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Abstract

Two efficient computer implemented  algorithms are presented
-=.

:'or explicitly  constructing  all distinct labelings of a graph G

:;ith a set of (not necessarily distinct) labels L , given the

_;ymmetry group B of G . Two recursive reductions of the problem

,?_rld a precomputation involving certain orbits of stabilizer  subgroups

q--e theLA- techniques used by the algorithm. Moreover, for each

la3el_2.-ng, the subgroup of B which preserves  that labeling is cal-

2ulate2.
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CONSTRUCTIVE GRAPH LABELING USING DOUBLE COSETSl

By Harold Brown, Larry Masinter and Larry Hjelmeland

. .
1. Introduction. We consider in this paper the following graph

theoretical problem: Given a graph G with n nodes and topological

symmetry group B and a set L of n not necessarily distinct labels,

construct all topologically distinct labelings of the nodes of G

with the elements of L . This problem arises in numerous contexts,

and it has been investigated by Pdlya [7], DeBruijn [4] and others.

In particular, the number of such distinct labelings is given by

the generalized Polya enumeration formula.
2

We present here two

efficient computer implemented algorithms for explicitly con-

structing all topologically distinct labelings of G by L . More-

over, for each distinct labeling, the algorithms determine the

subgroup of B which preserves that labeling.

Our interest in the graph labeling problem initially arose

in the context of the DENDRAL project [2]. This project includes

among its objectives the application of computer implemented art-
-

ificial intelligence techniques to the analysis and classification

of organic compounds. Necessary to this work are algorithms to

systematically generate all the distinct valence isomers of a given

set of atoms. Routines to perform this task in the special case

where the isomers form only topologically tree-like structures

have been described in [3] and [S]. For the general case, algorithms

are required which generate all distinct cyclic structures formed
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from a given set of atoms with pre-assigned free valences. The

graph labeling problem is central to these cyclic structure gen-

eration algorithms.
3

. .

c

We now describe a group theoretic approach to the graph

labeling problem.

2. Algebraic formulation and notation. The graph labeling problem

admits a completely algebraic formulation as follows:

We index from 1 to n the nodes of the graph G in some fixed

order and index also from 1 to n the n labels in the set L where,

for notational convenience, we index equal labels in sequence,  i.e.,

if there are n1 labels of the first type, n2 labels of the second

type, etc., then we index the labels of the fi'rst type with

1, . . . . nl, the labels of the second type with nl+l, Ca., nl+n2,

cc

c

c.

etc. With this indexing, any labeling of G by L can be considered

as a bijective map from the integral interval [l,n] (the node

indices) to [l,n] (the label indices). (Throughout,  [a.b] will

always denote the interval of integers from a through b inclusive

if a c-b, and [a,b] = $ if a > b). Thus, the indexed labelings of

G by L can be bijectively identified with Sn , the full permutation

group on [l,n].4

Any topological symmetry of G in the symmetry group B

can be considered as a permutation of the node indices, i.e., B

can be isomorphically  identified with a subgroup B of Sn , and

for a c Sn and 8 c B, the labelings a and US correspond to

c
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CE,

e

topologically equivalent labeled graphs. .

The indexed set of labels also admits a symmetry group.

If there are nl labels of the first type, n2 labels of the second

type, l as nk labels of the k-th type, n1 + n2 t . . . t nk = n,

then the l&els with indices in the intervals

j-l
) .
I

I.
3

5: [( 1 ni) + 1, 1 n. J, j = 1,2, ..a9 k,
1

i=l i=l

are indistinguishable as unindexed labels. These labels, therefore,

may be freely permuted in any indexed labeling without changing the

corresponding=labeled  graph. Hence, the indices of the labels admit

the symmetry group A = S
$1 l " ' '(n,)

where "X" denotes

the (internal) direct product of subgroups in Sn and S (n
j

) denotes

the full group of permutations on the interval I. naturally embedded
3

in S
n' Explicitly,  for a c Sn , a is in S

(nj 1
if and only if

a(t) = t for t rt I..
3

Note that this latter condition implies that

aUj 1 = Ij since a is bijective and { I. , Cl,nJ/Ij } partitions
3

e
Cl,nl. The subgroup A will be called the label subgroup of Sn

corresponding to the the (ordered) partition n
1

t n2 t . . . t n
k =n

of n.

We now define a re1ation.A on Sn by ylAy2 if and only if

there exist a c A and f3 c B such that yl = ay2B  . Since A and B

are subgroups of Sn, A is an equivalence relation on Sn . In

. terms of the graph G , yl and y2 determine topologically equivalent
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Irtbelings of the nodes of Gwith the labels in &if and only if

y1Ay2 . Since A is an equivalence relation on Sn, the equivalence

classes of A partition Sn. Hence, we can determine all topologically

distinct labelings of G by L by selecting precisely one element

from each distinct A-equivalence  class, i.e., by selecting  a

representative set for the partition of Sn induced by A .

For any y s Sn, the A-equivalence class determined by y

is the set G =
Y

( ayB 1 a E; A, 8 c B ) , i.e., Cy is the set

product AyB. This set product is called the double coset of

A and B in Sn determined by y . Thus our graph labeling problem
-=.

can be algebraically formulated as follows:

Given a label subgroup A of Sn and a subgroup B of Sn, determine

algorithmicaiJy a representative set for the double cosets of A

and B in Sn, i.e.,
t

determine a subset { yl, y2, . . . ,yt ) of Sn

such that Sn = U AyiB.and  (AyiB) n (Ay.B) = $ for i # j.
i=l 3

The correspondence between graph labeling and double cosets

and the use of double cosets as a basis for chemical nomenclature

have been investigated by Ruth, Hkselbarth  and Richter [8].

Although the double coset formulation of the graph labeling

I problem presents the problem in a conceptually less obvious form,

it does permit the techniques of constructive group theory to be

applied directly to the problem. Moreover, our algebraic solutions

dre directly implementable on a computer.

2.1. Example. Let G be the graph in figure la. Let L consist of

3 labels N and 7 labels C . The topological symmetries  of C are:

b,: The identity transformation.

bl: Reflection about the line 2,.

b,; Reflection about the line 2,.
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b,: 180° rotation about the center of G,

Index the nodes of G as in figure lb and the labels in L

Eis x1 = x2 = x3 = N and x4 = . . . = x1o
= c.

'i‘nen, the labelings  of G by L can be considered as elements in

Sio. E.g., the permutation yi = (1 2 5 6.7 3 8 4 9 10) in Slo

corresponds to the labeling of G given in figure 2a and the per-

mutation y2 = (3 5 4 9 8 2 1 7 10 6) to the labeling in figure 2b.

. Here, we use the notation for Sn which identifies y c Sn with the

n-vector (y(l), y(2), ..* s y(n)).

The topological symmetry group of G determines the subgroup

i3 of Slo via

b. - 8. = (1 2 3 4 5 6 7 8 9 lo),

b, - Bl = (10 9 8 7 6 5 4 3 2 l),

b2 * B2 = (5 4 3 2 110 9 8 7 6),

b; +3 B, t (6 7 8 9 10 1 2 3 4 5).

The label subgroup of Slo associated with d is A = S
(3) x s(7)'

e
a subgroup of order 3!7! . For example, the permutation

c, a =(21347106598) is in A, and the permutations yl and y
2 *

L

are A-equivalent since y2 = ay1B3, i.e., the labeled graph&in

figures 2a and 2b are topologically equivalent.

By Polya's enumeration formula, there are 32 distinct double

cosets of A and B in Slo, i.e., there are 32 topologically distinct

iabelings of G by L.

c
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3. General theory. Let A and B be subgroups of the finite group

G. A straightforward group theoretic argument shows that the

double cosets of A and B in G partition G. This partition,  unlike

a single'coset partition of G, is generally not a partition into

subsets of equal size , and there is no simple analogue to La&angels

theorem. There is, however, a certain regularity in a double

coset partition as evidenced by the following known theorem:

3.1. Theorem. For any g c G, let Rg be a set of right coset

representatives  of (g
-1
Ag n B) in B. Then the double coset

AgB consists precisely of the union of right cosets U Agx.
xcR

&

Moreover, this union is disjoint. Symmetrically, if L is a set
g

of left coset representatives  of (A fl gBg-1 ) in A, then AgB is the
c

disjoint union u ygB.
YEgL

c

Proof. Let R =
k iz i x1, x2, . . . . xk ) , i.e., B is the disjoint

union u (golAg r) B)xi, and let u E: AgB, say u = agb. Now b
i=l

(t

in B implies that b = hxi for some l$l)c and h c g-lAg n B. Also,
-

-1h is of the form g alg, al c A. Thus u = -1
agg algxi = (aal)gXi9

and u E u Agx, i.e., AgB = U Agx,
XCR x&R

If Agxi = Agx., then
3

g g
-1 -1

X.X.
13

= g a2g for some aZ'c A. Since xi and xj are in B,
c -

-1X.X.
13

c g-1Agn B. Therefore, (g-'Ag n B)xi = (golAg n B)x.,
3

and, since Rg is a right coset representative set for g-lAg n B
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L

in B,

in T.

3.2.

7

we must have i = j. Hence the union is a disjoint union.1 1

For any finite set T, we denote by ITI the number

From Theorem 3.1 and LaGrange's theorem we have:

Corollary. IA@1 = IAlIBI /"JgolAgn BI

= IAlIBI / [A fi gB& l

?heorem 3.1 does yield the following algorithmic method for

determining a list D of double coset representatives of A and B

of elements

in G:

1.

2.

3.

4.

Determine a list of right coset representatives for A in

G, say R = { a,b, . . . . t 1 , and form the list D with
-=.

initially D = Lb.

For the first member m in R, place m on D and determine

a set of right coset representatives of (melAm fi B)

inB,sayTm= { %Ys . . . . de

For each w in Tm, determine the unique element h in R

such that Ah = Amw and eliminate  h from the list R.

If R = 0, stop, otherwise go to step 2.

- The difficulty with the above algorithm is that any direct

implementation is computa,$ionally prohibitive  in terms of both

machine time and core store even for relatively small groupS, e.g.,

G = SIO. Our objective now is to derive certain modifications to

this algorithm in the case G = Sn and A is a label subgroup so

that the modified algorithm admits efficient machine implementation.

The main device used is the natural ordering of Sn.

c
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The group Sn admits a natural linear ordering. This ordering

l1s a very powerful computational tool, and it has been used by

Sims [9] and others in devising group theoretic algorithms.  The

ordering is defined as follows:

Consider Sn as the set of bijective maps from [l,n] to

itself. For n s Sn, identify 1~ with the integral n-vector

(n(l), G!), . . . . dn)). Using this latter representation  of Sn,

the natural linear ordering is the lexicographical ordering on

the n-vectors induced by the usual ordering on [l,n], i.e., if

we denote the order relation on Sn by "<<", then T <<n if
-=. 1 2

and only if either TI
1

= n2 or for some k E: [l,n], n,(i) = m&i) for

l$,j'k and nl(k) < r2(k). This relation can be extended to sub-

sets of Sn via T << U if and only if for every T c T and n 6 U,

Given any partition P of Sn, this linear ordering permits us

to easily specify a canonical representative set for P. Namely,

we choose as the representative for P & P the "least" element in

a ? with respect to << , i.e., we choose the unique A I: P satisfying

T! << p.

Let A and B be subgroups of Sn. The canonical representative

c

sets for the right cosets of A in Sn, the left cosets of B in S
. _ n'

and the double cosets of A and B in Sn are

S
An= II a c S

n 1 a <( Aa ) , SnB = IBEBI~=BB)

and S
=A nB I WCSn

1 a (< AnB } , respectively.' Since A and B
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contain the identity element of Sn, if n is in ASnB, then II

c
must satisfy n <( An and x <( nB. The converse, unfortunately,

is not true. We will call a double coset representative set small

c

c

Q

if it is contained in S
A n'

In particular, ASnB is small.

The following technical lemma , which is due to Sims [9],

gives a criterion for when a << vB.

3.3. Lemma. Let B be a subgroup of Sn. Let Hi be the SUBGROUP

of B fixing elementwise [l,i-l], and let Oi be the orbit of i with

respect to H., i.e., 01 i = { t(i) 1 'I s Hi ) . Then for any A C: Sns

R << mB if and only if Ir(i) $ m(x) for each  x c Oi, i = 1,2, . . ..n.
-=.

Proof. For any l<i&n and any x s Oi, there is a Bi
9
x c B such

that 6 i,,(j) = j for ldci and Bi x(i> = X. Assume that n <( nB.
9

Then n << "Bi x, and since n(j) = "Bi for lg<i, we must have

i,x(')

9
,(j)

7(i) 2 rrf3 l = a(x). Conversely, assume that Ir(i) 2 n(x) for

every x E: 0..
1

For any 6 c B, if n # tro, let ig be the least

argument for which n and n@ differ, i.e., A(j) = rip(j)) for lg<i
0

and vr(i,) # nf3(ig). Since w is bijective, B(j) = j for lg<i
0'

a hence f3 c H.
%

and B(i$ c Oi .
8

Thus n(iQ ( nB(iQ and n << ~6.1 I

The subgroups Hi in this lemma form a descending sequence

-B= H13 H2 >... 3Hn ={s) where i denotes the identity element

of s
n'

Thas if k is the least index such that Hk = {i) , then

ii. = < and 0. =
1 i I 3

(j) for k&$. Hence in applying lemma 3.3,

we need only check those indices i with i < k. For example, if B

c
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is transitive,  Le., if 0 1 = CLd, and if H. =
I

{i) for j 2 2,

then 1~ << xB if and only if n(l) = 1.

Let A be a label subgroup of--S,, say A is the subgroup

c

L 1. Form all the distinct ordered partitions '

L

c

c

c

B

corresponding to the partition n 1 + . . . + n k
= n. We claim

the set of all II 8 Sn satisfying n << nA can be constructed

follows:

that

as
.

‘i = {‘il, . . . . Pik} of &nl into k subsets Pij Sat-

isfying lPijI = nj. There are c = n!/nl!...nk! such

partitions.

2. For each Pi and for each P..
13

c Pi list the elements of

P
ij in their natural order, say h.. < h.. < . . . ( h..

111 112 i)n, .
j-l J

3. For i = 1, . . . , C, define pi by ni(h.. ) = 1 nr + S.
11s r=l

Each P. is a partition of [l,n], and the integral intervals
$1

.

I. =
3 c 1 nr + 1, f

r=l
n,L j = 1, . . . , k, also partition [l,n].

r=l
Thus, since lPijI = IIj 1 , 1 z j 2 k, the vi are distinct, well-

defined elements of Sn.

3.4. Lemma. {"iIl~i~C}={tESnIn<<Ar}.

Proof. For Q CA, assume that ni # ani. Let t be the least integer

in [l,n] for which ri(t) # oni( Say t e P.. and t = h.. for
j-'i 11s

+.. .
some 12 j $k and l&s zn..

3
NOW ni(t) = 1 nr + S C: I.. Since

r=l I

A is a label subgroup,  { a(m) 1 m c Ij ) = I'j. Also, by the choice

of t, v (he. ) = mi(h.. ) for 1 &p < S.
i LIP 13pj,l j-l

Thus, since ni(t) # ani(

we must have ani = a( 1 nr + s) > c nr + s = a(t). Hence,
r=l r=l

c
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e

7r.1
<< an., and II, << Arr..

1 1 1
By the above,

( xi 11 2 i 2 c ) C { IT &Sn 1 n << Air } l Since the latter set

forms the canonical set of right coset representatives of A in Sn,
. .

by LaGrange's theorem l{n cSn I n << An ) =: Is,l/l~l = c. Hence

{ xi 1 1 zi tc } = { II c Sn 1 IT << An ) .I I

3,s. Corollary. The set ASn = { TT c Sn 1 R << Air ) can be

naturally identified with the set D of all integral n-strings

containing nk, O-digits; nkml, l-digits; . . . ; nl, (k-1).digits.

L

More explicitly, define r : [l,n] + [O,k-l] by 'II(S) = k-j where s c I..
J

Then the map $ :
-=.

ASn + D given by +(n) = (tn(l), .o~s m(n)) is

a bijection.

Proof.-. For "1 and v2 in *Sn, let H.. = { h s fl,n] 1 ni(h) c It },
11

c

c

i k.= 1,2; j = 1, . ..) Now q(y) = $(T,) if ad only if Hlj = H2j,

lljhk. Linearly order the sets H
lj'

say h. < h. < . . . < h.
11 12 J”j 9

i&j&k. Then, since x1 and x2 are in ASn, by the proof of
j-l

lemma 3.4, Hlj = H2j implies that nl(hjs) = 1 ni + s = n2(hjs).
i.=l

thus 9 Jl(nl) = $(n2) implies that n1 = r2' and J, is injective. Since

IA nl
S = n!/n L..n ' =

1 k' IDI , JI is bijective.

L In the special case where k = 2, i.e.,.A is the label subgroup

I of Sn corresponding  to a partition of n of the form m + (n-m) = n,

the identified set of canonical right coset representatives  takes

a particularly simple form. Namely, it is the set Di of all n-bit

binary strings with m, l-bits and (n-m), O-bits. Moreover,  the.

ilatural  ordering of the elements of D"
m

considered as binary integers

agrees inversely with the ordering << on S
n' Explicitly, if for

a in DE we denote by The permutation in Sn associated with u,

i.e., (r = q(z) where $ is the bijective map of corollary 3.5,
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then:
e

3.6. Lemma. For any a and 6 in D$ a & S if and only if F << F.

i

c

L

Proof. Let a = (ala2 . . . an) and 8 = (blb2 . . .. . b,). Assume that

a ) lb Let i be the least index such that ai # bi. Then we must

have ai = 1 and bi = 0. Hence, by the definition of F and F ,

2 j 1 = F(j) for 15 j < i, and ;;;<i) & m ( T(i). Thus G << ?i.

Conversely, if F x< &;;l# F , the converse argument yields that Q > 6 .I 1

. Let C be the collection of all linearly ordered m-element

subsets of [1,x& i.e., C is the collection of all linearly ordered

combinations -of the elements of [l,n] taken m at a time. hY a

in Di uniquely determines an element o(u) : 1 5 al < a2 < . . . < am &n

of C where the ai-th digit (from the left) of u is 1. 0 is a

c

I

bijective map from Di to C , and we have:

3.7. Lemma. For any a and B in Di, a ,& 6 (as binary integers) if

and only if ~(a) & ~(6) (lexicographically).

Proof. Let W(Q) : 1 &al < a2 < . . . < am &n, and

-. &.I(@  : 1 zbl < b2 < . . . <b <n.
m-

Then, u a 6 if and only if

a
there exists an index i, 1 f i $m, such that a. = b., 1 &j ( i,

3 I

I anda. >bi1
if and only if O(a) is lexicographically  less than ~8). I I

We can combine the correspondence between Di, ASn and m-element

combinations with lemma 3.3 tp,:.give a method for describing the

canonical right coset representatives of A in Sn which are also

canonical left coset representatives of B in Sn. Namely, if we

let oi, i = 1, . . . . n, be as in lemma 3.3, then:

3.8. Lemma. Let Dbe the set of all linearly ordered m-element

subsets A of rl,n] satiifying Oin A = $ if i $ A . Then there is
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I,

k

a bijective map u fromD to the subset R of all a s Dnm satisfying

&A< se Explicitly, for A: l&al ( a2 ( . . . < am&n, inD ,

W(A) = (ele2...en) where 8.
3

3 1 if j 8 A and 0 otherwise.. .

Proof. Let [l,n]/A = { bl ( b2 < ... < bnam ) , and let m = y.

Then y(j) = c Choose any j t: Cl,n] and x e O.,
I

If j = at, then x&at anti y(x) Lt. Hence y(j) = t 2 y(x).

If j = bt, then j dA and, by hypothesis, x 4 A. Thus x = bs for

some s Lt, and y(j) = m + t $ m + s = y(x). Therefore,  y(j) L y(x)

for any x ’ 4’ and by lemma 3.3, y = u(A) << U(B. Hence u

is a map from Dto R. The converse argument shows that u is surjective.

Clearly, u is injective, and thus u is bijective.11

Note that in the special case when B is transitive,

Ol
= [l,n], and hence for any allowable m-element subset Ain D,

An Ol = A # $, and we must have 1 c A.

The results of this section admit a straightforward  general-

ization. For any subset X of [l,n], say X = { x1, . l . , X 1m '

m denote by SX the full permutation group on X, i.e., the group of

all bijective maps from X to X. The natural bijective map A from .

Cl,m] to X defined by A(i) 3 x.
1 induces the isomorphism t from

-1.SXtoSmbyt(n)=A AX. We call a subgroup A of Sx the label
e

subgroup of Sx corresponding to the partition m
1 t l .* + mk

=m

of m if and only if t(A) is the label subgroup of Sm corresponding

to this partition of rn, Also, we take as the linear-ordering  on

Sx the ordering induced via 'I by the natural ordering of Sm, i.e.,
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L

1.

for a and B in Sx, u << 8 if and only if t(a) << r(B). This

ordering is dependent on the indexing of X. With these definitions,

all of the above results immediately generalize to S
X'

4. Basic recursive schemes. We see from section 3 that for com-

puting double coset representatives  on a binary machine, it would

be advantageous to reduce the general double coset representative

problem to the special case where the label subgroup corresponds

to a partition of n of the form m t (n-m) = n. In terms of the

graph, such a reduction is conceptually clear. For example, we

can label an n-node graph G with n1 labels L
1' "2 labels L2 and

n3 labels L3, n1 t n2 f n3 = n, as follows:

1. Determine  all topologically distinct labelings of G with

n1 labels L-, and (n-n,) blanks.

2. For each such labeling, determine all distinct labelings

of the blank labeled nodes with n2 labels L2 dnd n
3

labels L3.

The following procedure formalizes  this concept and yields

- .
the desired recursive scheme:

Let X be a subset of [l,n], say X = { xl9 x2' . . . . X Im '

I and let B be a subgroup of Sx. For any subset Y of X and any

;j s B such that B(Y) = Y, denote by sly, 6 restricted to Y, and

denote by Bly the group { ~1~ I B e B with 6(Y) = Y ). Then, if

A is the label subgroup of Sx corresponding to the partition

ml t m2 + . . . t
%

= m of m, k > 2, we claim that a double coset

representative set R for A and B in Sx can be obtained as follows:

c
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L

I

c

L

1.

2.

3.

Determine  a double coset representative  set Rl of Al and

B in Sx where Al is the label subgroup of Sx corresponding

to the partition ml t (m-m ) = m.
. . 1

Do for each a in Rl:

a) Determine Na = a?{ ⌧m tl,

1
l es ⌧m )I and ~1, .

a
Index the elements of No , say Na = {Q, l ... Y 1m-m ’

1
b) Determine a double coset representative  set Ra of

Aa and BI~ in SN where Aa is the label subgroup of
a a

sNa
corresponding to the partition m 2 + . . . t

mk
= m-m

1'

Set R =-=. u { y&a I y c: R } , where y*a E Sx is defined by
a+

f
U(X)’ x c Nor

pa(x) =
t

x
m +L1

x 8 Na and Y(X) = Yj'

4.1. Lemma. R is a double coset representative  set for A and B in Sx.

Proof. Since a(X/N ) = ( x1, . . . . X 1 and I xm +j
ml '1

1 Yj ' YtNo) 1

partition X, each y*a is a well-defined element of Sx.

We will first show that R contatins a representative set.

For any IT e Sx, since Rl is a representative set for Al and B in

sX’
there exist a c Rl, 6L c Al and Bl E B such that 61~f31 = a .

Define (~6~) by (~f3~>‘(~) = yj where ~B(x) = xrn +j x s Na
1'

.
?.

(181)'(N ) = Na a
, and (rS,)' is in SN .: Since Ra is a representative

set for A and BIN in SN , there exist y g R , 62 c Au and
a

82 ’ BI, such tha: 6,(1@1)'B, = y . Choose 6 E B, B(Na) = Na,

satisfyiIg BIN = 82’ Define 6 by
a

c
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L

Xm ts'
x=x

6(x) =
m +t and h2(Yt) = Y
1

s
ag~la-l

.
yx;, x c { X1' . ..) X

m, I

A direct computation shows that 6 E A and 6a(B18) = y&i. Hence R

contains a representative set.

Now, assume that for some ylfial and y2ka2 in R there exist

6 E: A and 0 E B such that byl~~alf3 = y2%x2. Then,

y2*a2(X/Na) = a2(Wa)

= i x1,
. . . , X

ml
1

= G(ylfzal)B(X/Na)

= alB(X/Na) .

Thus, $8 )a;t( {xl, . . .’ xml}) = {x,. l ., xm ) ,andalS and a2
1

differ only by an element of Al. Since Rl is a representative set,

=a
al 2*

From GylftOL16 = y2fial, we have that for x e N a'

y2 1
$;a (x) = x

y+j
= bylfiaft (xl, where v,(x) = yj. Therefore

&3(x) E. Iu' a' and Y*3
= G~QNX) = y,(xL Hence, 61, Y ~11 = '2'a

1
Na

1

Since R is a representative set, y
a 1

= y2 and ylfial = y2~ca2.

I'hus the members of R determine distinct double cosets, and R is

a representative set for the double cosets of A and B in sx.I 1

Let B be a subgroup of Sx, 1x1 = n, and let A be a label

subgroup of Sx. The computation of a representative set of the

: double cosets of A and B in Sx admits a further recursive reduction

based on the orbits of B. By lemma 4.1, we can assume for this

recursive scheme that A corresponds to the partition m + (n-m)  = n.

Conceptually, the reduction scheme works as follows:
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c

L

c

1. Choose a fixed node x of the graph c , and let N be the

image nodes of x under the symmetry group B of G.

2. Do for i, max( 0, INl.+m-n) &i zmin( INI , m):

.1, Determine all distinct (with respect to B) labelings

of N with i labels of the first type and INI-i

labels of the second type.

ii. For each such labeling of N , let u be the subgroup

of B which preserves that labeling of N, and de-

termine all distinct (with respect to U) label-

ings of the remaining nodes of Gwith (m-i)

--. labels of the first type and (n-IN(-m+i)  labels

of the second type.

. . .
111. Compose each labeling of N and its associated

labelings of G/AI.

Formally we have:

Let X = I x1z l ... X n 1 , and let G be an orbit of B, i.e.,

o= { dxt> 1 1 s B ) for some fixed x t c x* Then a representative

double cosets of A and B in Sx can be obtained asset R of the
e

follows:

.

1. Index the elements of Oand X/O F 5, say {y l e3 Ykj

and { wl, . . . . W In-k ' respectively. Since 0 is an

orbit, 8(O) = 0 and S('i?) = 'i'j for any fi c B.

2. Do for i = max(0, m+k-n), *.., min(k, m):

i. Determine a double coset representative set Ti

Of Ai and B lOin S0 where Ai is the label subgroup

of SG corresponding to the partition i + (k-i) = k.
#
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4th

ii. Do for each 0~ c Ti:

a) FormNa=a -5 iu,s . . . . yi}) and

Ba s { T eB 1 n(Na) ‘= Na ).

b) Determine a double coset representative

set Ha of Ai and ~'1~ in % where Ai is

the label subgroup corresponding  to the

partition (m-i) + (n-k-mti) = n-k.

c) FOT Ra = (you I y E Ha} where

Xt'

X
pcdx) = -

-=.

:

xcNas a(x) = y,

m itt, x c O/Na, a(x) = y,

X itt, x c U, y(x) = wt, t & m-i

xktt, x 8 U, Y(X) = wts t > m-i.

3. Set R = u IJ Ra s max(O,mtk-n)  2 i$ min(k,r&
i =Ti

4.2. Lemma. R is a double coset representative  set for A and B in Sx.

Proof. For any II L Sx, let Nl =: ( x 6 0 1 n(x) = xts t 2 m ) 9

say N1 = {Yt 9 **es Y ) and = 9 . ..) Y 1 . Define
1 5.

O/N1 {y,
1 'k-i

e
:

{

YjS Y c N1, Y = Y,
Q(y) = j .

Yi+jP Y B NIV Y = Ys
j

Since Ti is a representative set, there exist a c Ti, 6l E Ai and

s 6, c B0 such that 61~181 = a. Choose B c B satisfying BI, = 6, .

Let N2 = { x'c 8 1 M(x) = xt, t Am } s say N2 = {wt s . . . .
Wtm-i

1
1

c and P/N2 = {w
Y9

..r, W
S 1 e
n-k-mti

Define r2. G sa by
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c

,

L

c’

I

2’ w = wt
j

+d =
l$N2,w=w

3

Since Ha is a representative  set, there exist y 8 H
. . a , ~5~ c Ax and

B2 c Balg such that 6 t~ B tf y .
2 2 2 Choose P's B satisfying

6' 1 5 = B2, and let NY = yol({wl, . . . . w
m-i )> l Now,

@tNa) = 81(Na)

= .;16;1a(Na)

=+ Iy19 . . . , yil)

= Nl.

Similarly, B'N = N2. Thus,
--Y

W3'(NaUNy) = 1N1U"BN2

= { X c X 1 h) = xt, t 2 m }

= Yoa(NaUNy) .

Hence, RBB' and you differ only by an element in A and AnB = AyoaB.

Assume that there exist yloal and y20a2 in R, 6 c A and

B c B such that 6yloalf3 = y20a2. Then,

y2m2(Na )
2

= Gyloa18(N2)

= I x1,
. ..) "iIs

for some 0 2 i & m, Thus BN
l

Symmetrically,

l?N

a2 c Na

1

. al
c N

O2'
and hence BN = N

"2,.* al
l This implies that ah and a2

are both in the same T., and a $1 and a
1 1 0 2 differ only by an

element of A;. Hence u1 = a2 and 8 c ia1. A similar argument using

N =
'i

{WC51  Yi(W)=Wt,t&m-ij  ,i= 1,2, shows that yl = y2.

Thus the elements of R determine distinct double cosets , and

c

R is a representative set for A and B in sx.I I
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Since the only prbperty of 0 used in the above proof is

that B(O) = 0 for all B E B, we have:

4.3. Corollary. Lemma 4.2 is valid if 0 is a union of orbits of B.

0

cc

L

As we have seen in section 3, we can always choose a double
. .

coset representative set R for A and B in Sx, 1x1 = n, such that

RCASX, the canonical representative set for the right cosets

of A in Sx, i.e., we can always choose a small double coset

representative set. Moreover, by corollary 3.5, such a small

representative set can be identified with a set of certain

integral n-strings. We will assume, henceforth, that such an

identification has been made. In particular, in the special case

where A is a label subgroup corresponding  to a partition of the

form m t (n-m) = n, any small double coset representative  set

is a set of n-bit binary strings with m, l-bits and (n-m), O-bits.

If a is such a binary string, we will denote by a the associated

permutation in Sx.

c
In many cases the following lemma when applied to the Ti

in step 2(i) of lemma 4.2 reduces considerably the number of

steps in the process:

L 4.4. Lemma. Let T be a small representative set for the double

- cosets of A and B in Sx, 1x1 = n. Say A is the label subgroup.

of Sx corresponding  to the partition k t (n-k) = n. Let x be the

label subgroup of Sx corresponding to the partition (n-k) t k = n.

Then a small representative  set? for the double cosets of% and

D in Sx can be obtained by simply forming the binary complements

2 of each a in T, i.e., T = (G = (2".1) - a I a c T ).
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Proof. Define 6 E Sx by 6(xi) = xntl-i. Note that 6 = 6-l.

For any small representative a, let cbe the corresponding

permutation in Sx. We will first show that Tg = { 6; I a E T ) is

a representative set for the double cosets of 2 and B in Sx.

For any A c Sx, 67r is also in Sx. Since T is a representative

set, there exist a c T, y 8 A and B c B such that 6n = y& Thus

d27r = 7r = GyaS = 6yS(6a)B. Since y E A,

. . . . Xn-k 1) . . . . = 6( Ixk+l’ . . . ,

/\= I x1' C.., X 1n-k l

Hence by6 c A and n is in the double coset

determined by 6;. Now assume that for some a1 and a2 in T,

Y”“18 = 6c2 for some y c 2 and f3 c B. Then,

Gy&Q = 6'Z2 = Y2. As above, By6 c A, and, since T is a

representative set, a = a
1 2 and 6:1 = 6g2. Hence we have that Tg

is a representative set.

We will now show that for any a tz T, g E %FB. By the

definition of 9, ~(~'(xi)) = xn-kti for l&i&k, and

~(~l(z+i)) = xi for l& i 2 n-k. Therefore, for 12 i & n-k,

G-‘a(xi) = G1(Xntl i) = xn-ktl-i,  i.e.,
e

r16(x
i

) c {xl, . . . . xn ,}, and K's t: %. Thus s c%B, and

A
T is a small representative set for the double cosets of A and B

. in S X .iI

Using the results of 'this section, we now can describe the

two algorithms.  .
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5. Double coset algorithms. The analysis done in the previous sections

yields two efficient computer implementable algorithms for determining a

small double coset representative set of A and B in S, (X C [Lnl 9A

I 1x = k) where A is the label subgroup of
sX corresponding

partition y+m2+...+mt = k of k.

to the

As is often the case, the form of the data structures in the

mxhine implementations of the algorithms determines the form of the

aigorithms, and conversely. In the implementations, any subset X of

[l,n] is represented by the binary n-string U where the i-th bit (from

the left) of U is 1 if and only if i E X. Thus, there is no distinction

between subsets and their associated binary strings, and the elements of a

subset are implicitly indexed, Each such string U is carried right

justified in a machine word.

e

(c.

Any element i of [l,n] when considered as an element in the domain

of s is represented as the machine word 2n-in , and a small right coset

representative.is represented as an&vector in the form given by

: corollary 3.5 if t'>2 and as a binary word if t=2. For example, if A

is the label subgroup of
s7

corresponding to the partition 2+2+3=7

(respectively, 3 + 4 = 7) and.

26 25 24 23 22 2l 2O
A =

25 23 2o 26 21 24 22
> ’ ‘7’ then the small double ooset
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representative of A is (2, 1, 0, 2, 0, 1, 0), (respectively, (1 0 0 1 0 1 0)).

This compact representation of subsets and coset representatives is
in practice

neededbince for even relatively small values of n , the number of distinct

double cosets can be very large. This latter number is optionally computed

L in advance via the generalized P&a enumeration formula, and it is used to

help decide if the desired construction is even feasible in-terms of time

and core store.

A permutation tc in a symmetry group B contained in S isn

represented in the implementations in two ways. It isrepresented as the

n-vector of the images, C(1T )=( n(2”-1)=2n’  ‘(“, . . . . n($)= zn-  ‘ln))  and

L --.
also as a list P ( of) where the members of P(v ) are the sets of elements .

in the non-trivial cycles of 3 . For example,

I

c

L

L

7 6 5 4 3 2 1 022222222
lr= 5 1 3 0 7 2 6 4 is carried as cc n) =

2 2 2 2 2 2 2 2

(25, 2l, 23, 2O, 27, 22, 26, *42 ) and as P(r )= {(lOlOlOOO), (01000010)~

(00010001) } . For many of the necessary computations, the second representation

is the most efficient. However, the first representation is also needed

a since P( 71) does not uniquely determine n .

These representations permit most of the computations to be performed

as logical hardware operations,, For example, if A corresponds to the

partition m+(n-m)=n, e is a &a11 right coset representative, II eB,

and (/ is a subset of [l,n], then { j e u /the j-th digit of e is 1)

is represented by U fi e, and n' ( cl) = U if and only if pA’V= p or 0 for

all p E P(T ).

cc We will describe the algorithms using these representations,

c
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5.1. Algorithm I. This algorithm is recursive both in the number of terms

in the partition of k and in the orbits of B . The algorithm is presented

as three nested subalgorithms,

Subalgorithm Ic. The deepest level subalgoritti?,

Purpose. To determine the canonical set of double coset representatives

of A and B in SX in the special case where A corresponds to the

partition m + (k-m) = k of k= XI I , and B is transitive, i.e., B

has only one orbit.

Technique. The 'subalgorithm is based on corollary 3.5 and lemmas 3.3,

-3.4, 3.6 and 3.8. It first generates the small subset
-=.

Pl = I li EASX , 1 k ;;B'), Pl CD: , i.e., the subset of canonical

right coset representatives which are also canonical left coset

representatives. It then eliminates from Pl any elements H not

satisfying F <( A;fB.

Input. The binary n-string u corresponding

list which is the n-vector form of a set C

such that y(x) = X for every y e C and

output  0 A list RC of binary n-strings e, eA v= e, which corresponds

to X , k = 14 , m, and a

of permutations in Sn

Cl, = B,

to the canonical set of double coset representatives of A and B in

. sX’

Ordered lists: R(), Rl' Do' Dl"

START

*[Determine the elements of X].

1. Determine s(i) e[l,n], 1 1 i 2 k, such that s(i)h u# 0 and
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s(i) ) s(j) if i <j*

c

e

* [The following handles the special cases where there must be only

one double coset].

2, If m=O, R. + 0; else if “m=l, R. + s(1); else if m=k-1,

RC + u -s(k), else if m=k, RC + U ; else go to 4.

3. RETURN.

+ [Generate the orbits 0 of lemma 3.31.

4. Initialize: N f- C..

5. Do 7, i=2, . . . . k.

6. N + ( ,, EN.I n(s(i-1)) = s(i-1) ).

7. O(i) +- Wr(s(i.)).
‘.lt EN

* [Generate all allowable m-element subsets as per lemma 3.81.

8. Initialize: Rl t- s(l) Dl e 0, R. t- @, Do f- 8.

9. Do 16, t=l, . . . . m-l.

10. Do 15 for each W in Rl using its corresponding D in D1'

L. 11. Determine max { d I s(d)A W # 0) .

12. Do 14, i = d + 1, . . . . (k-m+l)+t.

13. If D A O(i) = 0, put WVs(i) on R. and. D on Do.

14. D + D VO(i).

15. Continue,.

16. Rl fRo, Dl e Do, R. + @s Do 4- 6

# [Eliminate redundant representatives].

17. Do 22 for e s Rl.

18. Do 21 for a C= C / {identity) ,

19. Do 20, i=l, . . . . k.
-
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20. ' If n(s(i)) A e # 0 and s(i) A e = 0, go to 17;

c

c

L

else if +(s(i)) A e = 0 'and s(i)/\e # 0, go to 18.

21. Continue.

22. Put e on .R0'

23. RETURN.

. .

Subalgorithm Ib. The intermediate level subalgorithm

Purpose. To determine a small set of double coset representatives of

A and B in S v
x

in the special case where A corresponds to a

partition of k of the form m+(k-m) = k and B is any subgroup
-=.

of sX'

Technique. This,subalgorithm is recursive and is based on lemma 4.2,

i.e., on recursion on orbits. It uses subalgorithm Ic.

Input. The binary n-string u corresponding to X, k= ,kI , m, and
two lists which contain the n-vector form and the cycle set form,

respectively, of a set C of permutations in Sn such that 1(x) = x

forevery yeC and Cl,=&

output. A list R of binary n-strings e, eh"U=e, which corresponds

to a small double coset Pepresentative  set of A and B in Sx.

. Ordered lists: R, R(h,i), V(h,j).

START

1. Initialize: u(1) h- II ) c(1) C-C,' k(l) +k, m(l) em, h t-1.

* [The fbllowing is the reduction part of the recursion].

2, s 6- RBJC {2d ,i 2d A U(h) # 0 ). .
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L

. 3. Obt(h) c- v n(s).

n&(h)

5.

L

6.

4. t(h) e l-bit count of Obt(h).

L

8.

9.

c 10.

i(h) + max {O, m(h) + t(h) - k(h)) S u(h) + tin {t(h), m(h).),

il i- max { i(h), t(h) - u(h)} S ~1 emin {u(h), t(h) - i(h) )a

Do 8, i EH = [il, min {y, rt(h)/27 -1) I*

Call subalgorithm Ic with input Obt(h), t(h), i, C(h);

getting as output R(h,i).

R(h, t(h) - i) f- '{Obt,(h) - e 1 e,eR(h,i))  .

Do 10 for i E, [i(h), u(h)] . (H u {t(h) - j ilj ,8 H';)).

Call subalgorithm Xc with input Obt(h), t(h), i, C(h); getting

as output R(h,i).

11. If t(h) = k(h), go to 17.

c

c

c

12. Remove the first element e(h) from R(h,i(h)).

13. C (h + 1) +- :{ w C(h) I phe(h) = p or 0 for all

p EPW} l

14. u (h + 1) + U (h) - Obt(h), m(h+l) C- m(h) - i(h), k(h + l>+ k(h)-t(h).

15. h + h'+ 1.

16. Go to 2.

* [The following is the expansion part of the recursion].

c

. 17. If h=l, R + R(l, i(1)) and RECURN.
.

18. h 4-, h-l.

lg. Put the elements of {*me(h) I f R(h+l, i(h+l))). on V(h,m(h)).

20. If R(h, i(h)) = 6, i(h) e i(h) + 1; else go to 12,

c

21. If i(h) zu(h), go to 12.

22. If h=l, R f-V (l,m> and RISTUUL

c
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23. h & h-l.

24. Put the elements of {fVe(h) jfc V(h+l, m(h+l)) on V(h, m(h))., '

25. Go to 20, e-

END

Subalgorithm Ia. The highest level subalgorithm.

Purpose. To determine a small set of double coset representatives

of A and B in Sn where A is the label subgroup of Sn

corresponding to the partition +n +...+n'=n--. nl 2 Q and B is
.

any subgroup of Sn .

Technique. The main loop of the subalgorithm is based on lemma 4.1,

i.e., on induction on the number of terms in the partition of n.

The subalgorithm uses subalgorithms Ib and Ic.

c

Input.n, q, nl, l . . )  nq, and two lists which contain the n-vector

form and cycle set form, respectively, of B. ,

output. A list R of integral n-vectors if q >. 2 or binary

-, n-strings if Q 2 2 which corresponds (as in corollary 3.5) to a

small double coset representative set for 'A and B in S ; andn

a list P of subgroups of B where if e is the i-th element of
.

R , then the i-th element of P is 6 AeflB.6-1. '
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Ordered lists: R, Rl, P, P1, T, Tl.

START *

* [Trivial partition case].

'1. If q = 1: R + 0, P -B---and STOP.

* [Xnitialiuxtion  procedure].

2. Call subalgorithm Ib with input 2%, n, n-n4 , B; getting

as output T.

3. Do 4 for e CT.

4. P -B(e) = ( n CB 1 p/\e = p or 0 for every PEP(~) }e-

5. If q = 2, R +T andSTOP.

6. Do 8 fdy e ET.
1,2"% e#O

7. FOIQI w = (w(l), . . . . w(n)) where w(j) = 0, otherwise l

8. Put w on R.
.

9. no t-n.

* [Induction section].

10. Do 18, i=2, . . . . q -1.
.

11. Initialize: no * no - nq +2-i' Rl + R, Pl e-p, Tl e- T,

R +-I& P 4 f& T f- b

12. Do for 17 each w = (w(l), . . . . w(n)) CR1 and its corresponding

e(w) ET1 and B(w)& Pl.

13. Call subalgorithm Ib with input e(w), no, no - nti +l-i,

B(w) ; getting as output To

14. Do 16 for f .cT.

15. Form fstw = (v(l), .me9 v(n)) where

16. Put *f% on R, put B(pw) = { n cB(w) 1 pAf=p or 0

v(j) =
L 2"'jAf # 0
w(j), otherwise .

for every p EP( 51) ) on PO '
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17. Continue,

c 18. Continue.

19. STOP.

'END

5.2. Algorithm II.

It uses recursion on

L

c

. .

This algorithm is a variant of the first algorithm.

the number of terms in the partition of n, i.e., it

uses the technique of subalgorithm Ia. We will describe only that part

of algorithm II which differs essentially from algorithm I,

Subalgorithm IIb.

Purpose. -+To determine a canonical set of double coset representatives

of A and B in Sx, X C [l,n], in the special case where A

corresponds to a partition of k = 1x1 of the form m+ (k-m) = k and

B is any subgroup of Sx.

Technique. This subalgorithm is based directly on theorem 3.1. It

c
also uses lemmas 3.3

generates the binary

each such string e

and 3.6 and corollary 3.5. It systematically

n-strings contained in X with m l-bits. As

is generated, the subalgorithm checks if e is

on BL (bad list). If e is not on BL, it is put on CL (good list),

and all other n-strings which correspond to small right coset

.
representatives of A in Sx which belong to the double coset

determined by e are computed. These latter n-strings are merged

into BL, For each e in GL, the group Z-' ApnB is determined

in the course of the computation and is saved on GLG.
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bb

L 5. If m=l or m=k-1, go to 29.

Input. The binary n-string U corresponding to X, k = 1x1, m 9

and two lists which contain the n-vector form and the cycle set form,

respectively, of a set C of.permutations  in S such thatn

Yw = X for every > c C and C Ix = B .

output. A list GL of binary n-strings e, eI\U = e o which

corresponds to the canonical set of double coset representatives of

A and B in Sx, and for each e on GL the set

on the list GLG. .

Ordered lists: GL, BL, GLG, OL, OB.

START .

1 ., Initialize: CL + 8, BL f- @, GLG -+ 8.

. * [Trivial cases].

2. If m=O, GL cf- 0; else if m=k, GL f- U; else go to 4.

3. GLG + C and RETURN.

* [Determine the elements of X].

4. Determine s(i)e[l,n], 1 pi zk, such that s(i)l\U # 0 and
7 -.

. s(i)> s(j) if i ( j.
+ [Transfer out of main routine in special cases].

* [Main loop].
m

6. Initialize: e + V s(i); t(i) 4+ m+l-i, 1 L i 5 m.
i=l

c
7. Put e on CL.

* [Determine d' AZnB].
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8. T +-{ n"r: C /Ip/\e = p or 0 for every pcs: P(%)), ,

9. Put T on GLG. . .

* [Compute the orbits 0: of lemma 3.3 for T in B].

10. Initialize: N + T / {identityr . . .

11. Do 13, Ml, .*a) k-1.

12. O(i) + .{.n(s(i))I a:.~ Nf l '

13. N + {cc till '?r(s(i)) = s(i)}.

* [Determine the left cosets of T in B using lemma 3.3, and via

c .
4

theore& 3.1 determine the right cosets contained in ASB].

14. Do 20 for rtO c C / {identity) l ' '

15.

e 16.

17.

18,

c 19,

e 20.

*
L

21.

22.

L 23.

24.

25.

Do 18, i=l, . . . . k-l.

Do 17 for SC o(i).

If n(s) "'fl(S(i)), go to 14,

Continue.

f f- t n(s(t(j))).
w

If f#e, merge f into BL (largest first).

[Generate the next binary string].

Do 22, 131, *a. m.

If t(i) <k-i, go to 24.

RE3XJRN.

e +- e A binary complement (2%(t(i))-1).

Do 27, jhl, l *es i.
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26, e fi eVs(t(i)+j).

r*, . 27. t(j) 4- t(i)  * (1+1-j).

28. If e is equal to the first member of BL, delete this member

from BL and go to 21; else go to 7.

L u [Special cases: Compute orbit represen&atives  for C],

c

29. Initialize: OL 4-#,OB -e-B  l

30. Do 35, i=l, l *o9 k*

31. If OBAs(i) # 0, go to 35.

32. Put i on OL.

CL

c

c

33. Do 34 for .n c C.

34. --' OB + OBV '&(i)).

35. Continue.

u [Special cases: Determine double coset representatives].

36, Do 38 for i cOL.

37. Put s(i) on.GL.

38. -put { a c C 1 B(s(i)) =s(i)) on GLG.

39. If m=l, RETURN.

40. Replace each e on CL by its binary complement .

41. RETURN.
e

.

5.3. There are significant operational differences in the two algorithms.

Algorithm I is computationally more complex than Algorithm II. Also,

subalgorithm Ic does initially construct a list of double coset representatives

with redundances which is later pruned, while in subalgorithm IIb the pruning
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L The first algorithm essentially as described and a variant

c

process is incorporated directly into the main loop. A possible

compensation for the additional complexity of Algorithm I is that

for many graphs, most of the cases when subalgorithm Ic is called

are the trivial cases in which there must be 'only one double coset.

of the second algorithm  not using recursion on the number of distinct

labels have been coded in LISP for the Stanford Computation Center's

IBM 360/67: The recursive and list processing capabilities  of

LISP make it well-suited for coding these algorithms.

The empirical evidence obtained in running the coded algorithms

clearly indicates  that the key recursion in the described algorithms

is the recursion on the number of distinct labels. The coded

c

variant of Algorithm II is much slower than Algorithm I. The

typical running time for Algorithm I is under .Ol per distinct

double coset. The described version of Algorithm II should be

c

c

even more efficient.

6. Example. Let G be the planar graph in figure 3. Using

Algorithm II we will determine all topologically distinct labelings

of G with one label CZ, two labels b and three labels C.

The topological symmetry group of G consists of:

71o : Identity transformation.

5 :
Reflection about the line 21.

T12 : Reflection about the line 2,.

5 : 180° rotation about the center.
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The input to Algorithm II is:

U = (111111); n=6; q=3; nl=l; n2=2; n3=3; the two lists corresponding

to the symmetry group:

List 1. -* . List 2.

n 0:
71 1:
If 2:
n 4:

(e5

(23:

24

24:

23

,

22, 2l, 2O)

'25, 22, 2l, 2O) ((1 0.1 0 fi 0 0))

(25'9 22 I) 23, 24, 2O, 29 i(0 1 0 1'0 o), (0 0 0 0 11))

(23, 22, 25, 24, 2O, 2l). .((l 0 1 0 0 o),. (0 1 0 1 0 o),(o 0 0 d 11))

First, subalgorithm IIb is called with input:

U = (111111); k=6; m=3; List 1, List 2.

. The initial input for the main loop at IIb is:

s(l) = (100000), s(2) = (010000), s(3) = m1oooL

s(4) = (000100), s(5) = (oooolo), s(6) = (oooool);

I,
e = (111000); t(1) = 3, t(2) = 2, t(3) = 1.

.

The loop first determines:

.T = 4 'PO, q; s(1)= I(001000)~ ; 0 (j) = @, 2 L< j 2 5.
L

. Since = 25 > n;(25) = 23 for J=l and 3, '1 and n 3

c produce no elements for BL (bad list). n2 produces

f = 'cR2 (23) V r2 (22) Vrl, (2l) = (1001100) which is mergedinto

BL.

c
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.

At the end of the first time through the main loop of IIb, we have:

GL: (1 11 0 0 0) *

GLG: { vo, g1 1

BL: (1 0 11 0 0). . .

With the given input, IIb goes through'its main loop 8 times

producing:

GL GLG

el: ( 1 1 1 0 0 0 )  ' i 1o' x1 3

e2: (1 1 0 1 0 0) { 1 0' a2 3 .

e3: (1-i 0 0 1'0) (: r0)

e4: (1 1 0 0 0 1) {a *' 0 3

e5: (1 0 1 0 1 0) 1 ng, fl 3

e6: (1 0 0 0 11) l n 0' 112 3

e7: (0 1 0 11 0) 1 It 0' =1 3

e8: (0.1 0 0 11) { !TO, 3, ’
xl

M Next, the following 6-vector list is computed from the elements

of GL:

w1 = (1, 1, 1, 0, 0, 01, w2 = (1, 1, 0, 1 9 0 9 0)
.

(1, 01,
*.

1, 0, 0, 1, (1, 1)
.w3 = w4 = 1, 0, 0, 0,

w5 = (19 0, 1, 0, 1, o), w6 = (1, 0, 0, 0, 1, 1) ' '..

w7 = (0, 1, 0, 1, 1, 01, w8 = (0, 1, 0, 0, 1, 1).
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Subalgorithm IIb is called for each wi . For example, for w2 ,

IIb is called with input:

u = (110100); k=3; m=l; the two“listS:

List 1 List 2

no: (25, 24, 23, 22, 2l, 2O) B

n2: (25, 22; 23, 24, 2O, 23 c(01'010 o), (0 0 0 011)) l

With this input, IIb transfers to the special case section and

computes OL = .C{l, 2) and

GL --'t GLG

f7:
I

(1 0 0 0 0 0) { rn 9 VP0 3

I ’ f2: (0 10 0 0 0) .( v. 3 .
c

The main routine determines:

fl*w2: (2, 1, 0, 1, 0, 0)
L

f2*W2: (1, 2, 0, 1, 0, 0).

L
WI9 W2’ w5 and w6 each induce 2 distinct labelings of G , and w

c 3’

“4’ w7 and w8 each produce 3 distinct labelings of G . The 20 distinct

labelings of G with CL, b, b, c, 0, c are given in figure 4.
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1. This work was supported in part by ARPA Contract SD-183

and NSF Grant GP-16793.

2. A complete description of P6lya's theory of counting can be

found, for example, in [l] and [6].

3. The cyclic structure generation algorithms will be described

in a later paper.

4. For consistency with our choice of notation, one should always

view a labeling at in Sn as a map from the nodes of C to labels

in L.

5. Note, however, that in terms of the graph this "canonicalness"

is completely dependent on the indexing of the nodes and labels.

Ic

6. I--"e- AenB corresponds to the subgroup of the topological symmetry

group of the graph which preserves the labeling determined by
I e. This subgroup is needed in many applications of the labeling
I

ic
algorithm.

7. Recall that j s [l,n] is represented by 2".j.
.\*

8. Here we use the property that the inverse of a left coset

representative set is a right coset representative set.
.I. c
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C Set containment

U Set union

n Set intersection

/\ Logical and

\/ Logical or


