STANFORD._ ARTAFICIAL INTELLIGENCE PROJECT
#AEMO AIM-176

bTAN-CS-308

RECENT DEVELOPMENTS IN SAIL

AN ALGOL-BASED LANGUAGE FOR ARTIFICIAL INTELLIGENCE

BY

J.A. FELDMAN
J.R. LOW
D.C. SWINEHART
R.H. TAYLOR

SUPPORTED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

NOVEMBER 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY







STANFORD ARTIFICIAL INTELLIGENCE REPORT NOVEMBER 1972
MEMO NO, AIM-176

COMPUTER SCIENCE DEPARTMENT
REPORT NO, 308

Recent developments In §AIL
An ALGOL-pased |angua9s for Artifiglial Intelllgence

BY

J¢ Ay Feldman
Jo. R, Low
D, C, Swlnehart
R+ He Taylor

ABSTRACT

New features added to SAIL, an ALGOL based language for ¢he PDP~1d,
are discussed, The features Includey procedure variables; multiole
processes; coroutinest a |imited form of backtrackina; an event
rechanism for inter-process communicsation; and matching procedures, a
new way of searching the LEAP associetlive data base,

KEYWURDS

Artificial Intelligence LanguaCes, ALGOL, SAIL, LEAP, multi=tasking,
events, assoclative data structures, backtracking, coroutines,
progressive deepening,

The Vviews and conclusions containad In this document are those of the
authors and should not be interpreted as necessarily representing the
official policles, elther expressed or 1implied, of the Advanced
Research ProJects Agency, of the Natlona} Sclence Foundatlon, or of
the Unlted States Government,

This research was supported In part by the Advanced Researgh ProJests
Agency of the gffice OF the Secretary of Defense under contract SO~

183 and In part by the Natiomal Science Foundation under contract GJ-
776,

Repproduced In the ynjted States, Avallable from_ the Natlional
Technical Information Service, Sprinatield, Virginia, 22151,







INTRODUCTION

progress In Artiticial Intel|lgence has traditiona |y been
accompanled by advances In special puppose programming techntoues and
fanguades, Virtually a|l of this devejopment has been cgnoentrated

In |anSuages and systems orlented to |ist processing, As the efforts
of Artificlal Inte|ifoence researchers began to turn from purely
symbolle Problems toward Interaction wlth the real world, certain
features of ajgebrajc languages becams desirabie, There ywere several
attempts(notably LISP2 and FORMULA ALGOL) to combine ¢he best
features of both kinds of Ianguage, At the same time, deslgners of
algebralo | anguages began to Include feature8 for non-numerlical
computation, No new general purpose |anguage wWlthout some sort of
list processing fag! |lty has been suggested for severa) vyears, \e
have followed a tack somewhat dlfferent from elthepr of these In the
design Of SAIL and Tn [ts subsequent modificatlons,

The starting polnt for the deve lopment of SAIL was the recognlized
meed for a  lanquage Incorpora¥ing symbollc and, aleebralc
capabilities, primarjly for Hand-Eye research, The problems are
somewhat simllar to those In Computer Graphles and one of us had Just
developed a language, LEAP [4], for such a il lcations, After an
attempt to honest|y ava{uate altecnat ve teohn|ques, we dchd!d that
the assoclative processing feature8 o3 LEAP Were the way to qot Ther=

are Important dlfferences between LEAR and the first SAIL, (pr|marlly

In inpUt=output, strfng manipulation, and Impjementation), but these
differences are not reievant here, 1%¥lsessential} th $ system fop
the PDOP=18 which s distributed by DECUS and Is belng used for

Artificial Intelligence and other research In a number of
laboratorles,

This original SAIL met Our need8 for mbout tWo years beforo.reau§r¥nq
serious change, then we began to face the preblem of buttine
together a hand-eye system whloh was much bigger than the available
maln memory and whigh did not lend [tself ¢o a statliec overiay
structUre,  Our sojutlon Invo|ves @& number of language additlons
which faci|ltate the treatment of Jobs under the time=sharing system
as a set of cooperating sequential| progesses, and has been described
In {53y The three main additlions wepe , a monitor for wuser control
and ~debugglng, a shared data facl [fty, and the Introduction of
message Procedures, The shared data fs#ol|lty makes use of the secend
relocation register of the POP-10 %o allow Job8 to access a common
global data area Im a natural and efflelient manner, The message
procedures are the main mechanism for asynchronous e¢ommun]cation and
contro! between Jobs, A message procedure |s a procedure In_one job
which can be invoked from another Job, Contro|l Informatlon
agsociated with the Invecatlion oan provide the effect of
subroutines,coroutines,parallel processes,events, and a varlety of
other disciplines, These multl-tasking mod!ficatlons to SAIL have




enabled researchers to ?asombln and modify large collectlons of Jobs
with a mInlmum amyunt ,f attentlon to system problems,

A number of factors _have ?3 bined recent |y to cause us. tQ .makg a
second set of major mod ?cctvons to SAIL, The mult?-taakwng
facilities of the second SAIL war. seen to be at |east _as useful
within a single Jobas they were aoross Jobs. In additlon: the
abl |1ty to assemb|e 1 grge oolleotions of routipes hrought us to the
eolnt of facingone 0? the oore pgoblems of Artificlal Intel]igence -
what Is the rlght sequence ofsctlions for curryinf out _a gl ven task
In a partloular environman®, %his strateoy problem Is curpentiy vary
popular and !s the driving forge behlnd many .of _the recent
development In langusges for Artiflel g Intel|Tgence. Our v 8w of the
problem |'s somewhat unorthodox anal meflts some diseussion,

Reoblem golving ¢or. .an entity whloh deals wlth the real .world {a
frauoht with uncertalnty, The state of the World gan not . assumed to

be known « In fact. one of the malngoals of a sWmtegy musat be to
galn enough Information to carry out Fhe task, An dd't'ogtl prob|em
arlses In resource —ajlocatlon) even If an exhaus]| ve search of the
environment will yleld a solutlono?t may not do: 80 ‘} an accaptable
cost, Consideratlons of this sort cause us to v levw the mfrgtoqy
problem as inherently involving numerfcal estimates of probabilities,
costs, etc, A complete dlscussion of these Issues ls beyond the
scope of thls paper , but the recant SAIL modiflications have been
Influenced by our mode! of the strategy oroblem,

O?r recent language work has bgen intended tn . faol| tazs the des]gn
of borograms for = the constructlon and execution ol _strategles for

Interaction with the real world, The facliltles are belng aopiled to
other problems, bput we wlll oonoentrate on the or n]pnj thene.
However the language deslgn effort was concerned wlth gxpandTnﬂ the
power of SAIL as a general purpose |aRguage as opposed to develoo]no
8 specla| purpose system, One oritlca| deglgn cpngjna]nt‘was that the
features not ental] large hidden overheads or aporeciably gegrade the
petformance of programs not making use OF them, We bel] eve we hpve
found a set of features Whiehmeetour deslén goals, the mafOr
additions are} backtracking, prooedyre  varlables, matehino
procedures, and a general multi=tasking faclilty,

STATE ‘SAVING AND BACKUP

In order to try several dlfferent al? rnative stenteoles Jt s gfion
necessary to save the currentstate 0f the computation, Thys, [f the

first attempt does not suceceed, We may "back ur" and try gne oOf the
ather alternatives, We may also switech between ajternatives,
sontinuing wlth oneonly untl| It no longer seems the poat promlsing,
but retalning the optlon of resuming it later If  the, other
ajternatives do not prove to be satlsfactory, Another technlaue used



In prodramming ”°”'?°t°fm|”'3t'° algorithms, parallel processes, Wil
be discussed later 'in this paper,

In general the state of a SAIL computation Includes ¢he ocurrent
contro! environment, €he Input and output whigh have been regquested,

the contents of the LEAPassociatlive store and the contents of all
varlables, New SAIL has features whfoh w!i| help handle the last of
these components: the contents of varlables,

We normal iy do not want to have the vglues of all r'Ybllé "ba keg-
Up" when we switch between altecnatives, reason g that 3t

often usafu| for one alternative to commun oate oertaln pleces of
Information It has acaqulred t o the other alternatives, This
Information ls usua|ly saved In certaln varlables, If we backus those
variables, we lose the Information, Another reason for nbt back|ng=up
all varlables |s that often only a smali subset will have meaningfor
more than a single alternative, and It |svery costly to back up
large amounts of data whleh may not be pelevant for the other
alternatives, Therefore we have Implementedways of saying the
values of spec!ftec varlables and then restorina them at a later time,

and ALy oAt TR T 8%3“.‘: W8Ny P§aEamenEa] RENGHBER,
"cOnteXt A context consists of a set of ref orhnces to variables and
their values,

We save the contents of varlables by means of REMEMBER statements,

REMEMBER (1,J,aC33) IN icontexti)

This statement wou|d save the values 3 "im, win, mar3I3" In the
context named "contexti", any O thOsO varilblos had been

previous|y saved In "contoxti"ntbe old values Would be |ost,

An alternate form of the REMEMBER statement |s:

REMEMBER ALL IN contextl}

The current value of each varlable wWhich has been remembered in
"eonteXt1” would replace the value that was previously stored there,

The RESTOREstatementalsoc has two forms, The first has an argument-
list.

RESTORE (J,al3]) FROM contextls

¢ r y M error
T é?catYU|d|fsear°h o?gto % "rS&em§28-95°“&? ﬁ?n %Rut goo.t %t. r;g;
va|ues saved for those arguments "remambered" would be reatored to
the appropriate variables,




The other form of the RESTORE statement ist

This

RESTORE ALL FROM contextls
would  gestore the contents of all variables saved wlthin the

named con

These new fea%f' uresseem to provide the mast . Important ?e‘tures of
L

state-sgving w
of the

hout the large overhead Imposed py auUtomgtic backuo
entlre state or Incremental state=saving as I{mplemented In

some other programming systems,




LEAP

SAIL contalns a agsoclatlve data system oca|jed LEAP whleh [s used
for symbolle computations, LEAP Is a combination of ?yntax and
ryntime subroutines for handling |tems, sets of tems and
agsociations, ”
An ltem |s similar 0 = LISP atom. [tems may _ha _declared or_ obtained
during execution from a poo| of - |tams by us{ng the functnon NEH.
Items may be stored in varlables (|temvars), be mombors of sgt?
ejerents of |lets or be assoc/ated together to form tirlpie
tassoclatlons) within the assoclative store,

A set Is an unordered collectlion of distingt items, Jtems .may be
Inserted Into set variables by "PUT" gtatements and removed from set
variables by "REMOVE" statements, Set expressions may also be
:sslcnﬁd to set varlables, The simplest set exoression is of the
orm!

(Ftemi, Item28 ltem3 ,,,}

whleh represents the set conslstln? of the denoted Items, More
complicated set expressions Involving set functlons, set union,
subtraction and Intersection are alsec prov ded, Sets arc) stored inma
canonical Internal form which a]lows us tocarpry out such operatigns
as {ntersection, unjon and oomoaelsoh In a timeprodortional to the
lengths of the sets Involved,

Sets are deflolent in some @ tlons, thouah. because they are
Unordered, Thus We could not oaa?lﬂ try different a|ternatives In
order of thelr expected utilility, To remedy this, as wel| as provide a
mechanism for oreation of parameter lists to Interpret{vely called
procedures (see PROCEDURE VARIABLES below), SAIL now oontaTns a data~
type cal led "l i1st", A |1st ls simpiy an ordered seauens=.? Tsame An

fter may appear more than once w? hin a |lst, &lgt ogerations
Inciude Inserting and removing specif tems from a 1 /st variable by
Indexed PUT and REMOVE statements, LIst varlables may also b e
ass|aned |Ist expressions, the simplestof which Is of the formi

{((ltemil, Item2, l1tem3 44.})

which r foresen T the xplleclt sequence of den ?od {toms, ther 11st
exnross ons ud |?s unctlons, concatenation, and subilsts,

Triples r? ordered  three_tuples of |[tems, may themse|ves be
considered [tems and occur Tn subsequent assoc lt!ont. They are added

to the assoolatlve store by exscutlng MAKE statements, for example;
MAKE use ® planl = tagkl}

6



The three Item components of an assoclatlon are refered to _a s the
"attribyte”, the "ob Ject", and the "value" respectiyely, aAssoclations
may be removed from the store by using ERASE statements such asi

ERASE use ® planl = ANYI)

Each Item other thap those representingassociations may havye a DATUM
whichls a scalaror array of any SAllL data-type, The data=type of a
DATUM ray be checked during execution, DATUMS are used muech as
variables, For example!

DATUM(It) = 51
wou|d cause the datum of the item "|t" to be replaced with "5",

SAIL contalnsacompije=time ma cro fac!|ity which allows guch things
as String substltution and oon& tiona| compilation,'As 18 the custom

of manY SAIL programmers » we W||| uss the macEq "a" to stand for the
string "DATUM", Thus the above example woul|d appear asg

a(le) « 53
PROCEDURE VARIABLES

It Is aulte natural in an Interoreter to _a IOY for the _exegufion of
program generated seauences of actlons, This |s an Important feature

for artlificlal intejljgence applications and is not easiiy made
avallable for compl|ed programs, In new SAIL, the generatlion of such
seauences |s facl|ltated by a procedure variable mechanismwhichflts
Inguite niosly with the assoclatlve search features of the language,
These procedure variables are created at runtime from items by
statements of the form

- ASSIGN(<ltem expresslion>,<procedure specificatlion>)
where

<procedure speciflcation> :1ir<procedure |d> |
DATUM(<procedure [tem expression>)

For instance,

ASSIGN(xxx,baz)
Wou|d cause the datum of |tem xxx to contain a deserlption of baz,
together wlth a pofnter to bar’s current environment, Siml jarly, the

statement

ASSIGNCyyysalxxx))



would cause vyvy to be made Into a procedure® |tem contalning the same
Informaglon ag that in xxX,

In additlion to dynamicajly speclfylng what procedure f° execute, one
would also [lke a gconvenlent way to dynamlca|iy specify an argument
list for a procedure call, Thlas faelilty Is provided by the APPLY
mechanligmi

APPLY(<procedure speciflocation>,<argument [lst>)

where (argument Iist > Is any SAIL Ilst and may bs omitted if the
procedure has no parameters, For examp|e,

APPLY(foo)
AppLY(3(xxx),|lstl)
APPLY(3CAPPLy(yyy)) s ({x,¥,2})}

APPLY uses the _ltems In the argument Ilst, together wlith the
environment Information from the procedure [tem (or from the ourrent
env | ronrent, {f “the procedure s pnamed expilcltly) to _make the
appropriate Procedure call, If the called orocedure produces a
value, that value Wil| bs returned as the value of APPLY,

Rrooedure ltems permlit a great deal of flexibillty, For Instance,
the user can say things |1ke

FOREACH x | xeactlons A useexzfastening do

BEGIN
APPLY(28(x), (({boardi,board2)));

IF toggether(boardi,board2) THEN GO TO dongit}

ENDJ

donelts
Thls would seapch the _set "ac’lons" faor Tny~¢fbukurus w??ch have
been asserted to be usefu| for fastening things together untl 1 elther

the list |s exhausted or the task |s successfully completed,
MULTIPLE PROCESSES

The control structure of SAIL was orlelnally very much |Ike ¢hat of

Ajgo!l 68 -- that |s tosayblock struotured and procedure orjented,
Although this structure |s adeauate for many problems, there are some
cases In whieh 1§ 1Is uncomfortably restrlotive, In hand-eve

app|loatfons, for Instance, there (ire freauent|y modulgs of ocode
whleh are more or less mutually Indedrndent but that wlsh to ?all On
each Other for varjous services, Simifarly, one may wl sh to
Investigate severalpossible strategles at once, wWith the results of
ens computation perhaps Influencing the course of others, In such




cases, it is mudwmorenatural to think of (and write) these modujes
as co~roytines or Independent processes rather than_as nested
procedure calls, To ,some extent, message procedures oprovidedthe
des|red facllit!es. with each Job actlng as a separate process, This
solution has some rather severe _#rawbacks, since the overhead
Involved 1 n switching control from procéss to process and In
Interprocess communication Is so hligh that close Interaction becomes
erohlbltively expansive, One of our goals Inproviding newcontrol
facllities Was to make possible the close cooperation of many small
to medlum slzed processes within a single Job without Tmposing an
excesslve overhead either on oldesty|e procedural programs Or on
users 0f the shlny new features, In doingthls, wewanted ¢ oretaln
the block structure rule3 Of Algol, slnce these rules are genepally
familiap to programmers and orovide a useful means of determ?nlng
which datals to be shared,

193, 78380 B 42R) cK°a B 13aFDoRES f=°'"2"“a§\,::aa"'§"awaa° "‘Y”‘%dﬁm
a ppocess Is essent?a|ly a proceduyre actha on which has been given
its own pun time stack and whlich thus does not have to return before
the process that invokeg It can contimue, SAIL brooedUros normally
make up-level references via a "statlc” (lexical nesting) chalin
malntalned for that purpose In the stack, When a orocedure Is to be

called asan | ndependent process, a "process" routine flrst gets
space for a new stack, It then sets Up approoriate process control
varlables Iin the new stack area ang In the "parent", Finally, the
procedure Is invoked using the new stack, when thls procedure ls
entered, | t wWl| | set up Its statlec |ink by looking bagkalong the
static chain of the calllng process unti| it finds an activation of
fts lexlcal parent, Thus, different processes wll| share data

belonglng to thelr common ancestocs.

Many of the applicationswhlch we have considered do not permit us to
predict Just heWw many subprocesses a onrocess might wish to _soawn or

reaulre that severa| processes be Instantiated using ¢ths sane
sroOcedure on dlffargnt data, Therefore, we have chosen to "name"
Processes by assigning them to LEAF ltems, rather than by usinag

procedure names or some sPeclaldata typecalled "process", This
approach has the added advantage of al lowing complex structures Of
processes to be bul|t ug using the mechanisms of LEAP, New processss

are created by statements of the formj
SPROUT(<Item expression>,<procedure call>,<ontlons>)

where the Iltem soec;fped by <ltem expressiond |Is to be qsed as tnhe
process name, the <orocedUre call> te|ls what thls process {s K»n do,
and <onptionsd |s an integer which 1Is used to soeclfy how gcertain

Process attrlbutes are to be set up, (If the <ootions> parameter is
omitted or only partlally spaclified, SAIL will| provide defauit




values), For instanTe. a procedure to nail twb board8 together mlght
contaln a seguence |1ke

H
ITEM p1,p2:p3}
H

!
SPROUT(pl,g9rab(handl,hammer))g
SPROUT(p2,9rablhand2,nali®)}
SPROUT(p3, lookat(tvi,boards))t
!

JOIN((pl,p2,p3))} )
pound(hamme,,nali,boards)}
:

:

In this case, grab(handi,hammepr) would be executed a8 orocess oi,
grab(hand2,nall}) would Dbe exeouted as process 02, and
fookat{tvi,boards) would be executed as bprocess o3, The process
areati?o them contlinues on |tsway down to the JOIN statement, In
general,

JOIN(<setd>)
oaus®s the ppocess oxeoutine [t to be suspended unt]i all the
processes named = By the  <setd have terminated, Thus
pound(hammer,nall,boards) wil| not be calied untliini, g2, and_o3

have all terminated, Inourexampl|e, both SPRQUTed processes and the
orfglnal process wouldtheoreticalily fun fn papallel, 1In fact, thls
Is not possible with a singleprocessor, Instead, the SAI% runtIme
system Includes a scheduler that decldes whishorocess Is to be
executed at rny 9i/ven Instant, Eaoh Brocess ls given a prierlty and
time quantum and may be in one of four statesi "runnlngn, "ready"
(iy8, runnable), "suspended”, or "terminated”, The scheduler, whlch
I's Invoked elther by a olook [nterrusy or by an g!plfc‘t>cgl{ by the
user, usesasimple round robin algorfthm to distrlbute service among
the highest priorfty ready processes,

When a proceass |s SPROUTed, the system assigns It ?, standard default
prlority and time quantum, uniess %hs uaserspec Ifles otherwlse bv
appropriate optlionss,  The SPROUTed prooess usyallY becomes the
running process, whlle the SPROUTIng brocess reverts to ready status,
Unless some other optjon Is specifled, For Instance, suppose we have
some procedure "wanger" whichseapsches a data base or the ea| world
at random for potentlglly useful oplects. Then Wwe mﬁaht wrlte
something |lke!

SPROUT (wandag gt sNEH 18045 (98 LERRIBALE) smun v
10




The Current Process would oontinue to ru?o and wanpderer would
languish In .eady status unt!l eve,ything of highe, p.iozity had been
suspended,

Processes may be suspended or terminated vla
SUSPEND(<process |tem expressiond>)
and
TERMINATE(<process Item expressiond>)

whleh do just what one might expect, Simllarly, SAIL provides system
functions” for changingaprocess’sprliorityor quantum,

Co-routine style Jnteractions are facl|itated by the use of the
RESUME construct:

x+RESUME(<Dprocess |tem expresslon>,<return vajued,<opntlons>)

whepe <optlons> Is agalin optlonal, The usual effeet of RESUME Is to
caUs® the currently running process %o b e suspéended athe @rocess
spec!fled by <process item expression> to become running, If the
process belng resumed had suspended Itself by means of a resume
statement, then 't wll| receive <return value> asthe vajus of the
RESUME. For Instance,

PROCEDURE tooj_getter(ITEMVAR tool_type):
BEGIN

ITEMVAR tool} . - ‘
FOREACH too| | tool € tool.pox A typeetoolZtool_type DO

RESUME(CALLER(THIS_PROCESS), too0|)}
END3

!
SPROUT(tae«NEW. tppol_gettepr(screwdrlver),SUSPEND_HIM)
DO sd«RESUME(t9,NIC) UNTIL flts(sd,scpawl)}

TERMINATE(tg);

In this case, the tool getter proocess "tg" wi| | be tnlt?a{izad and
Immediate |y suspended, Then, the RESUME(tg,NIC) wiil wake 1t up to
find one screwdrlver, which wil|l be assigned to [temvar "sd" by the
RESUME(CALLER(THIS_PROCESS),to001l), (THIS-PROCESS and
CALLER(¢procld>) are system supplled routines that return the crocess
Items for the current|Y running process and for the orocess that last
awakened process <procld>, respective|y,) Later on, we wl|]| discuss a
somewhat cleaner sojutlon, using matching procedures, to the probjem

11



usea for thlslllusf ?tlon. We Wi|| a|so show how the, Interprocess
gommuni.ation facfl| ? the language may be used to handle the
problem of what to do |F tgol.90tter rups qut of teols.,

FOREACH STATEMENTS

The standard way of searohlng the “LEAP assoclatlve store Is the
FOREACH statement, A FOREACH statement consists of & "bindlng | ist"
of Itemvars, an "associative context" and a statement to be iterated,
Conslder the following example,

FOREACH 9pspsc | parent ® ¢ 3 p A parent e p 3 ad DO
MAKE grandparent ® ¢ B gn}

In this example the binding=|ist consists of the |temvars "gp", "o",
"¢", The assoclative context consists of two "e|ements", "parent e ¢
p", and "parent a p 3 gp", The statement to be jterated |s the
MAKE statement,

Inttlally all three Jltemvaps are '"unbound", That Vs, . they are
consldered to have no Item value, Since "p" and "¢" are unbound, the
ejerent "parent ® Cc 3 p" represents anassociative search, The LEAP
Interpreter is Instrugted to look for triples containing "parent" as
their attribute on flndlng such a triple, the intororoter asslans
the obJect and” value compondnts to "0"and "p" respectively, We
eoftinue to the next element "parent ®r 3 go", In this slement there
IsonlY one unbound Itemvar, "gp","o" |8 not unbound even though |t
Is in the binding |ist because |t was bound by apreceding e|emept,
A search is made for triples with "parent" as thelr attrrb.&tc and the
current binding for "p"as their obJect, If such a triple |s found.
lts value component Is bound to "ge" and the, MAKE statement |s
executed, After execution of the MAKE statement, = the LEAP
Interpreter wil| nback up" and attemdt to find another btindlne for
ngpn and then exegute the MAKE statement agaln, When the ]nterpreter
falls to find anothgr binding, |t bagks v to the preceding ejement
and tr¥s to find other bindings for "o" and "c", Flnally when. all
triples matoching the opattern of the flrst element have been tried,
the exegution of the FOREACH statement |s comp|ete,

In old SAIL, FOREACH e|ements cons|gted of elther <trloie searches,
set membership, or boolean expressjons not dependant on unbound

ltemvars, Only tripje searches and set membership wers al |owed to
bind an unbound !temvar,

betedhlhs oN BLEnE 0" o UBLETED (1 13Ranf FITYD'E BT "HATEHLNS
which may have zero or more BINDING(WW temn &8s "?") temvars as

forma| parameters, these Parameters are not nocessarlly bound at the
the the procedure is called, If the Procedure cannot find blndings

12




for its unbound BINDING parameters, |t FAIL , causing . the I_EAP
interpreter to back up to the previous element within the associatjve
context 0 F the FOREACH, I? it SUCCEEDs, bindings for the unbound
parameters will be returned, The matchlng prooedure s actuajly
SPROUTed as a coroutine process, SUCCEED and FAIL are essentlajly
forms of RESUME which return oontrol to the caller Wwith the values
TRUE and FALSE respectively, FAIL also causes the matehlng procedure
process to be TERMINATEd, When tbe matchlng procedure Is called _by
"pbackup", it Is merely RESUMEd, Thus, the entire environment in terms
of the procedure”s local variables, stack, atc,, |s the same as when
the Procedure exeecuted the previous successful return, The mgtch}ng
procedure may continue from the polnt at which 1t 1eft off,
generating new blindings for Its unbound parameters, Jnmany respegts
matchingproceduresare similar to the IPL=V "generators" whloh have
appeared |n varled forms In other Problem-solv ing languages,

To ald in the bindfna operations we have provided. predicates to
determine If a specifio parameter s unbound for thls cal| of the
procedure, We also have introduos anew form of the FQREACH statement
which condltlomal|y adds ltemvars to Its binding Ilst, Cons | der the
the foilowing examp|e of the new formi

MATCHING PRQCEDYUR -getter( ITEMVAR tot ) )
SEETNINGRBRRREDLRE onlalttns T LIEYAR 300 g font-tveers
typeetoo|Stoo|._.type DO SUCCEED]
FAILS
END;

x x i f c " " Je v '
oo PintAna 8ot a Ny TORRACH*98ARaTRRRR | TESRAT R L8 T ERl

were unbound, The action of the matehlng procedurels to flind a tool
if the tool Is unknown but the type [s knownj find the tvpe_ if the
toolis known but the type is not; verlfy that the toel Is of the
reaulred type 1f Dboth are Knownj or search through the toelbox and
return tool,too|_type palrs |f neither tool nor type Is known, The
actual semantics is determined by which, If alther, of the parameters
are bound,

Unfortunately in general, matchling procedures with more than a sinale
potential |y unbound parameter are not so easy to code, The user may

have to provide up to 2¢*N different code sequences to handle the
varjous aombinations of N BINDING |temvars,

To illustrate one. class Of uses of matching proocedures | et .us
consider the following problem, We are given aset of ecube shaped

blocks of varyingsizes and are reauested to bplck a subset oF the
blocks such that when stacked they will form a tower of agiven
helght, Assume that we wiil| represent a cube bYanltem whose dagum
is the helght of the cube, We may easily solve thls problem by using
a recursive procedure "flndi",

13




RECURSIVE BOOLEAN PROCEDURE findl (SET bset, INTEGER di¢f;
REFERENCE SET ans):;
BEGIN INTEGER ITEMVAR newb) )
FOREACH newb | newb € bset A (2a(newb) § diff) DO
IF (a(newb) = diff) v findi(bsat={newb),dlff-atnewdb),ans)
THEN BEGIN PUT newb IN answerjRETURN(TRUE) END;
RETURN(FALSE)Y S
END;

Mowever, now let us consider a sl|lght|y different problem. Suppose we
wish to simujtgneoUsiy pulld tWo towa#s from 4 single set of bHiocks,
Calllng "findi" twice, flrst with the entlre set of blocks for for
the first tower, then with the remaining blocks for the second, will|
not work, Though <theremay oj at many possi{bie subsets which wl| |
form the flrst tower, "findi® wl | ajways return the same one even
though it 1is possibje to construct the second tower only If g
different subset of the blocks were ghosen for the first tower, For
examp|e, if the set of blocks consisted of sjzes 1, 4, and 5 and we
were to construct towers of heights % and 4, nfindL"” would construct
the first tower using biooks 1 and 4 and thus be unable teo oconstruct
the second tower,

Now let us see how we quid use matching procegdures to overcome this
oroblem, Let US write the matching orocedure to solve a singie tower
ppoblem [13],

MATCHING PROCEDURE find2 (SET bsetli INTEGER helght;
? SET ITEMVAR ans)i
BEGIN

RECURSIVE PROCEDURE aux (SET si3 INTEGER diff);
BEGIN INTEGER ]TEMVAR newgt
FOREACH ngwp | newp € si A (8(newp? S glft) DO
BEGIN PUT newb IN 3(ans);
IF (8(newp)= qlt¢) THEN SUCCEED
ELSE auXx(si={newp),dfff=3(newpn));

REMOVE newb FROM 3(ans)}

END}
END |

ans & NEW({))} COMMENT new !tem, The empty set is datum}
aux(bsetshelght)}
FAIL;

ENDJ

To cal| the matching procedure we would simply have a FOREACH
statement:

14




FOREACH ans | flnd (blockgot.hstght.ans)[)o
orintset(d(ans)?);

Thls is clear|y egujvalent to the solution given above for "findi",
However now consider, the two tower case;!

FOREACH @nsi,ans< | find?(btocksaf.helqhtloansi)h
f?ndzcbIockset-a(ansifnhe ght2,ans2) DO
printsets(3(ansi),d(ans?2))}

This w1l find a solutlon If any exlsts, because if, after {inding s
solution to the first tower, It |s Impossiple to fsnd a sclution to
the Second problem, we backup and flnd a different sojutfon to the
first tower and then try the second again,

An  Interesting distinctlon between the Programs for "fJndi" angd
"f | nd2" maybe found, Notice that "findi" only returns to its caller
after "unwinding" the recursion, thus allowing the answer set to be
constructed as the recursion Is belng "unwound" within a syccessful
call, With "find2", however, the procedure may "return"” or succeed
whije It Is sti|! deeply nested in recurslion and thus the answer set
must be constructed before the next recursive cal| of "aux" Is made,

We envislon that matching %rocedu;es.WIll be u%od to. simulate n-ary
relations, serve as ?enora ore 0f moves or strategies, as Well as

sirply ald In the coding of complex assoclative contexts,

INTERPRQCESS COMMUNICATION

{R comp|lcated systems _auchasthe gtanfo%d Hand Eve ¥gtem where
ereé are manycooperating Processes bresent, one would T Ke to have

a mechanlsm py which an occurrence in one process can Inf juence the
flowofcontrol In other processes, Such occurrences freauently fail
Into several basjc groups, with perhaps some distinguishing
information assoclated with each occurrence ot a given tyoe, 1In
designing Interprocess communication facl|lties for SAIL we wanted to
make it easy for the user to dlstingulsh among happenings of the same
general type and to deflne for himself Just how each type Is to be
hanaled, We have chosen an "event" mechanism which 1is really a
falely gensral message oroceéssor, Any | tern may be used as an'"event
mot lce", or message, and each typeo f event In a program s
repreésénted by an item, With each Such event type, SAIL associates:

1, A "potice aquaue"” of items which have been "caused”" for this event
tyDG.

2, A "walt queue" of processes which are waiting for an event of this
type,

3, Prccedures for manipulating the aueues,

15



The two essentia) actions assoclated wlth any event type are

CAUSE(<event type>,<notice [tem >,<optionsd>)
and

INTERROGATE(Cevent typed>,<optlionsd>)

where, as elsewhere, <optlons> may be left out If the default case Is
desired, '

The statement

CAUSE(typel,nte)

would cause SAIL to look at the walt aueue for typeli, 1If _the queue
s empty, then "nt¢" would be put into typel’s notice aueue,
otherwise, a bprocess Would be removed from the walt queue and
reactivated, with "ntc" as the awalted item,

If a process executes the statement

1¢mve INTERROGATE(typel)
then the flrst Item In the not]ce aueue for typel would b7 remoyed
fror the queue and assigned to !|temvae Itmv, If the queue s empty,

then itrv would be set to the speclal item NIC, If a process wants
to wait for an event of a given type, it may do %0, as in

ftmve INTERRQGATE(typel,WAIT)

In this case, If the notice aveue is empty, then the process will be
suspended and put onto the wait aueue for typei,

Similariy,

ltmve INTERROGATE(typel,RETAIN)
causes the event notice to be retained in the notice quesue for typel,
This went mechanism  should prove useful in oroblenm §o|v1ng
appilications in which processes are sprouted to cons:der different

actions, An "or" node in a goal tree, for example, mlght be
represented by

SPROUT(pi nat|(gucevy,boards))}
SPROUT(p2,0uelsucevt,boards))}

16




SPROUT<93 screw(sucevt,boards));

winne .+ INTERRQGATE(gyucevs NAIT);

FOREAE p | 95(91.93,93) A pEwinner DO TERMINATE(D);
H

When a branch discovers that It has succeeded, !t can exaouta a
statement |lke

CAUSE(sucevt, THIS_PROCESSY)}

which woul|d gnnounce success and cause lts Parent to terminate its
less svceessfu| brothers.

Fvents glve ys a meaps y Whlich some discovery made by ne
cah be made to "unst'ck" some other process Which has ott

trouble, Lets consider our toe| getter again,

procgess
en Into

PROCEDURE too|_getter(ITEMVAR tool_type)}
BEGIN
ITEMVAR too |}
FOREACH tool | tool|€toolpox A typeetoolZtooltype DO
RESUME (CALLER(THIS _PROCESS)itoo|)}
DO too|«INTERROGATE(tool_found,WAIT)
UNTIL typeetoo|Ztoo|-t¥ype;
RESUME(CALLER(THIS_PROCESS),¢00l)}
END;

T the FOREACH ement fail8 to f! a tool of the correct tyoe
hen 3 J? egters$fflmbz susbendeg Q?I some process onus‘é an av:ni

of type tool-found, uslng the an ltemrenrasent!nn tool as the event
notice, Suppose that our process "wanderer" has final|y gotten a
chance to run (everything of higher prlorlity belng stuck) and that It
does: In fact, stumble across a screwdrlver, which It knows to be a
king of tool, It might then do something like

MAKE typeethingZscrewdrlver;
P Ur thingIN tool_box;
CAUSE(too|_found,thing, TELL _EVERYONE+DONTSAVE)}

hls would cause every DPOGO?\Nalt on the.0yent _"tool_found" to
e awakened, (1f no procesas [s walting, the notice will not be saved

on the notlce aqueue,) Thls Would wake up whomever called tool_getter,
which would then see }f It oan use the "thlng",

i e of everal _pt e
gsg Y%?t*s R°so¥é59§§e tgh‘gsgouT ° § done by a s?mofgaljoggs?é?éh
INTERROGATEs each event type st, ynfortunately, | shes

17




to walt for an ocgrrence within a glven set of events, this doesn’t
work very wel|, sinea an attempt tOwaltfor on8 event type will| keep
the other types from belng seen, Therefore, SAIL allows a process to

ask aboyt a set or |ist of event types direct|y,as In

[¢mveINTERROGATE(ev_type_|ls)WAIT+RETAIN)

A W or W if all of
Lehall|cg '3eu5:°”2$3°“ﬁm€9‘”.§9°n%""ﬁfu LT A LA TE
any of walt queue entries 1s serviced (All walt queue entr]es for
this request w!|| be deleted,) If It Is necessqr{ to know _Just which
type was responsible for a glven notice, the ootlon SAY_pHICH may be
useds, Suppose the Statement

ftmve INTERROGATE(ev_type. | Is,WA]IT+SAY_WHICH)
returns |tem "notjc", whleh was caused 8s an event of pe
catast;o he, asg s va lue Then the aggociatlion
EVENT_TYPEenottczcatastrophe wil| be made by the system,

T P " " g e " "
sggg{h?gg TTzeto program an "and"” node wlthin process "foo" mlght be

SPROUT(pl,fetch(hammer,handi,sucevt,fallevt));
SPROUT(p2,fetch(nmall,hand2,sucevt,faljeve));

SPROUT(pn, lookat(tvi,boards,sucevt,fajievt))}
FOR | « 14 STEP 1 until n DO
BEGIN
p=INTERROGATE({(fallevt,sucevt)),NAIT)}
1F EVENT:TYPE'DEfQilth THEN
BEGIN
MAKE fallure_causeefooZp)
FOREACH p I p € ((pl,p2,+ss.2pn)) DO TERMINATE(D)}
CAUSE(foos_fallure.event,foo)}
SUSPEND(fo0)3
END;
END}J
CAUSE(foos_success_event, foo)}

Heres It |s assumed that eaoh process is to take responsibl |lty for
making "| Ifeor death" decislons reguardingany subprogesses, An

soon a8 one of the pl reports faljupe, Foo wii| terminate all Jts
"chi! dren" (whose appolinged askshaye become polngless) repory Tes
own faljure, and suspend Ttself, IFf all the ol report success, then
foo wil| do likewise,

Ev%pts may be used together wlth m@tohing proceduran to  do .deferred
updafing,  as s shown by the follow ngexample, A matching orocedure

18




may want to make some change to the data base only if the Eegt of the
assocliative context of the FOREACH succeeds.” _A simple way of
Implementing this Is to have the matehing procedure spawn a process
which wi|| do the updating, Thi process w! |l go Into event walt, and
the event wll| only be oausrd 3f the entire assoclative context of
the FOREACH succeeds, Cons{der the fol|lowing gul|t~by=-association
program, For each member of the suspuet |ist, We flrst see I He is
really undesirable by ohockln? his bink account, If he dgean t have
enouSh money to brlpe us we will put another blackmark In ghe file of
anyone who has any assoclation with him, unless that ©person’s only
associatlon wfth hls ? as an Informer (iIn whichcase the fink wili
be glven a "negatlive" black mark), When a peprgon gets 5 black marks
he then becomes a suspect,

SET badguys} LIST suspect;
MATCHING PROCEDURE |!nked(BINDING ITEMVAR x)}
BEGIN
PROCEDURE UPDATE}
BEGIN INTEGER JTEMVAR y. 1}
WHILE TRUE DO
BEGIN ¢«INTERROGATE(|inkedok,WAIT)}
PUT x IN badouys}
3(f)ed(f)=2}
FOREACH ¥ | s« e X E ¥ DD
BEGIN 8(y)«d(y) + 1}
IFa(y)25 THEN PUT v IN suspectAFTER~}
END;
END)
END)

TEMVAR
z-&%Nf SE&OUT(z.uodute)l

FOREACH X | x ¢ suspect DO
SUCCEED;
TERMINATE(2);
FAIL;
END;

"
.

COMMENT main procedure executlion)

FOREACH persons» fink | IInked(DOrson)A(wealth(berson)<lots)
A informsreperson3fink DO

BEGIN CAUSE( | Tnkedok, fink)}
[]

END,

19




Thissimpie examp|e does of course not reaiiy require either matohlng
procedures or the eyent mechanlsm ¢0 caus® the uodetlng, but the
techniaue It ||lustrates should be quite valuable In more ocomollioated
siturtlons,

. for mogt-of 3
$pEN7EET 1808 RRTEA7SS SO I TR RS R
they are not quite right, For Instancd, a process mjght want ?o Walt
for & glven event onjy [f no otber a‘ocoso s gliready waltlng for
that event, Instead of trylng to provide a ag!eiql optlon to cover
every Possible contingency, we have [nstead provided a get of aueue
and process orimatives with whloh th? uger oan wrlte his_ own CAUSE
and INTERROGATE procedures, To substitute hlf own procedure for the
one provided by SAIL, the user makes an associatlon of the form

CAUSE_PROC®typelEnew_cause_proo

Or

INTERROGATE . PROCetypelEnew_[nt_proc

where typel |s the event type and new_oeause_pro¢ and new_Int_procare
procedure {tems bound to the substitute procedures, These procedures

wili be pun as "atomic" operatlons,and wil| be al lowed to finl?h
without Interruntion, In particular, any CAUSEs or _changes in
process status reguested by such a procedure wli|l not actually tagke

njace Untl| after the procedure exlts, Thls "interrupt |eve|" turns
out to be aquite usgful and permits one to write Interrupt handlers
that look at a notfge of some event, do What ¢they can,_ and then
either Just return or e|se cause am event that Wlil| trigger some
stronger condlitlon,

20







CONCLUSION

Each of the foature? descrlbed In thls paper was [ntended t?,B I"ve
particujar pro?raMm ng problems, We have hot yet had_sufficlent
practical experience wlth the new system ¢o say with certalnty that
they are the the rlght ones. These [sagroat deal of work on these

problems 1n severa| |aboratorles and* new Issussare belno raised
frequentiy, We do feel, however, that the ba?lo _solutions suggested
here Will prove ugeful and that they do s onificantly extend the

capabilitlies of Algol«like languages,

ACKNOWLEDGEMENT

Whije th? w?;k desQEi%!d In this panoy was bei{ng done, there has also
been a significant ef ort at the Stantord A, I, Lab to proguce a neéw

LISP s¥stem (LISP 70) which ajso lnc|udes provisions for multinle
processes, backtracking, and other sim|iar features, We would ITke
to thank the authors of thls effort, HoraceEpea, Larry Tesler, and
David Smith for several Interesting oonveiautlpna about fh,?; system,
Ajthoush the approach they have taken |s somewhat dlfferent from
ourss these talks provided us with severa| useful Insiohts,

21







REFERENCES

[1) Anderson, By "Proaramming Langumges for,AFtleTJal Intelllgence:
the role of nonedeterminlism," School of Artlificlal
Intelligence, Unlv, of Edlnbufgh, Experimental
Programming Reports No,25,

(2] Birtwistie, G,» "Notes on the SIMULA Language,"
Norwegian Computing Centre Publlcation S=7, april 1969,

€32 Derkgpys Yy j4st 309 BAAFGT 138" 15 June 1972,

{4) Feldman, J, A,, and Rovnepr, Py Dvs "An ALGQL=Basged Assoclatlive
oguage, o ¢, ABN 1 e Wub st 4oee) M-8aL235345"

{53 Feldman, J. A,s» and Sproull, R, F,s"System Support For the
Stanford Hand=eye System,"proo, Second 1JCAI,
Sept., 1971, pp 183-189,

[61 Hewltt, C,» "Pro 7]

cedural Embeddingof Knowledge In Planner,"
Proc, SecondlJCAl,

September 1971, pp 167=182,

73 McDermott, D, V,, and Sussman,; G, J,»"The chNIVER Reference
Manual," MIT A, 1, Memo 259,May |972,

(8l0roanick, Ev 14, andCleary, Jo Gis» "A Data Stfuctu;c NOde‘
of the Bé72g Computer System," SIGPLAN Notioos 6,2,
Febpuary 1971, pp 83 « 145,

(9] Swinehart, D, C,, and <Sproulls Ry Fuy "SAIL Manugp|,"
Stanford Artl#lelal Intelllgence Laboratory Operating

Note No, 52,

22






