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ABSTRACT

The solution of linear systems having real, symmetric, diagonally

dominant, tridiagonal coefficient matrices with constant diagonals is

considered. It is proved that the diagonals of the LU decomposition of

the coefficient matrix rapidly converge to full floating-point precision.

It is also proved that the computed LU decomposition converges when

floating-point arithmetic is used and that the limits of the LU diagonals

using floating point are roughly within machine precision of the limits

using real arithmetic. This fact is exploited to reduce the number of

floating-point operations required to solve a linear system from 8n-7

to 5n+2k-3 , where k is much less than n , the order of the matrix.

If the elements of the sub- and superdiagonals are 1 , then only 4n+2k-3

operations are needed. The entire LU deccarrposition  takes k words of

storage, and considerable savings in array subscripting are achieved.

Upper and lower bounds on k are obtained in terms of the ratio of the

- coefficient matrix diagonal constants and parameters of the floating-point

.
number system.

Various generalizations of these results are discussed.



1. Introduction

We will consider the solution of linear algebraic systems having

. real symmetric, diagonally dominant, tridiagonal coefficient matrices

with constant diagonals. This problem occurs frequently in solving certain

kinds of partial differential equations, boundary value problems of ordin-

ary differential equations, and cubic spline interpolation problems.

> Consider the coefficient matrix

A =--

.

a b

b a b

b a b
0 0 l

0 l l

b a
.

of order n . The usual LU decomposition of A requires n-l divisions,

n-l multiplications, and n-l additions. The solution of the equations

LUZ = d requires an additional n divisions, 2n-2 multiplications, and

2n-2 additions. With the following observation, the entire LU decompos-

ition of A can be stored in k floating-point words, and the solution

of the linear system Ax = d can be obtained in k divisions, 3n-1 mul-

tiplications, and 2n-2+k additions, where k is usually much less than

n. Typically, k is on the order of 10. Moreover, k can easily be

estimated from the values of a and b and parameters of the floating-

point number system used in the solution. If b=l, then n multiplies

can be avoided. In addition to a smaller operation count, substantial

savings in array indexing are achieved.
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2. The Algorithm

Consider the matrix

B =
1 ct 1

8 0 ’
8 . ’

v 0 ’
1 a 1

la!
.

where cy = a/b . Note that A = bB . The analysis, as well as the comp-

utation is simplified by considering the coefficient matrix to be B and

the linear system bBx = d . B can be factored into the product LU ,

where

L =

1

a n-l
1

using the recurrence relations:

*
Un

. u1
=cY, R

i-l
= l/ui 1 , U. =OY - 'i-1 ' iS2

1 ,**.3 n9

or

U. =cY- u
1 1/ i-l '

i=2 9'.'3 n.
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Under suitable conditions, to be discussed, the Ri converge and

$ = $+I = . . . = a, = 4 to machine accuracy. In the computer, one simply

computes and stores the values of 1
i ' i=l 3***3 k . The solution vector

. .
XN can then be computed as follows:

Yl = dl 3

Yi = di - ‘i,lYi,1 5 is, . . . , k 9 yi = di - ayi-1, i=k+l,...,n ,

Z
n =aY,) (2)

Z.
1

= A(yi - Zi+l) , i=n-l,...,k  , zi = Ri(yi - zi+l), i=k-l,***,l  ,

X. ~.b-lz
1 i'

i=l,...,n .

3. Convergence of the LU decomposition-w-

We will show that when A is diagonally dominant, the sequences

[uJ and [a,] converge. We will also find an estimate of the rate of

convergence which can be used to determine a value for k .

It is sufficient to show that the sequence [ui] converges, and

for this we assume diagonal dominance, or equivalently, 1~1 > 2 . The

following theorem is a special case of a theorem of Parter (1962) for

band matrices.

.
Theorem 1: If 101 > 2 ' then the sequence [ui] converges to u where-m

-4
u =

a + sgn(0)
. (3)

2

Proof: Convergence follows from the fact that the seguence [cyu] is bounded

and monotone:



Lemti 1 (boundness):  If Jc~I > 2 , then

*Ui> 2 , i=l,... . (4)

Proof: From (l), u1 = CY . Thus CYU, = cu2 > 4 . Now assume that (4) holds
A . . I

for some value of i > 1 . By (1)'

CYU
2

i+l
=cy  - qui > a2 - (Y2/2>2.

Lemma 1 follows by induction.

Lemma 2 (monotonicity): If 1~1 > 2 , then

CYU -j+l< cyum 9 i+l1 j... .

Proof: From (l),

u2-y-$'

and (Y(ui+l - Ui) = 1
u.u1 i-l

a(ui - ui 1> , i=2,... .

It follows from Lemma 1 that the ui must all have the same sign.

by induction,

QI(“i+l - ui) < O .

Now, in the limit,

U =a-+,

2
or, U -cYu+l=O. ,

Thus,

Equation (3) is the quadratic formula with the sign of the radical chosen

to avoid a contradiction with Lemma 1. This completes the proof of

Theorem 1. _
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The following two theorems provide a way to estimate the value of k .

Theorem 2:

k<

If ICY 1 > 2 , then

(5)

where g is the floating-point radix, t is the number of digits,

f and [S] denotes the smallest integer not less than e .- - -  _

Proof: We will first prove the following lemma.

Lemma 3: If (~yl > 2 , then

(y(u-j+x  - ui> > -(a2 - * - 1) l-i , i=l,... .

Proof: From (I), Lemmas 7: and 2,

~(ui+l - ui) z u ,:
i i-l

cy(ui - ui-l) < O ’

and 1 1=
u.u cm. - 1

>0, i&.. .
i i-l 1

N O W, aui=a?- u(y , i=2 ,... .
i-l

m By Lemma 2, and the fact that uiu > 0 ,

o!
u.

<‘y
u '

i=l '... .
1

Thus, 2 acvUi>cY -
T'

and
1 < 1

u.ui i-l cY2 -
a ' i32 '.I.. .
-0 1

U

(6)

(7 >

(8)

(9)

Thus, 'Y(u~+~ - ui) >
1

a2 -
CY

a(ui - uiol), i=2,... .
-0 1

- u



Repeated application of this inequality yields

( Ui+l -
ui) > (a2 - +- - l)l-i~(~  - u,), i=l, l l . .

.  .
Since a!(u2 - ul) = -1 ,

the Lemma is proved.

Dividing (6) by azz > 0 and taking absolute values,

Ui+l - ui
< IL- cy2 0 cY- -

U CKi
(

U
l)1-i .

I
(10)

(11)

Requiring the right-side of (11) to be less than g 1-t gives a sufficient

condition on i for the convergence of [u,] . Taking logarithms yields

the sufficient condition

t - 1
i>l+

logg(cY2 - + - 1)
. WI

Thus k need be no larger than the smallest possible value of i given

bY (12).

Theorem 3: If IQ'/ >2 , then

t .
Proof: We will first prove the fc4lowing lemma.

Lemma 4: If \~(>2 , then

.
a(u-j+l  - -ui) < -(a2 - 2)l-l, i=l,... .

Pmof: By Lemma 2 and (1)'

03 >

cYui <
2

CYU1
= a , i=l,... .
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Since, by Lemma 1, aui > 0 ,

CY-> 1 , i=l,... .
u. -1

Substituting into (8) and (9) gives

1 > I- i=2u.u a2
’ '... .

-1 i-l - 2

This inequality and (7) and (10) yield Lemma 4.

Dividing (l-2) by QU > 0 and taking absolute values gives

ui+l - u.

I I

1 .
I>---

U - au ( a2 - 2)lmi, i=l,... .

-=.

(13)

Setting the right-side of (13) greater than p 1-t gives a non-convergence

. condition for i , and thus, a lower bound on k . Taking logarithms

yields Theorem 3.
I

If we denote by E , the upper bound given in Theorem 2, and by

5 the lower bound given in Theorem 3, we have

)C<k<z.-- -

In practice, these bounds are very close.' Usually K = k = g . The

following table gives values for E , F and k for various values of

cy for both single and double precision on the IBM 360.



. .
Short Precision

(p=16, t=6) $*

a II k z
2.05 18 27 30

2.1 16 20 22

2.2 14 15 16

2.3 I2 13 13-=.
2.4 11 11 11

2.5 10 10 10

3.0 8 8 8

4.0 6 6 6

5.0 5 5 5

6.0 4 _ I4 4

7-o 4 4 4

Long Precision

(p=16, t=14)

3d
46

41

35

31

28

25

1-9

14

I2

11

10

Upper and Lower Bounds (z and M) and

Observed Values for k for the IBM 360

k

77

55

40

33

29

26

19

14

12

11

10

ii

80
57

41

34

29

26

1-9

14

12

11

10
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The preceeding theorems characterize the convergence of the

sequence [u.J in the absence of rounding errors. If the computer arith-

metic satisfies certain reasonable rules, then the computed sequence [CL]

also converges monotonically to a limit g which is very close to u .
. .

We will prove this result for CY > 2 . ,A similar argument holds for

a/<-2.

Let 0 denote the operation of floating-point divide, and 8

denote the operation of floating-point subtraction. For any floating-

point numbers a, b, and c, we will assume the following:

( >i a>OZlQ)a>O

(ii) a>b>lIl>l(Db>lQ)a- -
--.

(iii) a > b 1 ceb > tea

(iv) a>23ael>l

( >V a O=a8

Theorem&: If cu>2,- - and the computer arithmetic satisfies the above- - - -

rules, then the computed sequence [G,] converges monotonically to fi and- -

ii =u+o (fly .

Proof: c
1
= cy > 2 and G2 = "I@ . Since cy > 2 , (i) yields

e 1000. From (iii) and (v) we have a!> ace(lQ)cu); thus ulz u2 .-

From (ii), l> l@cu . By (iii) and (iv), CY@@ > a,@ > 1 . So

Gl~ii2 > 1 .
i

.
Now assume i;k-l > $ > 1 . By (ii), 1 > 10% ,> 6, 1 . By-

(iii) and (iv), ~e(1/~-l)LQIe(1/yc)>CY81~1' SO'

s > $+1 2 1 . By induction, the sequence [Gil is bounded and monotone.

Therefore, since there are a finite number of floating-point representations

between CY and 1 , the sequence converges to a limit zi > 1 . In the

I
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limit, we have

U=+J(lQ)U).

Following the tcchniqucts  of' Wilkinson (1963), WC hw.e

ii = (o! - u-l (1+s))(1+T)) . .

for some values of c and 'Q satisfying

I e( < Plot and 171 5 plot .'

SO'

2; =CY 1
-ii- +6,

where &j = CY~ - G- l(s+Tj+ q) .

Therefore,
-=.

ii =$[(a+ 6) + cy+6)2 -4 I.

From Theorem 1 we see that

G- u = O(6) = o( P) .

Since u > 1 , Theorem 4 Frovides a bmnd. on the relative error in G .

We would like to remark that the algorithm (2)-is nothing more than

Gaussian elimination which is known to be very stable for positive definite

systems. The condition number of the matrix B is easily calculated to be

I Io! + 2 cos -E-n+l I Io! +2
cond(B) = <

I ICY -2cos+-  - ICY\ - 2

Using the error bound given in Forsythe and Moler (1967): If

By = ,d and (B+E)z = c , then

llx - ,zll IWI
5 cond(B) -

ll,z II IIBII ’
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where II*// denotes the spectral norm. If E is due to roundoff error

in representing a , then IlEllF e = [o![@
1-t , and

IIY - ,zll e . .

11,211  L Ial
.

- 2 cos --&-

4. Generalizations

An important extension of Theorem 1 is that the LU decomposition

will converge even if some of the upper left elements of' the matrix are

changed. If a tri-diagonal matrix contains a Toeplitz sub-matrix, then

that portion of the LU decomposition converges. Problems of this sort

occur, for example, with cubic spline interpolation with prescribed deriv-

atives at the ends. This is a result of the following.

Theorem 5: If Q > 2 and u = Y where Y- - has any value except 0 ,1 - ---

l/a 3 z u- > then the sequence ui = a/ - l/ui 1 , i=2,...,- - converges

and

(A similar result holds for cy < -2 .)

,
Proof: The nonlinear difference equation, ui = cy -

1
- , can be solved

.
W

ui-l

explicitly by using the substitution iu = - to produce a linear
i wi-l

second-order difference equation. For cy > 0 and u1 = y , the solution

is:
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( )
i<

U

l+S L
U

+
U. =u

1 + i 7

U

l+S --p-( >_+ . .
a

where < =K - ' ' u-
Y

. Since CY > 2
-U 3 the positive quantity

b-/u,) is less than unity. Convergence follows immediately.
I

The results we have given for scalars can also be generalized to

matrices.

Theorem 6: If a matrix can be partitioned as- -- - -

B

B

A B

.

-

where both A and B are symmetric and positive definite, and if the- - - - - '

eigenvalues of B-IA are greater than 2 in modulus, then the block- - -

Gaussian elimination of Q converges.

Proof': Block elimination is equivalent to constructing the sequence of

matrices Ul = A , Ui+l = A - BUi'B , i=1,2,... . But A = PbPT and

. B = PPT where A is the diagonal matrix of eigenvalues of B-'A . Define

5 = A and Ai+l = A - A?'i Then Ul = PAIPT and if Ui = PAiPT then
1

Ui+l = PAPT - PPT(PAiPT)-lPPT

= P[A - A$PT = PAi+lPT .

The convergence of bi (as well as the rate of convergence) under the

12



conditions stated follows from the results for scalars given in Theorems l-3.

An example of a matrix that satisfies the required conditions for

convergence is the matrix that arises from the five-point finite difference

approximation to Laplace's operator in a rectangle:

c7=

where

A =

-1

4
l

l

0

0

I

. -1

4-1

However, this method does not appear

-1 A -1

0

-

to be competitive with existing

methods for this particular matrix.

5. Conclusions

Many of' the observations which lead to the simpli1'ication in com-

puting the LU decomposition f'sr tri-diagonal Toeplitz matrices gc‘ntralizc

to Toeplitz band matrices. Bauer (1955) states that the Cholesky decomp-

osition of band symmetric matrices converges in the sense that each

diagonal of the triangular matrix converges. We know of no rate-of-

convergence results for the band case.

An alternate proof of Theorem 1 can be easily constructed by con-

sidering the analytical solution to the difference equation (1). Bounds



on k similar to those given in Theorems 2 and 3, but not quite as close,

can be obtained similarly.

.
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