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Uxamples of World 'odel

FIGURE 1.1 -

Scenes.
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I, INTRQDUCTION,

In order to get a ocomputer to deal with the phy¥slcal world it
must have a data representatlon on Which computations Involving
space, tlme, shape, size, and the appearance of things can be done,
[t 1smy current preJjudice that polyhedra provide the proper startina
pointforbullding such a physlcal world representation, At Stanford
Aptificlal Inteilegence, Blinford and Agin have started instead wlth
spine-cross section models as an alternate approach to the same

protlems ([reference 11, Other researchers with somewhat different
goals, are attempting to build semantic, predicate calculus, problem
so!vind, or startedy plapsi @ World mgdels, In ap¥svenpt, this
paper |s about a bod,, face, eage, vertex polyhedron mode | that is
for mogdelling obJec¥s and scenes of opjects ¥or the sake of computer
vision,

Although the data strutture to be discussed is not language
dePendent, +the terminjogy and examples Wwll| follow ALGOL and LISP.
Alsos the reader is assumed to have 80me acquaintance with the | deas

associated with the following technical terms}

block, node. item, element, atom,

link, pojnter, address, reference,

datum, c¢gntent, value,

I1sty» ring, stack, sdl, tree,

dynamic free storage 8 memory allocation,

1 ee 11

moo o>

‘A thorough presentation Of these terms and ideas can be found in
chapter two of volume one of Knuth’s cookbook, ‘The Art of Computer
Ppogramming’ ([Reference 7)., The word "ring" used informally in this
pacer will always mean a double pointer ring with a head; and as in
LISP, words of memory happen to be able to hold two pointers.






FIGURE 1.2 -

A Pol yhedron Model of a tlechanical Arm
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1, A+ Introduction to World Modelling,

! wil| introduce my requirements for a computer model of the
physica| world In terms of Its role as a memory, AsS a memoryY, a
wor |d model has contents and an address!ng meghanl!sm, The klnds of

data that I wish to hold in my wofrld model are:

CONTENT REQUIREMENTS
1, topological data,
2, Gegmetrle data.
3, Photometric data,
4, Parts tree data,

Topologlecal data has todowlth thenotlion of nelghborhood; a
wor|d modal has data on what is next to what., A face., ~dcs, vertex
model Is essentlally dedicated to surface topology; matters of vojume
topology are not stored but rather must be computed, Geometric data
has to do wWith notions suech as |oecus, |ength, area and volume,
Photometpic data ingludes the loeus and nature of Ilght seurces, as
wel| as data on how suyrfaces reflect, absorb and scatter |[Ight, Parts
tres data has to do wlth the notlon that obJsots are composed of
Darts, Wwhieh | construe as data on the structure of the physical
wor|d ratheprthanas purelyanartifactof having structured World
.datal that Is, | prefer tohave thespeciflcationofhowan entity ls
broken into parts be external to my world model, The kindsof data
not Included are semantlc data (other than body names); physical data
such as mass, Inert}a tensors, electricalproperties and so on} and
gultural data such as whether an oblJect Is a toy,tool,orweapon;
withanyartistic, pe|lgious or market value,

Next the kinds of addressing mechanisms | wish to have, (or
equivalentiy the input-output modes of the model) are:

ACCESSING REQUIREMENTS
1., Appegrance - given 5 camergs return an imggeof
what the world would look |ike from that camera,
2, Recognition = glven an Image, return the obJects
from the world model that appearinthatimage,
3, Camera Solutlen = given a recognized (image,
find the locatlion 6 orlentatlion of the camera:
4, perception= givenimages, from solved cameras,
place new bodles into the model for portlons of
the Images that have not Yet been recognlzed,
5, Spatifal Accessing = glvenalocus and radius,
return the Portions of obJects In that sphere,

Clearl¥, these are the high |eve| accessing requirements whfoh are
the reasonsfor having a world model and the design goals for model
byl jding,
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FIGURE 1.3 - A Canera tiodel.

FIGURE 1.4 - Logical and Physical Raster Sizes.
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I. B« Introductlion to a Camera Mode|,

A sthe accessing requirements Imply, a world mode| requires a
speclal entity called a camera whlch lls used to mode| image
formation., Although the camera model i8 Important here for acomolete
specification of the data, It may besklpped on a first reading, The
narticular cameramodel | havebeen using |ately, I|s expressed by
eighteen real numbers {nvolving nine degrees of freadom, First there
Is the camera |lens center locust

Cx, Cy, C2, In world coordinates,

Afixed to the lens canter Is the camera frame of reference wlth unlit
vectors 1, J and k, when the Image formed by the camera ls placed In
correspondence to a display screen,as |llustrated In figure 1,3, the
unit Vvector | maps into the rightward positive x of the display
screen, and the unit vector J maps Inte the upward positive vy of the
display screen, and the unit vegtor k comes out of the display screen
to form a rlght handed ooordlnatr system, Together the three unlt
vectors of the camera are the three by three rotation matrlx:

IX, 1y, 128
X0 JY, JE In world aoordfnates,
KX, KY, K2

NeXty» there are three scales whlgh determine the coriespondonca
between world slze and Image slze, Observe that the worldl smeasured

In physical units of length |ike meters or feet whiie computer images
come In integral slizes |ike 1024 by 1924 or 480 rows by 512 columns,
thus the conversion scales must be In terms of logical Tmage units

per physlcal world units, In an actual television camera a mlinute
| mage (say 9mm Dby i2mm) Is formed on a vidicon tube andthat image
has a partloular number of rows and ooelumns, It |s the Ilttle Image
on the vidleon that we pretend to model by the six parameters!

LDX, LDY, LDZ Logical roster slze,

PDX, PDY, FOCAL Physical raster sizs,

Where the number named FOCAL, |s the focal plane distanoe whleh in
this model (with dlstant obJects) oan safely be equated Wlth the lens
focal length and can be given In mi|limeters (conventiona| lens run
12,5mm to 75mm fopr " TV), The integer LDZ !s an artlfactso that
the unlts come out correctly in the 2 dimension, Thus the scales
factor8 are deflined,

SCALEX « <FOCAL®LOX/PDX};
SCALEY « =FOCAL®LDY/PDY;
SCALEZ « FOCALeLDZ}

This simple camera mode] is used to compute vertex lma?e
coordinates, A more 6laborate physlca| camera model can be found In
Sobe!l [reference 91,

6
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FIGURE 1.5 - A Renai ssance Canera Model.
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I. C. Introduction to Body, Face, Edge, Vertex (BFEV) Modeling,

This introduotfon to BFEV modeling wlll be in?p?mal and
speclifle to the winged edge model presented In Part-11 of ttl s paper,
Many of the basic numerlcal relatlons which make BFEV models
important are stated in ALGOL notatlioen without Proof,

The Vertex,

A vertex [s an Instanoe of a polnt In a Eucildean theee
space, The Important thing about a vertex is lts world locus (w$th

component names XWC,YWC,ZWC standing for world=coordinates), Vertex
loci! are the basic geometrlec data from which length, area, volume,
face Vvector 3 and image positlions can be computed, Also a vertex may
exist sImultaneous]y in one or more image spaces, A n |[mage Space
twith oomponent names XPP,YPP,ZPP stand|{ng for perspective=projected)
ls always three dimensional and |8 determined wlth respect to a g9lven
camera oentered coordinate system (wlth comobnent names XCC,YCC,2CC
standing for camera-coordinates), The third Image component, 2FPP,
s taken |nversely proportional to the distance of the vertex from
the cameralmage pjane, 2CC, Using the camera of the previous
sectlon, The transformation of a vertex world locus to a camera
centered |ocus is:

X & xwc = CXi
Y « YWC = CY3
2 « ZWC = C2}

XCC * [X#X « [YsY + [ZaZ}
YCC & JX®RX « JY&Y + JZaZ}
2CC & KX»X + KY®Y + KZeaZ}

The first three assignment statements are the transiation to
the camera frame"s orl@lin, the ssegond three assignments are the
.rotatlion to the camera frame’s orlentation, Next the perspectlve
projection transformation IS computed(

XPP o SCALEX#XCC/ZCC)
YPP « SCALEYeYCC/ZCCy
ZPP « SCALEZ /2CCy

The XPP and YPP assignments are derlived by means of similar
triangles, as ls!lng ddoee by the man In figure 1,53 the 2pop
assi9nment Is for pressrving the depth Iinformation and the
colineaprlity of the world in the perspective proJected Image space, As
given, the PP frame |g right handed and vertices In front of the
camera’s image plane will have negative 2ZppjZpp values near -FOCAL
are cjose to the camera and values approaching Zero are far away,

A final matter withrespectto vertices Is thelr valence. The
Valence OF g vertex |s the number of edges that meet at the vertex, A

vertex valence of three, for example, Indicates a trlhedral corner,
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1, Cv lntroduction to BFEV Modejling,(continued),
The Edde,

For a start, the structure of an edge need be thought of as
little more than two vertices; the topological subtliety of edges wi 1 1|
be ©expiained later, However, two vertices do defline the imnortant
georetric edge data called the 20 Iine coeffigients. Named PA, BB,
cc; these coefflcients are computed from the perspective locus of the
edge"s endpolnts as Tfollows:

AA * Y1 = Y23
55 « x2 = X113
CC « X1#Y2 = X2#YY4;

These coefflcients appear In the 2D eqguation o f the | he that
contains the edge:
~ O = AA#*X + BBeY + CC;

whepr the edge coefficients are normalized:

L « SQRT(AA*2+BB*2);
AA  « AA/L;
55 « BB/L;
cc « CC/L;

the line equation gives the distance, of a point X,Y from the line:
N « AA®X + BBaY + CC;

The distance 1is actually A8S(Q), since G is negative on one side side
cf the |ine; alse if one were standing on the plane at ooint X1,Y1
facing x2,Y2 the 2 positive half-plane would be on your left and the
G regative half plane would be on Your right.

An. Important operation on two edges is to detect whether Or
rot they intersect: this cah be declded by checking first whether the

endpaints of one edge are in the opposite half planes of the other
edge,» ard second whether the endpolnts of the latter edge are In the
opposite half planes nf the first. When both conditions obtain, then
the intersection pojnt can be found:

T « (Al#B2 = A2#B1);
X « (Bi#C2 =- B2#C1)/T;
Y « (A2#C1 = A1#C2)/T7;

An actual compare Ffor- Intersection should initially check for the
igentity case, and for edges with a vertex in common,
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I+ Cv Introduction to BFEV Modeling, (Continued),
The Face,

A face is a, finite reglon of olane enclosed by straight
lines, A safe formal face structure could be bullt by defininga
trlangle as three non-colinear vertices and then Insisting that all
faces be trlangle {nteriors, Unhappily, BFEV faces are usually
represented as a |1st of vertices and edges tot by somethlng nearly
equivalent) for the sake of saving memoryspace, Such ‘| |st’ fages
are not monolithic but tend to suffer special cases and pathologlies
such as:

Coincident or crossing edges,
Holes and DisJjolntness,
Concavity (& Convexity),
Non-copianarity,

L1ke edges, faces have characteristic coefficients, Face coefficients
satisfy the equation of a plane in whichtheface |s embedded:

AA#X + BBsY + CCeZZ = KK,

The equation could be divided by KK, but that is undesirabje because
the AAy BB, CC are more useful as a unit normal vector, In which case
‘KK Is the dlstance of the orlgin from the plane, Glven the locil of
thre® non-oollnear vertices, the <coefficients of a plane can be

computed by Kramer’s ruleasfollows!

KK . X1#(Z22#Y3~Y2#Z3)

+ Yi#(X2#23=-22#X3)

t Z1e(Y28X3~X2#Y3)}
AA «(2le(Y2-Y3) + 224(Y3=yl) + EZ38(Yl-Y2));
BB * (X10(22-23) + X2#(23=21) + X3Ie(Z1-22));
cc e (X1#(Y3=Y2) + X28(YL=Y3) + X3#(Y2-Y1))}

and norralized!

ABC « SQRT(AA*2 + BB*2 + CC+*2)}
AA « AA/ABC;
BB « BB/ABC;
cc CC/ABC,
KK KK/ABC;

Tt ¢

If the glven vertices VI, V2, V3 had been taken golng counfar
clockwlse agout the face as viewed from the exterlor of the solld,

ther the following relations obtaliny
AAwX + BBsY + CC#Z ¢ KK Imp|lesX,Y,Zabove the plane,
AA#X + BBaY + CC#Z = KK Imp|les X,Y,Z in the plane,
AAs#y + BBey + CC#2 > KK Implies xrY)Z below the plane,

Face coefficlents prove useful In both world andimagecoordinates,
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1. C, lrtroduction to BFEV Modejing, (contlnued),
POLYHEDRA, BODIES and OBJECTS,

In elementary geometry8 a polyhedron is said to be a solid
forred (or bounded) by plane faces; the word "polyhedron" literally

reaning "many=-f aceg", Topologically, simple ©polyhedra satisfy
Euler’s F-E+V=2 equation; where F, E and V are the number of faces,
egSeS and vertices of the polyhedron respectively, This eguatlon was
known to Descartes in 1643, but the Ffirst proof Wasn*t glven Until
1752, when Euler proved the vrelation by considering the graph
corresponding to the edges of polyhedra, A simple polyhedron s one
homeomorphic to a Ssphere, The rlgorous development of Vvolume measure,
and in turn <solid” Polyhedra, is not simple; thus it has been easler
to take the topologlcal notlon F=E+V=2 as the nmore primitive
definition of a polyhedron on which to base a data structure and to
orccead towards the appearance o f ‘solldness’ Wwhich |s a more
complicated notion. --

Counter to the wusual usuage, | define the word "body" to mean
an entity more spegifficc than apolyhedron; the idea being that a

polyhecron Is reporesented by the whole structure of bodles, faces,
edges and vertices. Bodies may have location, orientation and volume
in space, Bodies may be conected to faces, edges and vertlces, which
maY or may npot form a complete polyhedron, It is typical to have
only one body to a polyhedron when representing a rigid obJect like a
slegde hammer and several bodies to a polyhedron when representin a
flexible object !ike a man, Furthermore, the body concept Is u to
harole the notion of parts and abstract regional obJec¢cts such as a
parking lot, For examgle, the Stanford Al Parking Lot s
représénted by a body that has three parts: the Near, Mid and Far
Lots. The Near Lot then has aisles and lanes and lamp Islands; a lamp
Island has a curd and two 'amps} a lamb has a base, stem and too,
This parts structure is carried in bodY nodes, Final 1y, the word
"object" will be used to refer to physical objects such as a
redwood=tree, building, or roadway,
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Figure 1,6
FACE PLRIMETER = a face is surrounded oy edges and vertices,
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/ \
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VERTEX PER | METER” = a vertex is surrounded by eddes and faces,
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Figure 1.8
e PERIMETER - an edge 's surrounded by 2 faces 8 2 vertlces,
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|
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1. C+ Introduction to BFEV Modeling, (continued),

FOUR KINDS OF BFEYV ACCESSING,

1. Accessing by name and serial number.

2., Parts-Tree Accessing,

3, FEV Seqguential Accessling,

4, FEV Perimeter Accessing,

A BFEV moce I has four kinds of accessing, The most
conventional BFEV access is retrieval oy symboli¢ name which reguires
a symbol tabie, Next, between bodles there is Parts-Tree accessing,

At the top of the Parts~Tree is a speclal body named the world to
which all the other vodies are attached; thus the world body serves

as an OBLIST node, Given a partlicular body, a Iist of its sub=-parts
can bpeé retrieved as wel |l as its supra-part or "supart", A supart is
the whole entity to which a part belonds, the world being it{s own
surart.,

Within each pow there ls face, edge and vertex seguentlal
accessing, Given a body, all its faces, or edges, or vertlcesneed to
be readily availabls since nerspectlive projection loops thtu all the

vertices, and the bprocess of display cl ipping loops thru all the
edges, and the act of checking for body intersection loors thru al |
the taces. In LIS, one might provide FEV seguential =accessing by

placing a list of faces, a list of edges and alist of vertices on
the property Iist of each nody, so that a cube night be represented
ag

(CEFPROP CURE (F1 F2 F3 F4 F5 F6) FACES)
(DEFPROP ~UBL (£l F2 E3 E4 E5 £6 E7 EB E9 E18 E11 £12)EDGES)
(DEFpRop CUBE (V1 V2 V3 V4 V5 V6 V7 VB8) VERTICES)

., - , Finally, among the faces, edges and vertices of a body there
lg perimeter accessing, Faces have a perimeter ofF edges and vertices

(figure 1,63 less commonly used, vertices have a perimetar of edges
anc taces [figure 1,7]; and of oparticular note, edges have a
perimeter always formed by two Ffaces and two vertices, [flgure 1,81,
Perimeter accessing requires that 3iven a face, edge or vertex, that
the perimetsar of that entity be readlly accessible, Since the surface
of a polyhedron is orientabie, that is has a well defined Inside and
outsige, (Klein bpottles With their crosscaps will not bz modeled),
such perlimeter lists can be ordered (say clockwise) with respect to
the exterior of the polyhedron, Perimeter accessing is mentioned in
Guzman [reference 63 and Falk [(refeprence 43 and is the under !ylng
basis of opart=]] of this paper which presents a polyhearcn model
bultt for accessing and altering face, edge and vertex perimeters,
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Figuyre 2,1 = BASIC NODE STRUCTURE.

BODY=BLOCK FACE-BLOCK IEDGE-BLOCK VERTEX~-BLOCK
-3, part,copart|-3, -3, =3, XWC

“2 -2, «2, “2, YWC

=1 -1, '1! ‘1' 2NC

B, type 2. type @, type 8., type
+1, nface,pface |+1, nface,pface |+1l, nface,pface |+1,
+2, ned,ped +2, ped +2, ned,ped +2, ped
+3, nvt,pvt +3, +3, nvt,pvt +3, nvt,pvt
*4 ] "’4. "“. ACW)DCW ‘4‘6
+5, +5, *5, NCCW,pOCCW +5,
+6 4 hd- T *6, *6,

5 weords 2 words 6 words 5 words

Figyre 2,2 « THE WINGED EDGE,
(As viewed Trom the exterior of a solld?,

\ /
NCCW(E) \ / PCW(E)
\ /

\ /

\ 7/
. PVT(E)

|
|

NFACE(E) 3 PFACE(E)
\

\
NVT(E) .
/ \ '
/ \
/ \
NCW(E) / \ PCCW(E)
/ \

Figure 2,3 = AN ACTUAL NODE STRUCTURE = SEPTEMBER 1972,

BOOY=BLOCK ___ IFACE-BLOCK  IEQGE-QLOCK  |VERTEX-
=3, oart,copart |=3. AA -3, w3, XW
-2, locorp -2, BB -2, BB -2, YWC
=1, pbname, -1 Cc '1. CC -1, EZWC

@, type,serlal | O, type,serlal | O, type,serlal | 8. type,serla
+1, nface,pface |[+1, nface,pface +1, nface,pface [¢1, XDC,TjolInt

+2, ned,ped +2, ped +2, ned,ped +2, YDC,ped
+3, nvt,pvt +3, Q0 +3, nvt,pve +3, nvt,pvt
+4, Feng,vent +4, KK- 44, nCwW, pcw +4, XPP
+5, Ecnt,Pent +5, +5, ncow,pccw +5, YPP

+6, nbody,pbody |+*6, alt, +6, alt,pbody +6., Zpp
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PART=il, THE WINGEC EQCGE 2aTa STRUCTURY,

1,7, Wwinged Edge Data Structure.

Bodles, Faces, Edges and Vertices ar2 representec py ¢tlocxks
of contiguously aodressaed Words, A single block size of tan ~crds is
adequate, A single word, like a LISP node, can nhold two agdresses of
a floating polnt number, The BFEY blocks are pointec =t cy the
agdress of thelr wopd numbered Zepo which c¢Ontains ¢ton~trol Dits
incicating whether the block s a body, face, edge or vertex, Figur=
2,1 1illustrates the block format that IS being presented a s an
example of a winged ed3de data structure; a minima| numper OF words
for each block is indicated.

The basic geometric datum is the vertex locus, #hich is
stored in three Words of each Vertex block at positions -3.3-%:-1;
these positlons are npamed XWC» Y«C» ZWC respectively: the Jetters
"wC" standing for "world coordinates"”,

The basic topological data are the three rings of the body;
(a ring of faces, a ring of eages, and a ring of vertices) and the
winged edge pointers (eight such pointers In each edge block,and one

syckh peolinter I n each Tface and vertex olock), The TFface, edge and
vertex ring polnters are Stored at positions +1, +Z, +3; each
position has two names: NFACE, WNED, NVT for the left polinters
respectively; and PFACE, PEC, FVT for the right, A Tface, edge Or

vertex can only belong to one body and so there is only 5ne body node
in a 9lven face, edge or vertex ring: and that body node serves as
the head of the ring, The reason for double pointer rings is for the
sake of rapl!d deletion: other mimor advantages would not Justify the
use of double rlngs,

The eight WINGED pointers of an edge block Incjude: two
pointers to the faces of that edge, two pointers to the Vvertices of
that edge, and four pointers to the next edges clockwise and ¢ounter
clockwlse in each of that edge"s two Tfaces; these last four pcinters
are called the wings of that edge, As figure 2.2 suggests, four of
these eight polnters are stored in the same positions and referred to
by the sane names as the face and vertex ring pointers; namely the
NFACE, PFACE, NVT and PVT pointers, There are four ways in which a
Pair ©Offacesand a pair Of vertices can be placed Into the tw~o Face
positions and two Vertex positlons of an edge; by constraining these
choices ¢two blits are impllicitly encoded, one bit is callsd the edge
parity, and the other 1Is called the surface rarity; these oi%s are
expjained later, Finally, the single winged edge pointer found in
faces and vertlices is kept in the position named PED and it points to
one of the edges belonging to that face or vertex.

Although the vertices in figure 2.2 are shown with three
eddes, vertices may have any number of edges; those Other sctential

edges Would not »pe girectly connected to &t and so were not shown,
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A SUMMARY OF WINGED EDGE OPERATIONS.

DYNAMIC STORAGE ALLOCATION,

1, Q « GETBLK(SIZE)!
2 RELBLK(Q,SI1ZE)?

BFEV MAKE 6 KILL OPERATIONS,

1, BNEW « MKB(B)} KLB(BNEW):

2, FNEW & MKF(B)} KLF(ByFNEW)}
3, ENEW « MKE(B); KLE(B,ENEW))
4, YNEW « MKV(8); KLV(B,VNEW)}

FETCH LINK AND STORE LINK OPERATIONS,

1, F « NFACE(Q); F « PFACE(Q)s NFACE.(F,Q):
2, E « NED(Q)} E ¢ NED(Q)) NED, (E,0Q)
3, V o+ NVT(Q)s; V & NVT(Q)3 NVT,.(V,0Q)3
4, A « NCW(E)} A <« PCW(E)} NCW, (A,E);
5. A -- NCCW(E); A « PCCHW(E); NCCW, (A E)

PFACE, (F
PED.(E,Q

'
)
)
PCW.(A,E)
E

WING LINK OPERATIONS,

1, WING(EL,E2);
. INVERT(E) :

PERIMETER FETCH OPERATIONS.

1, £ « ECW(E,Q)}
2. E « ECCW(E,Q):
3, _F « FCW(E, V)3
4, - F ¢ FCCHW(EIV)}
51 V - VCN(EIF);
6. v ¢ VCCHW(EIF)}
7. Q « OTHER(E,Q);
PARTS TREE OPERATIONS,
1, B « PART(8); B « COPART(B);
2. B « BODY(Q); B « SUPART(B) ;
3, ATT(B1,B2); ATTACH(B1,B2):
4, DET(B)} DETACH(B);
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[I. B, The Winged t3ge Operations.
Dynamic Storage Allocation,

At the Very bottom, of what is becoming a rather deeg rest of
priritives within primitives, are the two d¥nmamic storage zllecation
functions GETBLK and RELBLK. GETS8LK allocates from 1 to AKX words of
memory Space in a contiguous block and returns the machine address cof
the first word of that block, RELBLK releases the indicates black to
the availaole free memory space, (It ls sad that the machines of our
day do not come with dynamic free storage), A 9oco0d reference  for
implementing such dynamic storage, menticred earlier, is Anuth
Lreference 73, Altnough a Tixed block size Of ten or fewerwordscar
be made to handle the 3FEV entities, grandiose and fickle research
applications (as well as memory wuse optimization) gemanc the
flexibllity of a variable block size,

BFEvV Make & Kill Operations.

Just above the free storageroutires we the four pairs of
make and kill operations, Ihe MKB operation Creates 6 body block  and
attaches it as a sub-part Of the given body., The world bredy always
exigts So that MKB(WORLD) will make a body attached to the world, In

-this ©paper, the terms ‘attach’ and <"detach”™ refer to ¢perations on
the Darts-tree linkages. The FEV make operations: MKF, nKE, MKy
create the c¢Orrgsponding FEV entities and place ther ir their
respective FEV rings OF the given bodY. In  the cUrrent

implgmentation, thg FEV makers set the t¥pe pits OF the gntity, and
increme,t the proper total FEV counter, &as Weé|l as the prgopér Dody
FEV counter in the given ©bpody’s node, (the Fent, Eent, Vcrt node
positions are shown in Tfigure 2,3), The kill operations: KLB, KLF,
KLE, and KLV; delete the entity from its ring (or remove !t from the
Darts-tree), release its space by ca!l ing RELBLK, and then decrement
the aPpropriate counters, The body of the entity is needed by the
kill primitives and can be provide directly as an argument or if
missing, wilil oe found in the data by the primitive itself,

Fetch Ljink and Store Link Operations,

Each of the fetch link and Store link operations nazmad in the
summary s a single machine instructton that arcess8s the
corresbonding link posItion in a node, Once BFEV nodes exist, Wwlith
their rings and parts-tree already 1in place; the fetch and store !Ink
operations are used to construct or modify a polyhedron? :urface, At
this lowest level, constructing a polyhedron reauires Three steos:
first the two vertex and two face pointers areplacedinte each edge
in counter clockwise Order as they appear when that edge is Vv 1 ewed
fror  the exterior of the Solid; second an edge pointer is placed in
each face and vertex, so that one can later det from a diven face Or
vertex to one of its edges; and third the edge wings ars |inked so
that a!| the ordereg pefimeter accessing operations describea below
wil| wepk, Winglinking is Tfacilitated by the WING operaticn,
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FIGURE 2 . 4 = MIDPOINT EXAMPLE (gee text on page 29).

\ opovt /

/. nvt N\

INTEGER PROCEDURE MIDPOINT (INTEGER E);
BEGIN "MIDPOINT"
INTEGER B,ENEW,VNEW,V1,V2;

a CREATE A NEW EDGE AND VERTEX}
B « BODY(E);
VNEW « MKV(B);
ENEW « MKE(B);

a GET VERTICES AND FACES CONNECTED TO EDGES;
PVT,(PVT(E),ENEW)}
PVY, (VNEW,E)}
NVT, (VNEW,ENEW)
PFACE,(PFACEC(E),ENEW);
NFACE ,(NFACE(E),ENENW);

« GET EDGES CONNECTED TO VERTICES;
. IF PED(V)=E THEN PED,(ENEW,V);
PED, (ENEW, VNEW)

a LINK THE WINGS TOGETHER)
WING(NCCW(E),ENEW) JWING(PCW(E),ENEW)
NCW, (E,ENEW) ;PCCW. (E,ENEW)}
PCW, (ENEW,E)INCCW, (ENEW,E)

s PLACE VNEW AT MIDPOINT POSITION;
Vi « PVT(ENEW)) V2 « NVT(E);
XWC(VNEW) « (XWC(V1)+XWC(V2)) * O
YWC(VNEW) « (YAC(VL)+YWC(V2)) » ©
ZWC(VNEW) « (ZWC(VL)+ZWC(V2)) + O
RETURN(VNEW)

[END "MINPOINT":

.5;
53
53
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The #Wing Link Operation,

The WING operation stores edge pointers into edges so that
the face perimeters and vertex perimeters are made; and SO that
surface parltyis preserved, Given two edges which have a vertex and
8 face in common, the WING operation places the Ffirst edse in the
proger relationship (PCW, NCCW, NCW, or PCCW) with respect to the
second, and the second in the proper relationship with respect to the
first, The |INVERT operatlion Swaps the vertex, face, clockwise wing,
and counter clockwise wing pointers of an edge. INVERT coreseéerves
surface parlty, but fl!ps edge parlty.

The Midpoint Example,

In figure 2,4 an example of how the operations given so far
could be used to code a midpoint primitive 1is shown, The example
miagpoint primitive takes an edge argument and splits it in two by
making a new edge and anew vertex and by placing them into the
polyhedron with the topology shown In the diagram, Then the midpoint
locus!scomputéa and the new vertex 1is return, The ALGOL notation
usea s SAIL, which allows definlng the character "o" as a CIOMMENT
delimiter and allows gefining XWC as a real number from the speclal
arrayY named MEMORY, The MEMORY array InSallLisihe job"s actuyal
~machine memory space and gives the user the freedom of accessing any
worc in his core image,

The Parts-Tree Operations.

As shown im TFfigure 2.1, each body node has two Darts-tree
links named PART and COPART, The PART link is the head ofa list OFf
sub-parts of the body, When a body has no sub-parts the PART link is
the negative of that body"s polnter; that is the body ooints at
itself, When abody has parts, the flrst part is pointed at 2¥ PaRT
and the second ls pointed at by the COPART | ink of the first and so
-on until anegative pointer Is retrieved which inaicates the end of
the parts list, The negative pointer at the end of a wsarts I ist
Points back to the orginal body, which is the supra=-part or "supart"
of all those bodies in that list,

The parts may be accessed by its 1lnk names PART and COPART,
Also the SUPART of a bodgy returns the (positive) pointer to the
supart of a body, The BgLY operation returns the body to which a face
edde or vertex belongs: thls might be found by CORr’img a FEV rlng
unti I a body node is reached, but for the sake of speed each edge (as
shown in figure 2,3)has aPBODY JInk which points back to the body
to which the edge belongs, and slince each face and vertex points at
an ed9e, the body of an FEV entity can be retrieved by fetcking only
one or two |lInks,
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Part Tree Operations (continued),

The parts-tree s altered by the DET(B) operaticn which
removes a body B from Its supart and leaves [t hanging free; and the

ATT(81+82) operation which places a free body Bl irto the parts Ilst
of a body B2, Since bodies are made attached to the worl|d bcdy and
gereral|ly kept attached to something, two further parts-tree

operatlons are pprovided, compounding the Tfirst two in the necessary
marner, The DETACH(2) operation DOET’s B from Its current owrér and
ATT"S it to the world; and the ATTACH(B1,B2) operation ~{ ! I TET 31
fror its supart and attach it to a new supart, In ncrmal (one world)
circumstances one Only needs to use ATTACH te build thincs,

Perimeter Fetch and Store 9Operations,

There are seven perimeter fetch primitives, whicr when given
an €dde an3 one of it3 links Wwi| 1 Tfetch another link in & cértain
fashion, Using t-he winged edde data Structure these primitives are
easily implemented in a few machine instructions which test the type
bits anho typically do one or two compares, Clockwise aad counter
clockwise are alwagys determined from the outside of a peliyhedron
lookind down on a particular face, edge or vertex, | aro!c3122 for
the nich redundancy on the next page, but felt that it was nele€ssary
to rmake the explanations independent for reference,

FIGL~E 2, - Face Perimeter Accessind witn respéct to eaqace £,

VCCUWI(E,F) Wemm~mccefeme=e=ed VCOW(L,F)
\ /
\ F /
ECCW(E,F) ECwW(E, )

FIGLRE 2,6 = Vertex Fegrimeter Agcessinyd with pcsosct to 2c03e €

FCW(E, V)

£
I
I
FCCW(E, V) !
e

v

4 \
ESCwW(E, V) ECw~(E,V)
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The Perimeter Fetch Operations.

E « ECW(E,F)} Get Edge Clockwise from £ about F"s perimeter,
£ « ECUW(E,F); Get Edge Counter Clockwise from E about F’s parimeter,

.6Given an edge ana a face belonging to that edge, the ECW
feteh primitive returns the next edge clockwisa pbelaonging to the
given face’s perimeter and the ECCW fetch primitive returnsthe naxt
edge counter clockwise belonging to "the given face"s perimster,

E « ECW(E,V); Get Edge Clockwise from E about Vs perima%er, ,
E « ECCh(E,v); Got £dga Counter Clockwisefrom € about V"s perimeter.

Given an edge and a vertex belonging to that edge, tha E£CW
fetch primltive returns the next edge clockwlse belon3inrg to the
given Vertex’s perimeter and the ECCW fetch primitive returns the
next edge counter clockwise belonging to tne 9diven vertex’s
perimeter,

f « FCW(E,V)} Get the Tface clockwise from E about V.
F « FCCW(E,V); Get the face counter clockwise from E about V.

Given an edge and a vertex belonging to that adge, the FCW
fetch primitive returns the Tface clockwise from the given edge about
the given vertex and the FCCW fetch primitive returns the face
counter clockwise from the given edge about the given vertex,

V « VCW(E,F); Get the vertex clockwise from E about F.
V « VCCW(E,F); Get the vertex counter Clockwise from E about F,

Given an edge and a face belonging to that edge, the VCW
fetch ppimitive returns the VYerteX clockwise from the given edge
about the glven fage and the VCCW fetch primltive returns the vertex
. counter clockwise from the 9iven edge about the given face,

et the other fTace of an edgse,

F « UTHER(E,F); G
(E,V)3 Get the other vertex of an edge.,

v ¢« UTHER

Given an egdge and one Tface of that edge the CTHER fetch
primitive returns the other face belonging to that edge, ©Given an
edde and one Vvertex of that edge the OTHER fetch primitive returns
the other vertex belonging to that edge,



PAGE 23



PAGE 24

IT. L, Ejapborations on Winced Edoe Structure.

In twis saction, some var iationsonthehasicw i nged
e€d¢e structure arsgiven, These variations arise as adzgpta<iincs for
my aoPlication, angd as unimplemented ideas for innrcvemanis, The
adaptations, shown in figure 2,3, include adding serial numners anc
AL links to a 1 the facas, €ddeés and vertices, Tneserialnrumbers
crcvid®@anotherwaycfaddressinganogare especially wuseful curlna
inpLt anc output, The ALT 1link 1is used for pointing to aicitioral but
terpcrary data; themgostelaborate ALT data has to Qo with *f038s

during a hidden |ine elimination, Sacrificing merory space for <speey
and fiexibility, the fagesandedge coefficients are storen i’" gach
node, anrdthelinage coordinate (Xpp,Ypp,2Z0p) and display scordinates
(Xac,YQc) are acded to each vertex, ln eladorateé svsrens. fTé Frhage
coOrdinNates moce! a caMara and the dishlay coorainztes refer to
lgcatior on a jisplay console. Having two tiers cf imase
coordinates al 10Ws sc-0llingaboutth emodelea inage witnout cranziling
tre cafera (or heayven fcrbidder, Maving to redo a ~alfgies lin=
gliminationy, _ The regmaining S 0 farurmentionednamesirgciude: tha
Tjoirt 1 ink in verticas «#hich is for shadow &na hiazfer fine
operations, the the 22 word in faces which containsphotomesrindasa,
ard the LQCOR anc PNAME | inks of a boay node, which gpoirt 12 a

locatioreorientation =matrix and an ASCIl print nan2 pespeccivaly,

Sacrificing gspeed for the sake of memory,ineeffectof

havingrest of the axtra data mentioned above can be ach i eved by
recomMplting it rather than fetching it, Furthermore, thesingedoats
struCturec a nbemrades|ightly srmallerb yeliminating t"9 fzce and
vertex rings, Face aad vertex sequential accessina can stii! ce Jen=

byravirctaomarkingoitsine ach face andvertax,andbythen  toing
thry th eedgerinalgokinaat thetwo facesa n dtwo vertices ~feachk
egfeforones that arenot freshlynarked,]t would be nica if such

egcorcnizing could be ¢done nelow the Ilevel of the operations,

Resices optimizZations, the next improvement idea | would like
to atterpct would be to split tne notion of a bhody imric the two
notions of a "part" and a "cel ", Parts would havethepartsiree

anc names that bodies now rave, Whereas a cel|wouldhavevolure and
face structure, In this hypeothetical Cell, Face, Edge, Yertax (CFLV)

moCel, each face coulc goint tc a cel|l on either side ofi+, +ne cel |
with tre lower serial n mber (or somethind) peing ccnztryea  as
exteriop, (Cell nurmser zero would ne tne infinite void o7 three space
in whigh everytnirg is embedded, The trodJdhle with CFELY ig that the

1

impertart matter of a polyhrecron surface "as to be salvateo; 1t can
not be atandonec, tagzuse moae ! s Wi thout good surface rerreszn%tat i ons
can not predict apPearance, which is one of my requiremen~<s,
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SUMMARY OF POLYHEDRON PRIMITIVES,

A. EULER PRIMITIVES,

1+ BNEW ¢« MKRFY; make a tocdy, face & vertex,

2+ KLEFEV(G); kill a body & all its pigces,
S VNEW « MKEV(F,V); make edge & vertex,
4, ENEW « MKFZ(V1,F,V2); make face & edge,
5¢ VNEW « ESFLITC(E)Y split 2n edge,
6. F « KLFE(ENEW) kil| face & edge (savimg a TFface,
7, E « KLEV(VNEW); kill edge & vgrtaX Isaving an edge.
8, V e KLVE(ENEW) kill vertex 4 edge leavind a vartex.,
9., B « GLUE(F1,F2); glue two Tfaces together,

# 12+ BNEW « UNGLUE(E)Y; Jnglue along a seam containi=ng &,

B, SOLID PRIMITIVES,

1, VPEAK « PYRAMID(F); forn a pyramid on a face,

2+ F « PRISM(F); form a vrectangular oprism,

3, F « CWPRISMOID(F) form a clockwise prismoid,

4. F « CCWPRISMDIN(F); form a counter clockwise prismoid,
5, ROTCOM(F); complete a solid of rotation,

6. FvDUAL(B); form face vertex dual of a body.

7. BNEW « MKCOPY(B): make a ¢opyY of a body,

8+ EVERT(B):; turn a body surface inside out,

9. F1 « BUN(31,82); form union of body interiors.

1p, 81 « BIN(81,B2); form intersection of pody interiors,

C. GEOMETRIC PRIMITIVES,

1, TRANSLATE(O,R);
2. ROTATE(Q,R);

3. DILATE(G,R);

4, REFLECT(Q,R);

D. IMAGE PRIMITIVES,

1. PROJECTOR(CAMERA,AORLD)Y

20 ELISTeCLIPER(WNINDOW, WORLD);
3+ UCCULT(WORLD);

4, SHADOW(SUN, JORLD):;

5 TV « MRVIC(WINDOW, wORLD)
6, 82D ¢ MKE2D(WINDOW,HWORLD);
7. R2D « CAREYE(TV);

* & & X

3

Lrader construction, Oc¢ct 1972.
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[11, PrRIMITIVES ON POLYHEDRA,

In this section a number of orimitives for ¢oing <thinss to

polyheGra are explained, Although these primitives are currently
Impiemented usfing the winged edge data structure, they do not require
a particular polyhedron representation, Indeed, mary of these

primitives were originally Iimplemented In a LEAP oslvhedron
representation Very similar to that of Falk, Feldman andPaul
(reference 5], Thus, the grimitives of this section are on a | eve I
fogically independent from the operations of the previous saction,

Another aspect of these primitives 1is tnat tney san be used
as the basis of a "graph i ¢s language" or nore accurately as a »ackage
of subroutines for geomatric modeHng_ In this vein, the prinitives
are currently collected as a rackag® caliled GFOMES for Zeometric
Modeling Embedded in SAIL; and as GEOMEL, Geometric Mode|irg Embedded
In LISP, A third 1language, called GEOMED, arises out of the =:=ommand
langua9e of a geomegric model edltor based on the primitives,

The primitives are shown in four groups in the summary, The

first group, the Euljer Primitives, were Inspired byCoxeter’s nroof
of Fuler’s formuia, section 18,3 of [reference 2]. Althoug~ <ne pronf
only required three primitives, additional Ones of the same i!k Were
develobPed for convenignce, The second group is compose § of some
polyhedron primitives that were coded uUsing the fuyler primitives, The
thira gproup |s for primitives that move bodles, faces, edges and
vertices; or compute geomatric values such as length and valume, This
group Is underdevelgped for two reasons: one, because 1 have done
these computations ad hoc to date; and two, because they Imoly the
subject of animation which Is large snd difficult and not ~f <central
Imoortancet ovision, With the exception of the camera., my werlds are
nearly (but not absglutely) static, A less impoverishned Jsometlric
group will be presented in the future, The final group, has thres
wel | deve | opsd »nrimitives for making 20 images; an3 severa|
" primitivaes that when finished will realize part of the vision systenr

that 1 am trying to byul|d,
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-111, Ay Euler Primitives,

As mentlon above, the Eulerprimitives are based on the Euler
Equation F=E+V = 2#B-2#H; where F» E, V, B and H stand for the number
of faces, sdzes, vertices, bodies and handias that exist, The term

"handle” comes from topology, and Is the number of well formed holes
In a surface; asphere has no handles+ atorus has one handle, and _an
IBM flowcharting template has 26 handles, The Euler eguation
restricts the possible topologies of FEV graphs that can be

polyhedra; although suchE€tulerian Polyhedra do not necessarlly
correspond to what we normally calla solid classical ©oolyhedron,
Strict adherence to constructing apolyhedron that satisfies Euler
equation F=E+V = 2#3 « 2#H Would require only four primitives:

+F =F +V = 2#8B = 2&H

1. Make Body, Face and Vertex +1 . et
2 Make Edge%and Vertex, ..o“l "'lgco'.OOOIlog
3, Make Face and Edge, +1 =1, ity
4, Clue two Taces of one body,. ~2 N =N,soisenore*+l
4, Glue two faces of two bodies. -2 +N =Nysoee=loouere

HoweVver, the four corresponding destructive primitives are also
possible and desirable:
+F =E +V = 2#B =~2#H

i Kill BOdy, Face and Vertex '1'v|.'1|-o-"1ln'ot|
2, Kill Edge and Vertex, R T S
3, Kill Face and Edge, TR 2 S R
4, Unglue along a seam. +2 =N #Nyovoorerove=l
4, Unglue along a seam, =2 #N =N,y o e*do v v v

And fimally the operation of splitting an edge at a midpoint into two
edges became S O important In forming vt=~Jolnts dur ing hidden Ilne
elirination that thegESPLIT primitive was Introduced in place of the
equivalent KLFE, MKEV, MKFE seaquence,

In using the Euler primitives, some non-classical polyhedra
are tolerated as transitional states of the <constructlon; these

transitional states are cal! led:

Semimal Polyhedron,

Wire Polyhedron,

Lamina Polyhedron,

Shell Polyhedron,

Face with WireSpurs on Its perimeter.

A seminalpolyhedronis like a pointi a wWwire polyhedron is |Ilinear
with two ends |lke a single piece Of wire; lamina and shell polyhedra
are surfaces, and the picturesaue phrase about spurs is a restriction
on how faces are dissected Into more faces, These terms will be
explainec in more detal!l when they are needed,
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11 ,As Eyler Primitives,

1, BNEWe«MKBFV; Make Seminal Body.

The MKBFV primitlve returns a body with one face and one
vertex and no edges, Other bodies are formed by applying primitives
to the seminal MKBFV body, The seminal body is initially attached as
a Part of the worid,

2, KLBFEV(BNEW); Kilt Body and al| its pleces,
The KLBFEZV primitive will detach and delete fram memory the

body given as an argument as well as all its faces, edges, Vvartices
and sub=parts.

3, VNEW « MKEV(F,v); Make an edge and avertex,

The MKEY primitive takesa face,F, and 2 vertex, Y, of F's
perimeter and it creates a new edge, ENEW, and a new vertex, VNEW,
ENEwW and VNEW are ca| led a"wire spur" at V on F, MKEV re2turns the
new | Y made vertex, VNEW; ENEW can be reached since PED(VMEW) is

alwaYs ENEW, Only one wire spur Is allowed at Von Fata %ime,

When %ppd'ied to the face of aseminal body, MKEY forms the
special polyhedron called a "wire" and returns the new vertex as the

"negat lve" end of the wire A wire polyhedron is illustrated in
figure 3,1, When applled to the negative end of a wire, MKEV extends
the wire; however if applied to any other verteX of the wire, MKEV
refusesS to change anything and merelY returns its VverteXx argument,

Figure 3.1 = A Wwire Polyhedron, Figure 3.2 = VNEN«YKEV(F.,V);

seminal vertex e V1 +V
Positive en3 +| of wire, VAR

| El / leeeebNEW spUr,

= | / 1\

s V2 / =VNEW \

+1 / \

1 E2 / F \
negative end =| of wlrep / \

'atest Vertex [ ] V\.) [ LT r eyl - D
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F{GURE 3.4 = TdC CXAMPLES USING EULE’ MITIVeEs, (see page 2577,

¥ MAKE A CUBE;
INTEGER PROCEDURE MKCURE;
JEGIN "MKCUBE"
INTEGER &,F,E,V1,V2,V3,V4;
¥ CREATE SEMINAL POLYHEDRON;

b « MKBFV; F « PFACE(B)Y: V1 « PVT(B);

XWC(V1)e+1: YWC(V1)e+1; ZWC(V1)e=1;
1 MAKE SEMINAL POLYWHEDRON INTO A LAMINA POLYKEDRON;

V2 & MKEV(F,V1); XNC(V2)e=1;

VI « MKEV(F,V2); YWC(V3)e=1:

vd & MKEV(F,V3); XWC(V4)e+l;

F e« MKFE(VL,F,V4)s

3 MAKE FOUR SPURS ON THE LAMINAj
Vi « MKEV(F,Vv1i); ZWC(Vi)e+1;
V2 « MREV(F,V2);
VI e MKEV(E,VZ);
V4 « MKEV(F,V4);

¥ JUIN SPURS TO FCRM FINAL FACES;
£ & MKFE(VL,FsV2);
E « MKFE(V2,F,Vv3);
E « MKFE(V3,F,V4);
E & MKFE(V4,F,Vvi)d:
RETURN(E) ;

IND "MKCUBE";

Y FCKM A PYRAMID ON a FACE ;.

INTEGER PROCFRUKHE PYRAMID (INTEGER F) 3

BEGIN "PYRAMID"

INTEGER V,V3,E,E2,)PEAK,EXS

~EAL X,¥V,Z; INTEGER 1;

XeYeZeled

o GET A VERTEX OF THE FACE AND MAKE A SPUR TO A PEAK:
E«EAePED(F);
Vg & VOW(ED,F 3

- PEAK « MKEV(F,VZ);

a CCNNECT THE OTHER VERTICES CF THE FACE TO THL PLAK;

WHILE TRUE 20

-

HESIN
V o« YCCW(R,F) 3
Xe X+ XWNC (V) YeY+YWC(V); FeZ+2WC (V) ;
THNCREMOTD
[= v=y2 THEN DONE;
T« ECCW(E,F);
X « MKFE(PEAK,F V)3
ENG S

a POSITIAON THE PFax VERTEX AT THE CENTER OF THE FACE;
YNC(PEAK)«X/1;  YAC(FEAK)«Y/1; ZAC(PEAK)«Z/];
SETIIN(FEAA Y

o "PYRAMIO!;
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4, ENEW « MKFE(VYL,F,V2);

The MKFE primitive can be thought of as a face spiit. Given
a face and two of its vertices, MKFE forms a new TFace on the
clockwlse side of the |ime viI to V2 leavingtheold fagce on the

counter clockwise side, V1 becomes the PVT of ENEW, V2 opecomes +he
NVT of ENEW, F becomes the PFACE of ENEW and FNtEwWwopecomes the NFACE
of ENEW; also ENEW becomes the PED of F and FNEW,

Figure 3,3 -~ MKFE and KLFE,

BEFORE MKFE AFTER ENEWeMKFE(VL,F,v2:
9 9 ? Y
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ v/ \ / \ / \
/ 9 \ -/ +V1 \

/ \ / =FNEW | +F \
® T ® ® | ¢« NEW a
\ / \ I /
\ ® / \ -y2 /

\ / N\ / \ / \ /

\ / \ / -\ / \ /

\ / \ / \ / \ 7/

[ ] ® [ ] ®

AFTER FeKLFE(EMEW) BEFCRE KLFE

MKFE is also used to join the two ends of a wire oolynedeon
to form a "lamina"; or the two ends OF wire spurs to split a face; Or
an end of a wire Sour and a regular perimeter vertex to split a face;
4 "famira pojyheagron" has only two faces and thus no volume,

EULER EXAMPLES,

The use of the primitives discussed so far is illustratad by
the example subrouytines in Tfigure 3.4 on page 29, The make cube
sutroutine starts by placind a seminal vartex at (1,1,1): Than a A#ire
of-three edges |s made using the MKEV primitive, As the code implies,
MKEV places lts new vertex at the locus of the old one, The ends of
the wlre areJloinedwith a MKFE*0o form a lamina polyhadron, then a
spur ISplaced on ezch of the vertices of the lamina, and finally the

spurs are Joined,

The pYramid exanple is more realistic, since polyredra are
not generated 8X nlhils, but rather arise out of the Vvision routines
and the geometric editor. PYRAMID takes a face as an argjument (which
is assUred to have no spurs) and runs a spur from one VvVertax to the
midale of the faces, then all the remaining vertices of the face are
Joined to that snur to form a nyramid.
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I1l, A. Eyler Primi-ives, (Continueal.

5. VVEW « ESPLIT(Z); Edge Spl it,

This nprimigive splits an edge by ™akin3 a new vertex and a
new ed3e, Jts Imolemantation isvery similartotnenicpeinrt example
0 npagei9, FSPLIT s heavily used in the hidden line eliminator,

6, F e KLFE(ENEW); K illFace Edge,

ivgKills a face #nd an edge leaving c¢=e face.

This primj Vg
veis imtencded to be an inverse of MKFE, the NFACE
O Ww
!

.

v
Sirce thisnpimis
o f ENEW is killed, w
swermed by using the

ever the MNFAUCE and PFACE of an =sdge ~ay be
NVERT(E) primitive, See Figure 3,3 for KLFE,

7. E ¢ KLEVIVNEW); Kill £cge Vertex,

Tnis prinitive kills an e8d3e and a vertex leavinc gre edoe.,
This orimitive will e!'i=minat2 spurs made with MKEV ard nigcoinrts nade
witk £SPILIT; iR apyre form |t Wwoulc hava %o |eave vertices «ith =2
valence greater thantwo gntoucghed, howeverit In fact "uy=-oyramiis"

ther wlith a serles of XLFE’s and then kills the remaininy spur,
g, V o« KLVE(ENEW); Kil Iveptex Ed3e,
This primitive kills a vertex and an edge leaving gonaverteXx,
Thisprimitlve Is +tme face-vertex dual of KLFE, namely i nstead of
kiliing NFACEo f Eandfixingup PFACE’sperirmater,KLEVKills +he

NVT 6f E and flxas uec PYT of E’s per imater.,

9, b « GLUE(FL1,F2): Gluye two faces,

This oprimitive glues two faces together formingomenzadocdy

. out of ¢two 0]d ones (tne dody of Fi survivesg) or formirg a handle on

tne 9iven vody, Tae nymberO fedges In tne two Tfaces mus+t ~e the same
anc tn2irorlentation should be opposite (exterior *te exterior?,

#1¢, 3NEW ¢ UNGLUE(EZ); Unulue along seanm, #not inplerented.

Tnis primitive wunglues alone the seam contairing £, The
UNGLUE primitive requires that a loop of eages te marked az 2 ‘"sgan"

ajer3d whicnh unglue will form two opposite faces, The mar~s are made
in ¢he temporary +ype ditin theedde node, Of the civen bcdy, If
the cut forms .*w~ Alsjoint bnodies then a new ooay is—aleor the
NFACk side of the original & argument,.
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11, 8, SOLID PRIMITIVES,

1, VPEAK « PYRAMID(F);
2, F « PRISM(F);

3 F « CWPRISMIOD(F);

4, F + CCWPRISMIOD(F);

These four primitives are called the "sweep primitives",
because they form a simple polyhedron from aface in a fashion that
appears I 'ke sweeping the face along, The sweep primitives (with the
exceptlon of PYRAMID) do not change the location of tha given face
but Mmerely copy {ts perlimetepr, forming new faces and edges between
the o}d perimeter and the new perimeter, The pyramid primitive has
ajready appeared as an example on page 29.

Starting with anine sided face lamina, the rocket in TFigure
3,6 was formed from the bottom by sweeping two prism stages, then two
counter c¢lockwise prigmoidstages, and then two clockwise Dprismoid
stagess$ and fimrally one pyramld to form the nose cone, the firs were
macde bYprism sweeping everythlerd face of the Tfirst stage,

>
NP
ol

J HVIL W
4/ 1\
- |

FIGURE 3.6 ~ Rockets made with sweep primtives.
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11, 8, SOLID PRIMITIVES, (continued).
5, ROTCOM(F)3; Rotation Cempletion,

As lllustrated in the flrst three frames of figure 3.7 pelow,
wire Taces can be swept to form a--shell, When a Wlre face i|s swert by

a sweep primlitive (other than pyramid) it Is marked as a shell face
of rotatlon and its orlginal perimeter count Is kept for |ater sweeps
to refer to, In the third frame the shell has been positioned so
that its slot can be seen, T he shel |facenow includas all| t4e edges
of both pole caps as well as the two meridians of the slot, ROTCOM
takes Such a shell face and breaks it into two polar faces ane as
many other faces as necessary, by means of tne count that was savecd,

A8

FIGURE 3.7 - Solid formed by rotation.
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Euclid's construction of a dodecahedron from a cube.

FIGURE 3.8 - Dual of a Dodecahedron.
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111, By Solld Primi¢ives, (continued).

6, FVDUAL(B);
7. BNEWeMKCOPY(B);

These two primitives iljustrate the €xtremes from 4 class of
miscellameous oprimijtives, FVOUAL isaworthless curosity and MKCOPY
is guite useful but unminteresting, FVDUAL(B) of a body charges all
the faces of a body fmto vertices and al ! the vertices into Tfaces, Iin
the winged edge data structure this merely requires computing 3 locus
for each face (its center), re="typing" faces .and vertizes, and then
swapting the face and vertex |lnk positions in each fac¢2, edgse and
vertex of the body,

Figure 3.8 illustrates Euclid™s constructien, of a
dodecahedron from a cube, the unlit cube s formed, then al!l its edges

are midpointed and translated ©.,2 units into the tkrece pairs of
Parallel faces; then the midpolnts are lifted €.,3 units 2ff the plane
of each face of_the cube; then ™MKXFE is applied six times to split the
eicht sided Tfaces into five sided faces; giving a dodacahedron
(nearly¥ regular), Aoplying the FVOUAL to the dodecahedron yields the
icosahegron,

|
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111, By Solld Primiscivyes, (conginyed),

. EVERT(H);
. B1eBUN(31,82);
7. BLeEIN(B1,82);

These thprze oprimitivaes -perform the Hooliaar aperations on
polyhedron interior volumes. eVERT(B) turns & bocdy insice out, thus
chargding a cube into a room, as a solid into a bubdle, Czjactswi th
infinite "interiors” are permissitle; such polyhedra are |mpossible
in many classical developements of solid Geometry which make the
interior of a polyhedron to be the region of space wlth Finite
velume, by definition, The body wunion is BUN, whichalloawsBlt o
survive if the Interiprs of the tocdies are not disjoint, A boay with
two gisjoint polyhedrons Is shunned, The bogY intersection is 31N,
whigh allows Bl to survive if the interiors of the bodies ar2 not
diSJOinto

TWO BODIES BODY UNION

FIGURE 3.9

BODY INTERSECTION BODY SUBTRACTION
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C, GEOMETRIC PRIMITIVES,

1, TRANSLATE(Q,R); Q@ argument is a body, Tace, edge or Ver'tBX.
2, ROTATE(Q,R); R argument js a transformation array with
3 ,DILATE(Q,R); respect to world coordinates,

4, REFLECT(Q,R);

_The four Euclidean transformations are translatign. rotation,
reflection and dilatlon; and as first mentioned in Klein’s Erlangen

Program, 1872, these four primitives form a group, The primitives may

be applied t o bodies, faces, edges or vertices in order to chan3e
vertex world locii, Thus abodY Is the set of vertices in its vertex
PIinNG. aface Is theg set of vertices on its perimeter, an &dge is the
two vertices which are its ends, and a sindle vertex is itself; but

there are special cases having to do With faces, (In GEOMED a
specialcounter,negative Fcnt, is maintained in wire sweer Ffaces in
order to make solids of rotatien). The second argument R Is a prointer
to a transformation arrayY In world coordinates of four r&ws and three
colymns:

xwc, YWC, ZWC

X, 1Y, 12

JX, JY, JB

KX, KY, K2

For trarstation, only the XWC, YWC and zZWC are involved and all the
vertices ar@d trarsglated In the obvious fashion:

X « X + XWC; Y « Y + YAC; 2 « £ + ZWC;

whereas for rotation (dlifation and reflection) the tnnermost
corputation applied tpo gatn vertex is:

X * X + XWC; Y « Y + YWC; 2 « 7 + ZWC;
XX e IX#X + JY#Y + |Zuf;
YY « UX#X + JysY + JZ«#Z;
2% ¢ KY®#yx + Kyav + WZE®#}

X ¢ XX = XuWCi Y ¢ YY = YuC3 2 « Z2Z2 = 2yuC1
At thispoint,] shrou'd now present & Ffew genera I primlitives for
setting up such transformation arrays, but I don"t have them vy&t, The
croplem involves gselectingd frames Of references, strength Of
trarsformation, axags OfF ftransformations, origins of framesand mcdes
such as absoluts, relativeo r interpclated, At npresent in my

applications these matters are handled ad hoc (the mgst 2€neral
cglytior telng the =2T0FL and EUCLID  subroutines of GESCMED)Y, T
heart cf derivingd a transformation array is to G8etaframe of
reference REF anc an amount of rotatlon DEL and to compute the mateix
procuct:

R « (transpose(REF)cross(DEL cross REF) )

For ditetion(larger or smaller) Cross DEL withanon-urity diagonal
Tatrix; for reflections flip the rovw signs on desired axes,
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J, IMAGE FRINITIVES,

1. PRUJECTOUR(CAMERA,WORLD)
2. ELIST«CLIPER(WINDOW,WORLD)
3¢ CCCULT(WIRLD);
¥ 4, SHADOW(SUN,WORLD)S
* 5. TV & MEKVID(WINDOW, WwORLD)
# 6. 420 « MKB2D(WINDOW,WCRLD)
* 7. B2y « CAREYE(TY):
# urder constructionm, QOct 1972,

FROJECTOR computes the perspective projected locus >f all the
vertices in a Given world from a given camera, CLIPFR cormput?2 the
portions O f3D1ings tha* are visible within a given display+dindnw,
OCCLULT ccmpares all the adoes, faces and vertices in a dven world;

usirg their current proJected coorcinates; faces, @ed3és and v2rticds
that are notvisiole from the implied camera’s viswpoint =2r2 marked
as hidder; facas, odgdes and vertlices that ar2 visinle aremarkedas
visible; and faces, edges ana vertices that wer® initial ly cartially
visible are brokem up into Vvislible and hidden portioms.Thenmew
faces, edges and vertices introduced by 2JCCULT =:re merrec so that
they can be removed,

Ths following four primitives are still beiny daveloped.
SHADUW willllterallybuiida world witn shadoWs in it; sradowcalls
OCCLLTtwi ¢ce, once for the SUN and once for the camera, There Is no
conceptual difficulty in doing many point sources, but !shallget
onesource working at a time, The MKVID primitive gererates TV
intenslty fasters from <he world model after OCCULT or SHAJOW has
been abplied, The vykB2Cprimitive generates a 2D data structuJrée of
redlons and edges (Whigh is almost a copY of the 3Dstrugturethnpt
has been presented, out withspecial attention paid t o T=Jjoints);
this B20 data structure s an image me¢dei, Final |y, +he CAREYE
peiritive converts TV Intensityrasters into B2J image structure, A
cetaileg dlseriptiono f these image primitives canno%twedivenat
thig tlme (OCT 1972), because 1 haven"t finished making them,
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[ve APPLICATIONS,

Tha sinGlegaoplicaticnaroundwhicntihe n1eonmetric~gdetling o f
tris pagar ! sbeingnuil t is for 2 computer television VYision (TVV 1)
csystem for looking at rea!l ~orldscenes, | believe +that 3 conputer
Tryst have a means of representing what it is intendea tc see anc

furtnerthatthe representation must have (in principle) =an inverse
relatiort o 2 t=2|evision image, My First prenise israrely
questioreds, the second premise is frequentity guestioned, one
alternative Position is that so cal led "fegtures" can o2extracted

fror anima3e and then used by a heuristic problam soivaer 2c find an
association oetwaen <th2 perceived features and previcus general

knowledge; It is then stated that there is no need to 36 fraom the
genera! knowledge ©or evan from the so called image "features" Dack
dowr t0 2 televisionimade, =evenj u st i nprincinle, | wish *c state

the oPposite, thers isaneeat ogofrom theadenerairepresantation
toatelevisionimage In orderto develop computer Visign Wwithouz

navVing to solve several dtherproblemsof Artificial inteiligence,
Apdiications of geometric noazlingothert h a ntalevisionvision mignt
include: architestyral dravin3,conouter animation, anrc mecce!ling for

laser, radar, and 3gnzr i7a3e systems,
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Ive A, ¥oaeling! GEQMED - a drawing program,

GEOMFE]D, Segmetric Mode I Editor, is-for makling and editing
oolyhedra, The g¢ommand language of GEOMED nprovides the Euler
orimitives In the c¢ontext o f a push down stack (the PADPDL)of
boogies, faces, edgeg and vertices,The maln difference between an
interactive program and a programmlng language being that the former
carriss along A working context SO that most arguments and data do
not naveto ce explicitly named,

v make seminalvertex body,
£ - make edge and vertex,

J - make edge and face,

G - alue two faces,

In_addition to the stack, GEOMED provides frames of reference
for the Euclidean transformations; there {8 a world frame, body

frares, camera frames, relative frame and face frames, Also the
strength of a Euclidean transformation can be halved or ¢gouble, set
directlyorentered numerically in several kinds of unlts, And
final |lY the transformation can be done once or repeated!|yby keying
chords of Stanford’s extra shift keys named "control" and “meta" wlth
a., : O - or # character. These characters are not mnemonics but
were chosen because of thier positions on the keyboard,

- - transform about X-axis.
) - transform about Y-axis.
- % - transform about Z-axis.
no shifgs - TRANSLATION,
a - contrg ! = ROTATION,
f3 - meta = DILATION.
€ - meta=control = REFLECTION,

Finally, GEOMED nprovides access to al | the solidprimitives
arnt hidden line elimination, along with -commands for the stack,

incut, output, display, and switch toggling, The commands are
odetailec in the operating note, SAILON=68, along with a (ist of
GEOMES and GEOMEL subroutines, Twa examples should suffice to
itlustrate how concise and illegible GEOMED command strings are:
1. VIINEJE(E:J+/aSar forms a cube,
2. AR I IR IR I I NE

\\:85)S5)5)8)S5)S)S)S)G forms a torus.

Thus 2 poliyhedron can be represented in a few characters (which must
be <compiled); one might hope that such a "representation by
gereration" <coulg provide a link between semantic and geometric
mocels, The hard cdirecgtion is to get from a polyhedron model to the
cnffrand string,
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{v., B, Graphics: QCCULT - a hidden 1line eliminater,

CCCULT is a hidden lineeliminator;iitisneither a Watkins
nor a warnock algorithm but is rather a throw=-backtothe naiveidea
of comparing each edge with all the other edges and having ways to
darpen the potentially {arge number of comparisons that ™iznt cccur,

Therearethreekinds of dampening in OCCULT, The first (used
in other hidden eliminators) i8t0o get rid Of the faces that have
theijr backsto the camera and to consider for comrarision only the
edSes With one potentially visible face. These edges are called
"f0las", The second kind of dampening, is to hide everything
cornectedto the nigdenportionofarn edge wWhemn a fold <crossing _is
discovered, thisis made possible by the winged edge primitives wnich
allow Polyhedron surfaces to be easlly traversed topolocicaliy; and
by the Euler primitiveswhich allows the edges to be quickly broken
intovisibleand hidden portions without l|osing their topoiogy¥, The
thirda kind o fdampening Involves having a raster of edge buckets to
localiZet h e comparisons.,

The reason for doing hidden line elimination in th!s fashion
is to get the topology of the image regions and edges Inamodeled
scene inmecluding the shadoWs. OCCULT was used tO make some of the
~fioures that appeared earlier In this paper; for examnlie thearm
mode ! Im Figure 1,2, (which required twelve seconds of PZP«iTcompute
time), A paper on QCCULT should be available before the end of the
yearp, 1972,

Iv, C, vislon: CAREYE - a videoregion~edge Tfinder,

CAREYE, Cart Eye, is the oldest, mostrewritten,yetleast
finisheg part o f the application,Atpresentits best +trick is to
take a Television imageand convert it into video intensity contour
- lines similar to those discussed by Krakaur and Horn (of M,1.7.,).
Fror VIC, Video |Intensity Contours8 the image goes through two
proceésses: first, the «camera |ocus=orientation for the image js
solved by finding featurepoints In the image that cooresoond with
knownland mark point!ntheworid; and second, after the camera s
soived,the locus cf previously unknown regions of the imags must be
added to the wWorld model: tne third dimension of such unkncw~= regions
being assumed to be very large, untilevidenceis foundinsucseeaing
images that make the region "DOD out” of the background, These two
processes are called Camera Locus Solving andBody Lacus Sciving;
CAMLS and BOOLSj;and are the missing links in makinz csiynedron
mocels merely by looking at obJects and scenes of objects.
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