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CONSTRUCTIVE GRAPH LABELING USING DOUBLE COSE’I‘Sl

By Harold Brown, Larry Masinter and Larry Hjelmeland

1. Introduction. We consider in this paper the following graph

theoretical problem: Given a graph G with n nodes and topological
symmetry group B and a set L of n not necessarily distinct labels,
construct all topologically distinct labelings of the nodes of @
with the elements of L . This problem arises in numerous contexts,
and it has been investigated by Pél;a [{7], DeBruijn [#4] and others.
In particular, the number of such distinct labelings is given by
the generalizéﬁ Polya enumeration formula.2 We present here two
efficient computer implemented algorithms for explicitly con-
structing all topologically distinct labelings of G by L . More-
over, for each distinct labeling, the algorithms determine the
subgroup of B which preserves that labeling.

Our interest in the graph labeling problem initially arose
in the context of the DENDRAL project [2]. This project includes
among its objectives the application of computer implemented art-
ificial intelligence techniques to the analysis and classification

of organic conmpounds. Necessary to this work are algorithms to

systematically generate all the distinct valence isomers of a given
set of atoms. Routines to pe;fdrm this task in the special case
where the isomers form only topologically tree-like structures
have been described in [3] and [5]. For the general case, algorithms

are required which generate all distinct cyclic structures formed



from a given set of atoms with pre-assigned free valences. The
graph labeling problem is central to these cyclic structure gen-

eration algorithms.3

W now describe a group theoretic approach to the graph
| abel i ng probl em

2. Al gebraic formulation and notation. The graph labeling problem

admits a completely algebraic formulation as follows:

We index from 1 to n the nodes of the graph G in sone fixed
order and index also from 1 to n the n labels in the set [ where,
for notational convenience, we index equal labels in sequence, i.e.,
if there are n, labels of the first type, n, labels of the second

type, etc., then we index the labels of the first type with

1, ..., n,, the | abels of the second type wth D+l «evs Dyt0

1 10,0
etc. With this indexing, any labeling of G by L can be considered
as a bijective map from the integral interval [1,n] (the node
indices) to [1,n] (the label indices). (Throughout, [a.b] will
always denote the interval of integers from a through b inclusive
if a<b, and [a,b] =@ if a > b). Thus, the indexed labelings of

G by L can be bijectively identified with Sn » the full permutation

group on [l,n].u

Any topological symmet;yibf G in the symmetry group B
can be considered as a permutation of the node indices, i.e., B

can be isomorphically identified with a subgroup B of §, » and

for a € Sn and 8 ¢ B, the labelings a and aB correspond to



topologically equivalent labeled graphs.
The indexed set of labels also admits a symmetry group.

If there are n, labels of the first type, n, labels of the second

1 2
type, o = ny labels of the k-th type, n, + 0, + ...t n, =1,
then the labels with indices in the intervals
3-1 3
Ij--[()jni)+ 1, an. 1y 5= 1,2, vvus ky
i=1 i=1

are indistinguishable as unindexed labels. These labels, therefore,
may be freely permuted in any indexed labeling without changing the
correspondingilabeled graph. Hence, the indices of the labels admit

XS X .. XS
nl) (n2) . (nk

t he (internal) direct product of subgroups in Sn and S (n.) denotes

t he symmetry group A = S( ) where "X" denotes

the full group of permutations on the interval I'] naturally embedded

in S, Explicitly, for o € Sn sy @ IS in S(n ) if and only if

i
a(t) = t for t ¢ Ij‘ Note that this latter condition implies that
a(Ij) = Ij since a is bijective and { %., [l,n]/Ij } partitions

[1,n]. The subgroup A will be called the label subgroup of Sn

corresponding to the the (ordered) partition n,tn, ...t =
of n.

We now define a relation 4 on Sn by YlAY2 if and only if
there exist a ¢ A and B ¢ B such that Yy ay,B. Since A and B

are subgroups of Sn’ A is an equivalence relation on Sn . In

. terms of the graph G , Y, and Y, determine topologically equivalent



labelings of the nodes of Gwith the labels in L if and only if
ylAY2 . Since A is an equivalence relation on Sn’ the equivalence
classes of 4 partition Sn' Hence, we can determine all topologically
di stinct labelings of G by L by seiécting precisely one element
from each distinct A-equivalence class, i.e., by selecting a
representative set for the partition of Sn induced by A .

For any v € Sn’ the A-equivalence class determined by y

is the set CY = {ayB|ae A, B € B } . i.e., CY is the set

product AYB. This set product is called the double coset of

A and B in Sn determined by Y . Thus our graph labeling problem

can be algebraically formulated as follows:

Given a label subgroup A of Sn and a subgroup B of Sn’ determine
algorithmicai.y a representative set for the double cosets of A
and Bin s, i f?.’ determine a subset { Yis Yos o 0 e oYy } of S,
such that §_ = ik:)lAYiBand (av;3) N (Ay.p) = 8 for i 7 3.

The correspondence between graph labeling and double cosets
and the use of double cosets as a basis for chemical nomenclature
have been investigated by Ruch, Hasselbarth and Richter [8].

Although the double coset formulation of the graph labeling
. problem presents the problem in a conceptually less obvious form,
it does permit the techniques of constructive group theory to be
applied directly to the problem. Moreover, our algebraic solutions
are directly implementable on a computer.
2.1. Example. Let G be the graph in figure la. Let [ consist of

3 labels N and 7 labels C . The topological symmetries of ¢ are:

bO: The identity transformation.

bl: Reflection about the line Zl.

b2: Reflection about the line 12.



ba: 180° rotation about the center of G.

Index the nodes of G as in figure 1lb and the labels in L
as Xy T Xy T Xy = N and X F o0 T X F c.
Tnen, the labelings of G by L can be considered as elements in
$19* E-g., the permutation T (1256.73 849 10)in S10
corresponds to the labeling of G given in figure 2a and the per-
mutation Y, = (35498217 106) to the labeling in figure 2b.
Here, we use the notation for Sn which identifies v € Sn with the
n-vector (y(1l), v(2), ... , v(n)).

The topological symmetry group of G determines the subgroup

B of S1o via

bo > B =(123u4567849 10),
b+ 8 =(10987654321),
by« By = (5432110987 8),
bé > Byt (6 7891012 345).

The label subgroup of S 0 associated with L is A = S(a) X 8(7),

1
a subgroup of order 3!7! . For example, the permutation
«a=(2134%7106 59 8) is in A, and the permutations Y, and Y,

are A-equivalent since Y, =a7163, i.e., the labeled graphs in
figures 2a and 2b are topologically equivalent.

By Polya's enumeration formula, there are 32 distinct double

cosets of A and B in Slo’ i.e., there are 32 topologically distinct

labelings of G by IL.



3. General theory. Let A and B be subgroups of the finite group

G. A straightforward group theoretic argument shows that the

double cosets of A and B in G partition G. This partition, unlike
a single coset partition of G, is generally not a partition into
subsets of equal size, and there is no simple analogue to LaGrange's
theorem. There is, however, a certain regularity in a double

coset partition as evidenced by the following known theorem:

3.1. Theorem. Tor any g € G, let Rg be a set of right coset
representatives of (g_lAg () B) in B. Then the doubl e coset

AgB consists precisely of the union of right cosets U Agx.
xeR

Moreover, this union is disjoint. Symmetrically, if é is a set
of |left coset representatives of (A N ng-l) in A, then AgB is the

disjoint union |J ygB.

e L

y g
Proof . kLet i% = { X)s Xoy 00 ey Xy } , i.e., B is the disjoint
union U (g-lAg N B)xi, and let u € AgB, say u = agb. Now b

i=1
in B implies that b = hxi for some 1<i<k and h € g-lAg N . Also,

L. -1 -1
h is of the form g a,8s @) € A. Thus u = agg agx; = (aal)gxi,
and u e Lj Agx, i.e., AgB = LJ Agx. If Agxi = Agx., then

xeRg XeR ]

x.x, b= g'h
i%5 & 2

XiX]'l € g’lAglF) B. Therefore, (g-lAg N B)xi = (g-lAg N B)xj,

28 for some a, € A. Since xXg and xj are in B,

and, since Rg is a right coset representative set for g'lAg (\ B



in B, we nust have i = j. Hence the union is a disjoint union.1 |

inT.

3.2.

For any finite set T, we denote by |T| the number of elements

From Theorem 3.1 and LaGrange's theorem we have:

Corollary. |AgB|

|a]1B] /7 |g™tag O 3|

|alls] 7 |a 0 gag™].

Theorem 3.1 does yield the foll owi ng algorithmic method for

determning a list D of double coset representatives of A and B

in G

Determine a list of right coset representatives for A in
G, say R = { a,b, ..., t } , and form the list D with
initially D = g.

For the first member m in KR, place m on D and determine
a set of right coset representatives of (m-lAm N B)

in B, say T_ = { %y, ... 2} .

For each w in Tm’ determine the unique element h in R
such that Ah = Amw and eliminate h from the list R

If R=¢, stop, otherwise go to step 2.

The difficulty with the above algorithm is that any direct

i mpl enent ati on is computationally prohibitive in terms of both

machine ti Ne and core store even for relatively small groups, €.(.,

G =8

10°

Our objective now is to derive certain modifications to

this algorithmin the case G = Sn and A is a label subgroup so

that the nodified algorithm admits efficient machine implementation.

The main devi ce used is t he natural ordering of Sn.



The group Sn admits a natural linear ordering. This ordering
is avery powerful computational tool, and it has been used by
Sims [9] and others in devising group theoretic algorithms. The
ordering is defined as follows:

Consider § as the set of bijective maps from [1,n] to
itself. For m € Sn’ identify 7 with the integral n-vector
(r(1),7(2), ..., m(n)). Using this latter representation of Sn’

t he natural linear ordering is the lexicographical ordering on
t he n-vectors induced by the usual ordering on [1,n], i.e., if
we denote the frder relation on Sn by "<<"  then ﬂl << . if

2

and only if either ®, =W, or for some k € [1,n], ﬂl(i) = ﬂé(i) for
1gi<k and wl(k) < n2(k). This relation can be extended to sub-
sets of S, via T << U if and only if for every T € T and n € U,
T << n.

Given any partition P of Sn’ this linear ordering permits us
t 0 easily specify a canonical representative set for P. Namely,
we choose as the representative for P € P the 'least" element in
P with respect to <<, i.e., we choose the unique 7 ¢ P satisfying
7 << P.

Let A and B be subgroups of Sn' The canonical representative
sets foOr the right cosets of § in S,» the left cosets of B in Sn’

and the double cosets of A and B in Sn are
ASn={aeSnla<<Au},SnB={BeBIB«BB}

and S o = {ne s, | = << anB }, vespectively.5 Since A and B



contain the identity element of Sn, if % is in SnB’ then w

A
must satisfy w << Aw and w << 7B, The converse, unfortunately,
is not true. We will call a double coset representative set small
if it is contained in ASn' In particular, ASnB is small.

The following technical lemma , which is due to Sims [9],

gives a criterion for when n << =B.

3.3. Lemma. Let B be asubgroup of Sn' Let Hi be the subgroup
of B fixing elementwise [1,i-1], and let 0i be the orbit of i with

respect to Hl_., i.e., 0, = { (1) l T € Hi } . Then for any m ¢ Sn,

i
n << 7B if and only if m(i) £ w(x) for eachx ¢ Oi, i=1,2,...40.

Proof. For any 1<i<n and anyx € Oi, there is a B; x € B such
9

that g8, _(j) = j for 1<j<i and B, _(i) =x. Assume that = << 7B.
i,x i, x
Then w << w8, _, and since w(j) = n8, _(j) for 1<j<i, we must have
i, i,x
m(i) £ w8, (i} m(x). Conversely, assume that (i) g w(x) for
]

every X g Oi' For any 8 ¢ B, if n # =8, let iB be the least

argument for which 7 and w8 differ, i.e., w(j) = wR(j) for l,<,']<iB

and n(iB) #uB(iB). Since w is bijective, B(j) = j for l§j<is.

lience B ¢ H.lB and B(is) € 056 . Thus n(iB) < nB(iB) and m << ng. | |

The subgroups Hi in this lemma form a descending sequence
B =HDH, D... DH ={1} where i denotes the identity element
of Sn' Thus if k is the least index such that Hk = {‘L} , then
ay = {L} and 0]. = {3} for k<j<n. Hence in applying lemma 3.3,

we need only check those indices | with i < k. For example, if B
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is transitive, i.e., if Ol = [1,n], and if Hj = {i} for j 2 2,
then n << 7B if and only if =w(1l) = 1.

Let A be a label subgroup of‘Sn, say A is the subgroup
corresponding to the partition n,t...tn =, We claim that

the set of all n ¢ Sn satisfying n <<wA can be constructed as

follows:

1. Form all the distinct ordered partitions

Pi = {Pil’ sesy Pik} of [1,n] into k subsets Pij sat-
isfyi Y = n!/n,!...n !
isfying ]Pijl nge There are ¢ = nl!/n, n, ! such
partitions.

2. For each Pi and for each Plj € Pi list the elements of

P.. in their natural order, say h., < h,..< ... < h,.
ij 131 ij2 ijn,
i J
3. Fori=1l, ..., ¢, define L by "i(ﬁjé) = r:fr + s.
Lach Pi is a partition of [1,n], and the integral intervals
J-1 ]
I, = Z n_ + 1, % nl,j=1, ..., k, also partition [1,n].
] P & “.r
r=1 r=1

Thus, since !Pij|= ]Ijl » 1 23 % k, the m, are distinct, well-

defined elements of Sn'

L] L] . L i = < .
3.4, Lemma, {wn, |lgigec}={mnes |n<<an}
Proof. For a g¢A, assume that LAY # am,. Let t be the least integer

in [1,n] for which ni(t) # awi(t). Say t € ?é. and t = qjé for
some 1 < j <kand 1 <s <n.. Now m.(t) = % n_+s e I.. Since
A is a label subgroup, { a(m) | m ¢ I } = Is. Also, by the choice

of t, ﬂ:"(hl.j ) = awi(h,. ) for 1 < p <s. Thus, since "i(t) # awi(t),

p

we must have am (t) = a(rélnr + s) >P§lnr + s = w(t). Hence,

4IP3y 5-1
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m, << am,, and . << Awi. By t he above,

{ . L < izcc})C{nr es_ | m << Ar }.Since the latter set

forms the canonical set of right qoset representatives of A in S,

by LaGrange's theorem |[{n eS| m << An } = |s |/]a] = c. Hence
{nill;i;c}={weSn|n<<Aﬂ}.|l

3.5. (Corollary. The set ,§ ={mesS |m<<An] can be

natural ly identified with the set D of all integral n-strings
containing 0, 0-digits; N1 l-digits; ... nys (k-1)-digits.
More explicitly, definé vt : [1,n]} + [0,k-1] by 1(s) = k-j where s ¢ Ij‘

Then t he map y : Sn + D given by y(w) = (tn(1), ..., t(n)) is

A

a bijection.

Proof., For w, and =, in ,S , let Hy. = {hel1,n]] m.(h) e I }s
i=1,2,) =1, .., ke Now w(wl) = w(w2) if and only if Hlj = 25°
1 < Jj < k. Linearly order the sets Hlj’ say hjl< h'j§ R hjsj.
1 <3 < k. Then, since m and m,are in Asnfj?¥ the proof of

lemma 3.4, Hyg H2j implies that “1(hjs) = g;ini +s = n2(hjs).

thus ,w(ul) = w(nz) implies that T T T and ¢ is injective. Since
IASnl = n!/nll...nkl = |D| , v is bijective.

In the special case where k = 2, i.e.,.A is the label subgroup
of Sn corresponding to a partition of n of the form m + (n-m) = n,
the identified set of canonical right coset representatives takes
a particularly simple form. Namely, it is the set D: of all n-bit
binary strings with m, 1l-bits and (n-m), O-bits. Moreover, the
natural ordering of the elements of D:lconsidered as binary integers
agrees inversely with the ordering << on Sn' Explicitly, if for
ain Dg we denote by & the permutation in Sn associated with a,

i.e., a = y(a) where y is the bijective map of corollary 3.5,
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then:

3.6. Lemma. For any o and g in D;, a 2 B8 if and only if @ << B,

Proof. Let g = (ala2 e an) and B = (b1b2 . bn)° Assume that

@ > . Let i be the least index such that a; ? b.. Then we must

have a; = 1 and bi = 0, Hence, by the definition of @ and 8 ,

alj) = 8(3) for 1 < j<i, and a(i) & m < B(i). Thus a << B.

Conversely, if g << B,a # 8 , the converse argument yields that o > 8 .| |
~Let ¢ be the collection of all linearly ordered m-element

subsets of [1,n], i.e., C is the collection of all linearly ordered

combinations of the elements of [l,n] takenmat a time. Any o

in D; uniquely determines an element w(a) : 1 < a, <a, <..,<a n

<

= "1 2 m =
of C where the a;-th digit (from the left) of a is 1. w is a
bijective map from D; to ¢ , and we have:
3.7. Lemma. For any a and B8 in D;, a > B (as binary integers) if
and only if w(a) < w(B) (lexicographically).
Proof. Let w(a): 1l <a, <a,<...<a <mn, and
o) l;bl<b2< <bm§_n. Then, a > B if and only if

there exists an index i, 1 £ i < m, such that aJ. = bj-’ 1 £j<i,

l

and a; > b, if and only if w(a) is lexicographically less than w.B8).
We can combine the correspondence between D;, ASn and m-element

combinations with lemma 3.3 to.give a method for describing the

canonical right coset representatives of Ain Sn which are also

canonical left coset representatives of B in Sn. Namely, if we

let Oi, i=1l, ..., n, be as in lemna 3.3, then:

3.8. Lemma. Let DDbe the set of all linearly ordered m-element

subsets 4 of 1,n] satisfying oiﬂ A =g ifi ¢ A . Then there is
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a bijective map y from D to the subset R of all g ¢ D; satisfying

o << gB. Explicitly, for 4: 1 < a, <a,

(i) = (ele2...en) where ej 2 )1 if j ¢ A and 0 otherwise.

<...<a gn, ind,

Proof. Let [1,nl]/4

Lonl/4 ibl<b2<...<bn_m}.and let uw(4) = v.
9
Then ¥(3j) =«{ t . Choose any j e [1,n] and x ¢ 0.]u

mtt, j bt

If j = a,, then x 2 a_ anld y(x) 2 t. Hence v(j) = t < v(x).

If j = bt’ then j é4 and, by hypothesis, x ¢ A. Thus x = b, for

some s >t,and y(j) =m+t <m+s

=

y(x). Therefore, v(j) < y(x)

for any x ¢ oj, and by lemma 3.3, y = u(A4) << u{A)B. Hence v
is a map from pto R. The converse argument shows that v is surjective.
Clearly, v is injective, and thus v is bijective. ||

Note that in the special case when B is transitive,

0, = [1,n], and hence for any allowable m-element subset 4in p,
a0 01=A#¢, and we must have 1 € 4.

The results of this section admit a straightforward general-
ization. For any subset X of [1,n], say X = { X)s oo ep } s
denote by Sx the full permutation group on X, i.e., the group of
all bijective maps from X to X. The natural bijective map A from
[1,m] to X defined by A(i) = Xy induces the isomorphism t from

’ SX to Sm by t(w) = A-lnx . We call a subgroup A of SX the label

subgroup of SX corresponding to the partition my+..c tm =m
of m if and only if t(A) is the label subgroup of Sm corresponding

to this partition of m. Also, we take as the linear ordering on

Sx the ordering induced via t by the natural ordering of Sm, i.e.,
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for a and 8 in S,, a << B if and only if t(a) << 71(B). This

X

ordering is dependent on the indexing of X. With these definitions,

all of the above results immediately generalize to SX'

4, Basic recursive schemes. We sece from section 3 that for com-

puting double coset representatives on a binary machine, it would
be advantageous to reduce the general double coset representative
problem to the special case where the label subgroup corresponds
to a partition of n of the form m + (n-m) = n. In terms of the
graph, such a reduction is conceptually clear. For example, we
can label an m-node graph G with n, labels Ll, n, labels L2 and
ng labels L3, ny tn, + n; =0, as follows:

1. Determine all topologically distinct labelings of G with
n; labels L] and (n-nl) blanks.

2., For each such labeling, determine all distinct labelings
of the blank labeled nodes with n, labels L, and ny
labels LS’

The following procedure formalizes this concept and Yi el ds

the desired recursive scheme:

Let X be a subset of [1,n], say X = { X9 Xps5 o0y, x }

- and let B be a subgroup of SX' For any subset Y of X and any

3 € B such that g(Y) = Y, denote by Bly, B restricted to Y, and
denote by Bly the group { BIY | 8 ¢ B with 8(Y) = Y }. Then, if
A is the label subgroup of Sx corresponding to the partition

motmt...tmo=m of m, K > 2, we claim that a double coset

representative set R for A and B in Sx can be obtained as follows:



1. Determine a double coset representative set Rl of Al and

B in Sx where A, is the label subgroup of Sx corresponding

1

to the partition m, + (m-ml) = m.

1
2. Do for each a in Rl:
a) Determine N =a T({ x . X }) ome Bl
« m,+1’> * " “m B
Index the elements of Na » say Na = {yl, ¢ Qe Qm_ml} .

b) Determine a double coset representative set R, of

A, and B]N in S where A  is the label subgroup of
a

N
a
SNa corresponding to the partition m, t oot m = omem.
3. SetR = LJ { y¥a | Yy ¢ R } , where y¥®a ¢ Sx is defined by
B aeRl

fﬁ(X)9 X € Na

T*a(x) = =
i'xml+j’ x e N and y(x) Yy
4,1, Lemma. R is a double coset representative set for A and B in SX'
Proof. Since a(X/N ) = { Xis oo xml } and { ¥“i+j | vj e Y(Nq) }

partition X, each y¥*a is a well-defined element of Sx.
We will first show that R contatins a representative set.

For any w ¢ SX’ since R, is a representative set for A, and B in

1
€ Al and Bl ¢ B such that Glnsl = a.

1

Sx, there exist a € Rl’ 61

Define (wg,)' by(wg,)'(x) = Y; where wB(x) =x_ 45,2 a
1 )

1 - ' . * .- [ . .
(nBl) (Na) Nu , and (wel) is in Sy .. Since Ra is a representative

set for A and B[N in S , there exist y e R , §, ¢ A and
a o

1 = =
By € BlNa such that §,(78,)'B, = vy . Choose 8 € B, B(N ) = N _,

satisfying BIN = 8, Define § by
a



16

Xmts® = = xmftand 62(yt) =Y
-1 -1
a Ta 6l(x)’ X € { xl’ L eey Xm }

«

e
A direct computation shows that 6§ ¢ A and 61:(818) = yka, Hence R

§(x) =

contains a representative set.

Now, assune that for some yl*al and 72*a2 in R there exist
e Aand 8 € B such that Gyl==als = vy, Then,
72*a2(x/Na) = aQ(X/Na)
e |

§(v,*a DBX/N,)

alS(X/Na).

Thus, (a B)a—l({x x b= {x ees» X_} sanda,8 and o
71 L my 1’ ° ’ my 1 2

differ only by an elenent of A,. Si nce Ry i S a representative set,

@ = A From ayl“als = yyta), We have that for x e N,»

Yza':al(x) = X = 671""“? (x), where 72(x) =Yy Theref ore

ml+j
B(x) € N, and y, = 6v,B(x) =v,(x). Hence, 8y YlslN _ Yy
bl %y
Since R, Is a representative set, Y %Y, and Y1 T YyNe,.
Thus the menbers of R determine distinct double cosets, and R is
a representative set for the double cosets of A and B in sx.ll
Let B be a subgroup of SX,IXI =n, and let A be a |abel

subgroup of S The conputation of a representative set of the

X’

- doubl e cosets of A and Bin Sx admts a further recursive reduction

based on the orbits of B. By lemma 4.1, we can assune for this
recursive schenme that A corresponds to the partitionm+(n-m)=n.

Conceptual Iy, the reduction schenme works as follows:
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1. Choose a fixed node x of the graph ¢ , and let ¥ be the
i mge nodes of x under the symmetry group B of G,
2. Do for i, max( 0, |¥|#+m-n) < i < min( v, m:
i. Deternmine all distinct (wWith respect to B) |abelings
of y with i labels of the first type and |¥|-i
| abel s of the second type.

ii. For each such labeling of ¥ , let U be the subgroup
of B which preserves that |abeling of ¥, and de-
termne all distinct (Wwth respect to 0) | abel -
ings of the remaining nodes of Ganith (mi)

~ labels of the first type and (n-|N|-m+i) | abels
of the second type.

iii. Conpose each labeling of ¥ and its associated
| abel i ngs of g/w.
Formal Iy we have:
Let X = { Xps 0000w }, and let 0 be an orbit of B, i.e.
0= { m(x.) | me B} for sone fixed X, € X. Then a representative
set R of the double cosets of A and B in Sy can be obtained as
fol | ows:
1. Index the elements of Oand X O = 0, say {15 o e ¥y}
and { Wis oo "n-k} » respectively. Since 0 is an
orbit, B(0) =0 and 8(0) = 0 for any g ¢ B.
2. Do for i = max(0, mk-n), ..., min(k, M:
i. Determine a double coset representative set T,
o A and B h?in S, Where A is the |abel subgroup

of SO corresponding to the partition i + (k-i) = k.
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ii. Do for each g ¢ 'ri:
a) Form N_ = o {yl, N yi}) and
}.

b) Determ ne a double coset representative

B ={1teBln(Na)‘=Na
o . .
set H of A; and B lU in Sy where Az is
the | abel subgroup corresponding to the
partition (mi) + (n-k-m+i) = n-k.
c) Form R, = {yoa |v ¢ Ha} where
X.» X € Na’ a(x) = Ye

X _iet? X E O/Na.’ a(x) = y

t
YOa.(X) . .
Xippr X € U,v(x) = Wero TS Ml
Xk+t. X € U, Y(X) = wt, t > m"'ia
3. set R = U U R, » max(0,m+k-n) < i £ min(k,m).
i ceTi

4,2, Lemma. R is a double coset representative set for A and B in Sx.
Pr oof . Foranyﬂesx,letNl={xeolw(x)=xt,t;m},

? ooy Y } . Define
S

k-i

say Nl = {ytl’ 200y Yt,} and O/Nl = {ysl
1

wle So by
Yio ¥ €Ny v = ¥y

Wl(y): J
Yigir ¥ FNjs v =y

S

i+
] J

~~~~~

Since Ti is a representative set, there exista ¢ Ti’ 61 € Ai and

81 € B, such that 611:181 = a. Choose B ¢ B satisfying Blo =B -
Let N, = { xe0 | nB(x) = Xeo T 2 } ,» say N, = {wtl, ey W B

m=1
and O/N, = {wa, cees W } . Define Ty € S5 by

1 Sn-k-nti



Since H, is a representative set, there exist vy ¢ H | 52 € AI and
N a
a
82 €B l5 such that 52'55 = Y . Choose B' € B satisfying
- - =1
B' l 5' - 32, and let NY - Y ({Wl, ey wm-i})' 20w

B(Na) = Bl(Na)

- -=1l.-1
- “l 6l Q(Na)

-1
=“l ({yl’ SRR yi})

o W =
Simlarly, BJN N,. Thus,

wBB'(NaLJNY) = leL)n8N2

{xexlw(x)= Xe» T X 0m }

Y°“(NaL)Ny) .

Hence, m8B' and Yoa differ only by an element in A and AmB = AyoaB.

Assume that there exist Yloal and Y, 00 in R 8 ¢ A and

2
B ¢ B such that 6YloalB =Y,00,. Then,

y2oa2(Na2) = GyloalB(Nz)
= {xl, Cees xi},
< i < m, i
for some 0 < i < m. Thus BNm2 c N“l' Symmetrically,

-1
BN, C N, » and hence BN~ =N_ . This implies that a, anda
1 2 *

2. . % 1 2
are both in the same T:» and o 80[ anda, differ only by an
element of A. Hence @, =a, and 8 ¢ B*L. A similapr argument using

NYi ={we0 | Yi(w) =W tm-id } »1=1,2, shows that YL G Y,
Thus the elements of R determine distinct double cosets , and

R is a representative set for A and B in Sx.] I
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Since the only property of 0 used in the above proof is
that 8(0) = 0 for all B e B, we have:
4.3. Corollary. Lemma 4.2 is valid if O is a union of orbits of B.
As we have seen in section 3, we can always choose a double
coset representative set R for A ‘and Bins,, Ix| = n, such that
I{(:ZASX, t he canonical representative set for the right cosets

of Ains e., we can always choose a small double coset

X I
representative set. Moreover, by corollary 3.5, such a small
representative set can be identified with a set of certain
integral n-strings. We will assume, henceforth, that such an
identification has been made. In particular, in the special case
where Ais a label subgroup corresponding to a partition of the
formm + (n-m) = n, any small doubl e coset representative set

is a set of n-bit binary strings withm, l-bits and (n-m), 0-bits.
If o is such a binary string, we will denote by & the associated

permutation in SX’

In many cases the following lemma when applied to the Ti

in step 2(i) of lemma 4.2 reduces considerably the number of
steps in t he process:

4.4. Lemma. Let T be a small representative set for the double

- cosets of A and B in S, x| = n. Say A is the label subgroup

of Sy corresponding to the partition k + (n-k) = n. Let & be the
label subgroup of Sx corresponding to the partition (n-k) + k = n.
Then asmall representative set T for the double cosets of A and
B in Sx can be obtained by simply forming the binary complements

‘T of each o in T, i.e., T = {1? = (27-1) - alacT}
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. - ‘ - =1
Proof. Define 6 € Sx by 6(xi) = X ,1_y Note that § = § .

For anysmall representative a, let « be the corresponding

permutation in S,. We will first show that T, = { 6a |ae T} is

. N .
a representative set for the double cosets of A and B in SX'

For any m ¢ S,, én is also in S Since T is a representative

X X'

set, there exist a ¢ T, Y ¢ A and B ¢ B such that ér = yaB. Thus
§°m = % = SyaB = 8y8(Sa)B. Since y € A,

676({xl, cees xn_k}) = 67({xk+l, . xn}) - 6({xk+l’ Cee xn})

{xl, vees xn—k} Hence 6y6 ¢ /A} and w i S in the double coset

determined by §a. Now assume that for some o, and a, in T,

yézx_lB = 6;2 for some Yy € 'R and B € B. Then,

Gyéa_ls z 622;2 = a,. As above, 6Y6 ¢ A, and, since T is a

representative set, a; = o, and Ga-l = 6;2. Hence we have that TG
i S a representative set.
We will now show that for anyae T, 2 e QGEB. By the

definition of Q, §(;"l(xi)) = x for 1 £ i £ k, and

n-k+i

§(?l(xk+i)) = Xg for 1 £ i £ n-k. Therefore, for 1 £ i £ n-k,

§E‘15(xi) =% L( ) =

*n-k+1-i2 H€eo

}, and 5&“16 € /1: Thus & eﬁGEB, and

Xn+l i
1

Ba §(x; ) € {xl, SN .

A

T is a small representative set for the double cosets of A and B

Using the results of 'this section, we now can describe the

two algorithms.
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5. Double coset algorithms. The analysis done in the previous sections

vields two efficient computer inplementable algorithns for determning a
small doubl e coset representative set of Aand Bin s, (x ¢ [1,n]

|x| = x) where Ais the label subgroup of 8, corresponding to the
partition W tmot.otm = k of k.

As is often the case, the formof the data structures in the
mechine | nplementations of the algorithns determnes the formof the
aigorithns, and conversely. In the inplenentations, any subset X of
[1,n] is represented by the binary n-string v where the i-th bit (from
the left) of vis1if and only if i ¢ X Thus, there is no distinction
between subsets and their associated binary strings, and the elements of a
subset are inplicitly indexed, Each such string v is carried right
justified in a machine word.

Any element i of [1,n] when considered as an elenment in the domain
of S is represented as the machine word - , and a small right coset
representative.is represented as an&ector in the form given by
v corollary 35if t>2 and as a binary word if t=2. For exanple, if A
is the |abel subgroup of 8, corresponding to the partition 2+ 2+ 3 =7
(respectively, 3+ 4 =7) and

6.5 ,4%.3.2,1,0

2" 27 27 27 2 27 2 ) s
A = e 1° then the small double ooset
55 53 ,0 6 1 L 2

22 2 22 2



representative of A is (2 1, 0, 2, 0, 1, 0), (respectively, (1 001010).
~ This conpact representation of subsets and coset representatives is
in practice
neededVsince for even relatively small values of n, the nunber of distinct
doubl e cosets can be very large. This latter number is optionally conputed
in advance via the generalized Palya enuneration formula, and it is used to
hel p decide if the desired construction is even feasible in-terms of tine
and core store.

A permutation » in a symmetry group B contained in r§ IS
represented in the inplenentations in two ways. It isrepresented as the
n-vector of the imges, e(r )=( w(2%1y=2?= "1 p(oty= 277 "Ry gpe
also as a list P ( n) where the nenmbers of P(x ) are the sets of elements
in the non-trivial cycles of . For exanple,

(2726 Pt B3 2P
'"—

iscarried as ec( o) =
29 51 53 20 27 2 P 24)

(25.24,23,2°, 27, 22, 2%, 2') and as p(y )= {(10101000), (01000010)~

(00010001) } . For many of the necessary conputations, the second representation
is the nost efficient. However, the first representation is also needed
since P( =) does not uniquely determne = .
These representations permt nost of the conputations to be perforned
as logical hardware operations,, For exanple, if A corresponds to the
partition m+(n-m)=n, e iS a small right coset representative, =z ¢B,
and y is a subset of [1,n], then { ] ¢ |the j-th digit of e is 1}
is represented by v Ae, and » ( 0)=v if and only if pAu=p or O for
all p e P(n).

VW will describe the algorithms using these representations,
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5.1. Agorithml. This algorithmis recursive both in the nunber of terns
in the partition of k and in the orbits of B . The algorithmis presented
as three nested subal gorithns,

Subal gorithmlc. The deepest |evel subalgorithms

Purpose. To determne the canonical set of double coset representatives
of A and B in SX in the special case where A corresponds to the
partition m+ (k-m =k of k= X , and Bis transitive, i.e., B
has only one orbit.

Technique. The subalgorithm i S based on corollary 3.5 and | emmas 3.3,
-3.4, 3.6 and 3.8. It first generates the small subset

k

P = | TE | m<< wB}, P, €D°, i.e., the subset of canonical

1 A5x
right coset representatives which are also canonical l|eft coset
representatives. It then elimnates from P, any el enents ¢ not
satisfying ™ << AwB.

Input. The binary n-string y corresponding to X, k =|¥, m and a
list which is the n-vector formof a set C of permutations in Sn

such that  y(x) = X for every y e Cand c|, = B.

OQutput. A |ist R of binary n-strings e, eA y= €, which corresponds
to the canonical set of double coset representatives of A and B in
Sy

Ordered |ists: R., R

0 D0 » D
START

1’ 1

*[Determne the el ements of x].

1. Determine s(i) el1,n], 1 <i <k, such that s(i)A y# 0 and
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s(i) > s(j) if i <.

[The follow ng handles the special cases where there must be only

one doubl e coset].

| f m=0, R, <+ 0; else if "m=l, R, &« 8(1); el se if m=k-l,

0

Ry <= U -sS(k), else if w=k, Ry < U ; else go to L.

RETURN.

[Generate the orbits 0 of |emma 3.3].

L. Initialize: N &« C.

10.
11.
12.
13.
14.
15.

16.

17.
18.

19.

Do 7, i=2, .... k.
N & { n eV | n(s(i-1)) = s(i-1) }.
0(i) & Vr(s(i)).
" EN

"
[Generate all allowable mel ement subsets as per |emma 3.8].
Initialize: R, & s(1) D, € 0, Ry « §, Dy « o.
Do 16, t=1, . . . . ml.
Do 15 for each Win R, using its corresponding D in D1|
Determine max { d | s(a) A W# 0) .
Do 1k, i =d + 1, . . . . (k-m+l)+t.
If DA Qi) =0, put wvs(i) on Ry end- D oOn D
D «- D vo(i).
Cont i nue,
Ry < R, D, & Do’ RO &~ B, D0 & f.
[Elimnate redundant representatives].
Do 22 for e ¢ R,.
Do 21 for we C/ {identity) ,
Do 20, i=1, .... k.

oo
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20. “If w(s(i)) Ae#0and s(i) Ae=0, gotolT;
else if m(s(i)) Ae=0 and s(i)Ae # 0, go to 18.

21. Cont i nue.
22. Put e On R,
23. RETURN.

END

Subal gorithmIb. The internediate |evel subal gorithm

Purpose. To determine a small set of double coset representatives of
A and B in er in the special case where A corresponds to a
partition of k of the formm+(x-m) = k and B is any subgroup
of Sy
Techni gue.  This ,subalgorithm i S recursive and is based on |emm 4.2,
i.e., on recursion on orbits. It uses subalgorithm Ic.

Input. The binary n-string v corresponding to X k= |, m and
two lists which contain the n-vector formand the cycle set form
respectively, of a set C of permutations in 8 such that «x) = x
for every y ¢ C and ¢ IX= B.

output. A list R of binary n-strings e, eA'U=e, which corresponds
to a small doubl e coset representative set of A and B in Sy
Odered lists: R R(h,i), V(h,j).

START

1. Initialize: u(1) e« U, C(1) «C, k(1) <k, m(l) «m, h <I1.
*  [The following i S the reduction part of the recursion].

2.8 <~ max {2° | 22 A Uh) # 0 }.



3. obt(h) &« V ul(s).
7eC(h)
4, t(h) <= |-bit count of ovt(n).
5. i(h) € max {0, m(h) + t(n) - k(h)) » u(h) < min {t(n), n(h).),
i, €« max { i(h), t(h) - u(h)} s w <=mnin {u(h), t(h) -i(h) }e
6. Do 8, i eH=[i}, min {u, [t(n)/27 -1} 1.
7. Call subalgorithmlc with input ovt(n), t(n), i, C(h);
getting as output R(h,i).
8. R(h, t(h) - i) & {obt(h) - € | e.eR(h,i)} .
9. Do 10 for i e [i(h), u(h)] . (U {t(h) - {[3ea}.
10. Cal | subalgorithmiIe with input owt(n), t(h), i, C(h); getting
as output R(h,i).
11 If t(h) = k(h), go to 17.
12. Renove the first element e(h) from R(h,i(h)).
13. C(h + 1) € { me C(h) | pAe(n) = p or 0 for all
peP(r)} .
4. v (h + 1) €= v(h) - obt(h), m(h+l) €= m(h) - i(h), k(h + 1)& k(h)-t(h).
15, h &« n+ 1,
16. CGo to 2
* [The following is the expansion part of the recursion].
17. If n=1, R« R(l, i(1)) and RETURN.
18. h ¢« h-I. |
19. Put the elenents of { fve(n)|f R(n+l, i(h+1))} on V(h,n(h)).
20 If R(h, i(h)) =¢,i(h) «i(h) + 1, else goto 12,
2. If i(h) <u(n), go to 12.
22. |If n=1, R &=V (1,m) and RETURN.

27
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23. h & h-I.

2h. Put the elements of  {f¥e(n) [fe V(b+l, m(h+1)} on V(h, n(h)).,
25. (G0 to 20,

END

Subalgorithm Ia, The highest |evel subalgorithm

Purpose. To determne a small set of double coset representatives
of A and B in S, where A is the |abel subgroup of 8,

corresponding to the partition n, +n, + ... +

1 ) ‘'=n and Bis

iq
any subgroup of 8 -

Technique. The main loop of the subalgorithmis based on lemma 4.1,
i.e., on induction on the nunber of terms in the partition of n.

The subal gorithm uses subal gorithms Ib and Ic.

hnput.q, n,, e .. ) B and two lists which contain the n-vector
formand cycle set form respectively, of B.

Output. A list Rof integral n-vectors if q > 2 or binary
n-strings if a < 2 which corresponds (as in corollary 3.5) to a
smal | doubl e coset representative set for "Aand B in Sﬁ; and

a list P of subgroups of B where if e is the i-th elenent of

] —a 6
R, then the i-th elenent of P iS"el'AenB.
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Odered lists: R R, P, P, T, T.

START -

# [Trivial partition case].

', 1fqg=1 Re& 0, P «B-ana STOP.

* [Initialization procedure].

2. Call subalgorithmIb with input %1, n, nen, B; getting
as output T.

3, Dok for e eT.

b, P<3Ble)={neB|pAe =por O for every peP(r)}

5. If g=2 R <« T and STOP.

. Do 8 for e eT. -
6 orE e 1, 229A  e#O

T. Form w = (w(1), « « « , W(N)) where w(3j) = { 0, otherwise
8. Put W on R
9. 1, < n.

* [Induction section].

10. Do18,i=2,. . . . (-1

11. Initialize: Dy %= By = By Lo o R, <~ R, P, «P, T, < T,
R «~f, P 4« §, T « 8.

12. Do for 17 each w = (w(1), . . . . wn)) 2 and its corresponding
e(w) eT, and B(w)e P..

13. Cal | subelgorithm |b with input e(w), n,, n

0* %o T g +1-i°
B(w) ; getting as output T.
1k, Do 16 for f eT.

15. Form % = (v(l), ..., v(n)) where

i, 2" Af #0
v(3) = w(j), otherwse .

16. Put t*w on R put B(f*w) = { ™ €B(w) | pAf=p or O

for every p ¢P( w)} on P.
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17. Cont i nue,
18. Cont i nue.
19. STCPR.
"END
5.2, Algorithmll. This algorithmis a variant of the first algorithm

It uses recursion on the nunber of terms in the partition of n, i.e., it
uses the technique of subalgorithmIa. W will describe only that part
of algorithmlIl which differs essentially fromalgorithmI,

Subal gorithm IIb.

Pur pose. To determine a canonical set of double coset representatives
of A and B in Sys X < [1,n], in the special case where A
corresponds to a partition of k = |x| of the formm (k-n) = k and
B is any subgroup of Sy
Technigue. This subalgorithmis based directly on theorem3.1. It
also uses | emmas 3.3 and 3.6 and corollary 3.5. It systematically
generates the binary n-strings contained in X wth ml-bits. As
each such string e is generated, the subal gorithm checks if e is
on BL (bad list). If eis not on BL, it is put on 6L (good list),
and all other n-strings which correspond to small right coset

representatives of Ain s, which belong to the double coset

X
determned by e are computed. These latter n-strings are nerged

into BL. For each e in G, the group 1 xeNB is deternined

in the course of the conputation and is saved on GLG



3l

Input. The binary n-string U corresponding to X, k =|X], m,
and two lists which contain the n-vector formand the cycle set form
respectively, of a set C of permutations in S such that

¥x) = X for every ¥y ¢ C and C|X= B .
output. A list GL of binary n-strings e, eAU = e , which
corresponds to the canonical set of double coset representatives of

A and B in s and for each e on G the set

X ?

{mec | | ¢l aAsNB} onthe list AG

X
Ordered lists: @G, BL, GG O, OB

START .

1.. Initialize: GL 4~ ¢, BL « ¢, GLG <« #.

% [Trivial cases].

2. If w0, Q. <« 0; else if mk, G <« U, else go to &.

3. GLG <« C and RETURN.

# [Determne the elenents of X].

4, Determne s(i)€(1,n], 1 <i <k, such that s(i)AU # 0 and

7
s(1)>s(3) if i <j.
#  [Transfer out of main routine in special cases].
5. |f m=1 or m=k-1, gO tO 29.
*  [Min |oop].
m
S

6. Initialize: e «~ V s(i); t(i) <« ml-i, 1 <i «m
i=

1
7. Put e on CL.

# [ Det er m ne ! azNa).
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8. T 4={ m¢e CilpAe=p or O for every pe P(m)} ,

9. Put Ton GG

* [Conpute the orbits o0 of lemma 3.3 for T in B].

10. Initialize: N 4= T/ {identity] . . .

11. Do 13, i=1, ..., k-1.

12, Qi) « {w(s(1))] me n}.

13. N = {ne M| =(s(1)) = s(i)}.

* [Determine the left cosets of T in B using |lemma 3.3, and via
theoredt 3.1 deternmine the right cosets contained in A‘e‘B].’Q

14, Do 20 for x. ¢ C/ {identity) .

15. Do 18, =1, . . . . k-I.
16. Do 17 for se O(i).
17. If  n(s) >=n(s(i)), go to 1k
18. Cont i nue.
m

19. f <« V =n(s(t(J))).

J=1
20. If f#e, nerge f into BL (largest first).

#  [CGenerate the next hinary string].

21. Do 22, i=1, ...m

22. 1f t(i) <k-i, go to 2k.

23. RETURN.

2h. e <« e A binary conplenent (2+s(t(i))-1).

25. Do 27, =1, « *es 1.
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26. e <« evs(t(i)+J).

27. t(3) <= t(i) + (i+1-J).

28. If eis equal to the first nenber of BL, delete this menber
fromBL and go to 21; else go to T.

*  [Special cases: Conpute orbit represensatives for CJ.,

29. Initialize: OL <= @, OB < 0.

30. Do 35, i=l, « *09 k.

31. I f 0BAs(i) # 0, go to 35.
32. Put i on OL.

33. Do 34 for @ e C,

3k, OB <« OBV (s(i)).
35. Conti nue.

®*  [Special cases: Determne double coset representatives].
36. Do 38 for i eOL.

37. Put s(i) on.GL.

38. Put { T e ¢ | m(s(i)) =s(i) } on GLG.

39. |f m=1, RETURN.

40. Repl ace each e on CL by its binary conplenent

L1. RETURN.

END

5.3. There are significant operational differences in the two algorithns.
Algorithm | is conputationally more conplex than AlgorithmlIl. Al so,
subal gorithm Ic does initially construct a list of double coset representatives

Wi th redundances which is |ater pruned, while in subalgorithm IIb the pruning
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process is incorporated directly into the main | oOp. A possible
compensation for the additional complexity of Algorithm I is that
for many graphs, most of the cases when subaléorithm Ic is called
are the trivial cases in which there must be only one double coset.

The first algorithm essentially as described and a variant
of the second algorithm not using recursion on the number of distinct
labels have been coded in LISP for the Stanford Computation Center's
IBM 360/67.° The recursive and |i st processing capabilities of
LISP make it well-suited for coding these algorithms.

The empirical evidence obtained in running the coded algorithms
clearly indicdtes that the key recursion in the described algorithms
is the recursion on the number of distinct labels. The coded
variant of Al gorithm II is much slower than Algorithm I. The
typi cal running time for Algorithm I is under .01 per distinct
double coset. The described version of Algorithm II should be
even more efficient.

6. Exanple. Let G be the planar graph in figure 3. Using
Algorithm II we will determine all topologically distinct labelings
of G With one label a, two labels ¥ and three labels e.

The topological symmetry group of G consists of:

L Identity transformation.

LI Reflection about the line Zl'
T, Reflection about the line 12.

m, : 180° rotation about the center.
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The input to Algorithm Il is:

U= (111111); n=6; q=3; n =13 n,=2; n.=3; the two lists corresponding
to the symmetry group:
List 1. List 2.
" (27, M 23 22 L 2%
nor (23, 240 25, 22, 2t 2% (@ o10000)}
n (27 2%, 23, @Y, 20, &N (010200, (000011))
e (23, 28, 2%, 2t 20, ). 2201000, (010100),0006 11)

First, subalgorithmIb is called with input:

U = (111111); k=6; m=3; List 1, List 2.

The initial input for the main loop at IIbis:
s(1) = (100000),s(2) = (010000), s(3)=(001000),
s(4) = (000100), S(5) = (000010), S(6) = (000001);
e = (111000); t(1) =3, t(2) = 2, t(3) = 1.

The loop first determnes:
r= Lom, wo by (1) = {(001000)} ;0 (3) =8 2 59 <5

Si nce "3(23) = 25> w'5(25) =23 for j=land 3, w and T,

produce no elenments for BL (bad list). T, produces

fo=, (23) V m, (2%) Ve, (2}) = (1001100) which is nergedinto

BL.
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At the end of the first time through the main | oop of IIb, we have:

GL: (111 00 0)
GG { gy, 7 )
BL: (1011 0 0).

Wth the given input, IIb goes through'its mai n | oop 8 times

produci ng:
a

e;:  (111000)
2° (110100
et (1100 10)
e (110001
°5° (101010
6 (1000 11)
7" (01011 0)
eg (0100 11)

Next, the following é-vector list is conputed fromthe elenments

of Q.:
wi:(Ll,L 0, 0, 0),
vy = (1, 1,0 0, 1, 0),

W, = (l’ 0, 1, 0, 1, 0)9

Vo = (0, 1, 0, 1, 1, 0),

(1, 1, 0, 1,0, 0)
(1, 1, 0, 0, 0, 1)
(l’ 0, os 0, 1, l)

(o’ l, 0’ 0’ l’ l)n



37

Subal gorithm Imb i s called for each w, . For exanple, for w,,

IIb is called with input:

U = (110100); k=3; m=1; t he two lists:

List 1 List 2
" (2%, 2%, 23, 22, 2%, 29 g
e (20, 2 2, 24, 2% 2N (010100, (00001 1)} .

Wth this input, IIb transfers to the special case section and

conputes QL = {1, 2} and

A GG
fl: (100000) { mg»7, )
£: (010000 )

The main routine determnes:

fl*w2: (2, 1, 0,1, 0, 0)

f*w: (12,001 0 0).

Wi Wos W and wg each induce 2 distinct labelings of ¢, and ws»

5

w),» W, and wg each produce 3 distinct |abelings of ¢ . The 20 distinct

T
| abelings of ¢ with a, b, b, e, ¢, ¢ @are given in figure k.
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FOOTNOTES

This work was supported in part by ARPA Contract SD- 183
and NSF Grant GP-16793.

A complete description of Pélya's theory of counting can be
found, for exanple, in [1] and [s6].

The cyclic structure generation algorithms will be described
inalater paper.

For consistency with our choice of notation, one should always

view a labeling e in s, as a mp fromthe nodes of ¢ to labels
in L

Note, however, that in terns of the graph this "canonicalness"
is conpletely dependent on the indexing of the nodes and |abels.
T Wens corresponds to the subgroup of the topological symetry
group Of the graph which preserves the |abeling determned by

e. This subgroup is needed in many applications of the [abeling
al gorithm

Recal | that | e [1,n] is represented by 23,

Here we use the property that the inverse of a left coset
representative set is a right coset representative set.
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SYMBOLS

C Set contai nment
U Set union

(N Set intersection
A Logi cal and

V Logical or



