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. Abstract

Thi s paper is concerned with best two-sided scaling of a general

square matrix, and in particular with a certain characterization of

that best scaling: namely that the first and |ast singular vectors

(on left and right) of the scaled matrix have conponents of equal

modul us.  Necessity, sufficiency, and its relation with other charac-
terizations are discussed. Then the probl emof best scaling for

rectangul ar matrices is introduced and a conjecture nade regarding a
possi bl e best scaling. The conjecture is verified for some special

cases.
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1. [ ntroduction

Let A be an n x n nonsingular matrix.+ W are interested in the best
row and colum scaling of Ain the 22 norm that is

min -1

O course this is equivalent to

mn
D,E di ag (01(DAE) /°n (DAE))
wher e ol(A) 2 °2(A) 2. . . 20,(A >0 are the singular values of A In this

paper we will discuss the follow ng useful characterization of this best

two-sided scaling: let A=U Z V be the singular value deconposition of A
- - : 1 ; 1

Then A is best scaled in the £, normif luf ) | = I“,(_n'l’lvi )| = |v§n),, for

i=1,...Nn. That is, Ais best scaled if the first and | ast colums of U and

V have conponents of equal nagnitude. W refer to this as the EMC property.

This characterization has had an interesting history: it was to our
know edge first discussed by Forsythe and Straus [3] in connection with
one-si ded scaling, or equivalently best symmetric scaling (DAD) of a positive
definite matrix A (For one-sided scaling, only one of UV is involved
in the EMC property.) They showed sufficiency of EMC for best one-sided
scaling. It was also nentioned by Bauer [1] for one-sided scaling; he also
gave an explicit representation of the best £2 scaling for matrices Awth
A and AT having a checkerboard sign pattern. Mre recently, MCarthy and
Strang [4] have settled the question of necessity for one-sided scaling:

for matrices A which when best scaled have o and o distinct, the EMC
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property nust hold; however this is not always true if 0, or o is nultiple
even using the inherent anbiguity in the singular vectors, and they give
count er exanpl es.

The EMC property for two-sided scaling was first brought toour attention

by C.L. Lawson (see also [6, pg 447) in connection with the matrix

1 2 3
A= 1 -1 1 o /o ~ 27.4
1 n =
o 1 1

W found the best £2 scaling by mnimzing ol(DAE)/on(DAE) as a function of

D, E using a function Ninimizing procedure. This gave D = diag(l1,v3,3),

E = diag(1,1/2,1/¥6), ¢ /o = 13.9,
1

1 1 v6/2
DAE =| /3 -Y3/2 1]v2 )
0 3/2 Y6/2

In this paper, we discuss the EMC property for best two-sided scaling
and how it is related to the Bauer representation for checkerboard matrices.
Then we discuss the problemof best scaling for a rectangular matrix.

W end this introduction with a warning: although these best scalings
are attractive and theoretically interesting, it may be quite inproper to
scale.a particular problemthis way, this can cause inaccurate data and
uni nportant variables to assunme too nuch influence. Such is the case for
exanple in solving ill-posed problens using the singular value deconposition
(see [5]). Normally several of the equations are ignored and a reasonabl e
solution is constructed solving the remaining ones; however “best" scaling
can cause the whole matrix to become quite well-conditioned, with its

(wel | -determ ned) solution bearing no relation to the solution of the origina

probl em
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where u

2. Aspects of the

EMC Property

First we show

scaling. The proof

Theorem 2. 1:

the sufficiency of the EMC property for best two-sided

is a slight extension of Forgythe and Straus [3].

Let A be an n x n nonsingular matrix. Then Ais best scaled in the

£2 normw th respect

Pr oof :

to diagonal scalings DAE if the EMC property holds.

W have for any nonsingul ar diagonal D,E,

- ~ _ max
condz(DAE) ol/cn

- max
Py»q,T,s8

W @

TDAEq

lpﬂzl qll,
P»q,1,8 rTDAEs

Iell, | sil,

[ IDTAG|
IID_lp-H IIE_l | | (n)T.-2 (n),, ()T _-2 H
2 '’y cond, (a)| L&D w8y (W T2, ()
IrTAsl 2 (u(l)TD—Zu(l))(V(l)TE-ZV(l))
1o et 1, 1E bsl 1,

,v(n) are the appropriate singular vectors of A Nowif

l(U(n>)i 1 =1 (U(l))iland l(v(“))il = l(v(l))il for i =1,...,n,i.e. if the exc
property holds, the termin square brackets is 1 and cond, (A) < cond, (DAE)

for all D E @

For the EMC property to be al so necessary for best two-sided £2 scal i ng,

we nust show the existence of a D, E with DAE having the EMC property.

However

as we nentioned earlier, MCarthy and Strang [4] gave exanples of one-sided

best scaled matrices for which the corresponding one-si ded EMC property fail ed



to hold. These exanples hoever had nultiple o, or o_ in best scaled
>~ i

form for matrices with distinct 9y and 9_in pest scaled form they
showed that EMC was attainable. From this we easily obtain:

Corol lary 2.2:

Let A have distinct o and o in best scaled form then the EMC
property is necessary and sufficient for best two-sided £2 scal i ng,

Thus the existence of an EMC scaling is assured with this restriction
of distinct extreme singular values. O course it need not be unique:
for exanple if A has a special symetry so that PAQ=A for P, Q
pernutation nmatrices, then if DAE is best scaled, so is (PDPT)A(QTEQ).

(This is P(DAE)Q with singular value deconposition (PU)Z(VTQ) and this
has EMC if U J v' does.)

Now we discuss the relation between EMC and Bauer's characterization
for best KZ scaling of a real irreducible checkerboard matrix A W nust
al so assune, although it normally follows fromthe irreducibility of A
that |4 a7, |a7) 4] , |4] |AY, |aT| |a| are irreducible. Recall
the Bauer characterization (see [1]):if A A'1 have checkerboard
sign patterns, that is if there exist diagonal orthogonal matrices,

1

1» 930 J3» J, sO that J,A1) = |a] 2 0 and J;A

we let y, x@ pe the left and ri ght Perron eigenvectors Of |A| IAull

J J4-IA'1|20, and i f

(and sinmilarly y@ @ ¢, |a71] ]Al), then the best Z,

scaling DAE for A is given by d12 - yi(1)/ xi(1) |



e (Because of the irreducibility, the Perron vectors have

2

i
positive conponents.) Thus A is best scaled if the left and right Perron

. -1 )
vectors Of [A| [A 7| and |A 1HAI are equal . But such a matrix A satisfies

the conditions of Corollary 2.2, so the above nust be equivalent to the EMC

property. W expand on this as follows:

Theorem 2. 3:

Let Abe areal irreducible matrix with a checkerboard sign pattern.

Suppose lAl=J,A3,, |A° 1|=J3A' 1J4 and let A=UJ Vv be its singular value
deconposi ti on.
(1) Suppose the EMNC property holds. Then [u‘®| is the Ieft and right

Perron vector of 14:1a7Y and 1v(P| is the left and right Perron vector

of 1a71|al.

(ii) Suppose the [eft and right Perron vectors of |Al IA'1| are equal (call
1t ), and sinilarly for |a"t1al (call it v). Then u‘® = 3pu, @
w @y

v = J2v, v

4

Proof :
T
(1) V& have [Al = J;A7, = (L U) Iw J.), and this nust be the singular

val ue deconposition for |Al. Hence Jluu) >0, sz(l) > 0 (positive because

. C A -1 -1 -1
of the irreducibility of A). Simlarly |A 7| -JA, - (JBV)Z (UTJ4) and

we nust have .J3.v(n) > 0, J4u(“) > 0. Now the EMC property and orthogonality

of the {u(i)}',{v(i)} gi ves

J4u(n).Jlu(1) J3v(n)=J2v(1)
Jlu(n),,,J(’u(l) sz(n)'Js"(l)

-1 T -1.T -
Now [A] [a™"] = 3, v ] (V30w [u = u (ol 1, UTJ4’

Consider @ it is orthogonal and symmetric, and from (1) we see that
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an-in-l and the rest of the first and last rows and colums of Q are zero.

(? -0 °1/°n
Thus ZQZ-I = X B ?

0 .

°n/°l 0 - 0
Thus

lal1a™t (Jlu(l))=J1 U (o™ o” J,,(J,,u(n))

=5, U (ZQZ'I)en

=, U (;'l')el' 'oil(‘] 2.
n n

So Jlu(l) = (u(l)l is the unique positive right Perron eigenvector of
Al 1AL corresponding to the eigenval ue 01/ a . Asinilar conputation shows
it is also the left Perron vector. Likewise, Jyv(1) oy oo o0
to be the left and right Perron vector for IA'IIIAI.

(ii) If the hypothesis of (ii) holds, then from Bauer [1] we have that
the spectral radius of lAIlA'll and lA'll lAl is °l/°n‘
Thus 1al1a™} u = ;—1 u, which gives

n

-1 -1
onJ3A Jl‘u - olle Jlu.

n n n f
i i
Now | et J4u-§q.iu(), Jlu-gaiu( ),with2a2-§32-1. Then the

above can be witten

e €D S Bet
an:{:o——-v =-(.I3J2) 9 ZlTiv( )
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Now take !.2 nor ns:

o a 0,8
122(—2—1)2,:2(_1_.5;)221
i 9% i %

and equal ity nust hold, inplying t hat as= 1, 31 = 1 with the other conponents
zero, giving Jpu= u(“), Jl‘u - u(l). By a simlar argument, one can show
J2V = v(l), J3v = v(n). QED.

W should also remark that the equival ence of these two characterizations
can be used to check the accuracy of A-l, when it is known that both A and
At have checkerboard sign patterns. For a given A and conputed A'l, one
can conpute the best scaling via the Perron vectors of |A| 14”1} and IA"lHAI;
then one can test--the EMC criterion on the singular vectors of the scaled

matrix.

3 Best Scaling for Rectangular Matrices

Let Abe mx nwith m>n and rank n. Then we can still ask for the
best scaled DAE in the sense of mnim zing ollcn(DAE). It is clear that
for the best scaling on the right, the EMC property on V is still sufficient,
since ATA is still a nonsingular n x n matrix and the Forsythe-Straus argument
still holds. However this is not the case for scaling on the left, since in
particul ar we could take any n linearly independent rows of A and best scale
the resulting n x n matrix; this will then have the EMC property (assum ng

o, and o are distinct) but will not necessarily give the best scaling for

1
A. There are in fact (:) such choices of n x n submatrices, so a |eading
contender for the best scaled A would be that n x n submatrix which when best
scaled gives the mninmal condition. This leads to the intriguing

Conjecture: There exists an n x n submatrix of A which, when best scal ed,

gives the best scaling for A also.
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It would be better to say one of the best scalings because it is not

necessarily unique. \\ cannot prove this in general, only in sone specia
cases which we discuss below. \¢ have also verified it nunerically on
several exanpl es.
Case I A= (;;) where B is n x n, nonsingular, and FTF is diagonal
Then A?A=BTB + BTF FB

-BT(I + FTF)B

=BTGTGB

so the nonzero singular values of A and GB are the same. \owif FFis

diagonal, Gis diagonal, and thus the best scaling for A occurs when GB (or

B) is best scaled. So one best scaling for Ais DAE = (DlgE) where D.BE is

best scaled. However this is not necessarily unique: let B be best scaled,

and consi der

D, BE
DAE = (DZFBE)'
Then
(DAE)T(DAE) = EBT(D12+FTD22F)BE= (GBE)T(GBE) .
Now if F is such that FTD22F is diagonal for all D, di agonal (e.g. if F

has at nmost one nonzero el ement in each row and colum), then Gis also

di agonal for all choices of D and D, and the best scaling of A occurs for

E = I'and any pl,Dz such that G=1 (since B Is best scaled)  pat is we

must have '
2 T 2

Dl + F D2

F=|
O course this will occur for D =1, D, = 0, but there can be many ot her

sol utions.

Note also that if Bis an orthogonal matrix, a best scaling is

certainly obtained with D =1, D,= 0, no natter what Fis



Case II: n = 2

ul Vl
Ve have A= | @ . , D = diag(d},...,d)), E = diag(e,,e,),
Un vn T
Al(B B) |1/2
and we seek min condz(B-DAE) = min | —=—m— = ¥ g(D,E)
D,E D,E \ 1, (B"B)

2 24,2 eZdzuv

T . € Id;uy €182%% YiVy
LetBB=($s)- ) ) 5 o
~ elez}:di “ivi e2 Zdi vi
2,, 2
+ -
Then g(D,E) = 1+ /£(D,E) where f(D, E) _,(198)—'“241‘

1 - /£(D,E) (p+s)

, . Since g is a nonotone function of f, we need only find min £(D,E). As a

function of e = ez/ev we can wite

282

£(D,E) = (a-yeh)? + 4e
’ 2
(at+ved)
where a, B, y are constants. This is mnimzed as a function of e for

- 2 . : .
e” = y/a, making p = s and thus BTB = (2 ;) whi ch has eigenvector matrix

— r—

| (i ;i), possessing the EMC property.
Wth this E
e (24, %uyvy)° 2
f(D) = 7 = 2 2 2 2 = CcOS G(Du,Dv).
- P (Edi u, )(Zdi vy )

To mnimze this, we need to exam ne three cases.

(1) some u, orv, =0. Suppose u, =0, vy # 0. Taking dj > = gi ves

f(D) = 0 for any choice of the other dj, | f u = v, = 0, the problem



reduces to one of |ower dinension.

(ii) {ui}, {vi} not all of the sane sign.

v, <0 for exanpl

10.

So assume all ui,vifo.

Suppose ul > 0, >0,vl >0,

u
2
€. Then we can make (Du) 1 (Dv) and f(D) = 0 by choosing

d =g -0, 1412
“11 “UgY

[f r =u1/v,R-

best B = DAE =

- uy/v,, this gives e2 o ;g ang

/r JR
VR - Jr
0 0
0 0

"its eigenvector matrix with the EMC property.

({14)  u >0, v,

Beckenbach and Be

min f (D)
D

where r = min u. /v
g 1

Dhasd = _1 ,4q, =

Yu
mvm

best B =

>0 for all 4. Then froma result of Cassels (see

Il man [2, p. 45]), we have

4rR
(t+R)2 2 +

e |~
e )]

= u /v (say) and R = m:x u /v, = w/v.. The corresponding

;; dl "O’i*maM. This givesg=rRand

Y iy
0 0
0 0
DAE = Yr JR o row
JR Jr Mth r ow
oo
SETR
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Agai n BB’ has its eigenvector matrix with the EMC property.

Finally, one mght think that for rectangular matrices with a
checkerboard sign pattern,the best scaling could be achieved using Bauer's
algorithmwith A and A‘p, the pseudo-inverse. W give the follow ng

count er exanpl e:

1 1
A=| 2 1 .
4 1
0 . 1 2
Best scaling: D = diag(1,0,1/2), E = (3 g)- Then B = DAE =1 4 g ,
With cond,(DAE) = 3. 2 1
) (-1/3 0 2/3
Now B = 2/3 0 -1/3 and
5/3 4/3 5/3 0 4/3
I8Y] 18| -( , |8 lg"'( = 0 o o
4/3 5/3 4/3 0 5/3

Both of these are symetric so both have equal left and right Perron vectors.
Thus the Bauer Zz scaling leaves B unchanged, if we call QO _ (notice

[B] IB"’I is reducible). However if we try to derive B from A using Bauer's

algorithm it fails:
v L4 -1 5 ¥ 13/7  5/7
il 77 (14 7 -7)' 'A“A"(I{ 2 )

and this has spectral radius =p = 3.62 >3 = condz(B). Nbreover the |eft

and right Perron vectors of IA“’HAI are

p -2 > 5/7 )
5/7 p - 13/7



giving a right-hand scaling matrix E = (

12.

1 o0
0 2.4

W mght also remark that if the conjecture is valid for arbitrary

, not optimal.

mx n matrices, it would indicate the‘folly of trying to best scale a

rectangul ar matrix arising froma |east squares problemfor exanple; only

n of the observations would be retained!
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