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. Abstract

This paper is concerned with best two-sided scaling of a general

square matrix, and in particular with a certain characterization of

that best scaling: namely that the first and last singular vectors

(on left and right) of the scaled matrix have components of equal

modulus. Necessity, sufficiency, and its relation with other charac-

terizations are discussed. Then the problem of best scaling for

rectangular matrices is introduced and a conjecture made regarding a

possible best scaung. The conjecture is verified for some special

cases.
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1. Introduction

Let A be an n x n nonsingular matrix.+ We are interested in the best

row and column scaling of A in the l2 norm; that is

min
D,E diag

Of course this is equivalent to

--.

min
D,E diag tolOW /a WE))n

i where al(A) 2 a2(A) 2 . . . 2 o,(A) > 0 are the singular values of A. In this

paper we will discuss the following useful characterization of this best

two-sided scaling: let A = U 1 V be the singular value decomposition of A.

Then A is best scaled in the e2 norm if /ui(1) 1 r Iu(di l,lv~l'l = Ivin'/, for

i-1 n.t.*. s That is, A is best scaled if the first and last columns of U and

V have components of equal magnitude. We refer to this as the EMC property.

m This characterization has had an interesting history: it was to our

knowledge first discussed by Forsythe and Straus [3] in connection with

c one-sided scaling,. or equivalently best symmetric scaling (DAD) of a positive

definite matrix A. (For one-sided scaling, only one of U,V is involved

. in the EMC property.) They showed sufficiency*of  EMC for best one-sided

scaling. It was also mentioned by Bauer [l] for one-sided scaling; he also

gave an explicit representation of the best t, scaling for matrices A with

A and A-' having a checkerboard sign pattern. More recently, McCarthy and

Strang [4] have settled the question of necessity for one-sided scaling:

for matrices A which when best scaied have al and an distinct, the EMC
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property must hold; however this is not always true if al or an is multiple

even using the inherent ambiguity in the singular vectors, and they give

counterexamples. . .

The EMC property for two-sided scaling was first brought to our attention

by C.L. Lawson (see also [6, pg 447) in connection with the matrix

We found the best e2 scaling by minimizing ul(DAE)/un(DAE) as a function of

D,E using a function minimizing procedure. This gave D = diag(l,&3),

;

E * diag(Ll/2,l/hi), u /U 2 13.9,

1

. DM-(-' n -;;; ;; )

L In this paper, we discuss the EMC property for best two-sided scaling

and how it is related to the Bauer representation for checkerboard matrices.

c
Then we discuss the problem of best scaling for a rectangular matrix.

We end this introduction with a warning: although these best scalings

are attractive and theoretically interesting, it may be quite improper to

scalea particular problem this way; this can cause inaccurate data and

unimportant variables to assume too much influence. Such is the case for

example in solving ill-posed problems using the singular value decomposition

be [51>. Normally several of the equations are ignored and a reasonable

solution is constructed solving the remaining ones; however “best" scaling

can cause the whole matrix to bec,ome quite well-conditioned, with its

(well-determined) solution bearing no relation to the solution of the original

problem.
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2. Aspects of the EMC Property

First we show the sufficiency of the EMC property for best two-sided

scaling. The proof is a slight extension oi Forgythe and Straus [3].

Theorem 2.1:

Let A be an n x n nonsingular matrix. Then A is best scaled in the

l2 norm with respect to diagonal scalings .DAE if the EMC property holds.

Proof:

We have for any nonsingular diagonal D,E,

.- cond2(DAE) = u /o'-- = lMX

In Psq*r,s

L.

t

I
t

L
L

m -I
IP'ACrl

itD-'pli21tE-'ql I2

irThl
cond2(A)

-1 -1
b lb r~~2~~E  sl12

112($dTE-iv(“))
(v(l>T~w2v(l>) I

where u(l)  ,utn)  ,v(” ,vcn) are the appropriate singular vectors of A. Now if

Id")> i I - I (u(l)> Ii and d$ = I#')),1 for i - l,...,n, i.e. if the EMC

property holds, the term in square brackets is 1 and cond2(A)  s cond2(DAE)

for all D,E. QED

For the EMC property to be also necessary for best two-sided &, scaling,

we must show the existence of a D,E with DAE having the EMC property. However

as we mentioned earlier, McCarthy and Strang [4] gave examples of one-sided

best scaled matrices for which thexorresponding  one-sided EMC property failed



to hold. These examples hoever had multiple Q, or o- in best scaled

form; for matrices with distinct ol and on in

showed that EMC was attainable. From this we

A u

best scaled form, they

easily obtain:

Corollary 2.2:

Let A have distinct u1 and un in best scaled form; then the EMC

property is necessary and sufficient for best two-sided e2 scaling,

Thus the existence of an EMC scaling is assured with this restriction

of distinct extreme singular values. Of course it need not be unique:
c

for example if A has a special symmetry so that PAQ=A for P, Q

permutation matrices, then if DAE is best scaled, so is (PDPT)A(QTEQ).

. (This is P(DAE)Q with singular value decomposition (PU)c(VTQ) and this

has EMC if U 1 VT does.)

b.
Now we discuss the relation between EMC and Bauer's characterization

for best e2 scaling of a real irreducible checkerboard matrix A. We must

c also assume, although it normally follows from the irreducibility of A,

that IAl lA-1l  s lA’1l  IAl s IAl lATl, lATl IAle are irreducible. Recall

the Bauer characterization (see [l]): if A, A-l have checkerboard

sign patterns, that is if there exist diagonal orthogonal matrices,

J1, J2, J3, J4 so that JlAJ2 = IA/ z 0 and J3d1J z 0, and if

we let y(l), x(l)

4 - /Agll

be the left and right Perron eigenvectors of iA/ IAN11

(and similarly y (2) , xc2' for 1~~~1 IA/>, then the best C,

scaling DAE for A is given by di 2 ID p/ X%(l) ,
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ei 'xi (Because of the irreducibility, the Perron vectors have

positive components.) Thus A is best scaled if the left and right Perron

vectors of IA/ l&l and IA-1 ItAl are equal. But such a matrix A satisfies

the conditions of Corollary 2.2, so thk above must be equivalent to the EMC

property. We expand on this as follows:

Theorem 2.3:-

Let A be a real irreducible matrix with a checkerboard sign pattern.

Suppose IAI=J~AJ~
1s

-1 -1, IA I'J3A J4 and let A = U 1 VT be its singular value

L,

decomposition.

(i) Suppose the

Perron vector of 1,
A.-

of IA~~IIAI.

i (ii) Suppose the

EMC property holds. Then lu(l) I is the left and right

4.’ ‘A-l’  , and Iv(') I is the left and right Perron vector

left and right Perron vectors of IAl IA-1 I are equal (call

I
i

Tit u), and similarly for IA-l/ IAl (call it v). Then u(l) - J1u, u(~)

p - J2v, I+)

= J4u,

= J v.3
Proof:

(i) We have IAl - JlAJ2 - (J U) 1 (VTJ ) and this must be the singular

value decomposition for IA/. Henct J1u@) >'O, J2v(l) > 0 (positive because

of the irreducibility of A). Similarly IA-'1 -JA-1

we must have J v Cd > 0, J4u(n) > 0.
3 J4 - (J3V)lm1(UTJ4) and

of the- ~u(~)I;~v(~)I gives

Now the EMC property and orthogonality

.
nJ4u( )=J1u(l) n

nJ1u( )

J3v( )

=J4u(l)

=J2v(l)

n

Jlu(')

J2v( )

IJ u(l)

=J3v(')

4 J2v(l)1J v(l)3 (1)

NOW IA/ IA-~/ = ~~ IJ 1 (VJ,J~V~ ~-'-.u~J
4 - ~~ u (1 Q 1-l) U~J4’

Consider Q; it is orthogonal and symmetric, and from (1) we see that
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Qln-Qnl=l  and the rest of the first and last rows and columns of Q are zero.

Thus

'AIlA-+(J,u(') )'J1 U (CQC-l) UT J4(J4~(n))

=J1 U (~Q~%n

ul 5-J1 U ()e - 7 (J u(l)).
n1 1n--

So J1u(l) = 'u(l) 1 is the unique positive right Perron eigenvector of

i -1IAl IA I corresponding to the eigenvalue u /a
1 n' A similar computation shows

L
it is also the left Perron vector. Likewise, J2v (1) p '$) Ican be shown

to be the left and right Perron vector for lAwlllAl.

t (ii) If the hypothesis of (ii) holds, then from Bauer [l] we have that

the spectral radius of IAIIA-1
1 -1and IA

Thus IA'lA."' u - u1

I IAl is al/o,.

Q u, which gives
n

-1

1
unJ3A -1J4u - u J A J u.

12 1

L

n
Now let J4u - 1 CL u (0

n

li
, J1u - 1 B

li
u('),

n
withfo2=lB211.

li 0
Then the

above can be written

na
an 1 i vci) = (J3J2) al 1 -vn % (i)

1 ui 1 %
.
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Now take l2 norms:

. .
and equality must hold, implying that a - 1,

n B 1 - 1 with the other components

zero, giving J4u - uW , Ju=P.
1 By a similar argument, one can show

J v = IT"), J3v = vcn). QED.
2

We should also remark that the equivalence of these two characterizations

can be used to check the accuracy of

A-l have checkerboard sign patterns.

can compute the best scaling via the

A-l ¶ when it is known that both A and

-1For a given A and computed A , one

Perron  vectors of IAl IA-l1 and I~'11  IAI;

then one can test--the EMC criterion on the singular vectors of the scaled

matrix.

3. Best Scaling for Rectangular Matrices

best

Let A be m x n with m > n and rank n. Then we can still ask for the

scaled DAE in the sense of minimizing al/an(DAE).  It is clear that

L
for the best scaling on the right, the EMC property on V is still sufficient,

T
since A A is still a nonsingular n x n matrix and the Forsythe-Straus argument

still holds. However this is not the case for scaling on the left, since in

particular we could take any n linearly independent rows of A and best scale

the resulting n x n matrix; this will then have the EMC property (assuming

ul and un are distinct) but will not necessarily give the best scaling for.

A. There are in fact (:) such choices of n x n submatrices, so a leading

contender for the best scaled A would be that n x n submatrix which when best

scaled gives the minimal condition. This leads to the intriguing

Conjecture: There exists an n x n submatrix of A which, when best scaled,

gives the best scaling for A also.
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It would be better to say one of the best scalings because it is not

necessarily unique. We cannot prove this in general, only in some special

cases which we discuss below. We have also verified it numerically on

several examples.

.
Case I: BA - (,) where B is n x n, nonsingular, and FTF is diagonal.

Then ATA=BTB + BTFTFB

'L =BT(I + FTF)B

-BTGTGB

so the nonzero singular values of A and GB are the same. Now if FTF is

iI- diagonal, G is diagonal, and thus the best scaling for A occurs when GB (or

B) is best scaled. So one best scaling for A is DAE - (Dl:E) where DlBE is

best scaled. However this is not necessarily unique: let B be best scaled,1.
I
i

and consider

DAE- (
DlBE

D2FBE 1.

L Then

(DAE)T(DAE)  = EBT(D12+FTD22F)BE=(GBE)T(GBE).

Now if F is such that FTD2*F is diagonal for all D2 diagonal (e.g. if F
4
has at most one nonzero element in each row and column), then G is also

diagonal for all choices of Dl and D2 and the best scaling of A occurs for

E = Iand any Dl, D2 such that G - I (since B Is best scaled) . That is, we
I

must have

Dl
2
+ FTD *F - I

2 l

Of course this will occur for Dl - I, D2 = 0, but there can be many other

solutions.

Note also that if B is an orthogonal matrix, a best scaling is

certainly obtained with Dl = I, D2 '= 0, no matter what F is.
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CaseII: n=*

We have A = ( u1
..
.
U
n

and we seek min cond2(B-DAB)
DSE

Let BTB = (", i)

, D - diag(dl,...,d,),  E - diag(el,e2),

- f g(W)

el Cdi

i

2 2 2
ui

111
2

ele2Cdi "Pi

2
ele2Cdi "Pi

2
e2

2 2
Cdi 5

Then g(D,E) - 1. + Jf(D,E) 2 2

1 - Jf(D,E)
where f(D,E) - ('-') +4r

(P+d2

\ . Since g is a monotone function of f, we need only find min f(D,E). As a

function of e = e2/el, we can write

f(W) =
(a-ye*)*  + 4e*$*

(a+re2) *

where a, B, y are constants. This is minimized as a function of e for

-e* - v/a, making  p = s and thus T
B B = (', z) which has eigenvector matrix

I
L

Possessing the EMC property.

With this E,

L

2
f(D) =+

b P

2 2
(Cdi "&vi>

(Cdi2ui2)("di2vi2),
- cos*8(Du,Dv).

To minimize this, we need to examine three cases.

(0 someu
i orv =O.

i Suppose ui = 0, vi # 0. Taking di + 00 gives

f(D) - 0 for any choice of the other d
j'

If ui = vi - 0, the problem
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reduces to one of lower dimension. So assume all ui,vi#O.

(ii) $1, $1 not all of the same sign. Suppose ul 3 0, u2 > 0, vl > 0 9

3
< 0 for example. Then we can make‘.(Du) I (Dv) and f(D) - 0 by choosing

dl - - 1 1

Ju v
A*----

J-u v
s di = 0, i # 1,2.

1 1 2 2

If r = ul/vl, R = - u2/v2, this gives e 2
arRand

I

i

best B - DAE -

t

Jr

JR

0..

6

JR

- Jr

0..

ii

I -ita eigenvector matrix with the EMC property.

L
(iii) ui > 0, vi > 0 for all i. Then from a result of Cassels (see

Beckenbach and Bellman [2, p. 45]), we have

c mia f(D) - 4rR II 4

D
I d

(HR)* 2+;+g
r

where r - min u /v
i i i = um/vm bay) and R = 1” ui/vi IJ tQvM. The corresponding

Dhadm.L 1 B % = 1 ,d "O,ijmM 2
i s l This gives e = rR and

Ju vm m J
VM

1

mth row

Mth row

best B = DAE J
i

0
.

ii

/r

0 \
.

ii

JR

JR Jr

0 0. .

\ ii 6
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Again BBT has its eigenvector matrix with the EMC property.

Finally, one might think that for rectangular matrices with a

checkerboard sign pattern,the best scaling could be achieved using Bauer's

algorithm with A and A*, the pseudo-inverse. We give the following

counterexample:

Best scaling: D --diag(l,O,1/2), E - (0' $. Then B - DAE -

with cond*(DAE) = 3.

Now B'
1/3 0 213

213 0 -l/3 >
and

2

0

1
I

.

Both of these are symmetric so both have equal left and right Perron vectors.
L

L

Thus the Bauer b, scaling leaves B unchanged, if we call O/O = 0 (notice

i4 14 is reducible). However if we try to derive B from A using Bauer's

algorithm, it fails:

-1 5
7 -7

and this has spectral radius - p = 3.62 > 3 - cond2(B). Moreover the left

and right Perron vectors of IA$IIAI are



, not optimal.

12.

We might also remark that if the conjecture is valid for arbitrary

m x n matrices, it would indicate the‘folly of trying to best scale a

rectangular matrix arising from a least squares problem for example; only

n of the observations would be retained! '
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