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A FAST METHOD FOR SOLVI NG
A CLASS OF TRI - DI AGONAL LI NEAR SYSTEMS
by

M chael A. Ml col m and John Pal ner

ABSTRACT

The solution of linear systens having real, symetric, diagonally
dom nant, tridiagonal coefficient matrices with constant diagonals is
considered. It is proved that the diagonals of the LU decamposition of
the coefficient matrix rapidly converge to full floating-point precision
It is also progéd that the conputed LU deconposition converges when
floating-point arithmetic is used and that the limts of the LU diagonals
using floating point are roughly within machine precision of the limts
using real arithnetic. This fact is exploited to reduce the number of
floating-point operations required to solve a linear system from 8n-7
to 5n+2k-3 , where Kk is much less than n, the order of the matrix.

If the elements of the sub- and superdiagonals are 1 , then only kn+2k-3
operations are needed. The entire LU decamposition takes k words of
storage, and considerabl e savings in array subscripting are achieved.

Upper and |ower bounds on Kk are obtained in ternms of the ratio of the

- coefficient matrix diagonal constants and paraneters of the floating-point
nunber system

Various generalizations of these results are discussed.



1. Introduction

W will consider the solution of l|inear algebraic systens having
real symetric, diagonally dominant, tridiagonal coefficient matrices
with constant diagonals. This problemoccurs frequently in solving certain
kinds of partial differential equations, boundary value problens of ordin-
ary differential equations, and cubic spline interpolation problens.

Consi der the coefficient matrix

-y
a b
b a b
A= b. a. b.
.b .a [ ]
b a
of order n . The usual LU deconposition of A requires n-1 divisions,

n-1 mltiplications, and n-I additions. The solution of the equations
LUx = d requires an additional n divisions, 2n-2 multiplications, and
2n-2 additions. Wth the follow ng observation, the entire LU decompos-
ition of A can be stored in k floating-point words, and the solution

of the linear system AX = d can be obtained in k divisions, 3n-1 nul-
tiplications, and 2n-2+k additions, where k is usually nuch |ess than
n. Typically, Kk is on the order of 10. Mreover, k can easily be
estimated fromthe values of a and b and paranmeters of the floating-
point nunber system used in the solution. |If b=1, then n multiplies
can be avoi ded. In addition to a snaller operation count, substantia

savings in array indexing are achieved



2, The A gorithm

Consider the matrix

o 1
1 o 1
1 o 1
B= [} . ¢ s
0 [
v [ ] .
1 o 1
l «o
-l
where o = a/b . Note that A = bB . The analysis, as well as the conp-

utation is sinplified by considering the coefficient matrix to be B and

the linear systembBx = d . B can be factored into the product LU,
wher e
- ~ n
1 uy 1
I’l 1 U, l.
L = 2, 1 , U= ) .
. ¢ . L 4
. 1
L) * .
apg L n

using the recurrence relations:
u., = o s _ .
u =a , zl_l Cl/uil ’ i-1 1—2,...,n,

or

ul =Ct"l/ui_| y i=2,...,Nn. (1)



Under suitable conditions, to be discussed, the 4, converge and

b Ty = - 0 = 4, =4 to machine accuracy. In the conputer, one sinply
conputes and stores the values of L, 5 d=l,.k . The sol ution vector

x can then be conputed as follows:

1 =944

yi= 4y - Ry Vs s iR, KLy =4 -y s TERHL N

Zy =AY, (2)
z, = /L(yi —zi+l) , i=n-1,...,k , 2z, = ;¢i(yi - zi+l), i=k-1,...,1 |

x, =b 1z . i=l,...,n

3. Convergence of the LU deconposition

W will show that when A is diagonally dom nant, the sequences
[ui] and [J&i] converge. W wll also find an estimate of the rate of
convergence which can be used to determne a value for k .

It is sufficient to show that the sequence [ui] converges, and
for this we assune diagonal doninance, oxr equivalently, |o|l>2. The
following theoremis a special case of a theorem of Parter(1962) for

band matrices.

Theorem 1: |f |e| > 2, then the sequence [u,] converges to u where

o + sgn(a) Vae- L | (3)
2

Proof: Convergence follows fromthe fact that the sequence [ozui] i s bounded

and nonot one:



Lemma 1 (boundness); |f la| > 2 , then

qu, >2 | i=1,... . (%)

i ’

Proof: From(l), u, = @ . Thus ou, = o® > 4 . Now assume that (4) holds

A

for sone value of i > 1 . By (1),

2 2 2
w, . =0 -afu >a -a"/2>2.

Lenma 1 follows by induction. '

Lemma 2 (nonotonicity): If la| > 2, t hen

dui+1.< Otul. > di+l,...
Proof:  From (1),
__ 1
o =%y T =

- 1
and a(ui+l -u;) = W o,(ui - u,

It follows fromLema 1 that the u, nust all have the sane sign. Thys

by induction,

i41 " Ug) <O l

Now, in the limt,

a(u

w-a -l
2

or, u -ou+1=0,

Equation (3) is the quadratic formula with the sign of the radical chosen

to avoid a contradiction with Lerma 1. This conpletes the proof of

Theorem 1.



The following two theorems provide a way to estimate the value of k .

Theorem 2. If|e|>2 , then
t - 1 - log uw

k< |1+ - £ 1, (5)
lOgB( - - 1)

where g is the floating-point radix, tis the nunber of digits,

and [e] denotes the smallest integer not_less than e .

Proof: W will first prove the following I|enm.

Lemma 3: If |e| > 2, then

a(u - ui) > -(dz -2 ) | , i=1,... . (6)

i+ u

Proof: From (1), Lemmas 1 and 2,

1
Yy - wy) = g ol -y y) <0, @)
1 1 s o
and = >0, i=2,... . (8)
U cm -1
No w, ou, = -—-a——n=2 seen . (9)
Ui |

By Lemma 2, and the fact that uu > 0,

o o .
— <=, i=l,...
1
2
Thus, om, > o° - —— |
1 u
1 1 .
and < , i=2,.
o
Uyli - 012 -—_ -1
u
1 (u, - u, .), i=2
Thus, 0'(ui+l - ) > 2 o AN ] i-17° >



Repeated application of this inequality yields

2 g 1-i _
(g, = wy) > (@ - 5= - 1)y, - uy), 5L,

Since o(u, - ul) = -1, | (10)
the Lenma is proved. l

Dividing (6) by au > 0 and taking absol ute val ues,

1-i

(11)

< - - -1
u | au (o u )

Requiring the right-side of (11) to be less than pl't gives a sufficient

condition on i for the convergence of [ui] . Taking logarithns yields

the sufficient condition

t -1 - logBau

i>1+ ‘ (12)
logB(de -2 1)

u

Thus k need be no larger than the smallest possible value of i given
by (12).
Theorem 3: If |e| >2 , then
t -1 -1
ogsau

k>]1+ = |
logB(a -2)

Proof: W will first prove the following |enmma.

Lemm 4: If|x|>2, then

oz(ui+l ui)_f —(02 - 2)1'1, i=l,... . (13)
Proof: By Lemma 2 and (1),

2 .
ou, < agu, = a , 1i=1,..
i 1



Since, by Lemma 1, ou, > 0,

4
Uy

>1, i=l,...

Substituting into (8) and (9) gives

1 1
> s i=2,
Uo7 4 2
This inequality and (7) and (10) yield Lemma 4. I

Dividing (12) by eu > 0 and taking absol ute val ues gives

0 - u- | 1 .
i+l i > L (a2 2)1—1

£ (13)

Setting the right-side of (13) greater than Bl't gives a non-convergence
condition for i , and thus, a lower bound on k . Taking |ogarithns
yi el ds Theorem 3.
If we denote by X , the upper bound given in Theorem 2, and by
K , the lower bound given in Theorem 3, we have

K<k<K.

In practice, these bounds are very close.' Usually x =k =¥ . The
following table gives values for ¥ , ¥ and k for various val ues of

o for both single and double precision on the I8v360.



Short Precision

Long Precision

(p=16,  t=6) (p=16, t=1k)

o X k X X k X
2.05 18 27 30 46 77 80
2.1 16 20 22 41 55 57
2.2 14 15 16 35 40 41
2.3 12 13 13 31 33 34
2.4 11 11 11 28 29 29
2.5 10 10 10 25 26 26
3.0 8 8 8 19 19 19
4.0 6 6 6 14 14 14
5.0 5 5 5 12 12 12
6.0 4 4 4 11 11 11
7.0 4 4 10 10 10

Upper and Lower Bounds (¥ and x) and
(bserved Val ues for k for the IBM 360



The preceeding theorens characterize the convergence of the
sequence [ui] in the absence of rounding errors. |f the conputer arith-
netic satisfies certain reasonable rules, then the conputed sequence [ﬁi]
al so converges monotonically to a limt & which is very close to u .
Ve will prove this result for §> 2. ,A simlar argunent holds for
o < -2 ,

Let @ denote the operation of floating-point divide, and e
denote the operation of floating-point subtraction. For any floating-
point nunbers a, b, and c, we wll assume the follow ng:

(i) a>o00> l@a > 0

(ii) a>b>1251>1PDv > 1Qa

(iii) a>boc@b>cQa

(iv) a>22a@1>1

(v) a@® O=a

Theorem& |f o >2, and the conputer arithnetic satisfies the above

rules, then the conputed sequence [ﬁi] converges nonotonically to u and
1-t
)

i =u+o (B

Proof: &, =« > 2 and Egzaeu@a). Since @ > 2, (i) yields

1@Qa>0. From(iii) and (v) we have o> a@ (1Q a); thus u; >,

From (ii), 1>1Qa . By (iii) and (iv), a@1Qa >a@1>1. So
Now assume & ., > @& > 1. By (ii), 131@111&2&}{1. By

(iii) and (iv), o (1/ G.k_l) >a@(1/ i)>ae@1>1. So,

fik > ﬁk+l > 1 . By induction, the sequence [ﬁi] i s bounded and nonot one.

Therefore, since there are a finite number of floating-point representations

between @ and 1 , the sequence converges to a limt @ >1. |n the



limt, we have

=0 (1Qu) .
Fol | owi ng the techniques of ' WIkinson (1963), v have
u= (o - 5t (1+6))(14) .

for some values of e and 7 satisfying

| ¢| < 8% and Il < g™t .

So,

~ -

a=a-u1+6,

where § = a7 - {i'l(e +M + e .

Theref ore,
u =g[(a/+ 5) +-‘/(oz+ 6)2 -4 ).
From Theorem 1 we see that
F-u=0Q6) =of &Y. '

Since w> 1, TheoremLk nrovides a bound on the relative error in a .
Ve would like to remark that the algorithm (2) is nothing nore than

CGaussian elimnpation which is known to be very stable for positive definite

systens. The condition nunber of the matrix B is easily calculated to be

|| +2¢os——ﬁﬂ_ﬁ- |0!|+2

cond(B) = <
|| -2cos-—-ﬁﬂTl— || - 2
Using the error bound given in Forsythe and Mler (1967): If
By =d and (B+E)z = 4 , then

ly - zl IE||
—— < cond(B) ,

2] B[]

10



where ||-]] denotes the spectral norm If E is due to roundoff error

in representing @, then [|E||< e = |<J!|f31-t , and
ly - z| €
- TT
Izl lo| - 2 COS —=

4. Ceneralizations

An inportant extension of Theorem 1 is that the LU deconposition
will converge even if some of the upper left elements of' the matrix are
changed. If a tri-diagonal matrix contains a Toeplitz sub-matrix, then
that portion of the LU deconposition converges. Problens of this sort
occur, for exanple, with cubic spline interpolation with prescribed deriv-

atives at the ends. This is a result of the following.

Theorem5: 1f o« > 2 and u, = Y where v has any val.ue except 0 ,

/o , or u , then the sequence u, = « - 1/u

or u_ i 51 1=2,..., converges

wher
1o u+ e

u_oz+ Q/2-ll>

+ 2 >
and

g = X o - L

- 2

(Asimlar result holds for @ < -2.)

Proof:  The nonlinear difference equation, u, = o- ;1—1— , can be solved

i-1
W.
explicitly by using the substitution u, :vTI_ to produce a linear
i-

second-order difference equation. For « > 0 and u, = Y , the solution

is:

11



i+l

)
).

\,2
where € = Yo -k - Y +u. Since cv > 2

Y -u ‘ ?

1+ E

+

u

u
+

the positive quantity
(u_/u+) is less than unity. Convergence follows imediately.

The results we have given for scalars can also be generalized to

matrices.
Theorem 6: |f_a matrix can be partitioned as
" la B
B A B
a= B A B
. —_

where both A and B are symmetric and positive definite, and jf the

ei genval ues of B™'A are greater than 2 in nodulus, then the bl ock

Gaussi an elimnation of ¢ converges.

Proof': Block elimnation is equivalent to constructing the sequence of

, _ _ -1 . _ T
matrices U A, Uiy = A - BU,"B, i=1,2,.... But A = PAP™ and
B=pp' where Ais the di agonal matrix of eigenval ues of 57la . Define

_ B -1 _ T . _ T
Al = A and Ai+l = A - Al . Then Ul = PAlP and if Ui = PAiP t hen

T T Ty-1_T
., = PAPT - PP (PAiP ) PP

-1..T _ T
Pla - Ai 1P~ = PAi+1P .

The convergence of A, (as well as the rate of convergence) under the

12



conditions stated follows fromthe results for scalars given in Theorens 1-5.'
An exanmple of a matrix that satisfies the required conditions for
convergence is the matrix that arises fromthe five-point finite difference

approxi mation to Laplace's operator in a rectangle:

A I
-1 A -1
[ ] [ ] [ ]
® [ ] [ ]
wher e
B ]
Y 1
-1 4 -1
N
[ 4 [ 3 ‘1
1 4

However, this nethod does not appear to be conpetitive with existing

methods for this particular matrix.

5. Concl usi ons

Many of' the observations which lecad to the simplification in com
puting the LU deconposition tor tri-diagonal Toeplitz matrices generalize
to Toeplitz band matrices. Bauer (1955) states that the Chol esky deconp-
osition of band symetric matrices converges in the sense that each

diagonal of the triangular matrix converges. W know of no rate-of-

convergence results for the band case.
An alternate proof of Theorem 1 can be easily constructed by con-

sidering the analytical solution to the difference equation (1). Bounds

13



on k simlar to those given in Theorems 2 and 3, but not quite as close,

can be obtained simlarly.

14
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