolsistancy is a discontinuity or a sharo

There aro wwo major，peasons why TRACKEF follows a path trat has a shap arnaso pon jref fine to the noxt．the fipst peason is inat a srofinent pear causen oy a formant confonent is often lost in a spectrijr neceuse of the stosnastic fovenent of glottal eulses，Tris results in a discontinuity in a formant trajectory if the trajectry is seiecied n a microscopic wiv，tmis can be resoived by using the neisnooriood illforrarion．a \quad OTECASTER works in this case．

The seccma reason is thet z wrong decision has been made in the oast oy TRACRE：ant \quad ．wrong bath has ceen followed as a formarit trajectory，Fer oxampie fornant tracking proaram has mistaken the first fo－mnot for the socond and the trajectory suddenly enteps into ＝ne region where the secont fornant coes not existi namely the rasion
 ：ol｜owlpi \quad ：a wrond path whicn is not a formant trajectorj and evertually jisiosears．Tnese arocorpected by using á dacktpacking
 the recuvtrir rouzire nas recugnized an erpor，atrejectopy fellowed

 th尹 Dack trackins＂ebhanis nopks．la cian see tiat that a pecovery apcees by oack trackin．has to nave a pecursive structure，uut in ourcase t？atoth of recovery it limited to ons．

Fig. 3,7 An example of t he first threefornant trajectorissfor a sentence of "We were away",

In tne д玉i，er we ๆave discusset both the advantages anc disacvaitages of the migemery transfopm，as colparad to the fouriقr transfori，for子 soefcr weve analysis．Thr experiments in saction peveal that anolicatiju of the 山edznarg transfnpm directly to speecin wavas yialds soor results，aj ij fails to extract important features．The smalle；

 2 v ecalie sounj：soepch tive is pepresented by the fipst thpee formant fryuenciss and tn？fitch（fundanental）frequency，only four oarareters ape moeded．Towever in the nadamard sequency soectpurn，we canrot objepve jny vypical featuras bacause of the strong vime－shift sensitivity wmisn maxes it imoossible to apoly oven a oitch synchrorous mernci．：r otner worjs，tyoical features which are recognlzate ir the fourier case are averaged and are siattered away in a wide pange of a sealsency power soectrum．Some uf the exberilents in section ？． 2 semonstrase it．

TiTE－sMift invariants for the Hadamapa seguency specirum are known． ane of trese aifingjov aq．（3）aoes not bear enougn informetion to Rerform a sóeecn wave analysis since from a diaitized adyec：n wave
 tnese com：orents mas near relationship with an outrut fromafilter こank，its frejueroy bant is detormines by the numzer of points trarsformed，linnjcrargj atas jefined another conplete set of the －adarar transtcrm which has exaetly the same number of ooroonents as a Fourier frequancy soectrum and is invariant under a ciroular tire－shift，Ahnso et al［8］found an algopithn to calculate uhese terms，howevar mjltialicatlon oy an irpational number is included and is rope conplicetel than that of the fast Hadamarj transforin．As annsorg sjutests that the protinent energy line of the fourler spectur tinus to \quad exajgarataj，it is desiraple to calculate Jnnsorg＇s invariarts for a sugech wave．

 a oolication oi the Fourier transform the Hadamard transform is 20Jiac to detect a bitch zeriod or to get a smoothed scactrum，This tecrniaue snows Jone oositive aspect of the Hadarara tpansfopm for tne：analy：
 Easy to extrict the first thpeeformant fraquencies im a so fatiju． ae shoulc note that smoothing oy tne hapstrum is obtainaj zt tine cost cf accupaci in ostepainirg ，eak aosition of a smoothed seeztrun．This
 مrecise format fresuencies arp obtained by the ceostrum techniaue at the cost of arooessing tife，wille a reduction of frocessima tine is
 determiriny the iorman＝frejuemaies，However，it is oftan true that
to detect a peak causedby a oitch deriod, is difficult even In the case ofam a le voice. The authop's original ootimistic standoolnt was that the Hadamard transform might reval some new aspect of soesch Waves, However the only galn found from using the Hadamard transform Was the reduction of processing time pegulped for smoothlng, andthis was obtained at the cost of preclsion,
A formant tpacking progpam using an edge follower has been described in section 3.4. While the algorltam is pather sodhlsticated, most of the tire ls still devoted to the smoothing and parkselection procedures.


```
Let us defime a fev of the functions us*d mere.
Furnction f(y) is defined as follows:
Let a cinary fropesentation of U or G(u) be
O(J)=G=3n-1G:%-....S1G%
```



```
{i and u; e (土,0) (for 1\leqi\leqn-1)
vner?
6n-1 = 4, xa% 11
an-? = J1 x!2 i!2
.•
```



```
6访 = Un-1
(x)r stamas fop exclusivemor)
```



```
i\in,f]=[3j,ef,\ldots., &n-1,fiJ,f1,...,fm-1]
and [e] = [e?,e1,...,en=1]
    fj=[fi,fi,....fm-1].
tron the definition of the Hadamard tranisforn
in(j)]=(1/v) [e,fi||(n-1)
```



```
y.1 i ilterinj on tie smjuence domain.
```



```
    whepe c sk\leq infe; - i, ard the differerice of sojucnce
    number |ध[ween i(1; A⿻|f 4(r) is one.
rioct:
```



```
perpern-äion of x. 1 , sortis
```

```
perpern-äion of x. 1 , sortis
```



```
\(==\cap-1 ;-\overline{2} \ldots=1\) si (A-3)
```

```
\(==\cap-1 ;-\overline{2} \ldots=1\) si (A-3)
```


Since $\quad \dot{t} \leq \mathbf{k} \leq(N / 2)-1$ and $I=k+(N / 2)$ most significant blnary digit kn-1 and $\mid n-1$ are $k n-1=6$
$\begin{array}{ll}\ln -1=1 \text { and } \\ k i=11 & (A-5)\end{array}$
$k i=1 i \quad f_{0 i} i \neq n-1$
Fromen (A4) and (A-5)
$\mid n-1=t 0 \quad$ xOR $t 1=1$
$k n-1=s 0 \quad \times 0 R \quad s 1=0$
kn-2 $=\mathrm{si} \quad \times O R \mathrm{~s}$? $=t 1$ XOR t^{2}

$$
\begin{aligned}
k 1=s n-2 \times O R \operatorname{sn-1} & =\mathbf{t n - 2} \text { №R tn-1 } \\
k \eta=s n-1 & = \pm n-1
\end{aligned}
$$

We obtaln the following relation fromeq $(A-6)$,
si $=t i$ for $1 \leq i \leq n m 1$, and
$\mathrm{s} \theta=0$ and $\mathrm{t} 0=1$ (if si=0)
$s \emptyset=1$ and $t \emptyset=0(1 f \mathbf{s l}=1)$
Eq ($\Delta-7$) imolies that a s ortisin sequence,
In other words the difforence of sequence numberbetween
$A(k)$ and $A(1)$ is one.
Let $[A(1)] b e[E, F]$ where
$[E, F]=[E 3, E 1, \ldots,[m-1, F C, F 1, \ldots F m-1]$
Fpom on ($A-2$)
$E_{k}=[e](h(k))+[f](h(k))$
$F_{k}=[e](h(k)) \bullet[f](h(k))$
where $(h(k))$ is the $k=t h$ col um of matrix $H(n-1)$,
Since in our case [f] $=[0,0, \ldots, \ldots]$
$\mathbf{E k}=\mathrm{Fk}$, name|y $\mathrm{A}(1)=\mathrm{A}(\mathrm{k})$ for $\mathrm{l}=\mathbf{k}+(\mathrm{V} / 2)$ O.E.O.
(B) we can generalize the result of (A) further, zero all comoonents of array [a(j)] such that $2^{k} \leq j \leq N-i$ where $1 \leq k \leq n=1$, then $A(\dot{k})=A\left(2^{k}\right)=A\left(2 \cdot\left(2^{k}\right)\right)=A\left(3 \cdot\left(2^{k}\right)\right)=\ldots=A\left(\left(2^{(n-k)}-1\right) \cdot 2^{k}\right)$ $A(1)=A\left(2^{k}+1\right)=A\left(2 \cdot\left(2^{k}\right)+1\right)=A\left(3 \cdot\left(2^{k}\right)+1\right)=\ldots=A\left(\left(2^{(n-k)}-1\right) \cdot 2^{k}+1\right)$
$A(i)=1\left(2^{k}+i\right)=A\left(2 \cdot\left(2^{k}\right)+i\right)=A\left(3 \cdot\left(2^{k}\right)+i\right)=\ldots=A\left(\left(2^{(n-k)}-1\right) \cdot 2^{k}+i\right)$
$A\left(2^{k}\right)=A\left(2 \cdot 2^{k}-1\right)=A\left(3 \cdot\left(2^{k}\right)-1\right)=A\left(4 \cdot\left(2^{k}\right)-1\right)=\ldots=A\left(2^{n}-1\right)$
and in each groupe for oxample $\left(A(i), A\left(2^{k}+i\right)\right.$,
$\left.A\left(3 \cdot\left(2^{k}\right)+i\right), \ldots, A\left(\left(2^{(n-k)}-1\right) \cdot 2^{k}+1\right)\right), 2^{(n-k)}$ consecutlve sequence numbers are Incl uded,
proof:
It Is apoarent from the recursive definition of the Hadamard transform matrix givenin ea(1) and the oroof gi ven $1: 7$ (\mathbf{A},
[1] H.F. Harmuth: ADolicatlon of WALSH functions in communioation,
IEEE Spectrum, Nov, 82-91, 1969,
[2] H.F. Harmath: TRANSMISSION OF I NFORMATION BY ORTHOGONAL FUNCTIONS, Springop-Varlag, 1970,
[3] H.C.Andrews: COMPUTER TECHN OUES IN_IMAGEPROCESSING, Acadomic press, 1970,
[4] S.J. Campanella and G.S. Roblngon: Digital sequency decomposition of volce signals, Wilsh Function Symp.. Naval Re; Lab, , 238-237,1970,
[5] A,M.Nol: Cegstrum Diteh determlnatlon, J, Acoust. Soc. Amer., 41, 2, 293-309, 1967,
[6] F, pichler: WALSH functions and odtmalilnear systems, Walsh Function Symo., Naval Res, Lab, , 17-22, 1968,
[7] F.R, Onnsorg: sooctrul nodes of the WALSH HAQAMARD transform Walsh FunctionSyme., NavalRes, Lab, , 55-59, 1971.
[8] N, Ahmed, A.L. Abdussattar and K, R, Raol Efflolent computation of the WALSH-HADAMARD transform sDectiral modes,
Walsh Function Symp., Naval Res, Lab, , 276-279, 1972,
[9] B,S. Atal and S.L. Hanauer: Speech analysis and synthesls by Iinear oredictlonofthe speech wave, J, Acaust. Soc. Amer.. 47, 2, 637-655, 1971,
[10] L.R. Rabiner and R.W. Schafer: System Por autonatic formant anal ysis of volced speech, J.Acoust. Soc. Amer., 47, 2, 634-648, 1970,
[11] A. Herskovlts and T,O, Einfopd: On boundary detection, MIT Project MAC Artiflolalintelligence Meno 183, July 1970.
[12] J.D. Markel: Formant trajectory estlmation from a llnear least-sjuares Inverse $|l| t e r$ formalation, SCRL-ManographNo.7, Ott, 1971.
[13] J.D. Markel: Automatle formant and fundanental frequency extractionfrom a dilitallinverse fllter formulation, Conf, on Sosech Comm, and Processing, 81-84, 1972,

[^0]: ’apкe｜Líj nas cevelnjed a vary 3000 technigue for getting a smoothed soectpur jased on the ijea of linear opediction metnod．He calls it inverse filtering amy nas teveloded a forinnt tpacking orogram［a3］ wifen u иes information fron tha ppoviousframe wnen it is difficult

