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Abstract

In recent years several algorithms have appeared for nodifying the
factors of a matrix followi ng a rank-one change. These methods have al ways
been given in the context of specific applications and this has probably
inhibited their use over a wider field. In this report several nethods
are described for nmodifying Cholesky factors. Some of these have been
publi shed previously while others appear for the first tine. In addition
a new algorithmis presented for nodifying the conplete orthogonal factor-
ization of a general matrix, from which the conventional @r factors
are obtained as a special case. A uniformnotation has been used and
enphasi s has been placed on illustrating the simlarity between different

met hods.
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1. Introduction

Consi der the system of equations
. Ax =D

where Ais an n x n matrix and b is an n vector. It is well known
that x should be conputed by means of some factorization of A, rather
than by direct conputation of Al The same is true when Ais an
m n matrix and the mnimal |east squares solution is required; in this
case it is usually not advisable (or necessary) to conpute the pseudo-
inverse of A explicitly (see Peters and WIkinson, 1970).

Once x has been computed it is often necessary to solve a nodi-

fied system
AX =0 .

Cearly, we should be able to modify the factorization of A to obtain
factors for 2, fromwhich X may be conputed as before. In this paper

we consider one particular type of nodification, in which & has the form

_A':A+asz

where o« is a scalar and y and z are vectors of the appropriate

T

dinensions. The matrix oyz is a matrix of rank one, and the problem

is usually described as that of _updating the factors of' A following a

rank-one nodification.

There are at least three matters for consideration in conputing

nmodi fied factors:

(a) The nodification should be performed in as few operations



as possible. This is especially true for large systems when
there is a need for continual updating.

(b) The nunerical procedure should be stable. Many of the pro-
cedures for nodifying matrix inverses or pseudo-inverses that
have been recomended in the literature are numerically un-
stabl e.

(c) If the original matrix is sparse it is desirable to preserve
its sparsity as nmuch as possible. The factors of a matrix
are far nore likely to be sparse than its inverse

Modi fication nethods have been used extensively in nunerical optim

i zati on, statistics and control theory. In this paper, we describe sone
met hods that have appeared recently, and we al so propose sone new net hods.
W are concerned mainly with algebraic details and shall not consider
sparsity hereafter. The reader is referred to the references narked with

an asterisk for details about particular applications

1.1 Notation

The elements of a matrix A and a vector x will be denoted by

a;. and X, respectively. Ve will use AT

y
1
A, and [x]|, to represent the 2-normof x , i.e. =il = 03&)2.

to denote the transpose of

The synbols Q R L and D are reserved for matrices which are respec-
tively orthogonal, upper triangular, unit lower triangular and diagonal.

In particular we will wite D = diag (dl’dE"“’dn) .



2. Prelimnary results

Mbst of the nethods given in this paper are based in some way upon
the properties of orthogonal natrices. |n the following we discuss sone
i nportant properties of these matrices with the intention of using the

material in later sections.

2.1 Gvens and Househol der nmatrices

The nost common application of orthogonal matrices in nunerical
analysis is the reduction of a given n-vector z to a multiple of the
first colum of the identity matrix, i.e. find an nx n orthogonal

matri x P such that
Pz = +Ye, (1)

This can be done by using either a sequence of plane rotation (G vens)
matrices or a single elenentary hermtian (Householder) matrix. |n order

to sinplify the notation we will define the former as

5 1
-

and call this a Gvens matrix rather than a plane rotation since it

corresponds to a rotation followed by a reflection about an axis.
This matrix has the same favorable nunerical properties as the
usual plane rotation matrix (see WIKkinson, 1965, pp. 131-152), but is

now symmetric. The choice of ¢ and s to perform the reduction

+

]

S -C z 0
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s given by

2 _ 2 2

Y = zy + Zy

o (2

Vo= sion (a)yfy (3)
and c=z2/¥Y,s = 2o/Y .
Note that 0 <c <1 . In order to performthe reduction (1) we nust

enbed the matrix (2) in the n-dinensional identity matrix. W shall use

z]T

i Z
AL

Pj to denote the matrix which, when applied to the vector [z

reduces 2 to zero by formng a linear conbination of this elenent with

. , l.e.
1
i J
p= -y .~ - - -
1
Zl Zl
1 .
Cl S Zi z|
PJ:Z = =
J
1 . .
-C Z,
1 J °
1 Zn Zn
- - - - -

There are several sequences of Gvens matrices which will performthe

reduction (1); for exanple

1 n-2_n-1

P2P§ o Pn-an !
or

PJP]'.. . ‘1P'1z .

n-1n

n
N



To performthe same reduction in one step using a single Househol der

matri x, we have

P =T+ uu’ s
T
wher e u=‘z +Ye1.
(4)
= -Yul
and Y = sign (z)llzll,.
This time P is such that
Pz = -Yel )

-~

In the 2-dimensional case, we can show t hat

where ¢ , s are the quantities defined earlier for the Gvens nmatrix.
Hence the 2 x2 Householder and 2 x 2 Gvens transfornations are
anal ytically the same, apart from a change of sign.

There are several applications where 2-dimensional transformations
are used. The amount of conputation needed to multiply a 2 x n matrix
A by a 2 x2 Househol der matrix conputed using equations (4) is
4n + Q1) nultiplications and 3n + (1) additions. [|f this conputa-
tion is arranged as suggested by Martin, Peters and WI ki nson (1971) and

the relevant matrix is witten as

|+ -uy [1 ug/ul]

-u_/



then the multiplication can be performed in 3n + Q1) nultiplications
and 3n + (1) additions. Straightforward multiplication of A by a
2 x2 Gvens requires 4n + 1) nmultiplications and 2n + Q1)
additions. Again the work can be reduced to 3n + (1) nultiplications
and 3n + 0(1) additions, as follows.

Let the Gvens matrix be defined as in (3). Define the quantity
hoe—=— |4 <1

+
zlY

Since s = z,/y we can redefine s as

»
1

p(c+l) .

Simlarly, we have

c =1-pus.

A typical product is now of the form

e S ¥y ) e S Yy 5
s -c Vs ple+l)  ps-1 Y,
le + ygs

you(e+l) + y,(us-1)

which will be defined as

I

¥
Consequently, in order to performthe nultiplication (5) we form

Y1 Tyt sk



and Vo =ulyy +¥) -y, -

Note that this scheme is preferable only if the tine taken to conpute a
nul tiplication is nore than the tine taken to conpute an addition. p gg
it may be advisable with both algorithms to nodify the conputation of
Yy to avoid underflow difficulties.

In the follow ng work we Will consider only 2 x 2 Gvens natrices,
although the results apply equally well to 2 x 2 Househol der matrices

since as noted earlier, the two are essentially the sane.

2.2 Products of Gvens matrices

The Tollowing lenma will help define some new notation and present
properties of certain products of orthogonal matrices.
Lemma |

Let P§+l be a Gvens matrix defined as in (3). Then the product

n-1_n-2 1
A
is of the form
gy, Yy
P8y BBy Y,
PP PsBp  PsPs
H (p,B,Y) =
Yn-2

Pn-l B1 Pn-lBQ pn-,lﬁj ©ocoe O By

pnBl pnBQ Pnsi o pan-l pan



where the quantities pj

) BJ. and YJ. are defined by eit ier ot the

following recurrence relations:

Forward recurrence

L PI:Cl/"’Bl=“"nlzsl/n’vl:sl' where n is
an arbitrary non-zero scalar;

2. P. = c.Mn Y. =s.
P J Ji-1 73 J
J = 2,3,...,n-1;

By = S Ms, My = SiM5-1
5Py =My o By = -Cn-l/pn

Backward recurrence

l, = - = - = =
Py -7 B cn_l/rr L) Sn-l/Tr > Yp-1 T Spa1 e
where = is an arbitrary non-zero scalar;
2. p.. = c./Nn. Y, . = s,
Py J/na -1 -l

. =~=C. . . =8S. .
BJ J'an ’nJ'l J-ina

3. Py mey/By s By =Ty

Pr oof

W will prove the lemma in the forward recurrence case; the

remaining case can be proved in a simlar way. Assune that the product

o R3.3P§P§(k<n-l) is given by

L ]

DBy Py - v - BBy Yy (6)
By Mo - TPy -

1
1
1

- -l

8



This is true for k=1 by definition. The next product

k+l k  _k+l 21
PeroPrnnBe 4%
is given by
— -
P18y "1
P8y PPy .
N DBy - - - DB, Yy
“eriMPr CerMiBo oGPy TS Sep
SeaPy SeaMPo o S MiBy =SS Ok
1

If we define Ppy1 =

then the product Pﬁié . gé is of asimlar formto (6). Continuing
inthis way, and finally setting p, =M, and B, = -cn_l/pn ,  gives

the required result.

For | ater convenience we shall use the notation

HU(p’B :Y) - HL(P,B ay)T .

The matrices HU(p,B,Y) and HL(p,B,Y) are defined as special upper and
| ower Hessenberg natrices respectively. In the sane way we define a

special upper triangular matrix R(p,8,Y) as having the form

Ck”'lnk ! Yk’l‘l - sk+l ! Bk'l'l = -ck/nk 2 nk.i.l = Sk+lnk 2



R(P,B :Y) =

10

The particular recurrence relation used to forn1HLu%5,y)\M|| depend

upon the order in which the Gvens matrices are generated. For exanple

22 [ G Yn_l) l) >

i f Pg'l is forned first then the backward recurrence relation can be
used.
Lenma |11
Let D = diag(dl, ., . . . . dn) , T = diag(vl,y
. _ T
r, = dlag(l,Yl, Yoo - Y, l) and e = (1, 1, ..., 1, 1)".

L DH (p,B,¥) = H (P,B,Y)D

where B =p./d; > Py = 4Py, i=1,2,...,m, V. = Y/
izl,g,...,n-l .
2. R(P’B:Y)D = DR(§9E>Y)
wher e B, = Bi/di , by = d4;p,, i=1,2,...,m.
5. R(P’Bsy) = DR(p’-B—ae)
where B, = By/Y: » 1=1,2,...,m-1 . 45 = ¥, i=1,2,....m.

4. H(p,8,Y) = I H (D,B,e)

= HL(P’E’e)FE .
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where B, = p,/¥; (i <n), B, =P, >

and B, =B,/v; (i >1), 8, =8

5, If HL@,-B—,Y) = HL(p,s,Y) t hen Vi =Yy and

Pi/Pi = Esi/Ei constant , for all i=1,2, . . . . n.

The next three | emmas show how the product of special matrices

with various general matrices may be conputed efficiently.

Lenma |11

Let B be an mx n matrix and HL(p,_B,Y) an n X n special
| ower Hessenberg natrix. The product B = BH can be formed using either
of the followi ng recurrence relations:

Forward recurrence

e
[

1,2, ..., m;

1. W(l) = Bp , Eil = Blwgl),
te 1)

2. W, (J) - (J"l) - b
! wi pj'l iyj'l i = 1, 2" ., m,

b (3) 2, 35 vaup M
+
¥35-1°1,5-10 T By

Backward recurrence

(h)_ .
1wy /= ppb, o, i=1,2

5 s
2. b= Yy gk 4 ijiJ) =1, 2 m

w§j-l) _ pj-lbi,j—l+ W§J) 5 =0, n-l, 2 ;
) Eil = Blei(l,) i=1, 2, .., m

Pr oof

VW will give a proof for the forward recurrence case. The backward

recurrence case can be shown in a simila® way. The first colum of Bis



given by

J=1
If we define w(l) = Bp ,
1 E
or :E ) = bijp,j s, 1i=1, 2, , m (7)
Jj=1
t hen b, = Blwﬁi , i=l,2,. . ..m.

Form ng the-second col utm we have

From equation (7) we have

l Z
W]( ) = b.lpl = b::psl‘]‘] i:l, 21 M 4 m\

1

Jj=2

and if this vector is defined as W(g), then (8) becones

T (2)  ._
b. _-Ylbil-FBQWi , i=1,2, . . . . m,

The other colums of B are forned in exactly the same way
The backward recurrence is nore efficient unless the product Bp
Is known a priori. It is also nore convenient if B occupies the sanme

storage as B.



The forward and backward recurrence relations require approxinately
75% of ' the work necessary to f'ormthe same product by successively multi-
plying B by each of the individual Gvens nmatrices. Since Hi(p,B,Y)

is an orthogonal matrix there exists a vector v such that

HL(p,B Y)v = e,

and we can regard HL(p,B,Y) as the matrix which reduces v to ae, .

An equi val ent reduction can be obtained by nultiplying v by a single

Househol der nmatrix. |f we have a product of the form
P&'(Pl,ﬁlﬂl) ------ }&’(prasr sYr)B
the conputational effort involved applying lemma Il is |less than that

using a simlar product of the equival ent Househol der matrices. This

is because if Dis a diagonal matrix, the product can be witten as
DHL(f).l’El,e) L .HL(EI"-B_I',e)B

using lemma Il, parts 1 and 4.
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Lenmma |V

Let R be an upper triangular matrix and HU(p,B,y) a specia
upper Hessenberg matrix. The product H = Hﬁ(p,B,Y)R i's an upper Hessen-
berg matrix which can be determned using either of the follow ng recur-
rence relations:

Forward recurrence

|

1. Set w(l) = R'p Py

T ooa 1) -
B =8, 3L, 2, , N
2 For i =2, 3, , n , set
Bi i1 T Yia1T51,4-1 0
(i) _ _(i-1)
i T M T PiaTiagg
J=1i, i+l, n,
T (i)
Bi,5 = Yi-1%i-1,5 * BgY;
Backward recurrence
1. w(n) = p.r_ .
n n nn
2. For i=n, n-1, . . . . 3, 2, set
= _ (i-1) _
Bi,i-1 T Vi-1%i-1,i-1 0 Yo 0 T Pioi¥io1,i-1
T (i)
Bij T ViaTie1,5 T R
o) j=i, i+l, ..., n.
i-1 (i)
= +
"3 Pia1%i-1,5 " Y
- ()
—_ \ s .
3. Hyy = By, 3%l 2, L., n.

Pr oof

This lemma is proved in a simlar way to Lemma |11
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Lemma, V

Let R be upper triangular and R(p,8,Y) a special upper triangular
matrix. The product R = R(p,8,Y)R can be found usi ng either of the

following recurrence relations:

Forward recurrence

. oset wt) Zglp .

2. For i=1, 2, . . . . n, set
Mij = Yi¥55 0
(i+1) _ (i)
g k) gy
( ) J=i+l, i42, . . . . on .
- - i+l
r|] = eriJ + BiWJ
Backward recurrence
1. For i=n, n-l, . . . . 1, set
(i) _ = _
P R P U R P
- (i+1)
.. = +
i Yifiy Bivs
j=itl, i+, . . . . n.

W) o) e
J J 1]
The forward recurrence relation can be fornulated in the follow ng

alternative nmanner:

1. Set mﬁl) = RTp.

2. For i=l,2,...,n , set \
Tii = Yitis o
w(1+l) _ w{l) e
J J iij

j=i+l,...,n .

r,., = (Yi - Bipi)rij + Eiwj
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This formul ation requires an additional n2/2 mul tiplications. It has
been shown by Gentleman (1972) that the use of the nore efficient relation-
ship can lead to nunerical instabilities in certain applications.

If the products of n 2 x 2 Gvens matrices are accunulated into a single
special matrix it has been denonstrated in lemmas | - v how certain savings
can be nade in subsequent conputations. The nature of the forward and
backward recurrence relations are such that when a val ue of s'j is very
smal | underflow coul d occur in the subsequent conputation of nj . This
will result in a division by zero during the conputation of the next aj
It will be shown in the follow ng section howthis difficulty can be
avoi ded by ﬂj udi ci ous choice of the scalar = .

In certain applications the vector v which is such that
HU(p:B 3Y)V = Hvllgel

i's known.  Since HU(p,B,Y) I's orthogonal we have

v =8 lvl,p
and the vector v is parallel to the vector p . The value of 1-7 can
be chosen such that the vector p is equal to v . This gives the

nmodi fied algorithm

Forward recurrence

l.p, = v, ' B = cl/vl > Yy = 8

2. p. =V, , Y. =25

J J J J .
y Jj=,3,...,n-1 ;
B, = -¢. c./v
J J-13" J
3. Py = Vpoo By -Cn-l/vn )

W obtain this recurrence relation by witing = = cl/vl . ASimlar
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modi fication can be applied to the backward recurrence fornul a. The pos-
sible division by a near-zero v; causes no problems since this only
occurs when the corresponding Gvens matrix is alnost a permutation matrix
and ¢y is ot the sane order as Vs
In the cases where vj is not known a-priori, m™ can be set at
t

277, where the conputation is carried out on a machine with a t-digit

binary mantissa. Since the val ue of ;. is such that

during backward recurrence, this choice of m s such that 1]4 is
unlikely to underflow.

If even this strategy is insufficient the product of the G vens
matrices can be broken into products of the form

| noo it !
I: 0 k }&(Pas :Yl) i1 O

-‘1 ———————— Pk'l‘l —---——‘———.—-

HL(PI:B,:YI) 0 I
3 3

'
'
wher e M is zero or intolerably small, and HL(p',e',y/) and
HL(p”,B” ,Y”) are smaller special matrices of dinension (n-k) x (n-k)
and kx k respectively. dearly a product of separate Gvens matrices
can be viewed as being a product of special matrices in which a "split"

has occurred at every step.
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3. Modification of the Chol esky factor

In this section we consider the case where a symmetric positive
definite matrix Ais nodified by a symretric matrix of rank one, i.e.

we have

T

A=A +azz

Assum ng that the Chol esky factors of A are known, viz.

A = LT ,
we wish to determine the factors
2 = iDL

It is necessary to nake the assunption that A and A are positive
definite since otherwise the algorithms for determning the nodified
factors are nunerically unstable, even if the factorization of A exists.
Several alternative algorithns will be presented and comments made upon
their relative merits. Any of these general nethods can be applied when

Ais of the form

A =BB

and rows or colums of the matrix B are being added or deleted. In
this case it may be better to use specialized methods which nodify the

orthogonal factorization of B ,

The reader is referred to section 5 for further details. The nethods in
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this section are all based upon the fundanental equality
A= A +ag1m
= (D + app)T"
where Lp=z.
If we form the factorization
D + ong= fﬁ'ﬁT (9)

the required nodified Cholesky factors are of the form

3 = 1ipETT

gi ving

1
=
e
[a)
=}
o
)

1
(w2

I

since the product of two lower triangular matrices is a |ower triangular
matrix. The manner in which the factorization (9) is performed will

characterize a particular nethod.
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Method 0. Using classical Cholesky factorization

The Chol esky factorization of D + ozppT can be forned directly.

W will use this method to prove inductively that T is special.

Assume at the jth stage”of the conputation that

~

Z,. n, (10)

= pI'BS s r:j’ j+l) '

s=1, 2" . ... j-l

these el ements have been determined. Explicitly formng

and that all
the jth colum of TSI gives the following equations for aj and
zrj s rsj+l, . . . . N
. J-|
~ 2 2
d.g + d, = d, + ap]
E T I B I (11)
i=1
and
-l
E Uhaki Tk T o LT (12)
i=1

Using the equation (10) with (11) and (12) gives

2 2~ ~ 2

.d. +d, =d, + op.

Pj Bidy + 4y P;

i=1
and
j-1

p.D 3%+ a4 = opp r=j+l, . n

Pr P15k, T orgm )



From the last equation we have

~

and defining

gi ves Zr. = prBj . Hence the subdiagonal elements of the jth col um

d

of L are multiples of the corresponding el enents of the vector p .

Now forming the first colum of IBLT
~ 2
dl—dl+apl,

~

d

j-1
zrj = 3 o - d.;8; Pr o, r=j+l, ..., N
’ i=lll]lll

, We obtain the equations

1opy = PP, TR

21

whi ch shows that the sub-diagonal elenents of the first colum of I are

nul tiples of the corresponding elenents of p . Consequently we have

proved that I is special by induction.

This result inplies that we need only conpute the val ues of

B., j=1,. . . . n in order to obtain the factorization of D + app

J
In practice we define the auxiliary quantity

- , PR
aj = o diﬁi.
1

j

1i=

The recurrence relations for 05, i and 8. then becone
] J

s 2



The
recurrence
triangul ar

al gorithm

are known since w

can be obtained during the jth stage of the initial

Ip =2,

CYl=CY
d =d.+a;P’fT
J o
B =djpj/aj } 3=, 2, ... .n,
Yy = §ed9 J
product L = LL can be conputed in terns of the B by forward

using Lenma V.

Note that L and T are both unit | ower

22

matrices and that this results in sone sinplification of the

The vector

(1)

si nce

n

= Lp

wl

1)

z . Asoeach of the vectors w(‘])(j=l, 2,

j-I

(3) _ _ S ' e .
W, - zripi =2, - E‘ripi , r=j, j+i, ..., n.
y A

i=]

’_J

i=

needed to initialize the recurrence relations

back substitution

The final recurrence relations for nodifying L and D are as follows:

Al gorithm C

L

2.

Define o

1

For j=1, 2,

p

J

d

o

w

W) =7

.., n, conpute

(3)
J

d, t+ Q’JPQ

J 33

P5/d;

d

19/ %

NEE N A

rj Jjr

> n)



. . e .
Using the expression for wgJ 1) we can rearrange the equation

for Z;j in the form

g ()
rj I’rj+ gj (Wr pjzrj)

- (3)
(1 ijj.)zrj By

(dj/ﬁj)zrj + ijl(,j) :

which is the formof the algorithmgiven by GIl and Mirray (197 2).
However, this increases the number of nmultiplications by 50%.
One of the earliest papers devoted to nodifying matrix factoriza-

tions is that by Bennett (1965), in which LDU factors are updated fol | owi ng

a rank m nodification

I50 = U + xcY©

where X, Yarenx mand Cis mx m. It should be noted that
(i) The algorithmgiven by Bennett is nunmerically stable only
when L = UT, X =Y and both D and D are positive
definite.

(ii) Algorithmd is identical to the special case of Bennett's

algorithm when m=1, C=c¢ and X =Y =z .

The nunber of operations necessary to conpute the nodified factor-
ization using algorithm d is e+ Qn) nultiplications and e+ Qan)
addi tions.

If the matrix A is sufficiently positive definite, that is, its

smal | est eigenvalue is sufficiently large relative to some normof %,
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then algorithmd is nunerically stable. However, if ¢ <0 and A is
near to singularity it is possible that rounding error could cause the

di agonal el enents Ej to become zero or arbitrarily small. In such cases
it is also possible that the Ej“ could change sign, even when the modifi-
cation may be known fromtheoretical analysis to give a positive definite
factorization. It nmay then be advantageous to use one of the follow ng

net hods, because with these the resulting matrix will be positive definite

regardl ess of any nunerical errors made
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Met hod C2.  Using Househol der matrices

In this nethod the factorization (9) is performed using Househol der

matrices. To do this we nust wite

A= LD%(I + ot BT

b

where v is the solution of the equations

LD'%V:Z.

T

The matrix | + aovv can he factorized into the form

I+ ava = (I + owT)(I +ova) (13)

by choosi ng

o
1+ (1+ avTv',‘%

g =

The expression under the root sign is a positive nultiple of the
determinant of 4. If & is positive definite o will be real.
Ve now perform the Househol der reduction of | + oW’ to |ower

triangular form

A T
L=(l +ovv )Png. . eP

W will only consider application of the first Househol der matrix P, .
The effect of the remainder can easily be deduced.

Let
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and partition v in the form

The (1,1) el enent of | + oV is then

e=l+crv21

and P, nust reduce the vector [ g cvle ] t0 a multiple of elT.

the relations of section 3 we define

Usi ng

Y2 = 92 + szinw s
u, = B +vY ,
and T o=y

(Note that we have taken vy = +\}v2 , because we know that 6 > 0 .)

NowU has the form

i.e. elements Uy, o e u are mul tiples of the vector w .
The result of applying the first Househol der transformation can

therefore be witten as
=Y
(1 + cva)(I L uuT) =
T T

for suitable values of the scalars & and ¢ which will be determ ned

as follows. The first colum is given by

Sw
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2 T 1 2
+ —_
1 Ovl cvlw 1+ = ul
oOV.W I+cww-|1' —_— U.OV.W
1 T 11

which inplies that

1 2 1 T
= + + —_——
sw = (1 . ul)cvlw . ulovl(l + oW W)W .

SO

A smal | amount of al gebraic manipul ation gives

v

b = ~g — (2+chV)
Sinilarly for the scalar ¢ we have
———ulcvlw
I+8wa=[GVlW I+cwa]
I+—£—02v§wa
-
giving
— 22 1 22 1 32T
I to + — —_
cr_Tlulcvl o TGV1+ch1ww
whi ch can be shown to be equal to
= 1 _ a(l +v)
T = a —— 1 + =
T o Y) Y6 +Y
T

The (n-1) x (n-1) submatrix | + oww~ has the same structure as
| +ow® and a Househol der matrix can be applied in exactly the sane

fashi on. [t can be shown that
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1+ c}wTW = —3(‘— a + OvTv)

and so the sign choice in the definition of each of the Househol der matrices
remains the sane.

For notational convenience we will wite Yj , % ) 6j , and

9341 for the quantities Y, ¢, 6, and ¢ at the jth step of the

reduction, and use Y, & for the vectors (Yj), (63).

The full reduction is now

.
(I + ow')PB,. . P = R(v,6,Y)

whi ch gives_
- 1 1
A = ID§R(V,5,-Y)TR(v,a,—v)D21F,

Fromlema Il we have

1 1
R(V,&,-Y)Dz = R( D%V! 61 -DZY) ’
i -1
= DER(PD D =, ‘Y) ’
= D%TR(P:B:Q)
wher e r = diag(Yj)
- &
Py =Y ]
1 =1, . .. .n.
= =§./(d=Y,
BJ 6J/( J J)

(Note that p is the solution of Lp = z , as before.)

Fol I owi ng our convention for unit-triangular matrices we define

L(Paﬁye) = R(Paaae)T
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The net result is that

L LL(P:B:e)

and D

or ,

whi ch nust be analytically equivalent to the factors obtained by algorithm
C. \Wat we have done is find alternative expressions for Bj and d., the

J
most inportant being

3. = ¥4, .
J 373

Si nce Y? is computed as a sum of squares, this expression guarantees
that the conputed 53 can never become negative. In algorithm d, the

corresponding relation is

= 2
d, =d, + o_p.
d JPJ

J
wher e sign(cvj) = sign(@) . If @< 0 and IDi* is nearly singul ar,
it is possible that rounding errors could give Ej < 0. In such cases

algorithm C is to be preferred.
The anal ytical equival ence of the two algorithns can be seen
through the rel ation between afj and oJ. For exanple, equation (13)

inmplies that

oy )

@ 1

l:cl(2+c
. . . , - _ 2
and if this is substituted into d) =d; + ooy we get

d, = vid

1 11
which agrees with D = TIDr . In general if we define
n

a, =0 (2 +Z vTv.)
i i'i

i=j
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the expression for 6;] sinplifies, giving

8. oV, o.p. ¥ p.
B. = - d - _dJd ___JJ __J3
. = <
J a?y, a5v? ¥ d,
JJ JJ JJ J
which is the expression obtained for BJ. in algorithmd. In practice

we retain this formfor algorithm C2. The method for conputing T fromL
and L(p,B ,e) is also the sanme as before. The iteration can be sunmarized
as follows.

Al gorithm C

1. Solve Lp=z.
2. Define wgl) =z

J
n n j=1, 2, n
S = 2/d =
J Py/dy = 9
i=j i=j
Q/ = o s

Ol=al/[l+ Vl+ozsl].

3. For j=1,2, . . . . n, conpute
(a) g p?/dj
(b) ej =1 +ch.
(c) Syl TS 79
O T
(e) Ej = Y?dj
(£) 85 = pm/d,

2
o, o, /Y
(&) J+l J/ J

(h) o, | =cj(l + YJ.)/[YJ.(GJ,+YJ.)]
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1) (dt1) (3) .
(1) w v = wr Perj
- _ (j+l)
zI‘J zrj * ijr

r=j+l, j¥, . . . . n.

Note that the initial back substitution takes place separately from the

conmputation of L(p,B,e), because of the need to conpute the vector p

2
bef ore conputing sy - Thi s adds Z + Q(n) multiplications to the nethod

but ensures that the algorithmwll not break down under extreme circum-
stances and allows T to be conmputed by either the forward or backward
recurrence relations given in Lemma V. The nethod requires -g-ng + Q(n)

mul tiplications and n+l square roots.
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Method C3. Using Gvens natrices |

One of the nost obvious methods of nodifying the Chol esky factors

of Ain the particular case when « >0 is as follows.

Consi der the reduction ot the matrix [a/%z RT] to lower tri-

o) - (]

where P is a sequence of Gvens natrices of the form

angular form i.e.

1
P= PE?%. =

[ﬁT o] R TR,

0

We have --

1

I
wl—:l
=
+
Q
N
N

Consequent |y R is the required factor.
This al gorithmcan be generalized when @« < O . The rank-one

modi fication will be witten as

§T§=RTR-azzT, >0,

for convenience. The vector p is conputed such that

and we set 8



W now formthe matrix
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P R
6, 0
and pre-multiply by an orthogonal matrix P of the form
_ Shtl n+l _n+l
P = PZI. ) n-an
such that the vector p is reduced to zero. This gives
D R 0 R
P
T
‘ 6, 0 60 r
in which case the following relations nust hold
T 2 2
PP te =6y s (14)
T
Rp =8, , (15)
RTR = ﬁTﬁ + rrT , (16)
Equation (14) inplies that ag = -%— , Equation (15) inplies that
1 1 . .
r =—5—O— z = a2z, and finally (16) gives
RR = ®'R + azz’
as required. This method requires 2 2y Qn) multiplications and

n+l square roots.

2
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Met hod C4k. Using Gvens natrices ||

For this nethod we will be nodifying the factorization

§T§ = RTR + cvzzT

Fromthis equation we have

A =R(I+ )R, (17)
wher e RTp =z.
VW can wite A in the form
A = RTPTP(I + ozppT)PTPR , (18)

where P is an orthogonal matrix. The matrix P is chosen as a product

of Gvens matrices such that

12 n-2_n-1_ _
Pp = PLP,." P (PP F Ye, (19)
where |Y| = el . The equation (17) can be witten as

3 = RIPN(T + aY2ele§)PR .

As each Gvens nmatrix PJ:+ is formed it is nultiplied into the upper

j+1
triangular matrix R . This has the effect of filling in the sub-diagonal

el ements of R to give an upper Hessenberg matrix H. W have

H=PR,

H:JTJH s

A

where J is an identity matrix except for the (1,1) el ement which has
1 -

the value (1 + apr)? If Ais positive definite, the square root wll
be real. The formation of the product JH nodifies the first row of H

to give



which is still

are now chosen to reduce H to upper triangular form i.e.

Then

as required.

upper Hessenber g.

PH

5

and 2n-1 square roots.

"

This al gorithm requires

H = JH

Pn-an-2. _
n n-1

2

fosf| 2|
=il

=]
3
3
Hd
ool

9

A second sequence of G vens matrices

n2 + Qn) nultiplications
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Met hod C5. Usine G vens matrices |11

If we wite equation (17) as in method c2, viz.

|+ app ) (I + oPP )R

wher e o =

e

1+ (1 + oszp)

If Pis the matrix defined in (19) we can wite

RT(I + cppT)PTP(I + GppT)R :

3 =
= RUER (20)
_ T
wher e H = P(I +opp”)
N T
=P + cYelp

According to lenma I, P is a special upper Hessenberg matrix of the form

P = HUG)—,B QY)

for sone vectors p, B and ¥ . Now the first rowof Pis a multiple
of o by definition, and furthernore Pp = Ye, inplies that p = YPTel,
so the first rowof Pis also a nultiple of p. Fromlemma Il it

follows that by choosing En =P, when forming P as a special nmatrix,

Wwe can ensure that

P = HU(P,B,V)
for some B and Y .

Assum ng this choice of En is made, we have

T
H= H-U(P>5 9Y)+ cYelp
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= HL](PJEJY)

where B differs froms only in the first element, i.e.

B=B+0Yel.

nowH can be reduced to upper triangular formR by a second sequence

of Gvens matrices P :

S _ pi-lon-2 21 _ -
PH =P P .. .P3P;'H—R.

It can be readily shown that R is of the form
ﬁ = R(P:E:Q)

where the vectors B and ¥ are given by the following recurrence rela-

tions:
..My = By
2. By = eqly+ s
YJ = JT] Pj + sJYJ j=1, 2, . n-l g
Myer = 5505 - 0B
> ;n = My -

The quantities cJ. and s(j are the elenents of the Gvens matrices in
P . They reduce the sub-diagonal elenents Y, of Hto zero at each
stage, and are defined in the usual way. Thedfi nal product R = RER
can be conputed using |enma V.

This algorithm requires on° 4 Qn) nmultiplications and 2n-1
square roots. The work has been reduced, relative to method ¢4, by

accunul ating both sequences of Gvens matrices into the special matrix

R and modi fying R just once, rather than twice.
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4. Modification of the conplete orthogonal factorization

If Ais an mx n matrix of rank t, m>n, t<N, the complete

orthogonal factorization ot A is

“uz=|r o (21)

0. 0)

where @ isa mx m orthogonal matrix, Z an n x n orthogonal matrix
and R a txt upper triangular matrix (see Fadeev et. al. (1968),
Hanson and Lawson (1969)).

The pseudo-inverse of A is given by

In order to obtain the pseudo-inverse of a4 = A + sz , Where y and

z are m and n vectors respectively, we consider nodifying the com
plete orthogonal factorization of A (Wth no loss of generality we have

omtted the scalar o .)

From equation (21) we have

az = | R +pqT
0
where p = qv and q = 2%z . If the vectors p and ¢ are partitioned
as follows:
ullt w) it
P = > Q= ’

ferd
et
B
]
ct
=
)
o
1
o+
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we can choose 0l and ZI to be either single Househol der matrices or

products of G vens matrices such that
Qu =oe, and wz, = BvT
T 1 | 1

where o and B are scalars such that. |o| = Hﬁuz and |B| = W”e .
Note that application of these matrices |eaves the matrix R unchanged.

For convenience we will' now work with the (t+1) x (t+1) matrix Sl which

is defined as

T

w0
i

1l
J

8l

We next perform two major steps which will be called sweeps.

First Sweep

Choose an orthogonal matrix Qry such that

Qrr | v = P2P§. . .PJG Pt+1 u Ylel
o o
where Yo = jju + o If s is nultiplied on the left by Q.. and
1 Il I 11
the resulting product defined as SIl , we have
T T T
- - + : =
S =qfr= | Tip © Yoo [w Bl SO
Ri 0 Ri 0
wher e RII is an upper triangular matrix. The t diagonal elements of

R, are filled in one at a time by the application of each 2 X2 ortho-

gonal matrix. W have defined

T _ T T
rII = rII + Ylw .



Second Sweep

We now construct an orthogonal matrix Q1 whi ch, when applied

to S from the left, reduces 811 to upper triangular form If this

11
triangular matrix is defined as "S.. We have
S _ 7T Y_8 = R s
III = QI 1T 1 ] II ’
Ri 0I 0 811
wher e Qi is of the form
QlIl = B B3R5

The matrix “811T

may or may not be the upper triangular matrix required,

dependi ng upon p(A) , the rank of A . The different cases that can

arise are sumarized in the followng table:

ozB = 0 #£0
=o | p(@) =t or t-I p(A) =t
#0 p(A) =t p(A) =t +1

Case I. o #0, B #0

In this case SIIl has full rank and
= R
Rrrr St R

0 o111

The final orthogonal matrix q is given by
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3l = | ' VaYs
Q “rr, © Qr y © ! Q (22)
—_—— - - E Y TN —— -
\ ' |
0 | I | 0 I | 0
—— — ./
t+1 b+l t
and Z =2z 1 o | .
|
T—-
0 l Z;
—— ‘
t
Case Il. o #0. 8=0

If the first and second sweeps are followed carefully it can be

seen that SIIl is of the form

& sp I

form and we define the nodified factors accordingly.

= 0 and 111 = 0. Asin Case I, S is in the required

II1

Case IIl. o =0, 8 #0

The first orthogonal transformation of the first sweep is an iden-

tity, and the matrix Sl has the form



SII =
Application of the second sweep (QIH) gives the matrix Sl jp the
form

St11 =

- 0 ] O_{
I.e 5III =0
An orthogonal matrix ZIl is now applied ON the right to reduce
SITT to zero, thus:
t _t-1_t-2
Strrrr = S 1P el te b 417, -Pran

42
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The nodified factors are q as defined in (22), and

5 _ N '

Z Z I ‘ ZII:
xS P I
! ]

Case IV. « =0, =0, p(a) =t

The matrix Sl has the form

3
0
Sl = } t+1
| 0 10J)
“ J
——
t
If the diagonal elenents of RIIl are all non-zero then rank (&) =

rank (RII1) =t and the factors are conpletely determned. Qherw se,

exactly one of the diagonal elements of 'R may be zero, since the

11
rank of A can drop to t-1 . In this case, two nore partial sweeps
nust be made to reduce RIIl to strictly upper triangular form as

foll ows.

Case V. «a =0, =0, o(a) = t-I

Suppose that the k-th diagonal of RIIl is zero. The matrix

can be partitioned in the form
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k-1 t-k
n —
|
NG
S W
I - k-1
|
! T
R|||=: rry
|
|
| By
| t-k
\
{e -W- - M- - - - ———————
wher e Ry» Ry are upper triangular with dimensions (k-1) x (k-1)
and (t-k) x (t-k) respectively. An orthogonal transformation Qry
T
r
is now applied on the left to reduce the submatrix to upper
Yok
triangular formin exactly the sane way as the first sweep. Simlarly,
a transformation le is applied (independently) fromthe right to
reduce S1y to zero in the submatrix [RIV SIV]' Thus
L) :' -
R |
RIVIO| W
———t— b
QryRrrrérr = L
| R
o‘ 1 \
SES—
- o

kK kK
where v T PPt . @ w2kl
and Z = k-1.k-2 .P?Pl



Finally a pernutation matrix gz is applied to nove the colum of zeros

III
to the right:
N - | - | 7
R ol w R W I
IV . —
o N Rv:_ :__
L 7o L o0 o _ " 0 04
The nmodified factors are
I ! r : I
_ 4yl 1l Q1 I
Q = -—':'-" -—p- --‘.—-— ——+-4 q
T s T lq
|- | UL I N B
I o B e e
I Z.. 1 Zrrp )
- II IT |
and Z =7 |[=—=+*— -—+-od |-=4+--
1z I 1 I I
|1 L v J L o d

The number of operations necessary to conpute the nodified factors

are summarized in the followng table:

Description Order of nultiplications
Conpute p , q . ’ e+ e
Determine oo, B . bm(m-t) + bn(n-t)
First sweep 2t2 + Ant
Second sweep 2t + 4Ant
Addi tional conputation for case III ot° + 4nt
*addi ti onal conputation for case V —-;"'—t2+ 2t (n+m)

*|t has been assuned that

di agonal el ement of R’III

is zero,

if w(k) is the anount of work when the kth

then the expected work is



46

L
= e

t
k=1

The maxi mum amount of conputation necessary, which is of the order

of 6 %— 2+ 5(m n % + 2t(3m-n) nultiplications, wll occur when case V
applies. In the special case when A and A are both of full colum

rank then Z is the identity and the amount of conputation is of the order

of 5m‘2 + 4r2 + bmn mul €] plications. This reduces to 15n2 when nen .

4.1 Use of special matrices

The- nunber of operations can be decreased if some of the properties
of special matrices outlined in section 2 are utilized. Each Gvens
matrix nust be nultiplied intoa Q matrix, Z matrix or upper trian-
gular matrix, depending upon the current stage of the algorithm These
mul tiplications can be perfornmed by accunul ating the product of each set

of Gvens matrices into the associated special matrix. Each Qr » Zg s
Qp > ZII 5. .etc. Will be either a special matrix or a pernutation

matrix. The orthogonal matrices Qr Zl ,.. .etc. Wll be fornmed,

using Lemma | and Lemma I, as products of the form Alﬂél C V2o

AIIQII , VI ZI 5. . .etc. wher e AI ,vI,AH,vH,..

di agonal matrices and QI , EI ,. . .etc. are special upper (lower)

.etc. are

Hessenberg matrices with unit sub-(super-) diagonals. In addition we

assune that we nodify the factorization

ot ] o
QAZ = [-==}--
0o | O

- '
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atthe initial stage o’ i's unaffected by the pre- and post- multiplica-

~

tion with a,q and Z g ., The products
] l
I 1 O Il O
) N
0 1A_Q ol 5
| 191 | 2191
can be formed using Lemma 11, the diagonal matrices being kept separate

from the orthogonal products
During the first sweep we require the product

I .
0 .

R
N Q1 "'!'-"
0 0
|
[f this matrix is witten in the form
|
it | o
~ |
b1 [===--o
o Lo

it can be evaluated by bringing the diagonal matriX pig the |eft of
~ . . . . ~ ~ 7
Qry by suitably altering the special matrix Q.. t0 Q. a5 in Lemm
[l. The remaining product involving aél and LT can be formed using
Lenma |11 with backward recurrence. The nultiplication of Q. by the
'l

current orthogonal matrix is performed simlarly to that involving 3

|

except that again the diagonal A nust be brought through by altering

Qrp toQpp (say).
If the remainder of the conputation is carried out using the sane

techni ques as those just described, the nunber of nmultiplications can be

summarized as follows:
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Description | Order of multiplications
Conpute p , q e+ no
Determne o , g | 2m(m-t) + 2n(n-t)
First sweep £ + 2
Second sweep 2t + 2m
Addi tional conputation for case III 2t + 2nt
Addi tional conputation for case V —g—tz + t(n+m)

The maxi mum armount of conputation necessary is now of the order of
4 % 2+ 3(m2 + n2) + t(3m-n) multiplications, and this reduces to
5(m2 + ng) +2m mltiplications in the full rank case. Wen n=m=t

the algorithm requires 8° + Q(n) operations.
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5. Special rank-one nodifications

W now consi der some special cases of the conplete orthogonal fac-
torization which occur frequent | Y, nanel y addi ng and del eti ng rows and
colums from A . These cases deserve special attention because the

modi fications can be done in approximately half as many operations as in

the general case. Since in nost applications A is of full colum rank

we will deal specifically with this case and nodify the factorization

where A i mx n, m > n

5.1 Adding and deleting rows of A

Ve first consider adding a row aT tg A . Assuming without loss

of generality that this rowis added in the (m+l)th position, we have

and L] - - ~ =
! R
|
0 A
< [ = 0 =T
-—-—--L —-— e e =y handund
0 | T T
- 'lJ - a - h-a -

El enentary orthogonal transformations are now applied fromthe left to

reduce a' to zero while maintaining the triangularity of R This is

done by defining the sequence

(1) _ (3+1) _ 5 j .
™/ =7, T = Pm+lT(J) , 3=1,2,...,n ,
wher e Pi+1 reduces the (m+1l,j) elenent of T() o zero. Note in

particular the effect on the colum C whi ch has been added to q.
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The first n elenents are filled in one by one, thereby formng the |ast

colum of q :

!
1
n n-L 1 N I _ =
L Y Q :em+1 Q
_To
— . ——
= [Qﬂl ; qm+:] say.
+ .. a '
El enents n+l, n+2, ,m Of q,., remin 7ero.

To remove a row from A, we now sinply reverse the above process.

This time we have

-

QA = | A =TT
oy Gmer]| | 0 } m-n
: at 0 11
gi ving
T

- +1  _m+l +
Transformations P~ —,p" ge - .,Pm 1 are chosen such t hat
m m 1l 1
_ o+l o pMH pmt _
qu+l - ij Co ml m 1~ Cme1 -

The last n transformations each introduce a non-zero into the bhottom

row of

(fromright to left), giving
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P — -y
R
PQA = 0
T
r
- -

PQ

and since PQ is orthogonal it follow inmediately that u = 0 . Thus

L _ - - _ i C“r _ e
A Q :o A
PQ = '
- eus wn e ----J.-- [
aT 0 Y 1 aTJ
e - - ' J U
= -
R
- 0
T
b T o
sothat r =a, and also
R
E,K = ——\--
0
-

as required.
Oten it is necessary to nodify R without the help of . In

this case we really want R such that
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R = R'R -I;aaT .

R
so clearly the nethods of section 5 would be applicab'e. Alternatively
we can continue to use elenentary orthogonal transfornations as just des-
cribed. Adding a rowto Ais sinple because qwas not required in any

case. To delete a row we first solve RTp =a and conpute 52 =1 - HPHZ-

The vector

}n
0 1} m-n (23)

8 11

now plays exactly the same role as g,,, above. Dropping the unnecessary
zeros in the center of this vector, we have
™ b ! “
| i | -
n+l n+l_n+1 Py R 0} R
P PnrBy | = l
5! 0 bt
L] o LT -
where as usual, the sequence {P?J’l} has the effect of reducing p in
(23) to zero and introducing the vector pT beneath E . Since the Pr_l+1
J
are orthogonal it follows that
[~ | | r ' 3 P~ ] - r 1 -
o ! 1 R T |
I ° | R 1 P : R
T ' T i
ROy 1 1y r RT | o 5 | O
- ! e ! - e ! o G ! -
or
~ | - | A
T 2
Lt Iel® + 6°1 PR
——r————-- = ———-J‘-' = e o
I
T R‘%+ rrT % i RTR J
] I »
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sothatr:RE):a, and

RTR = RTR - aaT

as required.

5.2 Addi ng and del eting columns of A

Suppose a colum is added to the matrix A, giving

]
_ (]
A = Al a
[}
|
Since
R.
QA = -——06——-—. s
we have
. 1
_ u
@ - [~ (21)
o v
|

wher e [uT vT] =aTQT and u and v are n and mn vectors

respectively. If an orthogonal matrix P is constructed such that
p~ -
u
Pv =11 v ,
0

where Y = + ||v then pre-multiplying (24) by P |eaves the upper

PE
triangular matrix R unchanged and the new factors of A are
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-~ -
R | u
R = ---:-—— and @ = Po.
0 : y
L

This method represents jutt a colum-w se recursive definition of the g¢r
factorization of A .
Wen Q is not stored or unavailable, the vector u can be found

by solving the system

The scalar Y is then given by the relation

YE =l -

Rounding errors could cause this method to fail, however, if the new col um
a 1is nearly dependent on the colums of A. |n fact if Ris built up
by a sequence of these modifications, in which the colums of A are
added one by one, the process is exactly that of conputing the product
B = A'A and findi ng the Chol esky factorization

B=RR.
It is well known that this is numerically |ess satisfactory than conputing
R using orthogonal matrices. |In some applications the s-th colum of g

is available even when Qis not and consequently y can be conputed

more accurately fromthe relationship

- .T
Y_a‘qsy

wher e qg is the s-th colum of Q.
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Sone inprovement in accuracy can al so be obtained on machines
whi ch have the facility for performng the double-length accunul ation of

inner-products. In this case the i-th element of uis set to

.n i-J
u., = a,.a.- u.r, . »
i i
i rog { Z : J J J 1J
i=1 j=1

where the two inner products are formed as a single sum Despite these

i nprovenments this is still nunerically less satisfactory than the pre-
vious nethod where Q was avail abl e.

A further possibility of inmproving the nethod arises when one
colum is being deleted and another is being added. A new colum re-
placing the deleted colum is equivalent to a rank two change in Ata
and can be perforned by any one of the methods given in section 3. Even
this is still not ideal, since the conputation of the rank one vectors
require the matrix vector product AT(a - a) where a is the colum

being added and @ is the colum being deleted.

Finally we describe howto nodify the factors when a colum is
deleted fromA . It will be assuned that & is obtained fromA by

deleting the s-th colum, which as usual will be denoted by a . Deleting

the s-th colum of R gives

, -
|
r Ry _|' I, |1 s-
A = i 0 1 T, |3 nesn
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where R, is an (s-1) x (s-1) upper triangular nmatrix, T, is an
(s-1) x (n-s) rectangular matrix and T, is an (n-s+l) x (n-s) upper

Hessenberg matri x. For example, with n=5,s=3 and m=7 W have

X x{x X
|
0 x ¥t x X
0 m-m-|.- - -
‘.RLL|TJ_‘1 0 Otx X
(O 0 O1tx X
2 i
- e oy ——q
0 1 0 Loto x
- | - 0 olo O
|
0 olto o
- ]

Let partition T, be of the form

V¢ now choose an orthogonal matrix P which reduces T, to upper trian-

gular form using one of the nethods described earlier. Thus

PT2 _ l-._ﬁi- } n-s

0 11



o7

. _ h=s 1
where P is of the formP = Poeetl” .E?gé . The nodified triangular

factor for A is
R, |7 ;
ey R
0 R 3 N-s

0 i ‘O } m-n+1

IfQis to be updated al so, the appropriate rows nust be nodified,

thus:’
- -
Q } s-1 i
e=|  frmen . w- R
i o } mn QS

It is sonetinmes profitable to regard this conputation froma

different point of view The partitions of T, satisfy the relation

=T= T . .
R5R, = RR, + o and this is analogous to the equation {'g —RR+aa'
whi ch hol ds when we add a row aT to A . e conclude that deleting a

col um may be acconplished by essentially the sane techniques as used for

adding a row
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6. Concl usi ons

In this report we have presented a conprehensive set of' methods
which can be used to nmodify nearly all the factorizations nost frequently
used in numerical |inear algebra, It has not been our purpose to recom-
mend a particular method where more than one exist. A though the anount
of conputation required for each is given, this will not be the only
consideration since the relative efficiencies of the algorithns nmay alter
when applied to particular problens. An exanple of this is when the
Chol esky factors of a positive definite matrix are stored in product
form In this case the choice of algorithmis restricted to those that
form the special matrices explicitly. The relative efficiency of nethods

G and C2 are consequently altered.
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