WNGED EDGE POLYFEDRON REPRESENTATI ON

BY

BRUCE G BAUMEART

SUPPORIED BY

ADVANCED RESEARCH PRG ECTS AGENCY

ARPA ORDER NO. 457

OCTOBER 1972

COMPUTER SCI ENCE DEPARTMENT

School of Humanities and Sciences STANFORD UN VERSI TY

Abstract: A winged edge Polyhedron pepresentationls stated and a set of Dpimitives that opesepve Euler's F-E+V = 2 oquation are exolained, Present use of thls pepresentation in aptificial Intelligence for computer graphlcs and wopldmodelling is lliustrated and its Intended future apolication to comoutep vision is discpibed.

CONTENTS

1. INTRODUCTION,
A. Introduotion to Wopld Modelling,

B, Introduction to a Camera Model,
C, Intpoduction to Body, Face. Edge, Vertex Mojeling.
II, DATA STRUCTURE of WInged Edge Polyhedra,
A WInged Edge Structure.
B. Winged Edge Operations,

C, Elaboratlons.
III, PRIMITIVES on Polyhadra,
A Eulop Primitives,
B, Solld Pplmitives.
C, GeometricPplmitives,
D. Inage Forming Primitives.

IV, APPLICATIONS,
A. Modelling: GEOMED - 3D drawng edtor.

B, Graphles: OCCULT - hldden llne ellmlnatop,
C, Visioni CAREYE - video regi on- edge ilindor.
Thls pesearoh was supported In dart by the Advanoed researeh projects Agency of the office of the secpetary of defence under contract SD-183,

FIGURE 1.1 - Lxamples of World Yodel Scenes.

In order to get a oomputer to deal with the physlal norld it must have a data pepresentation on which comoutations involving space, time, shape, size, and the apoeapance of things can be done. It ismy current prejudice that dolyhedra provide the proder startina oointfopbuliding such a ohysloal world representation, At Stanford Aptificial intellegence, Blnford and Agin have started insteadwith splne-cposs section models as an alternate aporoach to the same protems [reference 1], Other researchers with somewhat different goals, are attemoting to build semantic, predicate calculus, problem
 oader ls about a body, faos, eage, vertex polynedron model that is for modelling objects and scenes of oojects or the sake of computer vision.

Athough the datastructure to be discussed is not language dedendent, the terminlogy and examples wll follow ALGL and LISP. Also, the reader is assuned to have some acquaintance with the 1 deas associated with the following technical tepmsi

A: block, node,item, el ement, atom
R: Ilnk, dolnter, address, reference.
C: datum content, value,
D: llst, ring, stack, odl, tree,
E: dynamic free storage \& menory allocation,
A thorough peosentation Of these terns and ideas can be found in chapter two of volume one of Knuth's cookbook, 'The Art of Computer Ppogramming' [Refepence 7]. The word "ring" used informally in this paper will al ways nean a double pointer ring with a head; and as in LISP, nords of memopy happen to be able to hold two pointers.

FIGURE 1.2 - A Polyhedron Model of a Mechanical Arm.

1. A. Introduction to Wopld Modeling.

I WII Introduce my requlpements for a computer model of the ohysical norld In tepms of lts role as a memory, As a memory, a worid model has contents and an addresingmeohanlsm, The kinds of data that $\mathbf{d i s h}$ to hold in my world nodel ape:

CONTENT REQU REMENTS
1, Topologioal data,
2, Geometrlo data.
3, Photometric data,
4, Parts tree data,
Topologleal data has to dowith the notion of nelghoophood; a world modal has data on what is next to what. A facen, noto, vertex model ls essentially dedcated to supface todologyimatters of volume topol ogy are not stored but rather must beomputed. Goometpic data has to do with notions such as loous, longth, area and volume. Photometple data includes the loous and nature of light soupces, as wellas data on how supfaces reflect, absorb and scatteplight, Parts trea data has to do with the notlon that objeots are comoosed of Darts, which d construe as data on the structure of the physleal world ratherthan as oupelyanartifactof having structured wopld datal that ls, ! prefer to have the speclflcation of how an entity is broken into papts be external to my world nodel, The kindsof data not Included are semantle data (other than body names); ohysleal data such as mass, ineptia tensors, electrlealppoperties and so ons and cultupal data such as whether an object ls a toy, tool,opweadon; withanyartistlc, pollgious or market value.

Next the kinds of addeesslng mechanisns I wish to have, fop equivalontly the input-output nodes of the nodel) are:

ACCESSI NG REQU REMENTS

1. ADD日arance given camera, return an imageof what the norld would look like from that camera.
2, Recognition - glven an Image, return the objects from the world nodel that apoearinthatlmage.
3, Camera Solution given a recognized image, find the location 6 oplentation of the camera:
4, perceotion - givenlmages, from solved cameras, olacenow bodies into the nodel for poptlons of the Images that have not Yet been recognlzed.
5, Spatial Accessing - glvenalocus and radius, potupn the Portions of objects In that sohepe,

Cleaply, these are the hlgh lovel acoessing requipements whfoh are the peasonsfor having a world model and the design goals for nodel bullding.

FIGURE 1.3 - A Camera iodel.

FIGLRE 1.4 -- Logical and Physical Raster Sizes.

!. B. Introduction to Camepa Model.
A sthe accessing pequipements 1 moly, a norld model pequires a soacial ontity calied a camera which is used to model image fopmation. Athough the canera nodel islmoortant here for a comolete socelfication of the data, It may be sklooed on a first reading. The arptcular cameramodel l havebeen using lately, ls expessed by olghteen real numbers linvolving nine degreses of proodom, fipst there ls the cameralens center loousi

$$
C X, C Y, C Z, \quad \text { In norld coordi nates, }
$$

Aflod to the lens canter Is the canera frame of reference with unlt vectors I, J and k, when the 1 mage formed by the canera lis placed in coppespondence to a display screen, as lllustrated In figupel, 3 , the Unit vectop 1 maps into the plantward positivex of the disolay scrien, and the unit vector J maos Into the uoward positivey of the alsolay scepen, and the unlt vector k comes out of the disolay sereen to form a plght handed coordl natr system. Together the three unlt vectops of the camera are the three by three rotation matrix:

Noxt, there ape three scales whlch determine the copespondence bet ween norld size and lmage size. Observe that the norld smeasured In physical unlts of length liko meters or peot while computep images come In integral sizes like 1024 by 1024 or 480 rous by 512 columns, thus the conversion scales must be In tepms of logical lmage units oer physical horld units. in an actual television canera a minute l mage (say 9 mm by 12 mm) Is forned on vidicon tube andthat image has a daptloulap number of rows and oolumns. It ls the llttio lmage on the vidicon that we pretend to nodel by the six parametersi

$$
\begin{array}{ll}
\text { LoX, LDY, LDZ } & \text { Loglcal roster size } \\
\text { POX, PDY: FOCAL } & \text { Physical raster size }
\end{array}
$$

Where the number named FOCAL, is the focal plane di stanoe whlch in this nodel (w ith distant objects) oan safely be equated $w /$ th the lons pocal length and can be given in millimeters fconventionel lens pun $12,5 \mathrm{~mm}$ to 75 mm for $\mathrm{I}^{\prime \prime} \mathrm{TV}$). The integer LDZ ls an artifactso that the unlts oome out corpeotiy in the z dimension. Thus the scales factor8 are deflned:

$$
\begin{aligned}
& \text { SCALEX -FOCAL*LDX/PDX: } \\
& \text { SCALEY -FOCAL*LDY/POY; } \\
& \text { SCALEZ FOCAL*LDZI }
\end{aligned}
$$

Thls simole canera model is used to comoute voptex Image coopdinates, A more olabopate ohyslcal camepa nodel can be found in Sobel [reference 9].

FIGURE 1.5 - A Renaissance Camera Model.

1. C. Intpoduction to Body, Face, Edge, Vertex (BFEV) Mbdeling,

This introduotfon to BFEV modeling wlll be informal and specifle to the wingededge nodel presented In Part-11 of trls paper. Many of the basic numerical rolations which nake BFEV nodels important are stated in ALGQ notation without proof.

The Vertex,
A vertex is an instanoe of a doint In a Eucildean thee space, The Important thing about a vertex is its world locus (with component nanes XWC,YWC,ZWC standing for world-coordinates), Vertex locil are the basicgeometric data from which length, area, vol une, face vector 3 and imase dositions oan be computed, Also a vertex may exist simultaneously in one or nore lmage spaoss, A n lmage space (with oomponent names XPP, YPP, ZPP standing for perspectiva=Dpojected) is always three dimensional and is determined with respect to a given canera oentered coordinate system (with conobnent nanes XCC,YCC,ZCC standing for camera-coordinates), The thlrdimage component, ZPP, is taken inversely proportional to the distance of the veptexfiom the cameralmage olane, $Z C C$. Using the camera of the provious section. the transformation of a vertex norld locus to a canera centered locus is:

$$
\begin{aligned}
& x \text { * XWC }=\mathbf{C X I} \\
& Y \text { - YWC - CYB } \\
& Z \text { - ZWC - CZs } \\
& \text { XCC }-I X * X+I Y * Y+I Z * Z \mid \\
& \text { YCC - JX*X + JY*Y + JZ*Z } \\
& Z C C+K X * X+K Y * Y+K Z * Z ;
\end{aligned}
$$

The first thea assignment statements are the tpanslation to the camera frane's orloln, the sseoond threo assignments are the - rotation to the camerairame's orlentation. Next the oersoective ppojection transformation IS comoutedi

$$
\begin{aligned}
& \text { XPP : SCALEX*XCC/ZCC } \\
& \text { YPP: SCALEY\&YCC/ZCC } \\
& Z P P: \text { SCALEZ } Z Z C=
\end{aligned}
$$

The XPP and YPP assignments are depived by means of simiar triangles, as ising dbmee by the man In figure 1,51 the $Z 0 D$ essignment is for preserving the depth infopmation and the collneaplty of the morld in the derspective projectedmage space, As given, the PP framelsplint handed and vortiess in front of the camera!s image olane will have negativezppizod val ues near -FOCAL are elose to the camera and val ues adoroaching Zero arefar away,

Aflnal matter withrespect to vortices ls thelp valence. The $v_{a} l_{0} n_{c}$ of a vertax ls the number of edges that neet at the vertex, A vertex valence of three, for oxamole, indicates a tr|hodeal copner.
l. C. Introduction to BFEV Modellng. (continued).

The Edge.
For a start, the structure of an edge need be thought of as Iittle mope than tuo vertices; the tooologicalsubtlety of edgeswll I be explained later, However, tho vertices do define the important georetric edge data called the 20 line coefficients. Named PA, BB, cc; these coeffleients are comouted from the perspective locus of the edge's endpolnts as follous:

$$
\begin{aligned}
& \mathbf{A A}-Y 1=Y 2 ; \\
& 55 * X 2=X 1 ; \\
& \mathbf{C C}-X 1 * Y 2-X 2 * Y 1 ;
\end{aligned}
$$

These coefflcients apoear In the 20 equation of the 1 he that containsthe edge:

$$
\mathbf{0}=A A * X+B B * Y+C C ;
$$

Wher the edge coefficients are normalized:

the line equation gives the distance, of a point X, Y from the line:

$$
O+A A X+B B Y+C C ;
$$

The distance is actually ASS(Q), since O is negative on one side side cf the line; also if one were standing on the plane at ooint Xi, Y1 facing $x 2, y 2$ the 2 oositive half-plane nould be on your left and the O riegative half plane would be on your right.

An important oderation on tuo edges is to detect whether or rot they intersect: this can be declded by checking first whether the endcaints of one edge are in the odoosite half planes of the other edge, arid second whether the endoolnts of the latter edge areln the opdosite half planes of the first. When both conditions obtain, then the intersection doint can be found:

$$
\begin{aligned}
& \mathbf{T} *(A 1 * B 2-A 2 * B 1) ; \\
& \mathbf{X}-(B 1 * C 2=B 2(C 1) / T ; \\
& \mathbf{Y}-(A 2 * C 1-A 1 * C 2) / T ;
\end{aligned}
$$

An actual compare for- Intersection should initially check for the igentity case, and foredges with a vertex in common,
I. C. Introduction to BFEV Mbdel ing, (Continued),

The Face.
Afaceis a, infte peglon of olane enclosed by straloht lines. A sfe formal face structure could be bulit by defininga triangle as theoe non-oolinear vertlees and then insisting that all faces be triangle interlors, Unhadolly, BFEV paces are usually peppesented as a llst of vertices and edges tot by somethlng neaply equivalent) for the sake of saving memoryspace. Such 'listt faces are not monolithic but tend to suffer special cases and oathologios such as:

Coi nci dent or crossing edges,
Holes and Disjolntness,
Concavity (s Convexity),
Non-codianarlity.
Like odges, faces have characterlstic ooefficients satisfy the equation of a plane in whiohtheface is enbedded:

$$
A A * X+B B * Y+C C * Z Z=K K .
$$

The equation could be divided by $K k$, but that is undesipable because the $A A_{1} B B, C C$ are more useful as a unit nornal vector, In which case 'KK Is the distance of the oplgin from the plane, Given the loall of these non-oollnear vertices, the coepflcients of a plane can be computed by Kramer's rule asfollows:

KK	$\cdots \begin{array}{r} X_{1} *(Z 2 * Y 3-Y 2 * Z 3) \\ +Y 1 *\left(X_{2} * Z 3-Z 2 * X 3\right) \end{array}$	
	+ $Z_{1} *(Y 2 * \times 3-X 2 * Y 3) 1$	
AA	*(Z1*(Y2-Y3) $+Z 2 *(Y 3-Y 1)$	+ Z3*(Y1-Y2));
BB	- ($X 1+(Z 2-Z 3)+X 2 *(Z 3-Z 1)$	+ $\left.X^{3}+(Z 1-Z 2)\right)$;
cc	* ($X^{(* *(Y 3-Y 2) ~+~ X 2 *(Y 1-Y 3) ~}$	+ $\left.X^{3 *}(Y 2-Y 1)\right) 3$

and normalized:
$A B C-S Q R T(A A+2+B B+2+C C+2))$
$A A-A N A B C ;$
$B B-B B / A B C ;$
$C C-C C / A B C ;$
$K K-K K / A B C ;$

If the given vertices $M, ~ V 2, ~ V 3$ had been taken golng counfer clockwlse adout the face as' vi ewed from the exterlor of the solld, ther the following pelations obtelni

$$
\begin{aligned}
& A A * X+B B * Y+C C Z<K K I m p l \mid e s X, Y, Z \text { above the olane. } \\
& A A X X+B B * Y+C C * Z=K K I m p \mid l e s X, Y, Z \text { in the plane, } \\
& A A * X+B B * Y+C C * Z\rangle \text { KK Implies } X, Y, Z \text { below the olane. }
\end{aligned}
$$

Face coefficlents ppove useful In both world andmagecooidinates.

PAGE 11

```
1. C. Irtroduction to BFEV Modeling, (continued).
```

POLYHEDRA, BODIES and OBJ ECTS,
In el ementary geometry8 a polynedron is said to be a solid formed (or bounded) by plane faces; the nord "polyhedron" literally reanling "many-faced". Todologically, simple dolyhetra satisfy Eulep's $F-E+V=2$ equation; where F, E and V are the number of faces, edges and vertices of the polyhodion respectively, This oquatlon was knonn to Descartes in 1643, but the first proof Whsn't given Until 1752, when Euler proved the relation by considering the graph corpesponding to the edges of polyhedra, A simple polyhedron is one horeomorphle to a sohere, the rigorous devel opnent of volume measure, and in turn 'solid' Polyhedra, is not simple; thus it has been easler to take the tooological notion $F-E+V=2$ as the more pimitive definition of a polyhedron on which to base a data structupe and to opoces towards the appearance o f 'solidness' which is a more corplicated notion. --

Counter to the usual usuage, d define the word "body" to nean an entity nore soeciffice than a oolyhedron; the idea being that a Dolynecion is peopesented by the whole structure of bodes, faces, edges and vertices. Bodies nay have location, orientation and vol une in space. Bodies may be conected to faces, edges and vertices, which ray or may not form a complete polyhedron, It is typical to have only one body to a dolyhedron when representing a rigid object like a slegie hamer and several bodies to a polyhedron when representing a flexible object like a man, Furthernore, the body concept is used to nanole the notion of parts and abstract regional objects such as a oarking Iot, Fop examele, the Stanford Al Parking Lot is reppesented by a body that has three dapts: the Near, Mid and Far Lots. The Near Lot then has aisles and Ianes and Iamp Islands; a Iamp island has a curb and tuo lamps; a lanb has a base, stem and too, This parts structure is carried in body nodes, Final ly, the nord "object" will be used to refer to physical objects such as a pednood-tree, building, or roadway,

1. C. Introduction to BFEV Mbdeling, (oontinued).

FOUR KND OF EFEV ACCESSING.

1. Accessing by nane and serial number.
2. Parts-Tree Accessing,
3. FEV Sequential Accessing.
4. FEV Peplmeter Accessing,

A BFEV mocel has four kinds of accessing, The most conventional BFEV access is retrieval oy symbolio name which peauipes a symbol tabie, Next, between bodies thepe is Parts-Tree accessing, At the top of the Parts-Tree is a speclal body named the world te which all the other sodies are attached; thus the norld body serves as an UBLIST node, Given a particular body, a list of its sub-parts can oe retrieved as well as its supra-part or "supart", A supart is the whole entity to which a dart belongs, the world being its own sucart.

Wthin each bow there ls face, edge and vertex soquential accessing, Given a body, all its faces, or edges, or veptlcesneed to be readily availabie since serspective projection loops thtu all the vertices, and the process of disolay clipping loops trirs al the edges, and the act of checking for body intersection looesthru al 1 the taces. In LISc, one might provide FEV seauential accessing by placing a list of faces, a list of edges and alist of veptices on the propertylist of each body, so that a cube night be represented as:

```
(LEFPROP CUEE (F1 F2 F3 F4 F5 F6) FACES)
(DEFPROP OUQE (E1 E2 E3 E4 ES EG ET E& E9 E1M E11 E12)EDGES)
(DEFPROP SUEE (V1 V2 V3 V4 V5 v6 V7 V8) VERTICES)
```

Finally, among the faces, edges and vertices of a body there is perireter accessing, Faces have a depimetep of edges and vertices [figure 1.6]; less commonly used, veptices have a perimetar of edges anc taces [fisure 1.7]; and of particular note, edges have a perimeter al hays formed by tho faces and twoveptices, [flgupe1.8]. Perimeter accessing requires that given a face, edge or vertex, that the perimeter of that entity bereadlly accessible, Since the surface of a polyhedron is orientabie, that is has a well defined inside and outside, (klein bottles with their crosscaps will not be modeled), suct peplmeterlists can be ordered (say clockwise) with respect to the exterior of the polyhedron. Porinoter accessing is nentioned in Guzian [reference 6] and Falk[refepence 43 and is the under lylng basls of oart-ll of this paper which presents a polyheopon model bulit for accessing and altering face, edge and vertex perimeters,

Flgupe 2.1 - BASIC NODE STRUCTURE.

Flgupe 2.3 - AN ACTUAL NODE STRUCTURE - SEPTEMBER 1972,

BODY-BLOCK	FACE-BLOCK	1EDGE-BLOCK	VERTEX-BLOCK
-3, papt,codapt	-3. AA	-3, AA	-3. XWC
-2, locop	-2, 88	-2, B8	-2. YWC
-1, pname,	-1, CC	-1, CC	-1. ZWC
0, typesserlal	0, typeserlal	0, tyoeseplal	Ø. tyde,seria
+1, nface, oface	+1, nface, oface	+1. niacoiofaco	+1, XDC,ijoint
+2, ned, Ded	+2, Ded	+2, ned, oed	+2. YDC,Ded
+3, nvt, ovt	+3, Q0	+3, nvt, ovt	+3. nvt,ovt
+4, Fentivent	+4. KK.	+4. new, DCW	+4. XPP
+5, Eent, Pent	+5.	+5, ncow, DCOW	+5. YPP
+6, nbody, pbody	+6, a $1 t_{\text {, }}$	+6, alt, obody	+6. ZDP

```
Paht-.!. THE WINGEC EOGE DaTA ETqJCTJRE.
```

II, A, winged Eage Data Stpucture.
Bodies, Faces, Edges and Vertices arepepresentec oy blocks of contiguously aadressed Wbrds, A single bock size of ten rords is adeguate, A single wopd, like a LISP node, can nold two addpesses of a floating point number, The BFEV blocks aradointec atoy the addpess of thelp wopd numpered zepo which contains contpol dits Incicating whether the block ls a body, face, edge or vertex. figure 2.1 illustrates the block format that lS being oresented a san example of a winged edge data structure; a minimal numper of words for each block is indi cated.

The basic geometric datum is the vertex locus, which is
 these positions are named XWC, YwC, ZWC respectively; the letters "WC" standing for "world coopdinates".

The basic topol ogical data are the these pings of the body; (a ring of faces, a ring of edges, and a ring of vertices) and the winged edge pointers (eight such pointers In each edge block,and one sucr polnter I n each face and vertex olock). The face, edge and vertex ping dointers ape stored at positions +1 , $+\hat{z}$, +3 ; each position has tuo names: NFACE, NED, NVTfor the left dointers respectively; and PFACE, PEC, PVT for the right, A face, edge or vertex can only bel ong to one oody and so there is only ane body node in a givan face, edge or vertex ring: and that body node serves as the head of the ring, The reason for double pointer rings is for the sake of rapld deletion; other minor advantages uould not justify the use of double rings.

The eight WINGED pointers of an edge block Include: two pointers to the faces of that edge, two pointers to the vertices of that edje, and four pointers to the next edges clockise and counter clockilse in each of that edge's two faces; these last four pointers are called the wings of that edge, As figure 2.2 suggests, four of these eight polnters are stored in the sane positions and referred to by the same names as the face and vertex ring pointers; namely the NFACE, PFACE, NVT and PVT Dointers. There are four ways in whien a Pair offaces and a cair of vertices can bo placed Into the two face oositions and two Vertex positions of an edge; by constraining these choices two bits are impllcitly encoded, one bit is called the edge parity, and the other Is called the surface caplty; these oits are exolained later, finally, the single winged edge pointer found in faces and verticesis kept in the position naned PED and it ooints to one of the edges bel onging to that face or vertex.

Although the vertices in figure 2.2 are shown with three edges, vertices may have any number of edges; those other 20 tential edges Wbuld not bedirectly connected to E and so were not shown.

A SUMMARY OF WINGED EDGE OPERATI ONS.

II. \forall. The Winged Egge ODerations.

Dynamic Storage Allocation,
At the Very botton, of what is becoming a rather deec mest of Dpiritlves within drimitives, are the tho dynamic storage allocation functions GETBLK and RELBLK. GETBLK allocates from 1 to GK words of menory Space in a contiguous block and returns the machine audaess of the first word of that block, RELBLK releases the indicatec block to the availaole free memory space, (ltis sad that the machines of our day do not cone with dynamic free storage), A good reference for imolementing such dynamic storage, mentioned earlier, is knuth [reference 73, Altnough a fixed block size of ten or fanerwordscar. be rade t o handle the 3FEV entities, grandiose and fickle reseapch apolications (as wall a memory use ootimization) cemane the flexiblilty of a variable block size,

BFEV Make 8 Kill Ooepations.
Just above the free storage poutiries we the four baips of make and kill operations. The MKB operation Creates 6 body block and attaches it as a sub-papt of the given body. The morld bodyalways exists So that MKB(NORLD) will make a body attached to the norld, In this paper, the terms 'attach' and 'detach' refer to ooparations on the Darts-tree Iinkages. The FEV make operations: MKF, MKE, MKV create the copresponding FEV entities and place tiner in their respective $F E V$ rings of the given body. In the current implementation, the FEV makers set the type bits of the gntity, and $i_{n} c r e m e n t$ the proper total FEV counter, as well as the proper body FEV counter in the given body's node, (the Font, Ecent, vont node oositions are shown in figure 2.3). The kill operations: KLS, KLF, KLE, and KLV; delete the entity from its ping (or renove it from the Darts-tree), release its space by ca! IIng RELBLK, and then decrement the apDropplate counters, The body of the entity is needed oy the -killprimitives and can be provide directly as an argument or if missing, wlll oe found in the data by the primitive itself,

Fetch Link and Store Link Operations.
Each of the fetch link and Store link operations namad in the summary is a single machine instruction that accessas the corresponding link position in a node, Once efev nodes exist, with their rings and parts-tpee already in place; the fetch and store link operations are used to construct or modify a polyhedron? :upface. At this lowest level, constructing a polyhedron reaulies Three steos: first the two vertex and two face pointers arealacedinto each edse In counter clockwise order as they appear when that edge is viewed fror the exterior of the Solid; second an edge pointer is ulaced in each face and veptex, so that one can later get from a given face or vertex to one of itsedges; and third the edge wings arslinked so that all the opderes oefimeter accessing operations describeo below will wopk. Winglinking is facilitated by the WING operation.

```
FIGURE 2.4 - MIDPOINT EXAMPLE (gee text on dage 20).

\section*{ENEWI}

now
```

now

```
```

 nvt
    ```
                    nvt
        VNEW.
        VNEW.
            pvt
```

 pvt
    ```
```

INTEGER PROCEDURE MIDPOINT (INTEGER E):
BEGIN "M DPOI NT"
INTEGER B,ENEW,VNEW,V1,V2;
a CREATE A NEW EDGE AND VERTEXI
B - BODY(E);
VNEW - MKV(B);
ENEW - MKE(B);
a GET VERTI CES AND FACES CONECTED TO EDGES;
PVT, (PVT(E), ENEW):
PVT, (VNEW,E):
NVT, (VNEW,ENEW):
PFACE, (PFACE(E), ENEW);
NFACE, (NFACE(E), ENEW);
a GET EDGES CONNECTED TO VERTI CES;
IF PED(V) =E THEN PED.(ENEW,V);
PED, (ENEW, VNEW):
a LINK THE WNGS TOGETHER;
WING(NCCW(E), ENEW):WING(PCW(E),ENEW);
NCW, (E,ENEW): PCCW, (E,ENEW):
PCW, (ENEW,E):NCCW,(ENEW,E) I

- PLACE VNEW AT MIDPOINT POSITION;
V1 - PVT(ENEW) \mathbf{V} - $\operatorname{NVT(E);~}$
XWC(VNEW) - (XWC(V1) +XWC(V2)) 0.5;
YWC(VNEW) - (YWC(V1)+YWC(V2)) * 0.5;
ZWC (VNEW) - (ZWC(V1)+ZWC(V2))* 0.5;
RETURN(VNEW):
END "MInPOINT":

```

The wing Link Operation,
The WNG operation stores edge pointers into edges so that the face perimeters and vertex perimeters are nade; and so that surface parltyis preserved, G ven tho edges whlch have a vertex and 8 face in common, the wiNG oparation places the first edze in the Drocer relationship (PCW, NCCW, NCW, or PCCW) with ressect to the second, and the second in the proper relationshio with respect to the first, The INVERT operatlon swaps the vertex, face, clockuise wing, and counter clockwise wing pointers of an edge. INVEPT apeserves surface parlty, but fllos edge parlty.

The Midpoint Examole,
In figure 2,4 an example of how the oderations given sofar coula be used to code a midpoint primitive is shown, the examole miapoint prlmitive takes an edge argument and splits it intwo by naking a new edge and a new vertex and by placing them into the Dolyhedion with the topol ogy shown In the diagram Then the midoolnt locusiscomputia and the new vertex is return. The ALGOL notation Usea ls SAlL, which allows definlng the character "a" as a CJMMENT delimiter and allous defining XWC as a real number from the soeclal array named MEMORY. The MEMDRY array InSAlListhe job's actual machine menory space and gives the user the freedom of accessing any wore in his core inage,

\section*{The Parts-Tree Operations.}

As shown in figure 2.1, each body node has two Darts-tree Iinks named PART and COPART. The PART link is the head of a list Of sub-parts of the body, When a body has no sub-parts the PART link is the negative of that body's oolnter: that is the body ooints at itself, When a body has parts, the flpst part is pointed at by PaRt ano the second is pointed at by the COPARTI ink of the first and so on until a negative pointer is retrieved whichinalcatas the end of the parts list, The negative pointer at the end of a oarts list Points back to the orginal body, which is the supra-part or "supart" of all those bodies in that list.

The parts may be accessed by its IInk nanes PART and COPART. Also the SUPART of a body returns the (positive) pointer to the subart of a body, The Bo[y operation returns the body to which a face edge or vertex bel ongs: thls might be found by Coring a FEV ring until a body node is reached, but for the sake of speed each edge (as shown in figure 2.3) has a PBODY IInk which points back to the body to which the edge bel ongs, and since each face and vertex points at an edge, the body of an FEV entity can be retrieved by fatcring only one or two IInks.

Part Tree Operations (continued).
The parts-tree is alteped by the DET(B) oderaticn which peroves a body \(B\) from Its supart and leaves it hanging free; and the \(A T T(61,82)\) operation which places a free body \(B 1\) into the parts \(|\mid s t\) of a body B2, since bodies are made attached to the worldocay and generally kept attached to something, two further perts-tree opepations ape provided, compounding the first tuo in the necessary marnep, the DETASH( \(\mathrm{g}^{\prime}\) ) operation DET's B from Its current owner and ATT'S it to the world; and the \(\operatorname{ATTACH}(B 1,82)\) oderation Nill EET BI fron its supart and attach it to a new supart. In normal (one world) circumstances one Only needs to use ATTACH to build thines.

Perimeter Fetch and Store Operations.
There are seven perimeter fetch prinitives, whict when g̈ven an edge an3 one of it3 linkswil letch another link in aceptain fashion, Using t-he wingededge data Structure these pilitivas are easily implemented in a fow machine instructions which test the type bits ano typically do one or two compares, Clockuise and counter clockwise are always determined from the outside of a oolynedpon looking down on a particular face, edge or vertex, 1 arolozize for the high redundancy on the next page, but felt that it was nevessary to rake the explanations independent for reference,

FIGlre z, - Face Perimeter Accessing witn pespect to eace E.


Fiolnt 2.6 - Vertex ferimeter accessing with pesoect to eoje e.


The Perineter Fetch Operations.
\(E\) - ECW(E,F): Get Edge Clockwise from E about F's depineter. \(E-E C C W(E, F)\); Get Edge Counter Cockwise from E about F's ogrimeter.

Given an edge and a face bel onging to that ed尹e, the ECW fetch primitive returns the next edge clockwisabelonging to the givenface's pepimeter and the ECCW fetch primitive retupnstha next edge counterclockwise bel onging to 'the given face's perinster,

E - \(\quad(C W(E, V)\); Get Edge Clockwise from E about \(V\) s perimeter. E - ECCh(E,V); Got Edge Counter Clockwisefrom E about V s berineter.

G ven an edge and a veptex bel onging to that edge, tha ECW fetch primltive returns the next edge clockwlsebelonjing to the given vertex's perimeter and the ECCW fetch primitive returns the next edge counter clockwise belonging to tne given vertex's Derlmeter.
f. \(F C W(E, V)\); Get the face clockwise from \(E\) about \(V\).
\(F\). \(F C C W(E, V)\); Get the face counter clockwise from \(E\) about \(V\).
G ven an edge and a vertex belonging to that edge, the FCW fetch primltiva returns the face clockwise from the given edge about the given vertex and the FCCW fetch primitive returns tine face counter clockwise from the given edge about the given veptex.

V . VCW(E,F); Get the vertex clockwise from \(E\) about \(F\).
\(V\) - VCCW(E,F); Get the vertex counter dockwise from \(E\) about \(F\),
Gi ven an edge and a face belonging to that edge, the VCW fetch ppimitive returns the veptex clockwise from the given edse about the given face and the VCCW fetch opimltiveretupnsthevertex - counter clockwise from the given edge about the given face.

F - UTHER(E,F); Get the other face of an edge, v - UTHER(E,V); Get the other vertex of an edge.

Given an edge and one face of that edge the CTHER fetch orimitlve returns the other face belonging to that edga, given an edge and one vertex of that edge the OTHER fetch orimitive returns the other vertex belonging to that edge,
II. Ci. Eןaoorations on Winged Edge Structure.

In this section, some var iationsontrebrsicw inged edse structure arsgiven, These variations arise as adsotazianc for my aoolication, and as unimplenented ideas for imorovements. The adaftations, shown in figape 2.3. include adding serial numpers and all links to al the faces, edges and vertices, T nesprialamoers crovigea notherwayofaddresslngandare ospecially useful curlna infut ancoutput, The ALT link is used for pointing to avitionaltut tercopary data; themostelaborate ALT data has to ao with eoles. during a hidden line elimination. Sacrificing memorysozce for sides and fexibility, the facgandedge coefficients are stopes im each node, and theimage coopdinate (XDD,YDD,ZDD) and display soopdinates (xaciydc) are acjed to each vertex, Inelajorate zvespms. tie fifiage coopdinates mooel a camepa and the display cooraingtes peffer to locatior on a jisplay console. Having two tiers of image coopginates al lows sc-olling aboutthemodeled irage without crarialrag tre carera lor neaven fopoidder, naving to pedo a giader line eliminationi. . Tha remaining \(\mathbf{S} \mathbf{O}\) farunmentionednamesinclude: the Tjoirt link in vertices which is for shadow ena hlacer lino operations, the the 20 word in faces which containspnotometriodata, ardthe LOCOR ang FNAMElinks of a boay node, which coirt \(=0\) a location-orlentation matpix and an ASCll print nanerespeciively,

Sacrificing speed for the sake of memory, tieeffectof havingrest of the axtra data mentioned above can be aen ieved bu recorouting it rather than fetching it, furtherrore, thexingedeata structurec a n bemadeslightly smallerb yeliminating thg face and vertex rings, Face and vertex sequential accessing can Et: ilde done byravingtwomarkingoitsineach face andvertex, andoythen abis thru theadgerinalookinoat thetwo facesandtwo vertises of eact. edseforones that arenot freshly farked.it would be nice fe such ecorcoizing could be done below the level of the operations.

Fesices optimizations, the next improvement idea l would like to atterpt would be to split tne notion of a body inte the two notions of a "part" and a "cell". Parts would havethepartstree anc names that bodies now rave, whereas a cellwodnhavevolure and face structure, ! inthis hyocthetical Cell, Face, Edge, Yeptex (CFEV) rocel, each face coulc point tc a cell on either side ofite the cell with the lower serial numer (or something) being construed as exteriop, Cell number zepo would ne the infinite void of trees sace in whict everythirc is embeded, the trodble wiuh CFE: is that the importart matter of a dolyhecion supface as to be salvaseo; it can not be atandonec, cecause mocel swithout good supfacererresentations can not predict apfearance, which is one of my reauipement.
```

SUMMARY OF POLYHEDRON PRIMITIVES.
A EULEF PRIMITIVES.
1. BNEN + MKZFV; make a cody, face % vertex,
2. HLEFEV(Q);
3. VNEW - MKEV(F,V);
4. ENEW + MKFE(V1,F,V2);
5. VNEW - ESFLIT(E);
6. F - KLFE(EVEN);
7, E - KLEV(V`EW);
8. V - KLVE(ENEW); kill vertex \& edge leaving a vertex,
9. B - GLJE(F1,F2);
10. PNEW * UNGLUE(E);
B. SOLID PRIMITIVES.
1. VPEAK + PKRAMID(F); form a DYPamid on a face,
2. F \& PRISM(F):;
3, F + CWPRISMOID(F)
4. F + CCWPR!SYOID(F);
S. ROTCOM(F);
6. FVDUAL(B);
7. BNEW + MKCOPY(B);
8. EVERT(B);
7. F1 * SUN(B1,B2);
10. 31 - 8IN(31,B2);
1. VPEAK + PKRAMID(F); form a DYPamid on a face,
form a rectangular prism,
form a clockwse prismois,
form a counter clockwise drismoid,
comolete a solid of potatian.
form face vertex dual of a bovy.
make a coDy of a body,
turn a body surface insife out,
form uni on of body interiops.
form intersection of body interiors.
C. GEOMETRIC PRIMITIVES.
1. translate(0,r);
2. ROTATE(Q,Q);
3. CILATE(G,P);
4. REFLECT(Q,R);
D. IMAGE PRIMITIVES.
1. FRUJECTOR(CAMEKA, NORLD):
2. ELIST-CLIPEQ(WINJOW,NORLO);
3. UCCILT(WORLD);
4, SHADOW(SUN,NORLD);
5. TV + MKVIO(MINDOW,WORLD);
6. B2D - MKE2D(WINDOW,WORLD);
7. P2O - CAREYE(-V);
urder construction, Oct 1972.
kill a body \& all its pieces.
make edge \& vertex.
make face \& edge,
split an edge.
kill face \& edgelsaving a face,
kill edge \& veptexleaving an edge.
glue two faces together,
unglue along a seam containlige.

```

III, PKIMITIVES ON POLYHEJRA.
In this section a number of orimitives for doing things to polynedra are explainad, Although these prinitives are currently Implementedusing the winged edge data structure, they do not ragulre a particular polynedron representation, Indeed, mary of these primitives were originally imolemented in a leap dolynedron pepresentation Very similar to that of Falk, feldman andpaul [peference 5]. Thus, the primltives of this section are on a level logically independent from the oderations of the previous saction.

Another aspect of these primitives is that tney an reused as the basis of a "graphi cslanguage" or more accurately as a zackage of subroutines for zeometric modeling. In this vein, the orinitives are cuprently collected as a cackage called GEOMES for Mbdeling Enbedded in SAL; and as GEOMEL, Geonetric Modelingembeyded in LISP, A thipd Ianguage, called GEOMED, arises out of the sommand language of a geometric nodel edltop based on the primitives,

The primitives are shown in four groups inthe summary, The first group, the Eulerprimitives, were Inspired bycoxeter's groof of Euler's formula, section 10.3 of [reference 2]. Althoug- ine proof only pequired thres primitives, additional Ones of the sareilk were developed for convenionce. The second group is composey of some polyhedron primitives that were coded using the Ejlerprimitives. The thiragpoupls for opimitives that move bodes, faces, edses and vertices; or comoute geometrlc values such as length and volume, Tris group is underdeveloped for tho reasons: one, because ! hava done these computations ad hoc to date; and two, because theylmoly the subject of animation which ls lapge snd difficult and not of central imoortancet ovision. Wth the exception of the camera, ay worlas are nearly (but not absolutely) statle, A less impoverisinod jeometric group will be presented in the future, The final grovo, has three well devel oped orimitives for making 20 images; an3 several primitives that when finished will realize partof the visionsystem that am tpying to bulld.

Ill, A, Euler Ppimitives.
As mention above, the Eulerpplmitives are based on the Euler Equation \(F-E+V=2 * B-2 * H\); where \(F, E, V, B\) and \(H\) stand iop the number of faces, edzes, veptices, bodles and handies that exist. The term "handle" comes from topology, and ls the number of well formed holes In a supface; a sphere has no handlest atorus has one handle, and an IBM flowcharting template has 26 handles, The Euler equation restplets the dossible todologies of FEV graphs that can be Dolynedpa; although such Eulerlan Polyhedra do not necessaplly corpespond to what we normally calla solid classical polyhedron. Strict adherence to constructing a polyhedron that satisfies Euler equation \(F-E+V=2 * 3-2 * H\) Wbuld require only four primitives:


However, the four corpesponding destructive orimitives are also possiole and desirable:
1. Kil| Body, Face and Veptex
2. Kill Edge and Vertex.

3, \(K i l \mid\) Face and Edge,
4. Unglue a long a seam
4.' Unglue along a seam.
\[
\begin{aligned}
& +F-E+V=2 * B-2 * H \\
& \text {-1.....-1.....-1...... } \\
& \text {...+1-1............. } \\
& -1+1 . . . . . . . . . . . . \\
& +2-N+N . . . . . . . .{ }^{-1} \\
& -2+N-N ., .+1 . . . . .
\end{aligned}
\]

And finally the operation of splltting an edge at a midpoint into tuo edges oecame s oimportant in forming p-jolnts during hidden line elifination that theESPLIT primitive was Introduced in olace of the equivalent KLFE, MKEV, MFE seauence.

In using the Euler primitives, some non-classical oolyhedra are tolerated as transitional states of the constructioni these trarsitional states apecal led:

Semlnal Polyhedpon,
Wire Polyhedron.
Lamina Polynedron.
Shel I Pol yhedr on,
Face witn wirespurs on its perimeter.
A seminaldolyhedronis like a doint: a wire polyhedron ís Iinear with two ends like a single piece of wire; lamina and shell oolyhedra are surfaces, and the picturesque phrase about sours is a restriction on how faces ape dissected Into nore faces, These terms will be explainedin more detall when they are needed,

III, A, Euler Primitives.

1, ENEW\&MKBFV: Make Semi nal Eody,
The MKEFV Drimitive pgturns a body with one faca and one vertex and no edges, other bodies are formed by apolyine primitives to the seminal MKBFV body, The seminal body is initially attached as a Part of the worla.

2, KLBFEV(BNEW); Kili Body and allits oleces.
The KLBFEV primitivewill detach and deletefpem memory the body given as an arsument as well as all its faces, edges, vartices anc sub-parts.

3, VNEW \(\operatorname{MKEV}(F, V)\); Makean edge and avertex.
The MKEV primitive takes a face, \(F\), and \(\exists\) vertex, \(V\), of \(F^{\prime}\) s Derireter and it creates a new edge, ENEW, and a new vertex, VNEW. ENEW and VNEW arecal led a"wire spup" at \(V\) on \(F\), IKEV peturns the newl Y rade vertex, VNEN; ENEN can be reached since PED(VNEW) is always ENEW, Only one wire spup Is alloned at \(V\) on \(F\) at a time.

When applied to the face of a seminal body, MKEV fopms the special polyhedron called a "wire" and returns the new vertex as the "negatlve" end of the wire A wire polyhodpon is illustrated in figupe 3.1. When apolled to the negative end of a wire, MKEV extends the wipe; however if applied to any other vertex of the wire, MKEV refuses to change anything and merely returns its veptex apgument.

Figure 3.1-Awire Polyhedron,
Figure 3.2-VNESnNKV (F,V);


```

FIGURE 3.4 - TWO EXAMPLES USING EULER PRIMITIVES. (see Dage S%).
x make A CuGE;
INTEGEK PROCEDURE MKCJRE;
ZEGIN "MKCUBE"
INTEGER E,F,E,V1,V2,V3,V4;
y CfEATE SEMNAL POLYHEDRON;
b - MKBFV; F - PFACE(B); V1 - PVT(B);
XWC(V1)++1; YNC(V1)++1; ZWC(V1)+-1;
M MAKE SEMINAL POLYHEDRON INTO A LAMINA POLYHEDRON;
V2 - MKEV(F,V1);
XWC(V2)m-1;
V3 - MKEV(F,V2); YWC(V3)+-1;
v4 - MKEV(F,V3); XWC(V4)++1;
F + MiKFE(V1,F,V4);
x maKE fOUR SPURS ON THE LAMINA;
V1 - MKEV(F,V1); ZWC(Vi)++1;
V2 - MKEV(F,V2);
VZ + MKEV(F,VZ);
V4 - MKEV(F,V4);
~ JOIN SPUKS TO FORM FINAL FACES;
E. * MKFE(V1,F,V2);
E - MKFE(V2,F,V3);
E - MKFE(V3,F,V4);
E - MKFE(V4,F,V1);
RET!JRN(E);
END "MKCUBE";
y FERM A PYRAMID ON A FACE;
INTEGER PROCFDURE PYRAMID (INTEGER F);
BEGIN "PYRAMIE"
INTEGER V,VA,E,EQ,PEAK,EX;
~EAL X,Y゙,Z; INTEGER I;
X+Y+Z+1-R;

- get a vertex of the face and make a spur to a peak;
E\&EX~FEC(F);
VV - VCW(ED,F;;
FEAK - MKEV(F,V\hat{v});
c coNNECT THE OTHER VERTICES OF THE FACE TO THE PEAK;
whILE TRUE 2O
SEGIN
V - VCCW(E,F);
X+X+XWC(V); Y+Y+YWC(V); Z
!NCREM(I);
I= V=VZ THEN DONE;
E - ECOW(E,F);
EX - MKFE(PEAK,F,V);
Evi;
a hoSitION ThE Pfsk vfgTEX at the center of the face;
XWC(PEAK)-X/!; YNC(FEAK)+Y/!; ZNC(PEAK)+Z.!!;
=ET!Fiv(FEAK);
"PYRANIO";

```
4. ENLW \(-M K F E\left(V_{1}, F, V_{2}\right)\);

The MKFEprimitive can be thought of as a face soiit. Given a facs and tuo of ts vertices, MKFE forms a new face on the
 counter clockwise side, V1 becomes the PVT of Eifid, \(\mathbf{V} 2\) jecomes the NVT of ENEW, F becomes the PFACE of ENEW and F!NEWocomas the NFACE of ENEW; al so ENEW becones the PED of \(F\) and FNEW.

Figupe 3.3 - MKFE and KLFE.


MKFE is also used to join the tuo ends of a wipe oolynedpon to forma "lamina"; or the two ends Of wire spurs to split a face; Or an end of a wire Sour and a regular perimeter vertex to split a face; 4 "lamina dolyheopon" has only tho faces and thus no volume.
- EULER EXAMPLES.

The use of the primitives discussed so far is illustrated by the example subroutines in figure 3.4 on page 29. Tho make cube sucpoutine starts by olacing a seminal vartex at (1,1,1); then a wire of-three edges Is made using the MEV Dpimitive, As the code imolies, MKEV places its new vertex at the locus of the old one, The ends of the wipe apejoinedwith a MKFE to fopm alamina polynedpon, then a spurisplaced on each of the vertices of the lamina, and finally the soups are Joined.

The pyramid exatole is more realistic, since dolynedra are not generated 8 X nihil, but rather arise out of the vislon poutines and the geometrlc editor. PYRAMD takes a face as an argument (which is assured to have no spurs) and runs a spurfrom one vertax to the midale of the faces, then all the remaining vertices of the face are Joined to that sour to form a nyramid.

III, A. Eqler Primitives. (Continjeg).
5. VNEW - ESPLIT(E); EJae Solit.

This ppimisive solits an edge by making a new veptexaric a new eage, lts imolementation isvery similar totnemiconiot examrle o neageig. ESPLIT is heavily usedin the hidden line eliminator.
6. F KLFE(ENEW); K illface Edge.

This primitivgkills a face and an edge leaving caf face.
 o fenew is killed. However the NFALE and PFACE of an edse rav be swazreo by using the IVVFRT(E) primitive. See figure 3.3 fer KIFE.
7. E K KLEV(VNEN); Kill Edge Vertex.

This prinitive kills an edge and a vertex leavinc one ecee. This erimitive will e! iminate sours made with mKEv ard miocoints made witr ESFI.IT; iñ apure form lt would have to leave vertices ith a valence greaterthantwo untouched, howeverit ln fact "un-aypamias" ther with a seples of KLFE's and thenkills the pemaining sour.
8. V - KLVE(ENEW); Kil IVertex Edge,

This primitive kills a vertex and an edge leaving onevertex. Thisppimitlve is toeface-vertex dual of KLFE, namely i netead of
 VVT of \(E\) and fixgs uC PVT of E's per imater.
9. b-GLUE(F1,F2): Glue two faces.

Thls primitive glues two faces together forringonenewiody out of two old ones (tne body of fi supvives) or formirs a handle on tne given uody, Thenymbero fedges In tne two faces must he the same anc theipoplentation should be opposite (exterior to extepior).
*16. BNEN - UNGLJE(E); Un@lue alons seam. *not implewented.
This primitive unglues along the seam containing E. The UNGLUE Drimitive reauires that a lood of eages be markedasa usem" alorg whici unglue will form two opooslte faces, The maris ara made in the temporary tyoe bitin theedge node, of the siven bedy, If the cut forme twn fisjoint bodies then a new oody is radeom the Nface side of the opiginal \(E\) argument.

III, \(B\), SOLD PRIMITIVES.
1, VPEAK - PYRAM D(F);
2. F - PRISM(F);
3. F - CWPRISMIOD(F);
4. F - CCWPRISMIOD(F);

These four ppimitives are called the "sweed primitives", because they fopma simple polyhedron from aface in a fashion that apdears I lke sweeping the face al ong, The swoed primitives (with the exception of PYRAMIO) do not change the location of tha given face but merely copy its peplmeter, forming new faces and edges between the old perimeter and the new perimetep. The pyramd dpimitive has already apdeared as an example on dage 29.

Starting with a ni ne slded face lamina, the rocketin figure 3.6 was forned from the bottom by sweeping two pilismstages, then two counter clockwise pilsmoidstages, and then tuo clockwise drismoid stages 8 and finally one pyramid to form the nose cone, the finswere made byprism sweeping everythlrd face of the first stage,


FIGURE 3.6 - Rockets made with sweep primitives.
111. B. SOLID PRIMITIVES, (contInued).

\section*{5, ROTCOM(F): Rotation Completion.}

As lllustrated in the flest three frames of figure 3.7 oelow, wire faces can be swodt to form a-shell, When a wipe face is sweft by a sweep pplmitive (other than pyramid) it is marked as a shell face of potation and its orlginal perlmeter count ls kept for later sweeps to refer to, In the third frane the shell has been oositioned so that its slot can be seen, \(T\) he shel ffacenow includes all the odges of both pole cads as well as the tuo meridians of the slot, ROTCOM takes Such a shell face and breaks it into two dolar faces ano as many other faces as necessary, by means of the count that was saver.,


FIGURE 3.7 - Solid formed by rotation.



Euclid's construction of a dodecahedron from a cube.


FIGURE 3.8 - Dual of a Dodecahedron.

Ill. \(\forall\). Solld Primitives. (continued).
6. FVDUAL (B);
7. ENEW+MKCOPY(B);

These tuo primitives illustrate the extremes from a class of miscellaneous primitives, FVDUAL is a worthless curosity and MKCOPY is guite usef but unintepesting, fVDUAL(B) of a body chargas al I the faces of a body into vertices and al the vertices into faces, in the winged edge data structure this merely pequipes comojtins 3 locus for each face (its center), re-"tyolng" faces andvertiees, and then swapoing the face and vertex link positions in each fac?, edse and vertex of the body,
 dodecanedronfrom a cube. The unit cube is formed, then ailits eages are midoointed and translated 0.2 units into the throe pairs of Parallel faces; then the mldoolints are lifted 0.3 units off tha plane of each face of the cube; then MKFE is applied six tines to solit the eishtsided faces into five sided faces; giving a dodəcahedpon (neaply regular), ADolying the FVOUAL to the dodecahedron yi el ds the icosanearon.

Ill．B．Solld Primitives．（continjed）．

5．とVヒドт（は）；
9．B1～EUN（31，82）；
10．B1－EIN（B1，62）；
These thpee prinitives aperform the doolaan oderations on Dolynedron interior volumes．EVERT（B）turns a bocyinside out，thus charging a cube into a room as a solid into a bubole，onjoctswith infinite＂interiors＂are Dermissitio；such polyhedra ape imoossitle in many classical developements of solid ceometry which make the interior of a Dolynedron to be the region of space with finite volume，by definition，The body union is RUN，whichallows bit o survive ifthe Interiors of the todias are not disjoint，A boay with two disjoint dolyhedrons ls shunned，The boay intersection is siv， which allows B1 to survive if the interiors of the bodies ape not disjoint．


FI GURE 3.9

BODY I NTERSECTI ON
BODY SUBTRACTI ON


\section*{C. GEOMETRIC PRIMTIVES,}


The four Eyclidean tpansfopmations are translation rotation, reflection and dilation; and as first mentioned in Klein's Erlangen program, 1872, these four primitives fopm a group. The drimitives may be applied to bodies, faces, edges or vertices in order to change vertex world locii. Thus a bodyls the set of vertices in its vertex ring, aface ls the set of vertices on its perimeter, an edge is the tho vertices which are its ends, and a single vertex is itself; but thepe are special cases having to do with faces. (In GEOMED a specialcounter, negative fent, is maintained in wire sweer faces in order to make solids of rotation). The second argument R Is a pointer to a transformation array In world coordinates of four pows and three columins:
\begin{tabular}{lll} 
xwc, & \(Y w C\), & \(Z . W C\) \\
\(I X\), & \(I Y\), & \(I Z\) \\
\(J X\), & \(J Y\), & \(J Z\) \\
\(K X\), & \(K Y\), & \(K Z\)
\end{tabular}

Fo: trarslation, only the \(X A C, Y N C\) and \(Z W C\) are involved and all the vertices aratranslated in the obvious fashion:
\[
X-X+X W C ; \quad Y-Y+Y W C ; \quad Z+Z+Z W C ;
\]

Whepeas fop potation (dilation and reflection) the tnermost corputation apolied to eacn vertex is:
\[
\begin{aligned}
& X+x+X W C: Y \text { - } Y \text { - YWC: } Z \text { - } \mathcal{X}+Z W C ;
\end{aligned}
\]
\[
\begin{aligned}
& Y Y-J X * X+J Y * Y+J Z * Z ; \\
& Z Z+K X * X+K Y * v+K Z * Z ;
\end{aligned}
\]

At this noint. i shouid now present a few genera l primitives for setting up such transformation arrays, but I don't have them yet. The problem involves selecting frames Of peferences, strength Of trarsformation, axss of transformations, origins of framesand modes such as aosoluta, pelativeo \(r\) inteppolated. At present in my apolications these matters ape handled ad hoc cthe most jenepal solutior belns the zOTDEL and EUCLIO subroutines of GECMED), T h neart cf deriving a transformation array is to gataframe of peference hef anc an amount of rotation DEL and to comoute the matrix Drocuct:
```

R - (transpose(REF)cposs(DEL cross REF));

```

For dilation(larger or smaller) Cross DEL witnanon-urity diagonal raipix; for peflections flid the roblsigns on desired axes,
j. IMage frimitives.
```

 1. FfGJECTUH(CaNERA,WORLD);
 2. ELIST+CLIPER(WINDO'N,WORLO);
 3. OCCULT(WORLD);
 4. SHACOW(SUN,NORLO):
 5. IV + MKVIJ(NINOOW.WORLU);
 6. 320 - MKB2D(WINOOW,WORLD);
 7. EZU - CAREYE(TV);
 * urder construction, Oct 1972.

```
    FROJECTOR compates the derspective projected locus af all the
vertices in a Given wopld from a given camera. CLIPFR coroutes the
Dortions 0 f 30 linesthat are visible within a given displaywindow.
ocCult compares all the adoes, faces and vertices in a diven world;
usirig theip current orojected coopdinates; faces, edges and vertieas
that are notvisible from the implied camera's viowooint are marked
as nideri faces, edges and vertlces that arg visinle aremarkedas
visible; and faces, edges and vertices thatwere initial ly aptially
vislole are broken up into vislble and hidden portions. Thenew
faces, edges and vertices introduced by JCCULT :re meriteu so that
they can be renoved,

Ths following four primitives are still be ing daveloded. SHACUW willliterallybuilda world witn shadows in it; shadowealls oCCllttwi ce, once for the SUN and once for the canera, ingre Is no conceptual difficulty in doing many doint sources, but ishallget onesoupce wopking at a time. The MKVID primitive gerepates TV intensity fasters from the world model after OCCULT or SHADOW has been apdied, The mK820primitive generates a 20 data stpucture of regions and edges (which is al most a cooy of the 30structupetnet has been presented, out with soecial attention paid t o pajointsi; this 820 data structure is an inage model. Final ly, the CAREYE Drifitive converts TV Intensityrasters into 820 image structure. A detailed alscriptiono fhese i mage primitives cannotyejivenat this tire (OCT 1972), because I haven't finished making them
IV. Arrlications.

Tha singleapolicaticnaroundwhicntheroometric-otelins of tris paper ! sbeinupult is for 2 computer television vision (TVV ?) system for looking atreal worldscenes. believe that a computer rust have a means of pepresenting what it is intended to see anc furtnerthat the representation must have (in opincible) an inverse relatiort 0 television image, my first oremise isparely questioped. the second premise is frequentity auestloned. one alternative position is that so calles "features" can oeextpacted fror animaje and then used by a heuristic oroblan solver to find an association oetween the perceived features and previsus general knonledge; Itis then stated that there is no need to so from the general knowedge or evan from the so called image "feazures" Dack dowr to a televisionimage, avenjust inppinciple, \(\begin{aligned} & \text { wish to state }\end{aligned}\) the opoosite, there isaneest ogofrom thegeneralreprejentation to atelevisionimage l oryerto develod computer visiem without naving to solve several utherprohlemsof Artificialintelligence. AcDlications of goometric nodelingothert hantalevirionvisionmignt incl ude: architestural drawing, conouter animation, anc nicceling for laser, radar, and sonar iクาヨe systems.
lV. A. Nodeling: GEOMED - a drawing program.

GEOMED, joometric Mble Editor, is-for making and editing oolyneopa. The command Ianguage of GEOMED erovides the Eulep orimitives in the context of a oush down stack (the PADPDLiof oodies, faces, edges and vertices, ine min difference between an interactive program and a programmling language being that the fopmep carpigs along a working context so that most arguments and data do not naveto \(2 e\) explicitly named,
\begin{tabular}{lcc}
\(V\) & - & nake seminalvertex body, \\
\(E\) & - & nake edge and vertex, \\
\(J\) & - & nake edge and face, \\
\(G\) & - & alue two faces.
\end{tabular}

In addition to the stack: GEOMED provides frames of reference for the Ejelidean transfopmations; there ifs a world frame, body franes, camera frames, relative frame and face frames, Also the strength of a Euclidean transformation can be hal ved or double, set dipectly or entered numerically in several kinds of unlts. And finally the transformation can be done once or repeatedllyby keying chopds of Stanford's extra shift keys named "control" and "meta"with a.; : 0 - Or character. These characters are not mnemonics but were chosen because of thier dositions on the keyboard,
\begin{tabular}{rlll}
\(:\) & - & transform about & X-axis. \\
- & - & transform about & Y-axis. \\
- & transform about & Z-axis.
\end{tabular}


Finally, GEOMED provides access to al Ithe solidorimitives archidden líne elimination. along with commands för the stack, incut, outout, disolay, and switch toggling. The commands are detailec in the operating note, SAILON-68, along with a list of GEOMES and GEOMEL subroutines, TWo examples should suffice to illustrate how concise and illeglb|e GEOMED command strings are:

2. V: \(\quad\) (
(I:as)sisis)sisis)sig. forms a torus.
Thus a rolynedron can be pepresentedin a few characters ewhich must be corpiled); one might hove that such a "pepresentation by generation" could provide a link between semantic and geometric mooels. The hard dipection is to get fiom a polyhedron model to the corrana string,
IV. B. Graphics: OCCULT - a hidden line eliminator.
cCoult is a hidden line eliminator;itis neitrer a vatkins nor a wapnock algorithm but is rather a throw-back tothenaiveidea of comparing each edge with all the other edges and having ways to darpon the potentially large number of comparisons that iant occup.

Thereapethreekinds of dampening in OCCULT, The fipst (used in other hidden eliminators) isto get rid of the faces that have theif \(b a c k s t o\) the camera and to consider for comparisiononly the edges with one potentially visible face. These edges are called "f0las". The second kind of dampening, is to hide evepything connectedtothe hidden portionofar edge when a fold crossing is discovered, thisis made possible by the winged edge primitiveswnich allow Polyhedron surfaces to be easlly traversed todologicaliy; and by the Euler primitiveswhich allows the edges to be quickly broken intovisibleand hidden portions without losing their tooology. The th ipa kind ofdampening Involves having a raster of edge buckets to localizet h e comoarisons.

The reason for doing hidden line elimination in this fashion is to get the topol ogy of the inage regions and edges inamodeled scene including the shadows. occult was used to make some of the figupes that adoeared earlier in this paper; for examolethe arm model in figure 1.2, (which required twel ve seconds of PDP-ifocomouto tire), A paper on OCCULT should be available before the end of the yeap, 1972 ,
lV. C, Vision: CAREYE - a videoregion-ejge finder,

CAREYE, Cart Eye, is the oldest, mostrewpitten, yetleast finlshedpartof theapplication, Atpresentlts best trick is to take a television imageand convert it into video intensity contour - lines similar to those discussed by Krakaur and Horn lof M.I.T.). Fror VIC, Video Intensity Contours8 the inage goes through two crocesses: first, the camera locus-orientation for the image is solved by finding featurepoints In the image that coopesoond with knownland mark point in the wopld; and second, after the camera is sotvedithe locus cf previously unknown regions of the image must be added to the world model; the third dimension of such unknownegions being assumed to be very large, untllevidencei s foundinsuceesaing images that make the region "DODout" of the background. These two processes are called Camepalocus Solving and Body Locus Solvina; CAMLS and BODLSiand are the missing links in makins agunedron rodels rerely by looking at objects and scenes of objects.

\section*{Ref er ences:}
1. AGIN

Representation and Deseplotionof Curved Objects Stanford Artificial Intelllgence AlM-173.1972.
2. COXETER

Intpoduction to Gaometry
. Jonn Wiley s Sons, Inc. Miew ropk. 1961.
3. 5VE

A Supveyo fGeometry.
Allyna n d Hacon, Inc. Boston. 1965.
4. FALK

Computer! 7 terupetition of 1 m perfect Line Jata
as a Thpee Dimensional Scene,
Staniord artificial Intelllgence Alli-132, 1970.
5. FELUMAN, FALK 3 PAUL

Computer Depresentiticno fSimoly descrined Scenes. Stanford Artificial Intelligence SAILON-52.1969.
6. GUZMAN

Computer RecognitionofThree jimensionalot jects, PpojectMAC Technical Repopt, 1968,
7. KNUTH

The Art of Comauter Programming, Volume 1 - Fundamental Algoplthms. Chapter 2 -inicrmation Structures. Adalson-wesley. Reading,Mass. 1968.
8. FUBERTS
```

Machlne Percedtion of Three Dimensional Solias
Lincoln Laboratory Technical Report \#315. 1963.

```
9. SOBtL
```

Canera Models and Machine Perception.
StanfordArtificial Intelligence AlM-121, 1973.

```
```

