CONSTRUCTIVE GRAPH LABELING USING DOUBLE COSETS

BY

HAROLD BROWN
LARRY MAS INTER
LARRY HJELMELAND

STAN-CS-72-318
OCTOBER 1972

COMPUTER SCIENCE DEPARTMENT
 School of Humanities and Sciences
 STANFORD UNIVERSITY

Harold Brown
Larry Masinter
Larry Hjelmeland

Abstract

Two efficient computer implemented algorithms are presented Zor explicitly constructing all distinct labelings of a graph G With a set of (not necessarily distinct) labels L, given the symmetry group B of G. I'wo recursive reductions of the problem and a precomputation involving certain orbits of stabilizer subgroups are the techniques used by the algorithm. Moreover, for each Labeling, the subgroup of B which preserves that labeling is calvulated.

This research was supported by the Advanced Research Projects Agency SD-183.

CONSTRUCTIVE GRAPH LABELING USING DOUBLE COSETS ${ }^{1}$ By Harold Brown, Larry Masinter and Larry Hjelmeland

1. Introduction. We consider in this paper the following graph theoretical problem: Given a graph G with n nodes and topological symmetry group B and a set L of n not necessarily distinct labels, construct all topologically distinct labelings of the nodes of G with the elements of L. This problem arises in numerous contexts, and it has been investigated by P6lya [7], DeBruijn [4] and others. In particular, the number of such distinct labelings is given by the generalized Polya enumeration formula. ${ }^{2}$ We present here two efficient computer implemented algorithms for explicitly constructing all topologically distinct labelings of G by L. Moreover, for each distinct labeling, the algorithms determine the subgroup of B which preserves that labeling.

Our interest in the graph labeling problem initially arose in the context of the DENDRAL project [2]. This project includes among its objectives the application of computer implemented artificial intelligence techniques to the analysis and classification of urganic compounds. Necessary to this work are algorithms to systematically generate all the distinct valence isomers of a given set of atoms. Routines to perform this task in the special case where the isomers form only topologically tree-like structures have been described in [3] and [5]. For the general case, algorithms are required which generate all distinct cyclic structures formed
from a given set of atoms with pre-assigned free valences. The graph labeling problem is central to these cyclic structure generation algorithms. ${ }^{3}$

We now describe a group theoretic approach to the graph labeling problem.
2. Algebraic formulation and notation. The graph labeling problem admits a completely algebraic formulation as follows:

We index from 1 to n the nodes of the graph G in some fixed order and index also from 1 to n the n labels in the set L where, for notational convenience, we index equal labels in sequence, i.e., if there are n_{1} labels of the first type, n_{2} labels of the second type, etc., then we index the labels of the first type with $1, \ldots, n_{1}$, the labels of the second type with $n_{1}+1, \ldots, n_{1}+n_{2}$, etc. With this indexing, any labeling of G by L can be considered as a bijective map from the integral interval $[1, n]$ (the node indices) to $[1, n]$ (the label indices). (Throughout, [a.b] will always denote the interval of integers from a through b inclusive if $a \leq b$, and $[a, b]=\varnothing$ if $a>b)$. Thus, the indexed labelings of G by L can be bijectively identified with S_{n}, the full permutation group on $[1, n] .{ }^{4}$

Any topological symmetry of G in the symmetry group B can be considered as a permutation of the node indices, i.e., B can be isomorphically identified with a subgroup B of S_{n}, and for $\alpha \in S_{n}$ and $\beta \in B$, the labelings α and $\alpha \beta$ correspond to
topologically equivalent labeled graphs.
The indexed set of labels also admits a symmetry group.
If there are n_{1} labels of the first type, n_{2} labels of the second type, . э. n_{k} labels of the k-th type, $n_{1}+n_{2}+\ldots+n_{k}=n$, then the labels with indices in the intervals

$$
I_{j}=\left[\left(\sum_{i=1}^{j-1} n_{i}\right)+1, \sum_{i=1}^{j} n_{i}\right], j=1,2, \ldots, k
$$

are indistinguishable as unindexed labels. These labels, therefore, may be freely permuted in any indexed labeling without changing the corresponding labeled graph. Hence, the indices of the labels admit the symmetry group $A=S_{\left(n_{1}\right)} \times S_{\left(n_{2}\right)} \times \ldots X S_{\left(n_{k}\right)}$ where " X " denotes the (internal) direct product of subgroups in S_{n} and $S_{\left(n_{j}\right)}$ denotes the full group of permutations on the interval I.j naturally embedded in S_{n}. Explicitly, for $\alpha \varepsilon S_{n}, \alpha$ is in $S_{\left(n_{j}\right)}$ if and only if $\alpha(t)=t$ for $t \notin I_{j}$. Note that this latter condition implies that $\alpha\left(I_{j}\right)=I_{j}$ since α is bijective and $\left\{I_{j},[I, n] / I_{j}\right\}$ partitions $[1, n]$. The subgroup A will be called the label subgroup of S_{n} corresponding to the the (ordered) partition $n_{1}+n_{2}+\ldots+n_{k}=n$ of n.

We now define a relation Δ on S_{n} by $\gamma_{1} \Delta \gamma_{2}$ if and only if there exist $\alpha \in A$ and $B \in B$ such that $\gamma_{1}=\alpha \gamma_{2} B$. Since A and B are subgroups of S_{n}, Δ is an equivalence relation on S_{n}. In terms of the graph G, γ_{1} and γ_{2} determine topologically equivalent
labelings of the nodes of G with the labels in L if and only if $\gamma_{1} \Delta \gamma_{2}$. Since Δ is an equivalence relation on S_{n}, the equivalence classes of Δ partition S_{n}. Hence, we can determine all topologically distinct labelings of G by L by selecting precisely one element from each distinct Δ-equivalence class, i.e., by selecting a representative set for the partition of S_{n} induced by A.

For any $\gamma \in S_{n}$, the Δ-equivalence class determined by γ is the set $C_{\gamma}=\{\alpha \gamma \beta \mid \alpha \varepsilon A, B \varepsilon B\}$, i.e., C_{γ} is the set product ArB. This set product is called the double coset of A and B in S_{n} determined by γ. Thus our graph labeling problem can be algebraically formulated as follows:

Given a label subgroup A of S_{n} and a subgroup B of S_{n}, determine aigorithmicaily a representative set for the double cosets of A and B in S_{n}, i.e., determine a subset $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}\right\}$ of S_{n} such that $S_{n}=\bigcup_{i=1} A \gamma_{i} B$ and $\left(A \gamma_{i} B\right) \cap\left(A \gamma_{j} B\right)=\emptyset$ for $i \neq j$.

The correspondence between graph labeling and double cosets and the use of double cosets as a basis for chemical nomenclature have been investigated by Ruch, Hässelbarth and Richter [8].

Although the double coset formulation of the graph labeling problem presents the problem in a conceptually less obvious form, it does permit the techniques of constructive group theory to be applied directly to the problem. Moreover, our algebraic solutions are directly implementable on a computer.
2.1. Example. Let G be the graph in figure la. Let L consist of 3 labels N and 7 labels C. The topological symmetries of G are:
b_{0} : The identity transformation.
b_{1} : Reflection about the line Z_{1}.
b_{2} : Reflectionabout the line l_{2}.
$b_{3}: 180^{\circ}$ rotation about the center of G.

Index the nodes of G as in figure $1 b$ and the labels in L as $x_{1}=x_{2}=x_{3}=N$ and $x_{4}=\ldots=x_{10}=C$. Then, the labelings of G by L can be considered as elements in S_{10} E.g., the permutation $\gamma_{1}=\left(\begin{array}{llllll}1 & 2 & 6.7384910\end{array}\right)$ in S_{10} corresponds to the labeling of G given in figure $2 a$ and the permutation $\gamma_{2}=\left(\begin{array}{lll}3 & 598217106\end{array}\right)$ to the labeling in figure 2b. Here, we use the notation for S_{n} which identifies $\gamma \in S_{n}$ with the n-vector $(\gamma(1), \gamma(2), \ldots, \gamma(n))$.

The topological symmetry group of G determines the subgroup B of S_{10} via

$$
\begin{aligned}
& b_{0} \leftrightarrow \beta_{0}=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 10
\end{array}\right), \\
& b_{1} \leftrightarrow B_{1}=\left(\begin{array}{llllllll}
10 & 9 & 8 & 6 & 4 & 3 & 2
\end{array}\right), \\
& b_{2} \leftrightarrow B_{2}=\left(\begin{array}{lllllllll}
5 & 4 & 3 & 1 & 10 & 9 & 8 & 6
\end{array}\right), \\
& b_{3} \leftrightarrow \beta_{3}+\left(\begin{array}{llllllll}
6 & 7 & 8 & 10 & 1 & 2 & 3 & 4
\end{array}\right),
\end{aligned}
$$

The label subgroup of S_{10} associated with L is $A=S_{(3)} X S_{(7)}$, a subgroup of order $3!7!$. For example, the permutation $\alpha=(21347106598)$ is in A, and the permutations γ_{1} and γ_{2} are Δ-equivalent since $\gamma_{2}=\alpha \gamma_{1} \beta_{3}$, i.e., the labeled graphs in figures 2 a and 2 b are topologically equivalent.

By Polya's enumeration formula, there are 32 distinct double cosets of A and B in S_{10}, i.e., there are 32 topologically distinct labelings of G by L.
3. General theory. Let A and B be subgroups of the finite group G. A straightforward group theoretic argument shows that the double costs of A and B in G partition G. This partition, unlike a single coset partition of G, is generally not a partition into subsets of equal size, and there is no simple analogue to LaGrange's theorem. There is, however, a certain regularity in a double coset partition as evidenced by the following known theorem: 3.1. Theorem. For any $g \varepsilon G$, let R_{g} be a set of right coset representatives of $\left(g^{-1} A g \cap B\right)$ in B. Then the double coset $A g B$ consists precisely of the union of right coset $\bigcup_{x \in R_{g}} A g x$. Moreover, this union is disjoint. Symmetrically, if $\underset{g}{d}$ is a set of left coset representatives of ($A \cap \mathrm{gBg}^{-1}$) in A, then $A g B$ is the disjoint union $\bigcup_{y \in L} y g B$. $y \varepsilon_{g}{ }^{L}$

Proof. Let $R_{g}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, i.e., B is the disjoint union $\bigcup_{i=1}^{k}\left(g^{-1} A g \cap B\right) x_{i}$, and let $u \varepsilon A g B$, say $u=a g b$. Now b in B implies that $b=h x_{i}$ for some $1 \leq i \leq k$ and $h \varepsilon g^{-1} A g \cap B$. Also, h is of the form $g^{-1} a_{1} g, a_{1} \varepsilon A$. Thus $u=a g g^{-1} a_{1} g x_{i}=\left(a a_{1}\right) g x_{i}$, and $u \in \underset{x \in \mathbb{R}_{g}}{ } A g x$, i.e., $A g B=\bigcup_{x \in R_{g}} A g x$. If $A g x_{i}=A g x_{j}$, then $x_{i} x_{j}^{-1}=g^{-1} a_{2} g$ for some $a_{2} \varepsilon$ A. Since x_{i} and x_{j} are in B, $X_{i} X_{j}{ }^{-1} \varepsilon g^{-1} A g \cap B$. Therefore, $\left(g^{-1} A g \cap B\right) x_{i}=\left(g^{-1} A g \cap B\right) x_{j}$, and, since R_{g} is a right coset representative set for $g^{-1} A g \bigcap B$
in B, we must have $i=j$. Hence the union is a disjoint union. $1 \mid$ For any finite set T, we denote by $|T|$ the number of elements in T. From Theorem 3.1 and LaGrange's theorem we have: 3.2. Corollary. $|A g B|=|A||B| / / g^{-1} A g \cap B \mid$ $=|A||B| /\left|A \cap g B g^{-1}\right|$.

Theorem 3.1 does yield the following algorithmic method for determining a list D of double coset representatives of A and B in G :

1. Determine a list of right coset representatives for A in G, say $R=\{a, b, \ldots, t\}$, and form the list D with initially D $=\varnothing$.
2. For the first member m in K, place m on D and determine a set of right coset representatives of ($\left.m^{-1} A m \cap B\right)$ in B, say $T_{m}=\{x, y, \ldots z\}$.
3. For each w in T_{m}, determine the unique element h in R such that $A h=A m w$ and eliminate h from the list R.
4. If $R=\emptyset$, stop, otherwise go to step 2.

The difficulty with the above algorithm is that any direct implementation is computationally prohibitive in terms of both machine time and corestore even for relatively small groups, e.g., $G=S_{10^{\circ}}$. Our objective now is to derive certain modifications to this algorithm in the case $G=S_{n}$ and A is a label subgroup so that the modified algorithm admits efficient machine implementation. The main device used is the natural ordering of S_{n}.

The group S_{n} admits a natural linear ordering. This ordering is a very powerful computational tool, and it has been used by Sims [9] and others in devising group theoretic algorithms. The ordering is defined as follows:

Consider S_{n} as the set of bijective maps from $[1, n]$ to itself. For $\pi \varepsilon S_{n}$, identify π with the integral n-vector $(\pi(1), \pi(2), \ldots, \pi(n))$. Using this latter representation of S_{n}, the natural linear ordering is the lexicographical ordering on the n-vectors induced by the usual ordering on $[1, n]$, i.e., if we denote the order relation on S_{n} by $" \ll "$, then $\pi_{1} \ll \pi_{2}$ if and only if either $\pi_{1}=\pi_{2}$ or for some $k \in[l, n], \pi_{1}(i)=\pi_{2}(i)$ for $1 \leq i<k$ and $\pi_{1}(k)<\pi_{2}(k)$. This relation can be extended to subsets of S_{n} via $T \ll U$ if and only if for every $\tau \in T$ and $\eta \varepsilon U$, $\tau \ll n$.

Given any partition P of S_{n}, this linear ordering permits us to easily specify a canonical representative set for P. Namely, we choose as the representative for $P \varepsilon P$ the "least" element in P with respect to \ll, i.e., we choose the unique $\pi \varepsilon P$ satisfying $\pi \ll P$.

Let A and B be subgroups of S_{n}. The canonical representative sets for the right cosets of A in S_{n}, the left cosets of B in S_{n}, and the double cosets of A and B in S_{n} are
$A^{S_{n}}=\left\{a \varepsilon S_{n} \mid \alpha \ll A \alpha\right\}, S_{n B}=\{B \varepsilon B \mid B \ll B B\}$ and $A_{n B}=\left\{\pi \varepsilon S_{n} \mid \pi \ll A \pi B\right\}$, respectively. ${ }^{5}$ since A and B
contain the identity element of S_{n}, if π is in $A S_{n B}$, then π must satisfy $\pi \ll A \pi$ and $\pi \ll \pi B$. The converse, unfortunately, is not true. We will call a double coset representative set small if it is contained in A_{n}. In particular, $A_{n B} S_{n}$ is small.

The following technical lemma, which is due to Sims [9], gives a criterion for when $\pi \ll \pi B$.
3.3. Lemma. Let B be a subgroup of S_{n}. Let H_{i} be the subgroup of B fixing elementwise $[1, i-1]$, and let O_{i} be the orbit of i with respect to ${\underset{1}{1}}$, i.e., $O_{i}=\left\{\tau(i) \mid \tau \varepsilon H_{i}\right\}$. Then for any $\pi \varepsilon S_{n}$, $\pi \ll \pi B$ if and only if $\pi(i) \leq \pi(x)$ for each $x \in O_{i}, i=1,2, \ldots, n$. Proof. For any $1 \leq i \leq n$ and any $x \in O_{i}$, there is a $\beta_{i, x} \in B$ such that $\beta_{i, x}(j)=j$ for $l \leq j<i$ and $\beta_{i, x}(i)=x$. Assume that $\pi \ll \pi B$. Then $\pi \ll \pi \beta_{i, x}$, and since $\pi(j)=\pi \beta_{i, x}(j)$ for $l \leqq j<i$, we must have $\pi(i) \leq \pi \beta_{i, x}(i)=\pi(x)$. Conversely, assume that $\pi(i) \leq \pi(x)$ for every $x \in O_{i}$. For any $\beta \in B$, if $\pi \neq \pi \beta$, let i_{β} be the least argument for which π and $\pi \beta$ differ, i.e., $\pi(j)=\pi \beta(j)$ for $1 \leq j<i$ and $\pi\left(i_{B}\right) \neq \pi \beta\left(i_{B}\right)$. Since π is bijective, $B(j)=j$ for $1 \leq j<i_{B}$. Hence $\beta \in H_{i_{B}}$ and $\beta\left(i_{\beta}\right) \varepsilon O_{i_{B}}$. Thus $\pi\left(i_{\beta}\right)<\pi \beta\left(i_{B}\right)$ and $\pi \ll \pi \beta \cdot|\mid$ The subgroups H_{i} in this lemma form a descending sequence $B=H_{1} \supset H_{2} \supset \ldots \supset H_{n}=\{i\}$ where i denotes the identity element of $s_{n^{\prime}}$ Thus if k is the least index such that $H_{k}=\{i\}$, then $n_{j}=\{i\}$ and $O_{j}=\{j\}$ for $k \leq j \leq n$. Hence in applying lemma 3.3, we need only check those indices i with $i<k$. For example, if B
is transitive, i.e., if $O_{1}=[1, n]$, and if $H_{j}=\{i\}$ for $j \geq 2$, then $\pi \ll \pi B$ if and only if $\pi(1)=1$.

Let A be a label subgroup of S_{n}, say A is the subgroup corresponding to the partition $n_{1}+\ldots+n_{k}=n$. We claim that the set of all $\pi \varepsilon S_{n}$ satisfying $\pi \ll \pi A$ can be constructed as follows:

1. Form all the distinct ordered partitions
$P_{i}=\left\{P_{i l}, \ldots, P_{i k}\right\}$ of $[1, n]$ into k subsets $P_{i j}$ satisfying $\left|P_{i j}\right|=n_{j}$. There are $c=n!/ n_{1}!\ldots n_{k}!$ such partitions.
2. For each P_{i} and for each $P_{i j} \varepsilon P_{i}$ list the elements of $P_{i j}$ in their natural order, say $h_{i j 1}<h_{i j 2}<\cdots<h_{i j n}$.
3. For $i=1, \ldots, c$, define π_{i} by $\pi_{i}\left(h_{i j}\right)=\sum_{r=1}^{i-1} n_{r}+s$.

Each P_{i} is a partition of $[1, \mathrm{n}]$, and the integral intervals $I_{j}=\left[\sum_{r=1}^{j-1} n_{r}+1, \sum_{r=1}^{j} n_{r}\right], j=1, \ldots, k$, also partition $[1, n]$. Thus, since $\left|P_{i j}\right|=\left|I_{j}\right|, 1 \leq j \leq k$, the π_{i} are distinct, welldefined elements of S_{n}.
3.4. Lemma. $\left\{\pi_{i} \mid 1 \leq i \leq c\right\}=\left\{\pi \varepsilon S_{n} \mid \pi \ll A \pi\right\}$. Proof. For $\alpha \varepsilon A$, assume that $\pi_{i} \neq \alpha \pi_{i}$. Let t be the least integer in $[1, n]$ for which $\pi_{i}(t) \neq \alpha \pi_{i}(t)$. Say $t \in P_{j} \dot{i}_{i}$ and $t=h_{i}{ }_{j}$ for some $1 \leq j \leq k$ and $1 \leq s \leq n_{j}$. Now $\pi_{i}(t)=\sum_{r=1}^{j-1} n_{r}+s \varepsilon I_{j}$. Since A is a label subgroup, $\left\{\alpha(m) \mid m \in I_{j}\right\}=I_{j}$. Also, by the choice of $t, \pi_{i}\left(h_{i j p}\right)=\alpha \pi_{i}\left(h_{i j p_{j-1}}\right)$ for $l \leq p<s$. Thus, since $\pi_{i}(t) \neq \alpha \pi_{i}(t)$, we must have $\alpha \pi_{i}(t)=\alpha\left(\sum_{r=1}^{-1} n_{r}+s\right)>\sum_{r=1}^{j-1} n_{r}+s=\pi(t)$. Hence,
$\pi_{i} \ll \alpha \pi_{i}$, and $\pi_{i} \ll A \pi_{i}$. By the above, $\left\{\pi_{i} \mid 1 \leq i \leq c\right\} \subset\left\{\pi \varepsilon S_{n} \mid \pi \ll A \pi\right\}$. Since the latter set forms the canonical set of right coset representatives of A in S_{n}, by LaGrange's theorem $\left|\left\{\pi \varepsilon S_{n} \mid \pi \ll A \pi\right\}=\left|S_{n}\right| /|A|=c\right.$. Hence $\left\{\pi_{i} \mid \lambda \leq i \leq c\right\}=\left\{\pi \varepsilon S_{n} \mid \pi \ll A \pi\right\} \cdot| |$
3.5. Corollary. The set $A_{n}=\left\{\pi \varepsilon S_{n} \mid \pi \ll A \pi\right\}$ can be naturally identified with the set D of all integral n-strings containing n_{k}, 0-digits; n_{k-1}, 1-digits; ... ; $n_{1},(k-1)$-digits. More explicitly, define $\tau:[1, n] \rightarrow[0, k-1]$ by $\tau(s)=k-j$ where $s \varepsilon I_{j}$ Then the map $\psi: A_{n} \rightarrow D$ given by $\psi(\pi)=(\tau \pi(1), \ldots, \tau \pi(n))$ is a bijection.

Proof. For π_{1} and π_{2} in $A_{A} S_{n}$, let ${\underset{i}{j}}^{H_{j}}=\left\{h \varepsilon[1, n] \mid \pi_{i}(h) \varepsilon I_{t}\right\}$, $i=1,2 ; j=1, \ldots, k$. Now $\psi\left(\pi_{1}\right)=\psi\left(\pi_{2}\right)$ if and only if $H_{1 j}=H_{2 j}$, $1 \leq j \leqq k$. Linearly order the sets $H_{l j}$, say $h_{j l}<h_{j}{ }_{j} . .<h_{j s_{j}}$, $i \leq j \leq k$. Then, since π_{1} and π_{2} are in $A_{n} S_{j-1}$ by the proof of Iemma 3.4, $H_{l j}=H_{2 j}$ implies that $\pi_{1}\left(h_{j s}\right)=\sum_{i=1} n_{i}+s=\pi_{2}\left(h_{j s}\right)$. thus, $\psi\left(\pi_{1}\right)=\psi\left(\pi_{2}\right)$ implies that $\pi_{1}=\pi_{2}$, and ψ is injective. Since $\left|A_{n}^{S}\right|=n!/ n_{1}!\ldots n_{k}!=|D|, \psi$ is bijective.

In the special case where $k=2$, i.e.,.A is the label subgroup of S_{n} corresponding to a partition of n of the form $m+(n-m)=n$, the identified set of canonical right coset representatives takes a particularly simple form. Namely, it is the set D_{m}^{n} of all n-bit binary strings with m, l-bits and ($n-m$), 0-bits. Moreover, the natural ordering of the elements of D_{m}^{n} considered as binary integers agrees inversely with the ordering << on S_{n}. Explicitly, if for a in D_{m}^{n} we denote by $\bar{\alpha}$ the permutation in S_{n} associated with α, i.e., $\alpha=\psi(\bar{\alpha})$ where ψ is the bijective map of corollary 3.5,
then:
3.6. Lemma. For any α and β in $D_{m}^{n}, \alpha \geq \beta$ if and only if $\bar{\alpha} \ll \bar{\beta}$. Proof. Let $\alpha=\left(a_{1} a_{2} \ldots a_{n}\right)$ and $\beta=\left(b_{1} b_{2} \ldots b_{n}\right)$. Assume that $\alpha>\beta$. Let i be the least index such that $a_{i} \neq b_{i}$. Then we must have $a_{i}=1$ and $b_{i}=0$. Hence, by the definition of $\bar{\alpha}$ and $\bar{\beta}$, $\bar{\alpha}(j)=\bar{\beta}(j)$ for $1 \leq j<i$, and $\bar{\alpha}(i) \leq m<\bar{\beta}(i)$. Thus $\bar{\alpha} \ll \bar{\beta}$. Conversely, if $\bar{\alpha} \ll \bar{\beta}, \bar{\alpha} \neq \bar{\beta}$, the converse argument yields that $\alpha>\beta .| |$

Let C be the collection of all linearly ordered m-element subsets of $[l, n]$, i.e., C is the collection of all linearly ordered combinations of the elements of $[1, n]$ takenmat a time. Any α in D_{m}^{n} uniquely determines an element $\omega(\alpha): 1 \leq a_{1}<a_{2}<\ldots<a_{m} \leq n$ of C where the a_{i}-th digit (from the left) of α is $1 . \omega$ is a Dijective map from D_{m}^{n} to C, and we have:
3.7. Lemma. For any α and β in $D_{m}^{n}, \alpha \geq \beta$ (as binary integers) if and only if $\omega(\alpha) \leq \omega(\beta)$ (lexicographically).

Proof. Let $\omega(\alpha): 1 \leq a_{1}<a_{2}<\ldots<a_{m} \leq n$, and $\omega(\beta): 1 \leq b_{1}<b_{2}<\ldots<b_{m} \leq n$. Then, $\alpha>\beta$ if and only if there exists an index $i, 1 \leq i \leq m$, such that $a_{j}=b_{j}, l \leq j<i$, and $a_{i}>b_{i}$ if and only if $\omega(\alpha)$ is lexicographically less than $\left.\omega, \beta\right) .| |$

We can combine the correspondence between $D_{m}^{n}, A S_{n}$ and m-element combinations with lemma 3.3 to give a method for describing the canonical right coset representatives of A in S_{n} which are also canonical left coset representatives of B in S_{n}. Namely, if we let $O_{i}, i=1, \ldots, n$, be as in lemma 3.3, then:
3.8. Lemma. Let D be the set of all linearly ordered m-element subsets A of $[1, n]$ satisfying $O_{i} \cap A=\emptyset$ ifit A. Then there is
a bijective map u from D to the subset R of all $\alpha \varepsilon D_{m}^{n}$ satisfying $\bar{\alpha} \ll \overline{\alpha B}$. Explicitly, for $A: 1 \leq a_{1}<a_{2}<\ldots<a_{m} \leq n$, in D, $u(A)=\left(e_{1} e_{2} \ldots e_{n}\right)$ where $e_{j}=1$ if $j \varepsilon A$ and 0 otherwise. Proof. Let $[1, n] / A=\left\{b_{1}<b_{2}<\ldots<b_{n-m}\right\}$, and let $\overline{u(A)}=\gamma$. Then $\gamma(j)=\left\{\begin{array}{l}t, j=a_{t} \\ m+t, j=b_{t}\end{array}\right.$. Choose any $j \varepsilon[1, n]$ and $x \varepsilon O_{j}$. If $j=a_{t}$, then $x \geq a_{t}$ and $\gamma(x) \geq t$. Hence $\gamma(j)=t \leq \gamma(x)$. If $j=b_{t}$, then $j \in A$ and, by hypothesis, $x \in A$. Thus $x=b_{s}$ for some $s \geq t$, and $\gamma(j)=m+t \leq m+s=\gamma(x)$. Therefore, $\gamma(j) \leq \gamma(x)$ for any $x \in O_{j}$, and by lemma 3.3, $\gamma=\overline{U(A)} \ll \overline{U(A) B}$. Hence U is a map from D to R. The converse argument shows that u is surjective. Clearly, u is injective, and thus u is bijective. \||

Note that in the special case when B is transitive, $0_{1}=[1, n]$, and hence for any allowable m-element subset A in D, $A \cap O_{1}=A \neq \emptyset$, and we must have $1 \varepsilon A$.

The results of this section admit a straightforward generalization. For any subset X of $[1, n]$, say $X=\left\{x_{1}, \ldots \ldots, m\right.$, denote by S_{X} the full permutation group on X, i.e., the group of all bijective maps from X to X. The natural bijective map λ from $[1, m]$ to X defined by $\lambda(i)=x_{i}$ induces the isomorphism τ from S_{X} to S_{m} by $\tau(\pi)=\lambda^{-1} \pi \lambda$. We call a subgroup A of S_{X} the label subgroup of S_{X} corresponding to the partition $m_{1}+\ldots+m_{k}=m$ of m if and only if $\tau(A)$ is the label subgroup of S_{m} corresponding to this partition of m. Also, we take as the linear ordering on S_{X} the ordering induced via τ by the natural ordering of S_{m} i.e.,
for α and β in $S_{X}, \alpha \ll \beta$ if and only if $\tau(\alpha) \ll \tau(\beta)$. This ordering is dependent on the indexing of X. With these definitions, all of the above results immediately generalize to S_{X}.
4. Basic recursive schemes. We see from section 3 that for computing double coset representatives on a binary machine, it would be advantageous to reduce the general double coset representative problem to the special case where the label subgroup corresponds to a partition of n of the form $m+(n-m)=n$. In terms of the graph, such a reduction is conceptually clear. For example, we can label an n-node graph G with n_{1} labels L_{1}, n_{2} labels L_{2} and n_{3} labels $L_{3}, n_{1}+n_{2}+n_{3}=n$, as follows:

1. Determine all topologically distinct labelings of G with n_{1} labels L_{j} and ($n-n_{1}$) blanks.
2. For each such labeling, determine all distinct labelings of the blank labeled nodes with n_{2} labels L_{2} and n_{3} labels L_{3}.

The following procedure formalizes this concept and yields the desired recursive scheme:

Let X be a subset of $[1, n]$, say $x=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, and let B be a subgroup of S_{X}. For any subset Y of X and any $\beta \in B$ such that $\beta(Y)=Y$, denote by $\left.\beta\right|_{Y}, \beta$ restricted to Y, and denote by $\left.B\right|_{Y}$ the group $\left\{\left.B\right|_{Y} \mid \beta \varepsilon B\right.$ with $\beta(Y)=Y$. Then, if A is the label subgroup of S_{X} corresponding to the partition $m_{1}+m_{2}+\ldots+m_{k}=m$ of $m, k>2$, we claim that a double coset representative set R for A and B in S_{X} can be obtained as follows:

1. Determine a double coset representative set R_{1} of A_{1} and B in S_{X} where A_{1} is the label subgroup of S_{X} corresponding to the partition $m_{1}+\left(m-m_{1}\right)=m$.
2. Do for each α in R_{1} :
a) Determine $N_{\alpha}=\alpha^{-1}\left(\left\{x_{m_{1}+1}, \cdots \cdot x_{m}\right\}\right)$ gan ${N_{\alpha}}$ Index the elements of N_{α}, say $N_{\alpha}=\left\{y_{1}\right.$, , $\left.{ }^{m-m_{1}}\right\}$.
b) Determine a double coset representative set R_{α} of A_{α} and $\left.B\right|_{N_{\alpha}}$ in $S_{N_{\alpha}}$ where A_{α} is the label subgroup of $S_{N_{\alpha}}$ corresponding to the partition $m_{2}+\ldots+m_{k}=m-m_{I}$. 3. Set $R=\bigcup_{\alpha \in R_{1}}\left\{\gamma^{*} \alpha \mid \gamma \in R\right\}$, where $\gamma^{*} \alpha \in S_{X}$ is defined by

$$
r^{*} \alpha(x)=\left\{\begin{array}{l}
\alpha(x), x \in N_{\alpha} \\
x_{m_{1}+j,} x \in N_{\alpha} \text { and } \gamma(x)=y_{j} .
\end{array}\right.
$$

4.1. Lemma. R is a double coset representative set for A and B in S_{X}. Proof. Since $\alpha(X / N)=\left\{x_{1}, \ldots, x_{m_{1}}\right\}$ and $\left\{x_{m_{1}+j} \mid y_{j} \in \gamma\left(N_{\alpha}\right)\right\}$ partition X, each $\gamma^{*_{\alpha}}$ is a well-defined element of S_{X}.

We will first show that R contains a representative set. For any $\pi \varepsilon S_{X}$, since R_{1} is a representative set for A_{1} and B in S_{X}, there exist $\alpha \varepsilon R_{1}, \delta_{1} \varepsilon A_{1}$ and $\beta_{1} \varepsilon B$ such that $\delta_{1} \pi \beta_{1}=\alpha$. Define $\left(\pi \beta_{1}\right)^{\prime}$ by $\left(\pi \beta_{1}\right)^{\prime}(x)=y_{j}$ where $\pi \beta(x)=x_{m_{1}+j}, x \varepsilon N_{\alpha}$. $\left(\pi \beta_{1}\right)^{\prime}\left(N_{\alpha}\right)=N_{\alpha}$, and $\left(\pi \beta_{1}\right)^{\prime}$ is in $S_{N} .$. Since R_{α} is a representative set for A and $\left.B\right|_{N_{\alpha}}$ in S_{N}, there exist $\gamma \in R_{\alpha}, \delta_{2} \varepsilon A_{\alpha}$ and $\left.\beta_{2} \varepsilon B\right|_{N_{\alpha}}$ such that $\delta_{2}\left(\pi \beta_{1}\right)^{\prime} \beta_{2}=\gamma$. Choose $B \varepsilon B, B\left(N_{\alpha}\right)=N_{\alpha}$, satisfying $\left.B\right|_{N_{\alpha}}=\beta_{2}$. Define δ by

$$
\delta(x)=\begin{aligned}
& x_{m_{1}+s}, x=x_{m_{1}+t} \text { and } \delta_{2}\left(y_{t}\right)=y_{s} \\
& \alpha \beta^{-1} \alpha_{\alpha}^{-1} \delta_{1}(x), x \in\left\{x_{1}, \ldots, x_{m_{1}}\right\}
\end{aligned}
$$

A direct computation shows that $\delta \varepsilon A$ and $\delta \pi\left(\beta_{1} \beta\right)=\gamma^{\prime} \alpha$. Hence R contains a representative set.

Now, assume that for some $\gamma_{1}{ }^{*} \alpha_{1}$ and $\gamma_{2}{ }^{*} \alpha_{2}$ in R there exist $\delta \varepsilon A$ and $\beta \varepsilon B$ such that $\delta \gamma_{1} * \alpha_{1} \beta=\gamma_{2} * \alpha_{2}$. Then,

$$
\begin{aligned}
\gamma_{2}^{*} * \alpha_{2}\left(X / N_{\alpha}\right) & =\alpha_{2}\left(X / N_{\alpha}\right) \\
& =\left\{x_{1}, \ldots, x_{m_{1}}\right\} \\
& =\delta\left(\gamma_{1} * \alpha_{1}\right) \beta\left(X / N_{\alpha}\right) \\
& =\alpha_{1} \beta\left(X / N_{\alpha}\right) .
\end{aligned}
$$

Thus, $\left(\alpha_{1} \beta\right) \alpha_{2}^{-1}\left(\left\{x_{1}, \ldots, x_{m_{1}}\right\}\right)=\left\{x_{1}, \ldots, x_{m_{1}}\right\}$, and $\alpha_{1} \beta$ and α_{2} differ only by an element of A_{1}. Since R_{1} is a representative set, $\alpha_{1}=\alpha_{2}$. From $\delta \gamma_{1}{ }^{*} \alpha_{1} \beta=\gamma_{2}{ }^{*} \alpha_{1}$, we have that for $x \varepsilon N_{\alpha}$, $\gamma_{2} *_{1}(x)=x_{m_{1}+j}=\delta \gamma_{1}{ }^{*} \alpha_{1}(x)$, where $\gamma_{2}(x)=y_{j}$. Therefore $B(x) \varepsilon N_{\alpha}$, and $y_{j}=\delta \gamma_{1} \beta(x)=\gamma_{2}(x)$. Hence, $\left.\left.\delta\right|_{N_{\alpha_{1}}} \gamma_{1} \beta\right|_{N_{\alpha_{1}}}=\gamma_{2}$. Since R_{α} is a representative set, $\gamma_{1}=\gamma_{2}$ and $\gamma_{1}{ }^{*} \alpha_{1}=\gamma_{2}{ }^{*} \alpha_{2}$. Thus the members of R determine distinct double coset, and R is a representative set for the double coset of A and B in $S_{X} \cdot \|$ Let B be a subgroup of $S_{X},|X|=n$, and let A be a label subgroup of S_{X}. The computation of a representative set of the double coset of A and B in S_{X} admits a further recursive reduction based on the orbits of B. By lemma 4.1, we can assume for this recursive scheme that A corresponds to the partition $m+(n-m)=n$. Conceptually, the reduction scheme works as follows:

1. Choose a fixed node x of the graph G, and let N be the image nodes of x under the symmetry group B of G.
2. Do for i, $\max (0,|N|+m-n) \leq i \leq \min (|N|, m):$
i. Determine all distinct (with respect to B) labelings of N with i labels of the first type and $|N|-i$ labels of the second type.
ii. For each such labeling of N, let U be the subgroup of B which preserves that labeling of N, and determine all distinct (with respect to U) labelings of the remaining nodes of Gwith (m-i)

- labels of the first type and ($n-|N|-m+i$) labels of the second type.
iii. Compose each labeling of N and its associated labelings of G / N.

Formally we have:
Let $X=\left\{x_{1}, \ldots n\right\}$, and let 0 be an orbit of B, i.e., $0=\left\{\pi\left(x_{t}\right) \mid \pi \varepsilon B\right\}$ for some fixed $x_{t} \boldsymbol{\varepsilon} X$. Then a representative set R of the double cosets of A and B in S_{X} can be obtained as follows:

1. Index the elements of 0 and $x / 0=\overline{0}$, say $\left\{y_{1}\right.$, ma $\left.y_{k}\right\}$ and $\left\{\mathbf{w}_{1}, \ldots \mathbf{w}_{\mathrm{n}-\mathrm{k}}\right\}$, respectively. Since 0 is an orbit, $B(0)=0$ and $\beta(\overline{0})=\overline{0}$ for any $\beta \varepsilon$ B.
2. Do for $i=\max (0, m+k-n), \ldots, \min (k, m):$
i. Determine a double coset representative set T_{i} of A_{i} and $\left.B\right|_{O}$ in S_{O} where A_{i} is the label subgroup of S_{0} corresponding to the partition $i+(k-i)=k$.
ii. Do for each $\alpha \varepsilon T_{i}$:
a) Form $N_{\alpha}=\alpha^{-1}\left(\left\{y_{1}, \ldots, y_{i}\right\}\right)$ and $B^{\alpha}=\left\{\pi \varepsilon B \mid \pi\left(N_{\alpha}\right)=N_{\alpha}\right\}$.
b) Determine a double coset representative set H_{α} of $A_{\bar{i}}$ and $\left.B^{\alpha}\right|_{\bar{\sigma}}$ in S_{δ} where $A_{\bar{i}}$ is the label subgroup corresponding to the partition $(m-i)+(n-k-m+i)=n-k$.
c) Form $R_{\alpha}=\left\{\gamma o \alpha \mid \gamma \varepsilon H_{\alpha}\right\}$ where $r o_{\alpha}(x) \quad\left\{\begin{array}{l}x_{t}, x \in N_{\alpha}, \alpha(x)=y_{t} \\ x_{m-i+t}, x \varepsilon O / N_{\alpha}, \alpha(x)=y_{t} \\ x_{i+t}, x \in \sigma, \gamma(x)=w_{t}, t \leq m-i \\ x_{k+t}, x \in \sigma, r(x)=w_{t}, t>m-i .\end{array}\right.$ 3. Set $R=\bigcup_{i} \bigcup_{\alpha \in T_{i}} R_{\alpha}, \max (0, m+k-n) \leq i \leq \min (k, m)$.
4.2. Lemma. R is a double coset representative set for A and B in S_{X}. Proof. For any $\pi \in S_{x}$, let $N_{1}=\left\{x \varepsilon 0 \mid \pi(x)=x_{t}, t \leq m\right\}$, say $N_{1}=\left\{y_{t_{1}}, \ldots, Y_{t_{i}}\right\}$ and $O / N_{1}=\left\{y_{\mathbf{s}_{1}}, \ldots, y_{\mathbf{s}_{k-i}}\right\}$. Define $\pi_{1} \in S_{0}$ by

$$
\pi_{1}(y)=\left\{\begin{array}{l}
y_{j}, Y \varepsilon N_{1}, Y=y_{t_{j}} \\
Y_{i+j}, Y \notin N_{1}, Y=y_{s_{j}}
\end{array}\right.
$$

Since T_{i} is a representative set, there exist a $\varepsilon T_{i}, \delta_{1} \varepsilon A_{i}$ and $\beta_{1} \in B_{0}$ such that $\delta_{1} \pi_{1} \beta_{1}=\alpha$. Choose $B \in B$ satisfying $\left.\beta\right|_{O}=\beta_{1}$. Let $N_{2}=\left\{x \in \bar{O} \mid \pi \beta(x)=x_{t}, t \leq m\right\}$, say $N_{2}=\left\{w_{t_{1}}, \ldots, w_{t_{m-i}}\right\}$ and $\delta / N_{2}=\left\{w_{\mathbf{s}_{\mathbf{1}}}, \ldots, w_{\mathbf{s}_{\mathrm{n}-\mathrm{k}-\mathrm{mti}}}\right\}$. Define $\boldsymbol{\pi}_{2} \cdot \boldsymbol{\varepsilon} \mathrm{~s}_{\bar{o}}$ by

$$
\pi_{2}(w)=\left\{\begin{array}{l}
w_{j}, w \varepsilon N_{2}, w=w_{t_{j}} \\
w_{m-i+j}, w \notin N_{2}, w=w_{s_{j}}
\end{array}\right.
$$

Since H_{α} is a representative set, there exist $\gamma \varepsilon H_{\alpha}, \delta_{2} \varepsilon A_{\overline{1}}$ and $\left.\beta_{2} \varepsilon B^{\alpha}\right|_{O}$ such that $\delta_{2} \pi_{2} \frac{\beta}{2}=\gamma$. Choose $\beta^{\prime} \in B$ satisfying $\left.B^{\prime}\right|_{\bar{O}}=\beta_{2}$, and let $N_{\gamma}=\gamma^{-1}\left(\left\{w_{1}, \ldots, w_{m-i}\right\}\right)$.

$$
\begin{aligned}
B\left(N_{\alpha}\right) & =\beta_{1}\left(N_{\alpha}\right) \\
& =\pi_{1}^{-1} \delta_{1}^{-1} \alpha\left(N_{\alpha}\right) \\
& =\pi_{1}^{-1}\left(\left\{y_{1}, \ldots, y_{i}\right\}\right) \\
& =N_{1} .
\end{aligned}
$$

Similarly, $\quad{\underset{\gamma}{\prime}}_{\prime}^{N}=N_{2}$. Thus,

$$
\begin{aligned}
\pi \beta \beta^{\prime}\left(N_{\alpha} \cup N_{\gamma}\right) & =\pi N_{1} \cup \pi \beta N_{2} \\
& =\left\{x \varepsilon X \mid \pi(x)=x_{t}, t \leq m\right\} \\
& =\gamma \operatorname{\gamma o\alpha }\left(N_{\alpha} \cup N_{\gamma}\right) .
\end{aligned}
$$

Hence, $\pi \beta \beta^{\prime}$ and $\gamma \quad \alpha$ differ only by an element in A and $A \pi B=A \gamma o \alpha B$.
Assume that there exist $\gamma_{1} o \alpha_{1}$ and $\gamma_{2} o \alpha_{2}$ in $R, \delta \varepsilon A$ and $\beta \in B$ such that $\delta \gamma_{1} \circ \alpha_{1} \beta=\gamma_{2} \circ \alpha_{2}$. Then,

$$
\begin{aligned}
\gamma_{2} \delta \alpha_{2}\left(N_{\alpha_{2}}\right) & =\delta \gamma_{1} \delta \alpha_{1} \beta\left(N_{2}\right) \\
& =\left\{x_{1}, \ldots, x_{i}\right\},
\end{aligned}
$$

for some $0 \leqq i \leq m$. Thus $B N_{\alpha_{2}} \subset N_{\alpha_{1}}$. Symmetrically, $B^{-1} N_{\alpha_{1}} \subset{ }^{N} \alpha_{2}$, and hence $B N_{\alpha_{2}}=N_{\alpha_{1}}$. This implies that α_{1} and α_{2} are both in the same ${ }_{2} T_{2}$, and $\mathbf{1}_{1}{\underset{0}{0}}_{\alpha}^{\alpha}$ and a_{2} differ only by an element of $A ;$. Hence $\alpha_{1}=\alpha_{2}$ and $B \varepsilon B^{\alpha_{1}}$. A similar argument using $N_{\gamma_{i}}=\left\{w \in \bar{O} \mid \gamma_{i}(w)=w_{t}, t \leq m-i\right\}, i=1,2$, shows that $\gamma_{1}=\gamma_{2}$. Thus the elements of R determine distinct double cosets, and R is a representative set for A and B in $S_{X} \cdot| |$

Since the only property of O used in the above proof is that $\beta(0)=0$ for all $\beta \boldsymbol{\varepsilon} B$, we have:
4.3. Corollary. Lemma 4.2 is valid if O is a union of orbits of B. As we have seen in section 3 , we can always choose a double coset representative set R for A and B in $S_{X},|x|=n$, such that $R C_{A} S_{X}$, the canonical representative set for the right cosets of A in S_{X}, i.e., we can always choose a small double coset representative set. Moreover, by corollary 3.5, such a small representative set can be identified with a set of certain integral n-strings. We will assume, henceforth, that such an identification has been made. In particular, in the special case where Ais a label subgroup corresponding to a partition of the form $m+(n-m)=n$, any small double coset representative set is a set of n-bit binary strings withm, l-bits and (n-m), 0-bits. If α is such a binary string, we will denote by α the associated permutation in S_{X}.

In many cases the following lemma when applied to the T_{i} in step 2(i) of lemma 4.2 reduces considerably the number of steps in the process:
4.4. Lemma. Let T be a small representative set for the double cosets of A and B in $S_{X},|X|=n$. Say A is the label subgroup of S_{X} corresponding to the partition $k+(n-k)=n$. Let \hat{A} be the Label subgroup of S_{X} corresponding to the partition $(n-k)+k=n$. Then a small representative set \widehat{T} for the double cosets of \widehat{A} and B in S_{X} can be obtained by simply forming the binary complements $\widehat{\alpha}$ of each α in T, i.e., $T=\left\{\widehat{\alpha}=\left(2^{n}-1\right)-\alpha \mid \alpha \varepsilon T\right\}$.

Proof. Define $\delta \varepsilon S_{X}$ by $\delta\left(x_{i}\right)=x_{n+1-i}$ Note that $\delta=\delta^{-1}$. For any small representative α, let $\bar{\alpha}$ be the corresponding permutation in S_{X}. We will first show that $T_{\delta}=\{\delta \bar{\alpha} \mid a \varepsilon T\}$ is a representative set for the double cosets of \widehat{A} and B in S_{X}.

For any $\pi \varepsilon S_{X}, \delta \pi$ is also in S_{X}. Since T is a representative set, there exist $\alpha \in T, \gamma \in A$ and $B \in B$ such that $\delta \pi=\gamma \overline{\alpha \beta}$. Thus $\delta^{2} \pi=\pi=\delta \gamma \alpha \beta=\delta \gamma \delta(\delta \alpha) \beta$. Since $\gamma \varepsilon A$, $\delta \gamma \delta\left(\left\{x_{1}, \ldots, x_{n-k}\right\}\right)=\delta \gamma\left(\left\{x_{k+1}, \ldots . x_{n}\right\}\right)=\delta\left(\left\{x_{k+1}, \ldots, x_{n}\right\}\right)$ $=\left\{x_{1}, \ldots, x_{n-k}\right\}$. Hence $\delta \gamma \delta \varepsilon \hat{A}$ and π is in the double coset determined by $\delta \bar{\alpha}$. Now assume that for some α_{1} and α_{2} in T, $\gamma \delta \bar{\alpha}_{1} \beta=\delta \bar{\alpha}_{2}$ for some $\gamma \varepsilon \hat{A}$ and $\beta \varepsilon B$. Then, $\delta \gamma \delta \bar{\alpha}_{1} \beta=\delta{ }^{2} \bar{\alpha}_{2}=\bar{\alpha}_{2}$. As above, $\delta \gamma \delta \varepsilon A$, and, since T is a representative set, $a_{1}=\alpha_{2}$ and $\delta \bar{\alpha}_{1}=\delta \bar{\alpha}_{2}$. Hence we have that T_{δ} is a representative set.

We will now show that for any $\alpha \in T$, $\bar{\alpha} \varepsilon \hat{A} \delta \overline{\alpha B}$. By the definition of $\hat{\alpha}, \bar{\alpha}\left(\bar{\alpha}-1\left(x_{i}\right)\right)=x_{n-k+i}$ for $1 \leq i \leq k$, and $\bar{\alpha}\left(\alpha^{-1}\left(x_{k+i}\right)\right)=x_{i}$ for $1 \leq i \leq n-k$. Therefore, for $1 \leq i \leq n-k$, $\bar{\alpha} \alpha^{-1} \delta\left(x_{i}\right)=\bar{\alpha} \alpha^{-1}\left(x_{n+1}\right)=x_{n-k+1-i}$, i.e., $\widehat{\alpha \alpha}^{-1} \delta\left(x_{i}\right) \varepsilon\left\{x_{1}, \ldots, x_{n k}\right\}$, and $\overline{\alpha \alpha \alpha}^{-1} \delta \varepsilon \hat{A}$. Thus $\bar{\alpha} \varepsilon \hat{A} \delta \overline{\alpha B}$, and ${ }^{A}$ is a small representative set for the double cosets of A and B in $\mathrm{S}_{\mathrm{X}} \cdot \|$

Using the results of 'this section, we now can describe the two algorithms.
5. Double coset algorithms. The analysis done in the previous sections yields two efficient computer implementable algorithms for determining a small double coset representative set of A and B in $S_{\mathbf{X}}(X \subset[1, n]$, $|x|=k$) where A is the label subgroup of S_{X} corresponding to the partition $m_{1}+m_{2}+\ldots+m_{t}=k$ of k.

As is often the case, the form of the data structures in the machine implementations of the algorithms determines the form of the aigorithms, and conversely. In the implementations, any subset X of $[1, n]$ is represented by the binary n-string U where the i-th bit (from the left) of U is I if and only if i εX. Thus, there is no distinction between subsets and their associated binary strings, and the elements of a subset are implicitly indexed, Each such string U is carried right justified in a machine word.

Any element i of $[1, n]$ when considered as an element in the domain of S_{n} is represented as the machine word 2^{n-i}, and a small right coset representative.is represented as an\&vector in the form given by : corollary 3.5 if $t>2$ and as a binary word if $t=2$. For example, if A is the label subgroup of S_{7} corresponding to the partition $2+2+3=7$ (respectively, $3+4=7$) and

$$
A=\left(\begin{array}{llllll}
2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1}
\end{array} 2^{0}\right) \quad \varepsilon_{7^{\prime}} \text {, then the small double ooset }
$$

representative of A is (2, 1, 0, 2, 0, 1, 0), (respectively, (1 001010).
This compact representation of subsets and coset representatives is in practice needed $V_{\text {since }}$ for even relatively small values of n, the number of distinct double cosets can be very large. This latter number is optionally computed in advance via the generalized Pólya enumeration formula, and it is used to help decide if the desired construction is even feasible in-terms of time and core store.

A permutation π in a symmetry group B contained in ${ }_{n}$ is represented in the implementations in two ways. It isrepresented as the n-vector of the images, $c(\pi \quad)=\left(\pi\left(2^{n-1}\right)=2^{n-\pi(1)}, \ldots, \pi\left(2^{l}\right)=2^{n-\pi(n)}\right)$ and also as a list $\bar{P}(\pi)$ where the members of $P(\pi)$ are the sets of elements in the non-trivial cycles of π. For example,

$$
\pi=\left(\begin{array}{lllllll}
2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} \\
2^{0} \\
2^{5} & 2^{1} & 2^{3} & 2^{0} & 2^{7} & 2^{2} & 2^{6}
\end{array} 2^{4}\right) \text { is carried as } c(\pi)=
$$

$\left(2^{5}, 2^{1}, 2^{3}, 2^{0}, 27,2^{2}, 2^{6}, 2^{4}\right)$ and as $P(\pi)=\{(10101000),(01000010) \sim$ (00010001) \} . For many of the necessary computations, the second representation is the most efficient. However, the first representation is also needed - since $P(\pi)$ does not uniquely determine π.

These representations permit most of the computations to be performed as logical hardware operations,, For example, if A corresponds to the partition $m+(n-m)=n$, e is a smail right coset representative, $\boldsymbol{\pi} \boldsymbol{\varepsilon} \boldsymbol{B}$, and U is a subset of $[1, n]$, then $\{j \varepsilon U \mid$ the j-th digit of e is $I\}$ is represented by $U \Lambda$ e, and $\pi(U)=U$ if and only if $p \Lambda U=p$ or 0 for all $p \varepsilon P(\pi)$.

We will describe the algorithms using these representations,
5.1. Algorithm I. This algorithm is recursive both in the number of terms in the partition of k and in the orbits of B. The algorithm is presented as three nested subalgorithms,

Subalgorithm Ic. The deepest level sübalgorithma
Purpose. To determine the canonical set of double coset representatives of A and B in S_{X} in the special case where A corresponds to the partition $m+(k-m)=k$ of $k=I_{I} X_{I}$, and B is transitive, i.e., B has only one orbit.

Technique. The subalgorithm is based on corollary 3.5 and lemmas 3.3,
$-3.4,3.6$ and 3.8. It first generates the small subset
$\left.P_{1}=I \pi \varepsilon_{A} S_{X} \mid \bar{\pi} \ll \bar{\pi}_{B}\right\}, P_{1} \subset D_{m}^{k}, i . e .$, the subset of canonical
right coset representatives which are also canonical left coset
representatives. It then eliminates from P_{1} any elements π not satisfying $\bar{\pi} \ll A \bar{\pi} B$.

Input. The binary n-string U corresponding to $X, k=|X|, m$, and a list which is the n-vector form of a set C of permutations in S_{n} such that $\quad \gamma(X)=X$ for every $y \in C$ and $\left.C\right|_{X}=B$.

Output. A list R_{0} of binary n-strings $e, ~ e \wedge ~ U=e, ~ w h i c h ~ c o r r e s p o n d s ~$ to the canonical set of double coset representatives of A and B in S_{X}.

Ordered lists: $\quad R_{0}, R_{1}, D_{0}, D_{1}$.
START

* [Determine the elements of X].

1. Determine $s(i) \varepsilon[l, n], 1 \leq i \leq k$, such that $s(i) \wedge U \neq 0$ and
$s(i)>s(j)$ if $i<j$.

* [The following handles the special cases where there must be only one double coset].

2, If $m=0, R_{0} \leftarrow 0$; else if $\cdots=1, R_{0} \leftarrow s(1)$; else if $m=k-1$, $R_{0} \leftarrow U-s(k)$, else if $m=k, R_{0} \leftarrow U$; else go to 4 .
3. RETURN.

* [Generate the orbits 0 of lemma 3.3].

4. Initialize: $N \leftarrow C$.
5. Do 7, i=2, k.
6. $\quad N \leftarrow\{\pi \varepsilon \mathbb{N} \mid \pi(s(i-1))=s(i-1)\}$.
7. $\quad o(i) \leftarrow \bigvee_{\pi E N}(s(i))$.
[Generate all allowable m-element subsets as per lemma 3.8].
8. Initialize $: R_{1} \leftarrow s(1) D_{1} \leftarrow 0, R_{0} \leftarrow \emptyset, D_{0} \leftarrow \emptyset$.
9. Do 16, $\mathrm{t}=1$, m-1.
10. Do 15 for each W in R_{1} using its corresponding D in D_{1} '
11. Determine $\max \{d \mid s(d) \wedge W \neq 0)$.
12. Do 14 , $i=d+1$, . . . $(k-m+1)+t$.
13. If $D \wedge O(i)=0$, put $W V s(i)$ on R_{0} and D on D_{0}.
14.

$\mathrm{D} \leftarrow \mathrm{D} \vee 0(\mathrm{i})$.
15. Continue,
16. $\quad R_{1} \leftarrow R_{0}, D_{1} \leftarrow D_{0}, R_{0} \leftarrow \emptyset, D_{0} \leftarrow \emptyset$.
[Eliminate redundant representatives].
17. Do 22 for e εR_{1}.
18. Do 21 for $\pi \in C /\{i d e n t i t y)$,
19. Do 20, $i=1, \ldots .$.
20.

$$
\begin{aligned}
& \text { If } \pi(s(i)) \wedge e \neq 0 \text { and } s(i) \wedge e=0 \text {, go to } 17 \text {; } \\
& \text { else if } \quad \pi(s(i)) A e=0 \text { and } s(i) \wedge e \neq 0 \text {, go to } 18 .
\end{aligned}
$$

21. Continue.
22. Put \mathbf{e} on $\cdot \boldsymbol{R}_{0}$
23. RETURN.

END
Subalgorithm Ib. The intermediate level subalgorithm
Purpose. To determine a small set of double coset representatives of A and B in $S_{\mathbf{X}}$ in the special case where A corresponds to a partition of k of the form $m+(k-m)=k$ and B is any subgroup of S_{X}.
Technique. This subalgorithm is recursive and is based on lemma 4.2, i.e., on recursion on orbits. It uses subalgorithm Ic.

Input. The binary n-string U corresponding to $X, k=|x|, m$, and two lists which contain the n -vector form and the cycle set form, respectively, of a set C of permutations in S_{n} such that $r(x)=x$ for every $\gamma \in C$ and $\left.C\right|_{X}=B$.
output. A list R of binary n-strings e, e $\Lambda^{\prime} U=\mathbf{e}$, which corresponds to a small double coset representative set of A and B in S_{X}.

Ordered lists: R, R(h,i), V(h,j).
START

1. Initialize: $\quad U(I) \leftarrow U, C(I) \leftarrow C, k(1) \leftarrow k, m(1) \leftarrow m, h \leftarrow 1$.

* [The following is the reduction part of the recursion].

2. $s \leftarrow \max \left\{2^{d} \| 2^{d} \wedge U(h) \neq 0\right\}$.
3. $\operatorname{Obt}(h) \leftarrow V_{\pi}(\mathrm{s})$.

$$
\pi \varepsilon C(h)
$$

4. $t(h) \leftarrow$ l-bit count of $0 b t(h)$.
5. $i(h) \leftarrow \max \{0, m(h)+t(h)-k(h)), u(h) \leftarrow \min \{t(h), m(h)$.$) ,$

$$
i_{1} \leftarrow \max \{i(h), t(h)-u(h)\}, u_{1} \leftarrow \min \{u(h), t(h)-i(h)\} .
$$

6. Do 8 , $i \varepsilon H=\left[i_{1}, \min \left\{u_{1},\lceil t(h) / 2\rceil-1\right\}\right]$.
7. Call subalgorithm Ic with input $\operatorname{Obt}(h), t(h), i, C(h)$;
getting as output $R(h, i)$.
8. $R(h, t(h)-i) \leftarrow\{0 b t(h)-e \mid e \varepsilon R(h, i)\}$.

9. Call subalgorithm Ic with input $\operatorname{Obt}(\mathrm{h}), \mathrm{t}(\mathrm{h}), \mathrm{i}, \mathrm{C}(\mathrm{h})$; getting as output $R(h, i)$.
10. If $\mathrm{t}(\mathrm{h})=\mathrm{k}(\mathrm{h})$, go to 17 .
11. Remove the first element $e(h)$ from $R(h, i(h))$.
12. $C(h+1) \leftarrow\{\pi \varepsilon C(h) \mid p \wedge e(h)=p \quad$ or 0 for all $\mathrm{p} \in \mathrm{P}(\pi)\}$.
13. $U(h+1) \leftarrow U(h)-O b t(h), m(h+1) \leftarrow m(h)-i(h), k(h+1) \leftarrow k(h)-t(h)$.
14. $h \leftarrow h+1$.
15. Go to 2 .

* [The following is the expansion part of the recursion].

17. If $h=1, R \leftarrow R(1, i(1))$ and RETURN.
18. $h \leftarrow h-1$.
19. Put the elements of $\{f \operatorname{Ve}(h) \mid f R(h+1, i(h+1))\}$, on $V(h, m(h))$.
20. If $R(h, i(h))=\emptyset$, $i(h) \leftarrow i(h)+1$; else go to 12 ,
21. If i(h) $\leq u(h)$, go to 12 .
22. If $h=1, R \leftarrow V(1, m)$ and RETURN.
23. $h \leftarrow h-1$.
24. Put the elements of $\left\{f \vee e(h) \mid f_{\varepsilon} V(h+1, m(h+1)\}\right.$ on $V(h, m(h))$. , 25. Go to 20 .

END

Subalgorithra Ia. The highest level subalgorithm.
Purpose. To determine a small set of double coset representatives of A and B in S_{n} where A is the label subgroup of S_{n} corresponding to the partition $n_{1}+n_{2}+\ldots+n_{q}=n$ and B is any subgroup of S_{n}.

Technique. The main loop of the subalgorithm is based on lemma 4.1, i.e., on induction on the number of terms in the partition of n. The subalgorithm uses subalgorithms Ib and Ic.五putq, n_{1}, • ..) n_{q}, and two lists which contain the n-vector form and cycle set form, respectively, of B.

Output. A list R of integral n-vectors if q >. 2 or binary n-strings if $q \leq 2$ which corresponds (as in corollary 3.5) to a small double coset representative set for 'A and B in S_{n}; and a list P of subgroups of B where if e is the i-th element of R, then the i-th element of P is $\overline{e^{-1}} \cdot \overline{\mathrm{Ae}} \cap_{B}{ }^{6}$

Ordered lists: $\mathrm{R}, \mathrm{R}_{1}, \mathrm{P}, \mathrm{P}_{1}, \mathrm{~T}, \mathrm{~T}_{1}$.
START •

* [Trivial partition case].
'1. If $q=1: \quad R \leftarrow 0, P \leftarrow B \cdots$ and $S T O P$.
* [Initialization procedure].

2. Call subalgorithm $I b$ with input $2^{n}-1, n, n-n_{q}, B$; getting as output \mathbf{T}.
3. Do 4 for e عT.
4. $\quad P \leftarrow B(e)=\{\pi \varepsilon B \mid p \wedge e=p$ or 0 for every $p \in P(\pi)\}$.
5. If $q=2, R \leftarrow T$ and $S T O P$.
6. Do 8 for e εT.
7. Form $w=(w(1), \ldots, w(n))$ where $w(j)=\left\{\begin{array}{l}1,2^{n-j} \wedge \text { e\#O } \\ 0, \text { otherwise }\end{array}\right.$.
8. Put w on R.
9. $n_{0} \leftarrow n$.

* [Induction section].

10. Do $18, i=2, q-1$.
11. Initialize: $n_{0} \leftarrow n_{0}-n_{q+2-i}, R_{1} \leftarrow R, P_{1} \leftarrow P, T_{1} \leftarrow T$, $R \leftarrow \emptyset, P \leftarrow \emptyset, T \leftarrow \emptyset$.
12. $D o$ for 17 each $w=(w(1), w(n)) \varepsilon R_{1}$ and its corresponding $e(w) \varepsilon T_{1}$ and $B(w) \varepsilon P_{I}$.
13.

Call subalgorithm $I b$ with input $e(w), n_{0}, n_{0}-n_{q}+1-i$,
$B(w)$; getting as output T.
14.

Do 16 for f eT.
15.

Form f^{*} w $=(v(1), \ldots, v(n))$ where
$v(j)=\left\{\begin{array}{l}i, 2^{n-j} \wedge f \neq 0 \\ w(j), \text { otherwise } .\end{array}\right.$
16. Put $f^{*} w$ on R, put $B\left(f^{*} w\right)=\{\pi \varepsilon B(w) \mid p \wedge f=p$ or 0 for every $p \varepsilon P(\pi)$ \} on P.
17. Continue,
18. Continue.
19. STOP.
'END
5.2. Algorithm II. This algorithm is a variant of the first algorithm. It uses recursion on the number of terms in the partition of n, i.e., it uses the technique of subalgorithm Ia. We will describe only that part of algorithm II which differs essentially from algorithm I. Subalgorithm IIb.

Purpose. To determine a canonical set of double coset representatives of A and B in $S_{X}, X \subset[1, n]$, in the special case where A corresponds to a partition of $k=|x|$ of the form $m+(k-m)=k$ and B is any subgroup of S_{X}.

Technique. This subalgorithm is based directly on theorem 3.1. It also uses lemmas 3.3 and 3.6 and corollary 3.5. It systematically generates the binary n-strings contained in X with m l-bits. As each such string e is generated, the subalgorithm checks if e is on BL (bad list). If e is not on BL, it is put on GL (good list), and all other n-strings which correspond to small right coset representatives of A in S_{X} which belong to the double coset determined by e are computed. These latter n-strings are merged into BL. For each e in GL, the group $E^{-1} A \mathbb{Q} \cap B$ is determined in the course of the computation and is saved on GLG.

Input. The binary n-string U corresponding to $X, k=|X|, m$, and two lists which contain the n-vector form and the cycle set form, respectively, of a set C of permutations in S_{n} such that

$$
\gamma(X)=X \text { for every } \gamma \varepsilon C \text { and }\left.C\right|_{X}=B .
$$

output. A list $G L$ of binary n-strings $e, ~ e \wedge U=e$, which corresponds to the canonical set of double coset representatives of A and B in S_{X}, and for each e on GL the set $\left\{\pi \varepsilon C|\cdots|_{X} \varepsilon \bar{e}^{-1} A \bar{e} \cap B\right\}$ on the list GLG.

Ordered lists: GL, BL, GLG, OL, OB.
START •
1., Initialize: GL $\leftarrow \emptyset, \mathrm{BL} \leftarrow \emptyset$, GLG $\leftarrow \emptyset$.

* [Trivial cases].

2. If $m=0, G L \leftarrow 0$; else if $m=k$, GL $\leftarrow U$; else go to 4.
3. GLG $\leftarrow C$ and RETURN.

* [Determine the elements of X].

4. Determine $\mathbf{s}(i) \boldsymbol{\varepsilon}[\mathbf{I}, \mathrm{n}], 1 \leq i \leq k$, such that $\mathbf{s}(i) \wedge U \neq 0$ and $s(i)>s(j)$ if $i<j$.

* [Transfer out of main routine in special cases].

5. If $\mathrm{m}=1$ or $\mathrm{m}=\mathrm{k}-1$, go to 29 .

* [Main loop].

6. Initialize $e \leftarrow \underset{i=1}{m} s(i) ; t(i) \leftarrow m+1-i, 1 \leq i \leq m$.
7. Put e on CL.

* [Determine $\left.\mathbf{e}^{-1} \mathrm{~A} \boldsymbol{E} \cap \mathrm{~B}\right]$.

8. $T \leftarrow\{\pi \varepsilon C|\mid p \wedge e=p$ or 0 for every $p \varepsilon P(/ \pi)\}$,
9. Put T on GLG.

* [Compute the orbits 0 of lemma 3.3 for T in B].

10. Initialize: $N \leftarrow T /\{i d e n t i t y\} ~ . ~ . ~ . ~$
11. Do $13, i=1, \ldots, k-1$.
12. $\quad O(i) \leftarrow\{\pi(\mathrm{s}(\mathrm{i})) \mid \pi \in \mathbb{N}\}$.
13.

$N \leftarrow\{\pi \varepsilon \mathbb{N} \mid \pi(s(i))=s(i)\}$.

* [Determine the left coset of T in B using lemma 3.3, and via theorem 3.1 determine the right coset contained in Aēb]. ${ }^{\text {B }}$

14. Do 20 for $\pi \in$ C / \{identity).
15. Do 18, i=1, k-1.
16.

Do 17 for $\mathrm{se} Q_{\text {(}}$).
17.

$$
\text { If } n(s)>\pi(s(i)) \text {, go to } 14 .
$$

18. Continue.
19.

$\mathrm{f} \leftarrow \underset{j=1}{\mathbb{m}} \pi(\mathrm{~s}(\mathrm{t}(\mathrm{g})))$.
20. If $\mathbf{f} \neq \mathrm{e}$, merge f into BL (largest first).

* [Generate the next binary string].

21. Do 22, i=1,m.
22. If $t(i)<k-i$, go to 24.
23. RETURN.
24. $e \leftarrow e \wedge$ binary complement ($2 \cdot \mathrm{~s}(\mathrm{t}(\mathrm{i}))-1)$.
25. Do 27, $\mathfrak{j = 1 ,}$. *es i.
26. $e \longleftarrow e \operatorname{ev}(t(i)+j)$.
27. $t(j) \leftarrow t(i)+(i+l-j)$.
28. If e is equal to the first member of $B L$, delete this member from $B L$ and go to 21 ; else go to 7 .

* [Special cases: Compute orbit representatives for C].

29. Initialize: OL $\leftarrow \emptyset$, OB $\leftarrow \emptyset$.
30. Do 35, $i=1$, . *09 k.
31. If $O B \wedge s(i) \neq 0$, go to 35 .
32. Put i on OL.
33. Do 34 for $\pi \in$ C.
34. $\quad O B \leftarrow O B V \pi(s(i))$.
35. Continue.

* [Special cases: Determine double coset representatives].

36. Do 38 for i $\varepsilon 0 L$.
37. Put $s(i)$ on. GL.
38. Put $\{\pi \in C \mid \pi(s(i))=s(i)\}$ on GLG.
39. If $\mathrm{m}=1$, REIURN.
40. Replace each e on CL by its binary complement.
41. RETURN.

END
5.3. There are significant operational differences in the two algorithms.

Algorithm I is computationally more complex than Algorithm II. Also, subalgorithm Ic does initially construct a list of double coset representatives with redundances which is later pruned, while in subalgorithm IIb the pruning
process is incorporated directly into the main loop. A possible compensation for the additional complexity of Algorithm I is that for many graphs, most of the cases when subalgorithm Ic is called are the trivial cases in which there must be only one double coset.

The first algorithm essentially as described and a variant of the second algorithm not using recursion on the number of distinct labels have been coded in LISP for the Stanford Computation Center's IBM 360/67. The recursive and list processing capabilities of LISP make it well-suited for coding these algorithms.

The empirical evidence obtained in running the coded algorithms clearly indicaltes that the key recursion in the described algorithms is the recursion on the number of distinct labels. The coded variant of Algorithm II is much slower than Algorithm I. The typical running time for Algorithm I is under .01 per distinct double coset. The described version of Algorithm II should be even more efficient.
6. Example. Let G be the planar graph in figure 3. Using Algorithm II we will determine all topologically distinct labelings of G with one label a, two labels b and three labels c.

The topological symmetry group of G consists of:
π_{0} : Identity transformation.
π_{1} : Reflection about the line Z_{1}.
π_{2} : Reflection about the line Z_{2}.
$\pi_{3}: 180^{\circ}$ rotation about the center.

The input to Algorithm II is:
$U=(111111) ; n=6 ; q=3 ; n_{1}=1 ; n_{2}=2 ; n_{3}=3$; the two lists corresponding to the symmetry group:

List 1.
$\pi_{0}:\left(2^{5}, 2^{4} 2^{3} 2^{2}, 2^{1}, 2^{0}\right)$
$\pi_{1}:\left(2^{3}, 24: 25,2^{2}, 2^{1}, 2^{0}\right)$ $\left\{\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 0\end{array}\right)\right\}$
$\pi_{2}:\left(2^{5}, 2^{2}, 2^{3}, 2^{4}, 2^{0}, 2^{1}\right)$ $\left\{\left(\begin{array}{llllllllll}0 & 1 & 0 & 1 & 0 & 0\end{array}\right),\left(\begin{array}{llllll}0 & 0 & 0 & 1\end{array}\right)\right\}$
$\pi 3^{\prime}:\left(2^{3}, 2^{2}, 2^{5}, 2^{4}, 2^{0}, 2^{1}\right)$.
$\left\{\left(\begin{array}{llllllllll}1 & 0 & 1 & 0 & 0 & 0\end{array}\right), .\left(\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 0\end{array}\right),\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array} 11\right)\right.$)

First, subalgorithm lIb is called with input:
$U=(111111) ; k=6 ; m=3 ;$ List 1, List 2.

The initial input for the main loop at LIb is:
$s(1)=(100000), s(2)=(010000), s(3)=(001000)$,
$s(4)=(000100), s(5)=(000010), s(6)=(000001) ;$
$e=(111000) ; t(1)=3, t(2)=2, t(3)=1$.

The loop first determines:
$T=\left\{\pi_{0}, \pi_{1}\right\} ; \boldsymbol{O}(1)=\{(001000)\} ; 0(\mathrm{~J})=\varnothing, 2 \leq \mathrm{J} \leq 5$.

Since $\pi_{j}\left(2^{3}\right)=25>\pi_{j}\left(2^{5}\right)=23$ for $j=1$ and $3, \pi_{1}$ and π_{3} produce no elements for BL (bad list). π_{2} produces $f=\pi_{2}\left(2^{3}\right) V \pi_{2}\left(2^{2}\right) V \pi_{2}\left(2^{1}\right)=(1001100)$ which is mergedinto BL.

At the end of the first time through the main loop of JIb, we have:
GL: $\left(\begin{array}{lllll}1 & 11 & 0 & 0 & 0\end{array}\right)$
GIG: $\left\{\pi_{0}, \pi_{1}\right\}$
BL: ($\left.1 \begin{array}{llll}1 & 0 & 11 & 0\end{array}\right)$.

With the given input, JIb goes through its main loop 8 times producing:

GL
$e_{1}: \quad\left(\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}\right)$
$\mathbf{e}_{2}: \quad\left(\begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}\right)$
$e_{3}: \quad\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right)$
$\mathbf{e}_{4}: \quad\left(\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 1\end{array}\right)$
$e_{5}: \quad\left(\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}\right)$
$e_{6}: \quad\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 11\end{array}\right)$
$\mathrm{e}_{7}: \quad\left(\begin{array}{lllll}0 & 1 & 0 & 11 & 0\end{array}\right)$
$e_{8}: \quad\left(\begin{array}{llll}011 & 0 & 11\end{array}\right)$

GIG
$\left\{\pi_{0}, \pi_{1}{ }^{3}\right.$
\{ $\pi_{01} 0^{\prime} \pi_{2}$
$0\}$
$1 \pi 0^{3}$
$\left\{\pi_{0}, \pi_{1}{ }^{3}\right.$
\{ $\pi_{0} 0^{\prime \prime} \boldsymbol{\pi}_{2}$
$\left\{\pi 0^{\prime} \pi_{1}\right\}$
$\left\{\pi_{0} \pi_{1}\right\}$.

Next, the following 6-vector list is computed from the elements of GL:

$$
\begin{aligned}
& w_{1}=(1,1,1,0,0,0), \quad w_{2}=(1,1,0,1,0,0) \\
& w_{3}=(1,1,0,0,1,0), \quad w_{4}=(1,1,0,0,0,1) \\
& w_{5}=(1,0,1,0,1,0), w_{6}=(1,0,0,0,1,1) \\
& w_{7}=(0,1,0,1,1,0), \quad w_{8}=(0,1,0,0,1,1) .
\end{aligned}
$$

Subalgorithm IIb is called for each w_{i}. For example, for w_{2}, IIb is called with input:

$$
U=(110100) ; \mathrm{k}=3 ; \mathrm{m}=1 ; \text { the two lists: }
$$

List 1

$\pi_{0}:\left(2^{5}, 2^{4}, 2^{3}, 2^{2}, 2^{1}, 2^{0}\right)$
$\pi_{2}:\left(2^{5}, 22 ; 2^{3}, 2^{4}, 2^{0}, 2^{1}\right) \quad\left\{(010100),\left(\begin{array}{llllllllllllll}0 & 0 & 0 & 1\end{array}\right)\right.$.

With this input, IIb transfers to the special case section and computes $O L=\{1,2\}$ and

GL
$f_{1}: \quad\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$f_{2}: \quad\left(\begin{array}{lllll}0 & 10 & 0 & 0 & 0\end{array}\right)$
$\left\{\pi_{0}, \pi_{2}\right\}$
$\left\{\pi_{0}\right\}$.

The main routine determines:
$\mathrm{f}_{1}{ }^{{ }^{*} W_{2}}:(2,1,0,1,0,0)$
$\mathrm{f}_{2}{ }^{*} \mathrm{w}_{2}:(1,2,0,1,0,0)$.
W_{1}, w_{2}, w_{5} and w_{6} each induce 2 distinct labelings of G, and w_{3}, w_{4}, w_{7} and w_{8} each produce 3 distinct labelings of G. The 20 distinct labelings of G with a, b, b, c, c are given in figure 4.
Acknowledgements. The DENDRAL concept and its applications to organic chemistry were originally conaived by Professor Joshua Lederberg. The authors thank Professor Lederberg for his guidence and his critical suggestions which have made this work possible. The authors also thank Professors B. G. Buchanan, G. Pólya and N. S. Sridharan for their interest in this problem and their valuable comments.

Computer Science Department, Stanford University, Stanford, California 94305

1. E. F. Beckenbach (Ed.), Applied combinatorial mathematics(Wiley, New York, 1964).
2. B. G. Buchanan and J. Lederberg, The heuristic DENDRAL program for explaining empirical data, IFIP Congess 71, TA-2 (August 1971),91-100.
3. B. G. Buchanan, G. L. Sutherland and E.A. Feigenbaum, A program for generating explanatory hypotheses in organic chemistry, in: Machine Intelligenge 4 .(Edinburgh University Press, Edinburgh, 1969) 209-54.
4. N. G. DeBruijn, Generalization of Pólya's fundamental theorem in enumerative combinatorial analysis, Ned. Akad. Wetenschap., Proc. Ser. A62, Inday. Math. 21 (1956), 59-79.
5. J. Lederberg, Topology of molecules, in: The mathematical sciences (The MIT Press, Cambridge, 1969) 37-51.
6. C. L. Liu, Introduction to combinatorial mathematics (McGrawHill, New York, 1968).
7. G. Pólya, Kombinatorische Anzahlbestimmungen fưr Gruppen, Graphen und Chemische Verbindungen, Acta•Math. 68 (1937), 145-254.
8. E. Ruch, W. Hässelbarth and B. Richter, Doppelnebenklassen als Klassenbegriff und Nomenklaturprinzip für Isomere und ihre Abzăhlung, Theoret. Chim. Acta (Berl.) 19 (1970), 288-300.
9. . C. C. Sims, Computations with permutation groups, in: Proceedings of tha second symposium on symbolic and algebraic manipulation (ACM, New York, 1971).
10. This work was supported in part by ARPA Contract SD-183 and NSF Grant GP-16793.
11. A complete description of Pólya's theory of counting can be found, for example, in [1] and [6].
12. The cyclic structure generation algorithms will be described in a later paper.
13. For consistency with our choice of notation, one should always view a labeling $\boldsymbol{\alpha}$ in $\mathbf{S}_{\mathbf{n}}$ as a map from the nodes of \boldsymbol{G} to labels in L.
14. Note, however, that in terms of the graph this "canonicalness" is completely dependent on the indexing of the nodes and labels.
15. $\bar{e}^{-1} \operatorname{Ae} \cap_{B}$ corresponds to the subgroup of the topological symmetry group of the graph which preserves the labeling determined by e. This subgroup is needed in many applications of the labeling algorithm.
16. Recall that $j \in[1, n]$ is represented by 2^{n-j}.
17. Here we use the property that the inverse of a left coset representative set is a right coset representative set.

Figure 1.
c
z_{2}

--. (a)

(b)

Figure 2.

(a)

(b)

Eigure 3.

a	b	b
b	b	a

w_{7} :
c
C
C
c
C
C
a
b
b
b
b
0
C
b
C
a
C
c
\subset Set containment
\cup set union
\cap Set intersection
^ Logical and
V Logical or

1

0

6 c
c

