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Abstract

A matching in a graph is a collection of edges, no two of which share a

vertex. A maxi mum matching contains the greatest nunber of edges possible.
- This paper presents an efficient inplenmentation of Ednonds' algorithm for
finding maxi num matchings. The conputation tine is proportional to v3, where
V-is the number of vertices; previous algorithns have conputation time pro-
portional to \/4 The inplenentation avoids Ednonds' bl ossom reduction by
using pointers to encode the structure of alternating paths.
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1. Introduction

The problem of finding maxi mum matchings on nonbipartite graphs has
applications i N integer programmng and optinmum scheduling. For exanple,
Fujii, Kasam, and N nomiya r1969] have devised an efficient algorithm
for scheduling two processors. The slowest part of their algorithmis a
subroutine for finding maxi mum metchings.

W present an algorithm for finding maxi num matchings on graphs. |f
V is the nunmber of vertices in a graph, the running tine is proportional
to V3 The space required is roughly 3.5 V words in addition to the space
needed for the graph and the matching.

The basic approach is a careful inplenentation of the ideas presented
by Ednonds [1965]. H's algorithm has running time proportionalto Vv
[ Edmonds, 1965, and mujii, Kasam, and N nomya, 1969-erratuml. V@ inprove
this by a factor of V. The speed-up is achieved by eleninating the process
of blossom reduction. W use a system of pointers to store the relevant
structure of alternating paths.

This approach is simlar to the levelling techniques in the matching
algorithms of Belinski 19671 and Wtzgal | and 7ahn [1965]. W can inpl e-
ment Balinski's algorithmin tine v by maintaining a stack for vertex
selection. However the generality which has made Edmonds' method so suc-
cessful is lost in this inplementation.

After summarizing some well-known ideas in Section 2, we state the
algorithmin Section 3. A proof of correctness is given in the next section.
Section 5 discusses tinme and space bounds and applications of the algorithm

The Appendix contain a listing of an ALGOL W program for the algorithm



2. Some Prelimnaries

This section summarizes some well-known definitions and results. A
greph consists of a finite set of vertices and a finite set of edges.
An edge is an (unordered) set of two distinct vertices. A graph G I'S

shown in Fig. 1 (a). In this section Glenotes an arbitrary graph.

The two vertices of an edge are said to be adjacent. An adjacency
list for avertex vis an ordered list of the vertices adjacent to v.
The adjacency lists in Fig. 1 (b) define the graph G, -

A matching in Gis a collection of edges, no two of which share a
vertex. Figure 1 (c) shows a matching in Gy Mat ched edges are drawn
with wavy lines. In this section M denotes a matching. The pair (G,M)

is a mtched graph. M iS a nmaxinum metching in Gif no matching in G

contains nore edges than M. ‘
A walk [Herary,1969] is a |ist of vertices (vl, v2,...,vn) such

that for i<, is an edge. A walk is sinple if no vertex occurs

v,V
i34l
nore than once in the list. A path is a sinple walk. A cycle is a walk
(vl’vz""”’n) such that n>3, (vl,va,---,vn_l) is sinple, and v =v,.
I.etP-(vl,v2,...,vn) and Q =(wl,w2,...,wn) be paths. The reverse

path of P, denoted rev P,is (vn,vn_l,...,vl). The concat enation of P

and Q, denot e P¥, 0S (vi5v,, P*Qv 1w, ;¥ ,0:-,W ) b e a

path it is necessary that V¥ be an edge and that v, # vy for

I1<i<n,1<j<nm

An alternating walk in a matched graph (G,M) is a walk (Vl’ve"”’vn)
such that exactly one of every two edges LA and viviage 1< I <n,
is mtched. An alternating path is a path that is an alternating walKk.

An exposed vertex is a vertex that is not in any edge of M An augmenting

vath is an alternating path whose ends 1 and voare exposed vertices.
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ifr (vl,vg,...,vn) is an augnenting path in (GM, a larger matching

M is obtained by replacing the matched edges v, v,; ;, 1€i<n, with
the unmatched edges v, ,v,;, 1sisn. The construction of M fromu is

called an augmentation. 1In Fig. 1 (¢), (12, 9, 10, 8, 6, 5, 4, 2, 1, 11)

is an augnenting path. Performing an eugmentation along this path gives
the matched graph with no exposed vertices shown in Fig. 1 ()

Augnenting paths are inportant for the follow ng reason.

Lenma 1: A matched graph (a,M) has an augnenting path if and only if M

IS not maximum
Proof: See [Berge , 1957] Or [Edmonds, 19657.

As a consequence, a maxinum matching can be obtained by repeatedly
searching for augnenting paths and performng augnentations. The algor-
ithms presented in [Balinski, 19671, [Berge, 19577, [Witzgall and Zehn,
1965], and the al gorithm described in the next section are organi zed
in this manner.

3. Statenment of the A gorithm

This section presents an efficient algorithm for finding maxinum
mat chings on graphs. First the overall strategy is described. Then the
data structures used by the algorithmare discussed and illustrated,and
the strategy is elaborated. Next the algorithmis presented in full
detail. An exanple of how it works on a particular graph is given.
Finally an application of Ednonds' algorithmto the sane graph is dis-
cussed, and the two algorithns are conpared.

The algorithmis called MATCH The input to MATCH is a collection
of adjacency lists defining a graph. The output is a maxinum natching

for the graph, stored in an array MteE. MATE contains an entry for each
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vertex. If u and v are vertices, edge uv is matched if and only if
MATE (u) = v and MATE (V) = u.

MATCH begins with the enpty matching, that is, all vertices are
exposed. It searches for an augnenting path. If such a path is found,
the matching is augnented. The new matching contains 1 nore edge than
the previous one. Next, MATCH searches for an augnenting path for the
new matching. This process is iterated until no augnenting path is
found. At this point MATCH halts with a maxi num mat ching.

MATCH searches for an augmenting path in the followng way. First
an exposed vertex e is chosen. MATCH scans edges to find alternating
paths to e. A vertex v is said to be [inked when MATCH finds an alter-
nating path that starts with a matched edge and goes fram v to e. Let

such a path be P(v,e) = (v, v .,e), SO Wy is a matched edge. MATCH

e
sets an entry in an array LINK for every linked vertex v. The path P(v,e)
can be conputed from 1mk (v). |If an edge joining a linked vertex v to
an exposed vertex f # e is ever scanned, MATCH finds an augmenting path
(f) * P(v,e). If no such edge exists and no nore vertices can be |inked,
there is no augnenting path.

Figure 2 illustrates the results of such a search. A matched graph
Is shown in Fig. 2(a). Vertex 13 is exposed. Figure 2 (b) shows the
val ues MATCH stores when it searches for an augmenting path to 13
Figures 2(c)-(e) show several paths P(v,e) defined by these val ues.
The follow ng paragraphs explain how LINK and the associated arrays
define these paths.

The LINK entry for a linked vertex is interpreted in one of three

ways, depending on the link type. The three link types are degenerate

pointer, and pair. The table in Fig. 2(b) indicates 11 vertices are

il
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vertex mate link type link pair link baselv base2 top
1 2 unlinked - 1 8 12 1
1 _pointer 13 2 2 6 1
-3 L pair 2
L 3 pointer 2
5 8 pair 1
6 9 pair 1
T 10 unlinked -
8 5 pointer L
) 6 pointer N
- 10 7 pointer 5
11 12 pair 1
12 11 pointer 9
13 - degenerate -

(b)
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P(10,13)

(e)

10 1

(d)

Fig. 2
A search from vertex 13
(@ A nmat ched graph.

(b) Values stored during
search.

Some paths defined by
these val ues :

(e) P(8,13), P(12,13) .
(d) P(6,13),
(e) P(10,13), P(3,13).



linked in one of these ways. The remaining 2 vertices, vertex 1 and
vertex 7, are unlinked. This means there is no alternating path starting
with a matched edge that goes from1l or 7to 13. Note that in Fig. 2(c)-
(e), the unlinked vertices are drawn hollow  This convention is used
inthis paper inall illustrations of ‘r'mtched grephs Wi th |inks.

Now we describe the three link types.

Degenerate - In the search for an augnenting path to an exposed
vertex e, MATCH assigns a degenerate tink to e. This defines a de-
generate alternating path, P(e,e) = (e). Note that if e is adjacent to
an exposed vertex f, (f) * P(e,e) is an augnenting path.

Figure 2(b) -indicates that vertex 13, and no other vertex, has a

degenerate |ink.

Pointer - |If vertex v has a pointer link, LINK (v) is the number
of another linked vertex. So a path P(LmNK(v),e) is defined. The path
P(v,e) is defined as (v, MATE (v))* P(LINK (v),e).

Using this definition and the values given in Fig. 2(b), we conpute
P(8, 13):

P(8,13) = (8,MTE (8) ) * P(LINK (8),13) = (8,5) * P(k,13).

P(4,13) = (4,MATE (&) ) * P(LINK(L), 13) = (4,3) * P(2,13).

P(2,13) = (2,MATE (2) ) * P(LINK (2),13) = (2,1) * P(13,13).

= (2,1,13).

P(8,13) = (8,5,4,3,2,1,13).

Note vertices 8,4 and 2 all have pointer links, so the conputation is
valid. The path p(8,13) is illustrated in Fig. 2(c). Also shown is

P(12,13), which is defined in a simlar way by pointer |inks.
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Pair - For vertex v to have a pair link, MATE (v) nust have a pointer 1lin-.
This is illustrated by the val ues given in Fig. 2(h).

If vertex v has a pair link, LINK(v) is an index into the parsiicl
arrays BASE1l and BASE2. The pair of-values BASEL (LINK (v)), BASE2 (11K
(v)) specifies vertices that define P(v,e).

As an exanple, consider vertex 6. The path P(6,13) is shown in Fig.

2 (d). Note that(BASEl (Link(~)), BASE2 (LINK (6)))= (8,12). This pair
defines P(6,13) as follows: Vertices 8 and 12 are both |inked. Hence
there are alternating paths P(8,13) and P(12,13) (see Fig. 2(c)). Vertex
6 is in p(12,13). Let p(12,6) denote the portion of P(12,13) from12 to 6.
Thus P(12,13) = (12,11,9,6). Then P(6,13) is defined as the path rev
p(12,6) * P(8,13). We can conpute P(6,13) as fol | ows:

p(6,13) = rev (12,11,9,6) * P(8,13)

= (6,9,11,12) * (8,5,4,3,2,1,13)
= (6,9,11,12,8,5,4,3,2,1,13) ,
This is the path illustrated in Fig. 2(d).

In the same way, P(3,13) can be conputed. The pair link of vertex 3
specifies the vertex pair (2,6). Since vertex 3 is in P(6,13), the path
P(3,13) is defined as rev P(6,3) * P(2,13). This path is shown in
Fig. 2(e). The figure also shows the path P(10,13), which can be conputed

using the rules for pointer and pair Iinks.

There is one other array shown in Fig. 2(b), TOP. This array has
an entry for each pair link. An entry in TOP contains the nunber of an
unlinked vertex. MATCH uses TOP to conpute the unlinked vertices in
pat hs P(v,e). For instance, \;if‘ vertex v has a pair link, then TOP
(LINK (v)) is the first unlinked vertex in P(v,e). Thus in Fig. 2, the
first unlinked vertex in P(3,13) is 1 = TOP (2) = TOP (LINK(3)).
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It is possible that P(v,e) does not contain an unlinked vertex.
In this case, if' v has a pair link, TOP (LINK (v)) is set to the dumy
vertex 0.

TOP is maintained because it speeds up the conputation. Using
TOP, MATCH finds the first unlinked vertex in P(v,e) with a table |ook-
up* Wthout TOP, this operation would involve conputing vertices in
P(v,e) until an unlinked vertex is reached. Thus TOP enables MATCH to
do in constant time what mght otherwise require tine proportional to

the nunber of vertices.

Now we can give a nore detailed description of how the algorithm
searches for an_augmenting path. A search begins by choosing an ex-
posed vertex e, for which no search has previously been made. Vertex
e is given a degenerate link. Al other vertices are initially unlinked.
MATCH repeatedly scans edges that emanate from |inked vertices. Let x
be a linked vertex, and let xy be an edge emanating fromx. \Wen MATCH
scans Xy, it processes the edge in one of four ways, depending on
vertex vy

(i) If y is an exposed vertex distinct frome, MATCH augments the
mat ching along the path:(y) * P(x,e). The LINK array is used to conpute
P(x,e), as described above. This process is illustrated schematically
in Fig. j(a)-(b). After the augnentation, MATTCH starts a new search.

(ii) If" yis matched with a vertex v = MATE(y) and both vertices
are unlinked, v is given a pointer link, LINK(v)~x. This process is il-
lustrated schematically in Fig. j(c)-(d). After linking v, MATCH con-
tinues the search frome.

(iii) If yis alinked vertex, the pair link (x,y) i s assigned

to certain unlinked vertices. The process is illustrated schematically
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X X
y y
(a) (b)
—
X LINK(v)
[
y MATE(v) ? P(v,e)=(v,MATE(V))*P(LINK(v),e)

MATE(y) v ‘

(c) (d)

MATE(y)

{e)

Fig. 3
MATCH scans edge xy.
(a)-(v) y exposed:augment.

(c)-(d) y, MATE(g) unlinked: assign pointer link to v = MATE(Y).

(e) y unlinked, MATE(y) linked: no new I|inks.
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(b)

P(vre)

=rev P(base, vy)’P(basese)

(c)

Fig b
MATCH scans edge xy
(a) y linked: call PAIR LIX (y,x).

(b) u, and u, step through unlinked vertices to find tip.
(c)

v steps through unlinked vertices preceding tip,

assigning pair links.
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inFig. 4(a)-(c) for (x,y) = (basel, base& First a vertex tipis
conputed (Fig. 4(b)). Tip is the first unlinked vertex that is in
bot h P(P_a_s£1> e) and P(“_qa_tgge,e). TOP is used to conpute tip efficiently.
Next the link ({‘;LCI_)_tl_s_e_Q) is assigned (Fig. 4(c)). It is assigned
to the unlinked vertices that precede tip in P(‘t_@_g_e;l,e) or in P(baie,e)
After assigning these pair Iinks, MATCH continues the search from e.

(iv) If yisnot inany of the classifications (i) - (iii), MATCH
takes no further action for edge xy. (see Fig. 3(e) ). The search from

e is continued.

The search frome ends either when MATCH augnents the matching or
when MATCH runs out of edges to scan. In the former case, e i s matched'
with a vertex during the augnentation; in the final matching e will be
mat ched, al though not necessarily with the sane mate. |n the latter case,
e is exposed when the search ends; in the final matching e will still be

exposed.

Now we present MATCH in full detail. First specifications for the
data and the storage areas are given. Then the algorithmis stated.

The vertices of the input graph are nunbered from1 to V. MATCH
al so uses a dummy vertex O for boundary conditions.

The graph is stored as a collection of adjacency lists. (An ad-
jacency matrixz could be used instead, with no loss of speed). The order
of the vertices in the adjacency 1list of v gives the order in which the
edges emanating from v are scanned.

The output of the algorithm is in MATE. MATE specifies a matching
this way: If u, v # 0 are vertices, MATE (u) = 0 if and only if y ig

exposed; edge uv is matchdd if and only if MATE (u) =v and MATE (v) = 4.
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I nternediate matchings devel oped by the algorithm are stored in MATE in
the same way.

There are two bits for each vertex specifying the link type. One
bit specifies whether or not a vertex is linked. If it is linked, the
second bit indicates the link type, pointer or pair. (The degenerate link
type need not be specified.) In the statement of the algorithm bel ow,
these hits are referenced inplicitly in tests such as, "If the vertex is
linked, then. ..". (For exanple; see step M4.)

The LINK array has an entry for each vertex. If a vertex v is linked
in the current search (as indicated by the linked/ unlinked bit described
above), LINK (v).defines P(v,e)..If v is not linked in the current search,
MATCH does not use LINK (v).

In the table of Fig. 2(b), pair links have one level of indirection:
the linking information is stored in BASEl and BASE2, and a LINK entry ,
addresses this information. This is also how the ALGOL inpl ementation
of MATCH works. In the remainder of Section 3and in Section L, we are
less formal. Ignoring the indirection, we wite LINK (v) = (bl’bz)’
instead of b = BASEL (LINK(v)), b, =BASE2(LINK(v)). This is done
only for convenience.

The TOP array has an entry for each vertex pair (bi,bg) that has
been assigned as a pair link in the current search. It is easy to see
.there are at nost ‘.vél

degenerate link. O the remaining V-1 vertices, half may have pointer

entries in TOP. Ianysearch, 1 vertex has a

links and half may have pair links. So at nost L\%L-J vertices have
pair links. Thus there are at nost l’-;—]-'—_ldi stinct vertex pairs (bl’be)

having entries in TCP.

\\ adopt a convention for addressing the entries in TOP, simlar to
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the one used for LINK If v has a pair link addressing the pair
{o,,0,) we write TOP (b),b,) instead of TOP (LINK(v)).

Entries in the TOP array are made and modified by the subroutine
PARLINK If (bl,be) Is a pair link, TOP (blbe) has the follow ng

properties:  TCP (b,,b is the first unlinked vertex in P(bl,e); it

o)
is also the first unlinked vertex in P(b2,e). If v has the pair link
(b),b,), TOP(b),b,) is the first unlinked vertex iN P(v,e); it is also
the first unlinked vertex in P{MATE(v),e). |f TOP (bl,ba) is the dumy
vertex 0, there is no unlinked vertex in any of these paths.

The algorithmis presented below. A "high level" |anguage simlar
to the one developed by Xnuth [19687 i s used.

The al gorithm consists of four routines. MTCH is the main driver;
it initiates and coordinates searching for augmentations. PAIR LINK
assigns pair links to vertices, using FIRST FREE to find unlinked ver-
tices. REMATCH perforns eugmentations by rematching edges.

MATCH constructs @ maxi tum matehing for a grtaph, s a
search for an augnenting path to each exposed vertex. 1t scans edges
of the graph, deciding to assign new links or to augnent the matching.
M. [Initialize.] Read the graph into an adjacency structure,
nunbering the vertices 1 to V. Ceate a dumy vertex 0. For
0<is V set MATE(i) ~ 0; alternatively, start with an arbitrary
matching in MATE  Mark 0 as unlinked, but set LINK(O &

M. [Start a new search]. Choose an exposed vertex e that has not
been previously examned in M. Mark it as linked. If no such
e exists, halt; MATE contains a maxi num mat ching.

M. [Scan a new edge.]| Choose a |inked vertex x and an edge

emnating fromit, xy. Thisvertex-edge pair must not have been
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scanned previously in M in this search. If no such pair exists,
erase all links and go to M (e is not on an augnenting path, so

a new search is begun).

M3. [Augment the matching.]1f y is exposed, set MATE (y)ex,
cal | REMATCH (y,x), then erase al| 1links and go to M ( REMATCH
conpl etes the augmentation along (y) * P(x,e). See Fig. 3 (a)-(bh)),
Mi. [Assign pair 1inks.] If y is linked, call PAIR LINK (y,x)
and then go to » (PAIR LINK assigns pair link (y,x) to

unlinked vertices in P(y,e) and P(x,e). Sce Fig.l),

M5. [Assign a pointer link]. Set vMATE (y). If v is unlinked,
mark v as having a pointer link, set LINK (v)=, and go to

(See Fig. 3(c)-(d)).

M6. [CGet a new edge.] Go to ™ (y is unlinked and MATE(y) is |inked,
so this edge adds nothing. See Fig. 3(e)).

FIRST FREE (V) is a subroutine of PAIR LINK The parameter
vis alinked vertex. FIRST FREE (v) returns the value of the
first unlinked vertex in P(v,e); if none such exists it returns
the dumy vertex O.

F1. [Return MATE. 7 If MATE(v) i s unlinked, return MATE(v).

F2. [Return TORPJ If v has a pair link, set (bl,b2).-LmK(v) and
return TOP(bl,be).

F3. [Return ToP] (MATE(\) nust have a pair link.) Set (bl,be)..

LINK(MATE(v)) and return TOP(bl,bz).

PAIR LINK (:Da_sel,basei) assigns the pair link (pase,

to unlinked vertices. The par arreters-basg and base are |inked

,base; )

vertices joined by an edge. PAIR LINK sets tip to the first
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unl i nked vertex in bot h_P(basel,e) and P(base ,e). Then it links
all unlinked vertices preceding tip i n_P(basel,e) and in P(base;,e).
See Fig. b(b)-(c).

PLo. [Initialize.) Set u,~FIRST FREE(base, ) for i=1,2, |f u, =u,,
return (no unlinked vertices can be linked). Qherw se flag

Uy, i=1,2.

PLl.[Loop] Do P2 for 1 alternating between 1 and 2. Each
time i is set to 1 remove any flag fromthe dummy vertex o.

PI2. [Find vertices to 1link.] Set u, ~FIRST FREE(LINK(MATE(ui)))
(ui is set to the next unlinked vertex in .P(gg_s_e_i,e)). | f u, is

flagged, Set tip-u, ?nd go to Pr3. O herwise flag u y reset i sccording tO

K]
PLL yand g0 to0 PL2. l
PL3. [Link vertices in P(i,e).] (Tip is now set soall unlinked
vertices between _basei and tip can be assigned pair links. See

Fig. 4(v).) Set v~FIRST FREE(_‘Qgggl) and do ptk. Then set

v-FIRST FREE (Hasd)) enchdo Hg.o t o PIS.

Pth. [Link v.] If v4tipmark v as having a pair link, set
LINK(V)“(PEEEJ_’PE_EEQ): unflag v, set w-FIRST FREE(LINK(MATE(v)))

and go to PLh. (See Fig. k4(c). ) Otherwise continue a6 specified

in PL3.

PL5. [Set TOP] Set ul'-TOP(ga_s_e_l,p_a_g_ge)o-m (Tipis the first

unlinked vertex in P(p_gg._e_i,e) )e

PL6. [Remove fl| ags.) Unfleg u, . Set w,~FIRST mEE(me(mm(ul))).

| f wis flagged go to PL6.

PL7. [Update TOP.] For each pair 1link (bl’be) that has been assigned
in the current search frome, if T0P (bl’b’c’) is |inked set TOP (bl,be)..

ftip. has become the first unlinked vertex in P(basel,,e) ).
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PL3. [Return.: Return.

REMATCH (f,v) remat ches edges al ong an augnenting pat h.
The argument f is @ vertex whi ch has become exposed; v is
a linked vertex which will be rematched to f. REMATCH is a recur-
sive routine.
Rl, [Match f and v. 1 Save w~MATE(v). Set MATE(v)-f.
R2. [Rematch a path.1 |f MATE(w)=v and v has a pointer link,
set MATE(w)-LINK(v), cal| REMATCH(w,LINK(v)) recursively, and
then return.
R3. [Rematch two paths. 7 |i' MATE(w)=v and v has a pair link,
set (bl,b?_)o-bmx(v), cal | REMATCH(b,,b,) recursively, call
REMATCH(bQ,bl) recursively, and then return.
R4. T[Return.] (MATE(w) # Vv so a path has been completely rematched.)

Ret urn.

W illustrate this algorithm by showing how it works on the graph
Gy of Fig. I(a). The input to MATCH is the collection of adjacency lists
inFig. I(b). MATCH constructs the matching shown in Fig. |(d).

Initially all vertices in G

1
augmenting path to vertex 1. The first edge scanned, 12, forms such

are exposed. MATCH searches for an

a path. An augnmentation is done by placing 12 in the matching. MATCH
sets MATE(1)¥2, MATE(2)-3.

In a sinilar manner, edges 3% and 56 are matched. The matched
graph at this point is shown in Fig. 5(a).

MATCH starts the next search at exposed vertex 7. The links as-
signed in this search are shown in Fig. 5(b). First MATCH scans edge

73 and assigns a pointer link to vertex 4. Next, MATCH chooses
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8
10
6
7 @ 3
“vertex link
L 1
6 N
T dgn.
(b)
9 n 1
8
10
6 4
7
(©) 8
Fig. 5

(a) Gy after 3 edges have been mat ched.
(b) Links assigned in search from7.
(c) Gy after augnenting along (8,6,5,4,3,7).
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arbitrarily to scan an edge fromvertex 4. This edge 45, |inks

vertex 6. Choosing arbitrarily again, MATCH scans edge 68. This com
pletes an augnenting path, (8) * P(6,7). The matching which results from
the augnentation is shown in Fig. 5(c).

The matching in Fig. |(c) results when MATCH searches from vertex
9 and mat ches edge 9-10.

The last search is fromvertex 11. Figures 6(2)-(f) show the inte:-
nediate states of' the search. Each state is illustrated by a graph and
tables. The graph shows the edges of Gy that have been processed. The
tabl es show the entries that have been made in LINK and in TOP. The
graph also indicates paths P(v,11) for newy linked vertices v.

Figure 6(a) shows the state of the search after four pointer Iinks
have been assigned. When MATCH scans edge34, pair |inks are assigned
to vertices 5 and 7. The result is shown in Fig. 6(b).

Now we give a detailed account of how vertices 1 and 8 are |inked,
and Fig. 6(c) is obtained. MATCH scans edge 24. Since vertices 2 and
bk are linked, PAIR LINK (4,2) is called to assign the link (4,2).

PAIR LINK first conputes_tipin steps PLO-PL2. Tip i S found to be
0, as follows:

1. In step PLO, the first unlinked vertex in P(k,11) is conputed
to be vertex 8. This conputation is done by the invocation FIRST FREE (4).

“Vertex 8is flagged.

2. Simlarly vertex 1, the first unlinked vertex in ?(2,11), is
conputed and flagged in step PLO.

3. In step PI2, the next unlinked vertex in P(4,11) i S computed
to be 0. Vertex O is flagged.

L. In step PL2, the next unlinked vertex in P(2,11) i S computed
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vert ex | i nk pair link top
1 (4,2) (4,3) 0
2 11 (4,2) 0
3 6
L 6
5 (4,3)
6 11
1 (4,3)
8 (4,2)
10 8
11 dgn.
vertex | i nk pair 11hk'" ‘top
1 (4,2) | | (4,3) 0
2 11 (4,2) 0
3 6 (10.,8) 0
L 6
5 (4,3)
6 11
7 (4,3)
8 (4,2)
9 (10,8)]
10 8
(e 11 dgn.
1
2
:
|
(12)°P(9.11) Fig. 6

The search from vertex 11.
Vertices 2,6,3,b get pointer |inks.
Edge 34 links vertices 5,7.

Edge 24 [inks vertices 1,8.
Vertex 10 gets a pointer |ink.
Edge 8-10 [inks vertex 9.
Edge 9-12 conpl etes augnenting
path (12) * P(9,11).

4!
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to be 0. Since O is already flagged, tip is set to O.

Tn steps PL3-PI4, PAIR LINK assigns the link (4,2) to vertices 1 and
8. The riags on these vertices are also removed. The value tip =0is
used in this process.

In steps PLS-PLo, PAIR LINK renoves the flag remaining on tip = 0.
Now 81l flegs have been renoved.

PAIR LINK sets ToP(4,2) to O in step PL3. This indicates there are
no unlinked vertices in P(k,11) or p(2,11).

PAIR LINK resets TOP(4,3) in step PL7. Vertex 6, the previous val ue
of TOP (4,3), is now linked. Since there are no longer any unlinked
vertices in P(3,11) -or P(4,11), ToP(4,3) is reset to O.

Finally PAIR LINK returns, in step PL8. Now MATCH continues scanning
edges. Figures 6(d) and 6(e) show how vertices 10 and 9 are linked. Figure
6(f) shows how MATCH finds the augnenting path (12) * p(9,11) = (12,9,10,
8,6,5,4,2,1,11).

Subroutine REMATCH perforns the augnentation. Figures 7 (a)-(h) show
the intermediate states of the augmentation, Each state is illustrated
by a graph and a stack. The stack is the stack of recursive calls to
REMATCH. The graph shows a setting of MATE. As usual, vertices u and v
are joined by a wavy line if and only if MATE(u) = v and MATE(v) = u.

Hal f-wavy |ines also appear in the graphs, such as edge 68 in Fig. 7(e).
If uv is an edge that is wavy at u and straight at v, then MATE(u) = v
but MATE(v) # u. Thus in Fig. 7(e), MATE(6) = 8, MATE(8) = 10.

Figure 7(a) shows the matching when MATCH cal |'s subroutine REMATCH
In step M3, MATCH sets MmATE(12) t0 9, as indicated by the hal f-wavy line
between 12 and 9. Then REMATCH(12,9) is called, as shown in the stack.

The path P(9,11) is shown in this-figure to clarify the operetion of REMATCH(12,%)
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LINK(8)=(4,2)
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REMATCH (12,9)]

MATCH (10,8)

REMATCH (8,10

MATCH (L4,2)

REMATCH (2,4)

REMATCH (8,10




P(11,11)
LINK(11)=dgn.

F’(4.?1),
LINK(4)=6

LINK(6)=11
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[ REMATCH (1,11)

REMATCH (2,L)

REMATCH (8,10) |

REMATCH (2,4)

REMATCH (8,10

REMATCH (5,6)

MATCH (8,10)
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EMATCHIBJIO )

(9)

(h)

Fig. 7
REMATCH augnents al ong (12) * P(9,11)

(#)-(g) The invocation of REMATCH at the top of the stack is being entered.
The setting of MATE is shown in the graph.
(n) The augmented mat chi ng.



Pigure 7(b) shows the results of' REMATCH(12,9). Vertex 9 is conpletely

matched W th vertex 12. Aso two recursive calls are in the stack. Note
that p(9,11) is defined as the concatenation of two paths, rev P(10,9)
and P(8,11). The two calls on REMATCH process P(9,11) by processing
these two paths.
The invocati on REMATCH(10,8) processes P(8,11) in a simlar nmanner,
since vertex 8 has a pair link. The results are shown in Figure 7(c).
Figure 7(d) shows the results of REMATCH(4,2). Vertices 2 and 1
have new mates. A new recursive call is in the stack. Note that P(2,11)
I's defined as the concatenation of (2,1) and P(11,11). The recursive cal
REMATCH(1,11) conpl etes the processing of P(2,11) by processing P(11,11).
Figures 7(e)-(g) illustrate the other invocations of REMATCH REMATCH
finally returns with the matching shown in Fig. 7(h).
At this point there are no exposed vertices. MATCH halts in step
M, having constructed a maximum matching. Note this matching is identica

to the matching in Fig. [(d).

For conparison we briefly describe how Ednonds' al gorithm finds the
sane matching in Gﬁ. The al gorithm devel ops the matching shown in Fig. I(c)
in'a manner sinilar to marcH. W discuss the search for an augnenting path
to vertex 11. This search is illustrated in Fig. 8 The six graphs in
Fig. 8(e)-(fr) correspond to those in Fig. 6(a)-(f) for MATCH

Ednonds conducts a search by growing a planted tree. Such a tree

has an exposed vertex for a root. |ts edges are alternately unmatched
and matched. The planted tree in Fig. 8(a) is grown. It is easy to see
the structure of planted trees corresponds to that of pointer |inks.

Wien edge 3% is scanned in Fig. 8(a) it conpletes a cycle (6,7,3,4,5,6,).
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(a) h (b) (©)

10

(d) (e) ()

Fig. 8

The search from vertexg 11 in Ednonds al gorithm
Eag A planted tree. ,
b) Bl ossomstep for 34 yields a pseudovertex a =f6,7,3,4,53.
(c) Blossom step for 2a yields a pseudovertex b = {11,8,2,2,1}.
dg A planted tree in the reduced graph.
Ee Bl ossom step for blo yields a pseudovertex ¢ = f10,b,93.
( f) Augmenting path (12 ,e) in the reduced graph.



r

29

1

Fig. 8 (cont’d)

gg; Augnentation in reduced graph.
Pseudovertex ¢ is expanded.

| ) Pseudovertex b 1S expanded.

(j ) Pseudovertex a is expanded.
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Ednonds defines a bl ossomas an odd nunber of vertices joined by a cycle
that is maxinally matched. Vertices 6,7,3,4, and 5 form a bl ossom The
subgraph of G, consisting of these vertices and the edges between them

are shrunk into a single vertex, a, called a pseudovertex, This results

in a reduced graph G, - The planted tree “in G, is shown in Fig. 8(b).

1
The pseudovertex a is drawn hol | ow.

Now the problemis to find a maximum matching in the reduced graph.
Suppose this has been done, as shown in Fig. 8(i). The pseudovertex a can
be expanded into the original cycle (6,7,3,4,5,6,). The matching for these
vertices can be chosen fromthe edges of the cycle, as shown in Fig. 8(j).
In general, this process can be carried out because one vertex of a blossom
is matched by an edge leading into the pseudovertex. The even nunber of
vertices that remain can be matched anong thensel ves.

The intermediete steps that construct the maxi mum nmatching in G, are
simlar. They are illustrated in Fig. 8(b)-(j). Two nore bl ossonms are
shrunk (Fig. 8(c),(e)) and then expanded (Fig. 8(h), (j)). The end result,
shown in Fig. 8(j), is identical to the matching constructed by MATCH.

The shrinking and expansion operations in Ednonds' algorithm are
time consunming. To construct a reduced graph for each bl ossom requires
’ O(VQ) steps per blossom The result is a Vb' algorithm MATCH avoids
shrinking by recording the pertinent structure of blossoms in LINK and TOP.

The factor of V speed-up results from this.
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L. Proof of Correctness

W& show MATCH operates in a valid and conplete fashion. By valid
we nmean MATCH finds valid augnenting paths and correctly rematches edges
along these paths. By conplete we mean MATCH finds an eugmenting path
if one exists.

The first five | emmas establish validity and the [ast two | emmas es-
tablish conpleteness. More precisely, Lemmas 2-3 prove Msi and M set
links so that P(v,e) is an alternating path; Lemma6 proves M3 rematches
edges al ong P(v,e). Lemma 7 proves each search m-M6 is conplete; Lemma 8
proves M initiates enough searches.

V% begin by focusing on the |oop me-Mi-M5-M6. This |oop scans edges
and assigns pointer and pair links. It terminate8 when an augmenting path

is found, or when all edges have been scanned.

Lemma 2: During the [oop M-Mi-M5-M6, two natched vertices v and MATE(v)
are always in one of these three states:

0. v and MATE(v) are unlinked.

1. v has a pointer link and MATE(v) is unlinked.

2. v has a pointer link and MATE(v) has a pair [|ink.
-The only possible transition fromstate 0 is to state 1. The only possible
transition fromstate 1 is to state 2. Once assigned, a pointer or pair

link is never changed.

These states, and the transitions between themare illustrated in
Fig. j(c)-(d) and Fig. b(b)-(c).

Before proceeding, we introduce a convenient notation. Define Uto be
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the set of unlinked vertices in state 1. Thet s, .
U = {u|MATE(u) has a pointer link and u is unlinkedj.

Proof: The argument is by induction. W check that each tine step w
is reached, the classification of the Lemma holds. Al so, we check that
anot her property hol d;s:
(1) Let x be a linked vertex. FIRST FREE(X) retunr the number

of a vertex in U.
Property (1) is needed to check the classification.

Step M is reached after executing step M, M, M, or M6. W& check
the two inductive assertions in each of these four cases.
Case 1: Step M. is executed.

Step M is reached for the first tine after M. At this point all

mat ched vertices are unlinked. Hence &ll vertices v, MATE(v) are in state

0, and the classification hol ds. Property (1) is vacuously true.
Case 2. step M5 is executed.

No new vertices are linked in this' step. So the inductive assertions
still hold when M is reached.
Gisep3: M5 IS executed.

This step assigns a pointer link to a vertex v. Both v and MATE(v) are
unlinked on entry to M. Sothis is a transition frem state 0 to state 1.

Property (1) hol ds for linked vertices X # v, by induetiom. Property
(1) also holds for vertex v: PFIRST FREE(v) returns the value MATE(v) in
step F1, and MATE(v) ¢ U.
Cape 4: Step M+ is executed.

Step M4 calls PAIR LINK. |n steps PL3-FIk, this subroutine links
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vert i ce s computed by FIRST FREE. Soby (1), step M: links vertices In U.
These vertices make a {ransition from stete 1 to siale 2. SC thne class-.
ificatvion still hol ds.

Nov we check that property (1) holds after step M:i. \e consider
three cases, depending on vertex Xx.

First suppose vertex xis in state 1. Then FIRST FREE(x) still
returns the val ue MATE(x) eU.

Next, suppose FI RST FREE(x) =ltile. Step PI2, tip is set to 2
val ue returned by FIRST FREE. By induction,_tip eU. Hence FI RST FREE(x)
EU.

The remsining possibility is that vertex x is in state 2 and FI RST
FREE(Xx) # tip. Note in this case, both x and MATE (x) are linked vertices
on entry to Mi. For if x or MATE(x) is linked in PAIR LINK, FI RST FREE(x)
= tip (see steps PL3-PL5,F2-F3).

Let u be the value of FIRST FREE(x) on entry to M:. By induction,
ueU on entry to Mi. Below we show that after M# is executed, FIRST
FREE(x) = u and ueU. Together these statements inply property (1) for x.

The invocation FIRST FREE(x) returns a val ue TOP (bl, be)’ in step
F2 or F3. So TOP(bi,be) #tip . This inplies TOP (b] ’bz) was not changed
in PARLINK step PL7.  So the val ue of FIRST FREE(x) on entry to M

.is TOP(bl’bz)‘ Thus u = TOP(bl,b = FI RST FREE(X).

5)
Next note vertex u was not linked in PAIR LINK.  For if u were
linked, TOP(b,,b,) would have been changed to Tip Im prju s ey
ctter Miois executed.
Thus property (1) holds for all linked vertices xafter Mi.

The Lermme now follows by induction,

OED
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Lenma 2 enables us to ignore such possibilities as a linked vertex
bei ng assigned a new link, or becomng unlinked. In particular, we can
define a partial orden®on the set of linked vertices, as follows:

vow if and only if wis linked after v.
For exanple, in Fig. 4, 1103, 1104,3@s5, 3@7, %1, 7@8. For
the purposes of @ we consider vertices linked in the same invocation
of PAIR LINK as being linked simultaneously. So neither s@7 or @5
IS true.

W also make several definitions relating to the lists (paths)

P(v,e). The precise rules that define these lists are given bel ow.

O. In any search, the exposed vertex e is linked by the degenerate
alternating path P(e e) = (e).

1. If v has a pointer link, LINK(v) contains the nunber of another
linked vertex, and P(v,e) = (v,MATE(v)) * P(LINK(v),e).

2. If v has a pair link, Lmk(v) contains the nunbers of two
| i nked vertices b)sb,. Vertex v is in P(bi,e), for s=1o0r =2
(but not both). For this value of i, P(v,e) = rev P(b,,v) * P(b3_i,e).

These definitions are illustrated schematically in Fig. 3(d) and

Fig. 4c). In the latter, vertex 1 has the pair link (base ,base ).

W also use a list notation, witing

P(V,e) = (VOJvl,va yes ey V2n).

Here v, = v, = e, The last subscript is even because P(v,e)

0 Yon
starts with a matched edge, ends with an unmatched edge, and is alternating.

For conveni ence, define Vosy 10 DE O, the dumy vertex which is unlinked.

This allows us to treat boundary conditions in a uniform manner.

Finally, we define a useful function:
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If vis alinked vertex, free(v) is the first unlinked vertex
in P(v,e).

For exanple, in Fig. 6(a),free(3)=7; in Fig. 6(b), _free(3) =8;
in Fig. 6(c), free(3) = 0. The third equality is due to the convention
that 0, an unlinked vertex, is the Iaét vertex in any path P(v,e). In
general, if P(v,e) contains no "real" unlinked vertices, free(v) = 0.

In the proof of Lemma 3, we show FI RST FREE(v) conputes free(v),

for linked vertices v.

The first goal is to prove P(v,e) is an alternating path beginning
wth a matched edge. This is done in Lemma 5. W begin by showing that

P(v,e) is well-defined and has several useful properties.

Lemma 3: |n the |oop m-Mi-M5-M6, each tine step @ is reached, the
following Properties hold for every linked vertex v.

(1) P(v,e) is a well-defined list of vertices.

(2) Vos is linked and Voisl = mm(v2i), for all i in 0 <is.

(3) If Voi4l is unlinked for some i in od«, then P(v,e) =
P(v,vgi_l) * P(vei,e) .

(4) If v has a pair link (bl’be)’ t hen TOP(bl,b

free (MATE(V)).

2) = free(v) =

These properties are illustrated in Fig. 6(b) for the linked vertex
v = 7. As shown, P(v,e) = P(7,11) = (7,3,4,5,6,8,11). Cearly properties
(1) and (2) hold. The path deconposition of property (3) holds for i = 2,
vy = 8, ant P(v,e) = P(7,11) = P(7,5) *P(6,11) = P(v,v ) * P(r,,e). The
setting of TOP to an unlinked vertex described in (4) holds for vertex T
with pair Llinx (bl,bz) = (4,3) and TOP (4,3)=8.

Property (3) may seemoverly restrictive. |t seems' natural to claim

1
T
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t he deconposition P(v,e) = P(v,vei_l) * P(vei’e) holds for all i in

O<i<n. Huwever this nore general statement is false. This is illus-
trated in Fig. 6(c). Taking v = 8, P(v,e) =(8,6,5,4,2,1,11). For

i=1, P(v,v;) *P(v,,e) =(8,6) * P(5,11) = ,(§6543768,11)4 P(v,e).

Proof: The argunment is by induction. W: check that the Lemma iS true each
time step ® is reached.

Step @ is reached after executing step M, M, M, or M6. It is
easy t0 check the remma after M, My, and M6. This is done in Cases
1-3, below. The main part of the proof is checking the Lemma after step

M+, which assigns pair links. This is done in Case k4.

Case 1. Step m-is executed.
After M, the only linked vertex is e. Vertex e has a degenerate
link that defines P(e,e) =e. Properties (1)-(4) are easy to check:

Property (1) P(e,e) is clearly well-defined.

Property (2) For i =0, Vertex vO: e is linked. Aso v = 0= MATE(e) .

Property (3)-(4) These properties are vacuously true.

In the remaining cases we proceed inductively. W assune that on
entry to step M4, M5, or M6, Properties (1)-(4) hold for all Iinked ver-
tices. W show that after the step is executed, the Properties still

hold for all linked vertices.

Case 2. Step M6 is executed.

This step changes nothing. So the Properties still hold.

Shep3: M is  executed.

Step My assigns a pointer link to a vertex v. W nust check Properties
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(1)-(%) hold after 5 for linked vertices g, x@v, and also for v.
| f x@v, Properties (1)-(4) hold for x on entry to M5. Step M
does nothing to nodify these Properties, SO they are still valid on exit.
For vertex v, the list P(v,e) is defined as (v, MATE(v))* P(LINK(V),e).
Note LINK(v)@ v, as illustrated in Fig. j(c)-(d). Now we verify
(1)-(4) for v.
Propert y(|
The list p(Liv(v),e) is well-defined, by induction. So P(v,e) is
the concatenation of two well-defined lists, and hence is well-defined.
Property(2
Property (2) holds for vertices in P(LINK(v),e), by induction. Hence

Property (2) holds for wv,, and Vi 1S i <n.

For i =0, the definition of P(v,e) shows vy = v, v, = MATE(v).
Property(j)
Suppose v, + 1 is unlinked for some +in 2 <i <n. The follow ng
equal ities show Property(j) holds in this case.
P(v,e) = (v,MATE(v)) * P(LINK(v),e) def'n
= (v,v)) * P(LINK(v), v, ;) * B(v,,,e) induction
= P(v,v2i_l) * P(vgi,e) def'n
For i =1, P(v,e) = (v,vl) * P(va,e), by definition. This is

i ndependent of whet her Vs is linked or unlinked.

Property(4)

This Property is vacuously true, since v has a pointer |ink.

Case 4: Step M+ is executed.

This case is the main portion of the proof. The argunent is |engthy,
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and divides into two parts. Part A analyzes the operation of PAIR
LINK the subroutine called in M. The analysis depends on the in-
ductive assunption of Properties (1)-(4). Part B uses the results of

the analysis to verify that Properties (1)-(4) hold on exit from M.

Part A Analysis of PAIR LINK

The conclusions of this analysis forma description of how PAIR
LINK and its subroutine FIRST FREE operate. The description is given
bel ow, as Properties (5)-(13). Then each of these 8 Properties is

proved in turn.

Description of PAIR LINK

(5) Let *x be a vertex that is linked on entry to Mi. Then FIRST
FREE(x) returns the value free(x).

(6) In step PLo of PAIR LI NK, uiis initialized to the first
unlinked vertex in @_sgre ,e), for 1=1,2,

(7) In the loop PL1-PI2, step PLL varies i according to the sequence
i = 1,2,1,2,.... Step PI2 sets ui to the next unlinked vertex in
P(‘pig%,e). If step PL2 is entered with Lll set to the dumy vertex o,
Pl 2 resets u to 0.

(8) The | oop PLO-PI2 term nates when u, assumes a val ue that has
been assumed by Uy, Of vice versa. Tip is set to this conmon val ue.

(9) Tip is an unlinked vertex thet is in P(_lﬁg_l,e) and in
P(base2, e). No unlinked vertex that precedes tip in Pbasel,e) is
also in P(Mg,e). No unlinked vertex that precedes sip in Pbasee,e)
is also in P('_b_aigl,e).

(10) In the |oop PL3-PLL, variable v assunes the values of all

unlinked vertices that precede.tip in P(basel,e) or in P( baseg,e)
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The se veotices, eucluding tip, ave essigned pair |inks (be

se, ,boce).
—.L 4

(11) In the | oop PL5>-PL6, variable u) essumes the vrlves of £11
the unlinked vertices that are flagged in PLO-Pl 2 but not |inked in
P13-PIk. These vertices, including tip, are made unflagged.

(12) In step PL5, an entry f‘or the new pair |ink (piﬁl’@ffa)
is added to TOP and initialized toltipv is any vertex that re-
ceives the pair link [pase ,base ) in PL3-PI4, then free(v) = free

(MATE(v)) =TOP _(basel, baseg).
(13) In step PL7, sone entries in TOP are reset to *ip, co the
following is true: If x has a pair link (bl’be)’ then free(x) = free

(MATE(::)) = TOP(bl,be).

Now we prove the Properties of the description.
Property (5)

|f FIRST FREE returns in step FL, MMTE(x) i s unlinked. Property
(2) inplies P(x,e) = (x,MATE(x),...). Hence MATE(x) = free, (x). Thus
FI RST FREE returns free (x).

If FIRST FREE returns in step F2, x has a pair link (bl’be)'
Property (4) inplies TOP(bl,bg) = free(x). Thus FIRST FREE returns
free (x).

If FIRST FREE returns in step F3, both x and MATE(x) are |inked,
and x has a pointer link. The classification of Lemma 2 inplies MATE(X)
has a pair |ink (bl,bg). Property (4) inplies TOP(bl,b?_) =free
(MATE(MATE(x))) = free (x). Thus FIRST FREE returns free (:)

QED for (5)

Property(G

First.we i ntroduce a notational convenience: Variables u, base

2%
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stand for uw,, basel or w,, base,.

The assi gnnent

U ~ FI RST FREE(bese)
initializes u tao free(vase), by Property (5). Thus u starts out with
the value of the first unlinked vertex in P (base,e). Note u is the
dumy vertex O if there are no "real" unlinked vertices in P (base e).

Step Pwo returns if u = w,. In this case we define tip to be
this comon value. Note that Properties (7)-(9) are satisfied by this
definition.

QED for (6)

Property (7)

It is clear that i varies between 1 and 2. W anal yze the assign-

ment in step P2,
U ~ FI RST FREE(LINK(MATE(u))),
assumng PI2 is entered with u set to an unlinked vertex in B _(base,e).

First suppose u = 0. Fromstep MOit is clear that MATE(Q = 0,
LINK(o) = 0. So P2 executes the assignment, u - FIRST FREE(Q). FIRST
FREE(0) returns O in step Fl. Thus P2 resets u to the dummy vertex O.

Now the main case is treated, u £ 0 on entry to PL2. \\ show Step
PI2 conputes the first unlinked vertex beyond u in P (base,e) and as-
signs this value to u.

Firstnote that Property (3) can be applied with v = base and
Voisp = U+ Property (3) is valid for v = Dase,lby i®ductiou n -
linked vertex u has an odd subscript 23'+1 in P(vase,e), by Property (2).
Since u#0,j <n  Soifj >0, Property (3) holds.

Property (3) can be witten in the fol | owing vay:
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(14) P(base,e) = P(base, u 1) * P(MATE(u),e)

Here u' us defined as (‘ga_sg)ej_l, the vertex that precedes u by two in
P(base,e). A so MATE(u) = (999—8-)2;)’ by Property (2).

W have proved (14) for j»o. If-j =0, u = (‘_o_a_§_g)l and MATE(u) =
base. Since u' = (base)_; is undefined, we interpret P(base,u') as the
enpty list. Then (14) holds for j = 0. So (14) is valid for any un-
l'inked vertex u# in P(base, e).

By Lemma 2, MATE(u) has a pointer link. The definition of pointer

link inplies this further deconposition:
(15) P(base,e) = P(base, u') * (MATE(u),u) * P(LINK(MATE(u)),e).

So the unlinked vertex that follows u in P(base ,e) is free (LINK
(MATE(u))). The assignnent of PL2 conputes this value, by Property (5).

Thus PI2 sets u to the next unlinked vertex in P(base,e)

QED for ()

Property (8

Ve Dbegin by proving tnis preliminary result :
(16) An unlinked verte: u occurs at most once in & 1ict P(beze,e).

The proof is by contradiction. Suppose u occurs more than once in

‘P(base,e). First we show LINK(MATE(u)) ©MATE(u). Then we use the sup-

position to derive a contradiction.

As noted in the proof of Property(T), MATE(u) has a pointer |ink.
Thus, as illustrated in Fig. j(c)-(d), LINK(MATE(u)) @MATE(u).
Now consi der the deconposition (15), applied to the first occurrence of u

in P(base,e). The second occurrence of u is in P(LINK(MATE(u)),e). So by
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Property (2), MATE(u) occurs with an even subscript in P(LINK(MATE(u)),e).
Property (2) also inplies that at the time LINK(MATE(u)) was assigned a
link, the vertices with even subscripts in P(LINKMATE(u)),e) were all
linked vertices. Thus LINK(MATE(u))eMATE(u). This is the desired
cont radi cti on. |
QED for(16)

Now we prove Property (8). The |oop PLo-PL2 termi nates when U as-

sures the value of a vertex that has already been flagged. Tip is set

to this vertex. W show below that at some point, took on the value

Us_s

tip. For convenience, we take i =1, and argue in terns of LY and

u3-i =u20

Case 1. Tip 4 0.

i m wastfllagged in stdp eLopor, P2y O I uw, wWas as -

signed the value tip. If the assignment was made to ) then v assuned
the value tip twice in the | oop pPLo-p2. Then Properties (6) and (7) i nply
tip occurs twice in P(gggl,e). But this contradicts (16). W concl ude

t hat u, previously took on the value tip.

Case?2: Tip = 0.

Variabl e u, MY assume the value 0 nore than once in |oop PLO-PL2.
| ndeed, by Property (7), once u, assumes the value 0, it is always reset
to 0 in P2, However if u2;£0, the flag on 0 is removed before pr2 is

executed again for up o for tip to be 0, we nust have W o=y, - 0.

QED for (8)
Note that Property (8) inplies both w and u, assune the value tip

in PLO-PI2. Hence tip is in P(base,, e).

Property (9)
Thi's Property is illustrated in Fig. 4(b). Iip is shown as the first
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unlinked vertex that is common to both F{Ml,eb aral s_eg,e)- As

noted above, Property (8) inplies _tip occurs in P(basel,e) and in P(base ,e).
we show below that if tis an unlinked vertex that precedes tip in P(basel,e),
t is not in P(p_g_s_ee e). This suffices to establish Property(g) since

the argunent for t in P(pis_qe e)is simlar.

First note the deconposition (14) holds for u = tip:

(17) P(vase,e) = P(base,_tip') * P(MATE(tip),e).

This was proved for tip # 0 in the discussion of Property (7). [f tip =0,
define tip'= e and take P(MATE(tip),e) = P(O,e) to be the null list. Then
the deconposition holds for all values of tip.

So P(pg_s_e_e, e) deconposes into two parts. W show that t does not
belong to either-part.

Suppose t occurs in P(_b_a_s_ge,_t_ig’). Thus oy and u, assume the value t
before they assume the value tip. This cannot be, since it contradicts
Property (8).

Suppose t occurs in P(MATE(tip),e). Consider the decompostion(7)
for base = base, . Vertex t occurs in P(basel,gg'), by hypothesis, and
i n P(MATE(tip),e), by supposition. Thus t occurs twice in P(basel,e) Thi s

cannot be, since it contradicts (16).

Thus t does not belong to P(ga_s_g_l,e).

QED for (9)

Property (10)

In step PL3, variable v is initialized by the assignment
v~ FIRST FREE (base).
This is the same as the initialization in step PLO

In step Pk, variable v is reset by the assignnent
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v~ FI RST FREE (LINK(MATE(v))).

This is the same as the resetting in step p2.

So it is easy to see that v assunmes the values of all unlinked
vertices preceding tip in P(base e), and these vertices are |inked.
This is illustrated in Fig. U4(c).

QED for (10)

Property (11)

In the |oop PLo-PI2, a vertex is flagged when its nunber is assigned
tow or wu,. The | oop termnates when ui assumes the value tip, which
was previously assuned by us ;. Again, take i = 1, for convenience.

So the vertices that are flagged in PLo-pr2 are these: the vertices
that precede tip in P(base

1
P(base,,e)j tip and the first k unlinked vertices following tip in

,e); the vertices that precede tip in

P(base,,e), for some k. The. vertices in the last set correspond to the
k values assigned to u, after tip.

The vertices in the first tw sets are made unflagged and Iinked
in the | oop PL3-PLk.

Now we show that the |oop PL5-PL6 processes the vertices in the
third set. Begin by considering the deconposition (17) for base =_base,.
The deconposition shows the vertices in the third set are the first
(k + 1) unlinked vertices in P(MATE(tip),e).

In step p15, oy is initialized by the assignnent w,tip. Thus n I's
set to the first unlinked vertex in P(MATE(tip),e).

In step PL, u I's reset by the assignment ul"' FI RST FREE(LINK(MATE
(u,l))). Thus uy t akes on val ues of consecutive unlinked vertices in
P(MATE(tip),e).

So Uy takes on the values of the vertices in the third set. These
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vertices are unflagged. When u assunes the value of an unflagged

verterr , all (kK + 1) vertices of the third set have been processed,
so the loop halts.

(Note again the special case, --when 0 is the last of the (k + 1)
vertices. Vhen u, assunes the value 0 for the first tine, the flag
is removed from0. Then in step P16, y is reset to 0. Now u has
no flag, so the loop termnates.)

QED for (11)

Property (12)

W% begin by proving that free(v), the first unlinked vertex in
P(v,e), i s 3_;2 Then we prove a simlar equality for free (MATE(v)).

First note that._free(base) = th@ by Property (10), every

vertex preceding tip in P(base,e) is linked after steps PL3-PLA.

Now consider a vertex v that has the Iink_ (base,, base,). For

conveni ence, suppose VvV is in P(basel,e). Figure 4(c) illustrates this
situation. By definition, P(v,e) = rev P(base,,v) * P(Base,,e). e
l'ist P(base],v) contains no unlinked vertices, since _f;z;e_e(basel) = tip
and v precedes tip. So the first unlinked vertex in P(v,e) is the

the first unlinked vertex in_P(base; ,e). Thus free(v) = free (base )

=tip, as clained.
Next consider a vertex MATE(v), where v has the link (base.L,

‘gg_s_gp), We rewite the deconposition (14):
P()aasel,e = P(basel,v') * P(MATE(v),e).

Vertex tip occurs after v in P(basel,e), whence tip occurs in

P(MATE(v),e). So ,_f_r_e_e_(p_a_s_eq) = tip = free (MATE(v)),es clai med.
| QED for (12)
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Property (13)

Suppose = has a pair |ink (bl’ bg). The case (bl,b2)=
(@_ggl,gg_xﬁe) is taeatedsin Preperty 12). m e xQv.

Note that on entry to PAIR LINK, free(x) = free(MATE(x)) =
TOP(b,,b,), by Property (4). Let u be this common val ue.

If uis not linked in PL3-PL4, then free (x) and free (MATE(X))
do not change. Also TCP (bl’be) is not nmodified in PL7T. So the
three val ues remain equal, and Property (13) hol ds.

Suppose u is linked in PL3-PIk. A deconposition simlar

to (1) hol ds:
P(x,e) = P(x,u') * P(MATE(u),e).

The vertices in P(x,u') precede u, so none of themare unlinked.
So the first unlinked vertex in P(x,e) is the first unlinked vertex
in P(MTE(u),e). Thus free (x) = free(MATE(u))= tip, by Property (12).
The proof that free(MATE(x))= tip in this case is anal ogous.
QED for (13)

B. Proof of Properties (1)-(4)

Now that PAIR LINK has been analyzed, it is easy to check that
Properties (1)-(4) hold for all linked vertices after step Mi.

If no vertices are linked in PAIR LINK step PLO returns. Nothing
is changed in step Mi.  So Properties (1)-(4) still hold after |&

Now suppose one or nore vertices are linked in PAIR LINK Let
v be such a vertex. W check Properties (1)-(4) for v and for all
vertices x v, bel ow.

Vertex v has the pair |ink (base , base ). For definiteness,

1’ —=2

choose v in P(base,,e). "Thus P(v,e) = rev P(ll,v)_ *  p(vase.,e).
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This is illustrated by vertex v._ in Fig. 4(c).

11

Property (1)

Property (1) holds for vertices x@v on entry to M, by induction.
Since PAIR LINK does not reset any entries in LINK or MATE, the 1lisis
P(x,e) do not change. Hence Property (1) still holds for vertices :
on exit from M.

In particular, the lists P(base

1
,V) is well-defined, since Property (10) shows v occurs

,e) and P( lg,e)_ are wel |l -defined..
Al so, P(basel
in P(basel, e). Thus P(v,e) = rev P( kiaﬂ/) * P(base,,e) is well-
defined. $So (1) holds for v.

QED for(1)

Property (2)

Property (2) holds for vertices x@v, since the only possible
change in the list P(x,e) is that some unlinked vertices become |inked.
Now we check that the vertices with even subscripts in P(v,e),

Vo are linked.  Witing P(v,e) = rev P(b_as_e_l, v) * P(b_as_gg,e), we
check the two portions of P(v,e) separately.

Al vertices in P(p_a_ggl,v) are linked. This is a consequence of
Property (10). So the vertices Vpy 1N TEV P(gg_g_gl,v) are certainly |inked;
Now we check the vertices v, in Kpmsegaltry to M, the

even-subscripted vertices in P(b_aggl, e) are linked, by Property (2).
Thus vertex v has an odd subscript in P(base.

1
has an odd subscript, and base. has an even subscript. Thus the vertices

). So in P(v,e), base1

2i

SO Property (2) for base2 shows these vertices i"‘2i are |inked.

v.. in P(base_,e) are the vertices with even subscripts in P(é,e)_
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Tt vema ins only to che ck that v, . = MATE(v,..). This is il-
2 1+l cl
lustreted in Fig. L(c). The proof follows easily from the properties
just established.

Q ED for ()

Property (3)

Property (3) holds for vertices x@&v, since the only possible
change in the list P(x,e) is that some odd-subscripted vertices becone
l'i nked.

Now we check Property (3) for v. Wite P(v,e) = rev P(base, V)

* P(base,, €). Let v, . be an unlinked vertex in this list. As

noted above, all vertices in P(base,, y are linked. So v,. . has
28 Y P14l
an odd subscript, 2j«, in P(\e,e). So for j »0,the follow ng

equal ity hol ds:

P(v,e)

rev P(basel,v) * P(mhse(e,e)f " n

It

rev P(base ,v) * P(pase,, Vi) * P(v2i’e)

Property (3)

So Property (3) holds for v in this cese.
For j =0, the definition of P(v,e) g:res Propersy(3).

QED for (3)

Pr oper t 4
This Property was proved in the analysis of PAIR LINK as
Properties (12) and (13).

QED for (L)
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Now the inductive hypotheses have been verified for all cases.
The Lemma fol | ows, by induction.

QED

It is easy to conclude from Lemme 3 that P(v,e) is an alternating
wal k beginning with a matched edge. First a sinple induction shows P(v,e)
Is awalk. The argunent is illustrated in Fig. 3(d) and Fig. 4(c).
Then Property (2) of Lenma 3 shows P(v,e) iS alternating, with the first
edge mat ched.

The proof that P(v,e) is sinple is nore involved. It depends on
another relationship between |inked and unlinked vertices, proved in
Lenma L. First we give a definition extending free to a function of two
vari abl es:

If v and ware linked vertices and we P(v,e), then free (v,w)is
the first unlinked vertex beyond win P(v,e).

For exanple, in Fig. 2(e), free (10,6) = 1; free (10,13) = 0; free (10,10)
=T. |In general, free (v,v) = free (v).

Strictly speaking, free (v,w) is not well-defined. W have not shown
P(v,e) is sinple, so w may occur nore than once. W agree to always choose

the first occurrence of w

Lenma L4: Suppose v and w are linked vertices and we P(v,e). Then

free (w) = free (v,w).

Figure 2(e) illustrates the Lemma. Taking v =10 and w =3, free (3)
=1 =free (10,3). This figure also disproves two nodifications of the
Lemma that one mght conjecture. First, free (3) = 1 47 = free (10),
so the conjecture free (W = free (v) is false. Second, one mght hope

that P (w,e) is a sub-path of P(v,e). This is not the case in Fig. 2(e).
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The proof' is by induction. W show the Lemma is true each tinme
a link is assigned.

Suppose v is assigned a pointer link, so P(v,e) = (v,MATE(v))*
P(LINK(v),e). Let wbe a linked vertex in P(LINK(v),e). SO free(v,w) =
Cree(LINKGV),w). nBy indubtion, fiee(w) =nfree(LINK(v),w). n g
these equalities, Wwe see the Lenma holds after a pointer link is assigned.

To check the Lemma after pair links are assigned, we consider four
cases. These depend on whether v and w are linked during the current
execution of PAIR LINK or were previously |inked.
case 1: v and w were previously |inked.

Suppose prior to the execution of PAIR LINK u = free(w) = free(v,w.
If uis unlinked after PAIR LINK, this equality still holds. Q herw se,
deconposition (15) derived in Lemma 3 holds for v end w

P(v,e) = P(v,u') * P(MATE(u),e)

P(w,e ) = P(w,u') * P(MATE(u),e)
If tis the first unlinked vertex in P(MTE(u),e), t = free(w) = free(v,w.
Case 2: v was previously |inked.

Vertex wis linked by PAIR LINK so MATE(w) was previously |inked.
Furthermore, MATE(W) e P(v,e) by (2) of Lemma 3. So by Case 1, free(MATE
(W) =_free(v,MATE(w)). Property (4) of Lemma 3 shows_free(w) = free(MATE
(W). A'so free(v,w) =_free(v,MTE(w)), Since MATE(w) and w are consec-
utive vertices in P(v,e). Conbining equalities we get free(w = free(v,w.
Case 3: w was previously linked.

Vertex v is linked by PAIR LINK. Let P(v,e) = rev _P(ba_s_el,v) * P(lga_sge,e).

If w e P(base,,v), Case 1 shows free(w) =_free(base ,w). Since
free(base.,w) = tip = free(v,w), the desired equality holds.

—
If W e P(base,, €), Case 1 shows Sree(wi = frem_(‘_:_)_t_a_gQ,vO. e
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P(b_aﬁgz,e) is included in P(v,e), free(v,w) = rree(bue M), and the
desired equality holds.
Case 4: v and w were previcusly unlinked.
It is clear from Fig. 4(c) that tip =_free(w) = free(v,w).
By induction the Iemma holds esch time a link is assigned.
-QED

Now we can conplete the proof that P(v,e) is en altermating path.
Lerma 5: |[f v is a |inked vertex,P(v,e) is simple.

Proof: ¢ assert the Lemma 1s true each time e [ink 18 assigned.

Suppose v is assigned a pointer link, so B(v,e) = (v,MATE(v))
* P(LINK(v),e). The wal k P(LINK(v),e)is simple, by |nduction. It does
not contain v or MATE(v), since both vertices were previously unlinked.
Hence P(v,e) 1s sinple.

Suppose vV i S assigned a pair link. Let P(v,e) = rev P(Ml,v)
» P(base ,e). Both P(gg_s_gl,e) and P(pg_gg,e) are sinple, vy induction.
So P(‘g_m_s_el,v) iz also simple. |t sufficesto show P(_b_a_:_e_l,v) i s disjoint
from P(ga@_e_e,e).

Consi der the graph before t he pair || nk_(bue » base, )is assigned,
as ill&ated in Fig. 4(b). Suppose w cP(buel,e) n P(base e). W
.show W /P(‘pa_sgl,v). W& can choose wto be |inked, sinceMATE(w) I's al so
in the in&section, and w or MATE(wW) is linked: Lemma 4implies
_f;r_e_g._(fb__a_s_gi,w) free(w = free(base . Referring back torig.k(b),
either free(w is tip or free(w lies beyond tip. Since v is assigned
a |ink (Qﬁi‘l‘iﬁg): v does not |ie beyond w. Equivalently, wg
P(base, ,v).

Thus P(;,v) and P(base ,e) are disjoint, and P(vse) is sinple.
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induction the Temme hol ds each <ime a 1link s &scigned.
=

QED

Note our results ao not show that, as one mght guess from=ig. L(L),
MATE( tip) is the first vertex common to P(base,,e) and P(base,, e).  For
exanpl e, consider Fig. 7. Suppose an edge joining 5 and 12 i s scanned
next. PAIRLINKis called. It sets tip to vertex 1, the first unlinked
vertex comon to P(5,13) and P(12,13). These two paths join and diverge
several times before vertex 1. MATE(l) = 2 is certainly not the first
common vertex. In general, although _P(_ba_sgl,e) and P(ga_sge,e) mey | Oi N
and diverge arbitrarily before joining at tip, the argunent in Lemma 5 shows

only linked vertices occur between the intersection and MATE(tip).

W conclude fromLenma 5 that in step M, when MATCH scans an edge
xy leading to an exposed vertex y, (y) * P(x,e) is an augnenting path.
Now we anal yze step M3 and REMATCH to see how the matching is augnented.

Figure g(a) shows (y) * P(x,e) when REMATCH (y,x) is called in M.
The hol | ow vertices X,;,1 MBY OF may not be linked. The convention for
hal f-wavy edges, introduced in Fj g. T, is used. Thus MATE(y) = x but
MATE(x) # .

Figure 9(b) shows (y) *P(x,e) when REMATCH (y,::) returns. The peth
has been remetched and the augnentation is conplete.

Lemma 6 shows REMATCH acconplishes the transformation shown in Fig.
8(a)-(b). First we nake sone definitions. If z is a vertex, let Mz)
be the value of MATE(z) when the search begins in M. Define a set 2
that grows and shrinks as REMATCH resets MATE, by

z = {M(z)| MATE(MATE(z)) # Z).

A vertex in z is at the straight end of a half-matched edge, as illustrated
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Y X X X2i-1 X2 (p) X2i+1 X2n-1

LINK(v) 3 (¢ Vem

LINK(v) s (q) Vam

f v Vi LINK(V) Vi () Vam

Fig. 9
Rematching an augmenting path

The augmenting path(yy) * P(x,e).
a) On entry to REMATCH (y,x).
b) On exit. -

The path (f) * P(v,z): v has a pointer |ink.
c) On entry to REMATCH (f,v).
d) On entry to REMATCH (vl, LINK(V)) .
e) On exit.
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P(ve)
base vy v

Fig. 9 (cont'd)

The path(f) * P(v,z): v has a pair link.
) On entry to REMATCH(f,v).
) On entry to REMATCH (base. ,base, ).

On entry to REMATCH (hase ,ba’sﬁel),
) On exit from REMATCH (f,v]).

Vom

base, 0 Vom Vom+1
¢ P(v.e)
—iPprrnaelprin- - -0
base, vy v
V. z
base, _ @) 2m
l P(v.e)
elPrir——@Prrv - - -0
base 2 v f
base, ) Vom z
P(v.e)
“—-——w- - -o
base Vq \Y f
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by x and 0 in Fig. g(a) and z = Vomsl in Fig. 9(c).

Lenma 6: Suppose REMATCH(f,v) is called with v a linked vertex, vf an
edge, f ¢ P(v,e). Set z to the first vertex in P(v,e) that is in Z

and set mso z = v Suppose these conditions hol d:

om+l’
(d) z in unlinked or v@z.
(b) MATE(V,.} = M(v‘.)lfOI’ 0<i <2m

Then REMATCH(f,v) returns with MATE reset in the follow ng way:
(C)MATE(VQJ',-]_)=v21’ MATE(VE:_L) =
(d) mrE(v) = f.

Voiopp fOr Lsi <m

In Fig.9(a), (y) * P(x,e) satisfies conditions (a) and (b) with
z=0, m=n. Figure 9(b) illustrates conditions (c) and (d). Cearly
(c) and (d) inply REMATCH works correctly.

Note vertex z of the Lemma exists. This is true because 0 ¢ P(v,e)
Nz, since 0 = Vons1 = Me).
Proof: The proof is by induction on the linked vertices v ordered by@

If m= 0, MTE(MTE(v)) # V. |n R, MATE(v) is set so (d) holds.
Then REMATCH returns in gk, Since condition (c) is vacuous, the Lemm
IS true in this case.

Suppose m> 0 and v has a pointer link. Figure 9(c) shows the path

“(f) * P(v,z) when REMATCH is entered. (Edge vf is shown hal f-dotted,

meaning MATE(f) may or may no% be se-i; to v.) Condition (b) shows P(-,z)
is still well-defineu by MATE and LINK

Figure 9(d) shows the peth after MATE(V) end MATE(Vl) are reset In
Rl and R2. W see thet for the recursive call REMATCH(‘V'I,LINK(V)), vert ex
z stays the same and mdecreases by 1. Condition(a) holds because z is
unlinked or LINK(V) @v £z, and condition(b) still holds. So by induction,

REMATCH(vl,LINK(v)) returns with edges rematched as in Fig. 9(e). So
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conditions (c)-(d) are valid when REMATCH (f,v) returns.

Next, suppose m> 0 and v has a pair link. Figure 9(f) shows
(f) * p(v,z) on entry to REMATCH Note z e_P(ggg_ge,e). This is true
because Fig. 4(b)-(c) and condition (a) together inply z does not pre-
cede tipin P(basel,e) or P(base ,e). Figure 9(g) shows the path after

Rl. Note at this point, v e P(base.,e)nz and z ¢ P(base ,e) n Z

l,e

For the recursive cal | REMATCH(base,,base,), Z iS reset to v.
Condition (a) holds because z is unlinked oa_trﬁgg@vc@z,n di ti on
(b) still holds. So by induction, REMATCH(base,,base,) returns as shoun
in Fig. 9(n).

For the recursive call REI»iATCH(ga_gg,C,,pg_s_gl), Z is reset to v. Con-
dition (a) holds because_l_:g_ggl@v, and condition (b) is still true. So
by i nduction REMATi(p_@gg__e_l) returns as shown in Fig. 9(i). So
conditions (c)-(d) are valid when REMATCH(f,v) returns.

The Lemma now fol | ows by induction.

\\¢ have shown MATCH finds valid augnenting paths and correctly
remat ches edges along these paths. The |ast two lemmes show MATCH
finds all possible augnenting paths. First the search M»-M6 is

proved conplete.

7:ma If a vertex v is joined to e by an alternating path
v,y ceayVy = e) beginning with a matched edge vwv,, either v is even-

tually linked or the search m-M6 finds an augnmenting path.

Note this result shows that if an augmenting path to e exists, M»-M

finds an augnmenting path. For suppose (f, Vg VyseeesVpy = e) is an augmenting

path. By the Lemms, either v, is linked or -4 finds' an augnenting path.
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In the former case, »-M6 finds (f) * P(v,,e) or some other augnenting path.

v
0
Proof: Suppose m-M6 termnates at ™ without finding an augnenting
path. ~ Suppose v, is linked, for 1 <i <n, and v is unlinked, as

shown in Fig. 10. W derive a contradiction below This proves the

Temma .

v vy Vo oioq Voi Vi1 Von.2 Von-1 e
Fig. 10
V% Dbegin-by showing that for all i in1<i <n, vertex Voi 1 i's
| i nked andLreg(vzi_l) = v. The proof is by induction.
First let i = 1. Note vertex v, is linked. For suppose the con-
trary. At some point in the search, in step w, edge AN I's scanned
fromthe |inked vertex v, Then step M5 is executed and MATE(v,) = v

is linked. But this contradicts the original assunption that v is un-
linked. W conclude v i's linked.

So P(vl,e) exists, and equals (vl,MATE(vl) = Vv,e..). VErtex v is
the first unlinked vertex in this path. So the inductive assertion holds
for i =1

Next suppose the assertion is true for some i and Vpio1? where ia.

Vi prove the assertion for : + 1 and Vs At some point in the search,

i+l
in step w, edge v,, , v,, is scanned with both vertices Vyy_q and Voi
linked. Then step M+ is executed, and PAIR LINK (Vpy_17 vy ) is called.

This guarantees that during the rest of the search, free( ) = free(VQi).

Voi-1
(see rig. b(c)). 5o v = free(vgi). But P(v21,e) = (vzi’MATE(VQi)"")'
i's |inked.

Thus MATE(vgi) = Vol

Furthermore, Property (4) of Lenmma 3 inpli es free(vy,,,) = free(MATE

(V21+1)) =Vv. So the inductive assertion holds for i + 1.
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By induction, the assertion holds for all i in1si <n. In

particul ar, Von-1 n_1) = v,

So at some point in the search, in step M, edge Vo 1 I's scanned

with both vertices Von-1 and e linked. Then PAIR LINK(ven_l,e) S

called. This invocation links v = free(v2n ).

is linked and free(v2

But this contradicts the original assunption. So that assunption
is false, and the Lemm is true.

QED

Now we show the algorithmhalts with a maxinummatching. It is
clear from our discussion that MATCH always halts. Let Mbe the final

matching in MATE.

Lemma 8: If e is an exposed vertex of M there is no augnenting path

to e.

Prioof : S(witzgell @nd zenn(1969]).n o f MI , a sear ch
for an augnenting path to e is started. Call this search S(e). S(e)
ends in M without doing an augmentation M3. Let D be the set of edges
emanating fromlinked vertices which are scanned in » during S(e). We

first show no edge of Dis rematched in an augmentation done after S(e).

Suppose the contrary. Let Qf,g) be the first augnenting path
MATCH finds after S(e) that includes an edge in D. Let this edge be

w', withv linked to e. Choose p maximal so v is a matched

2pv2p+l

edge in P(v,e) n Q As shown in Fig. 11, Qf,g) = (f,wo,wl,...,w2q =

vgp’ w2q+l _ v2p+1,,,,,w2n_1,g). Al vert‘| ces are shown solid, regard-

less of links. Note the case w v, 1S possible. It

2q = V2p+1’ W2q+l = 2p
IS tr cl~d by a similar argunent.
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Vom-4
Vap+2
P(v.e)
Qif.9) S
f Wo 1 Woq Waq+ 1 Wag+2 Wan-1 g

Fig. 11

The paths q(f,g) and P(v,e).
The alternating wal k (wo,wl,...,waq_g,w2q_l,v2p,v2p+l,...,v?m_l,e)

is sinple, by the choice of p. So Lemma 7 shows ¥y is linked in Se).

But then the augnenting path (f) * P(wo,e) is discovered in Se),

contradicting the assunption e is exposed.
So no edge of D was rematched after S(e). |f the search m-M6
starting frome is repeated after MATCH halts, exactly the sane edges

D wll be scanned. No augmenting path will be found. By Lenma 7, there

is not augmenting path to e in the matching M



5. Efficiency and Applications

MATCH requires at nost o(v3) time units when executed on a random access
conput er. For the search m2-M6 is done at nost V tines. W show below that
each of the steps M-M6 uses o(V?) tine units per search.

Step M scans an edge emanating froma linked vertex. may be executed
twice for every edge of the graph. This requires O(V) time units.

Step M3 calls REMATCH to augnment the matching. M3 is executed at nost
once in a search. It requires time proportional to the length of P(v,e),
or V) tine units.

Step M+ calls PAIR LINK to assign pair links. M+ is executed for edges
joining two linked vertices. So M+ may be executed o(vz) times. In all
vt [ executions, no links are assigned. PAIR LINK returns in step PLQ
in constant time. 1In at most t—‘-’;—l—J executions, PAIR LINK links vertices,

requiring Q'V) time units (in step PL7). So the total time used in M+ is
o(V).

Step M5 assigns a pointer link. M5 may be executed LK,;—lJ times. This
requires (V) tine units.

Step M6 does no processing for an edge, but just transfers control. M
may be executed Q(d) times. This requires 0(‘?) time units.

So MATCH requires a total of 0(v3) time units.

The space needed by MATCH can be seen fromthe listing in the Appendix.
The adjacency lists of the graph require V + LE words, where E is the nunber
of edges. The matching, stored in MATE, uses V words. For the search M3-M6,
2.5 V words plus 2 V bits are used: 1.5 V words in the table (BASE,TOP)
describing pair links, and V words (LINK) plus 2 V bits (FREE,PTR) for |ink
information for vertices. Step M is inplemented in a breadth-first mnner,

requiring a queue (LI NKQUEUE) of V words.
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This anounts to 2 V. & E words for the graph and matching, and 3.5
V words plus 2 V bits for MATCH itself.
Note procedure REMATCH is recursive, so it uses a run-tine stack. 1t
is easy to see only 1 word (LINK(L)) per recursive call need be saved. Thus
at most 0.5 V words are needed for the stack. The stack may share the storage
allocated to LINKQUEUE, since these two data areas exist at different tines.
MATCH can be used to speed up the schedul er devised by rujii, Kasam,
and N:nomiya [19697. They solved this problem Conpute an optinum schedul e
for N tasks to be executed by 2 processors, assuning the tasks have equal
length and arbitrary precedence constraints. The approach is to construct a

conpatibility graph, showing which tasks may be executed simultaneously; find

a maxi mum matching on the conpatibility graph; sequence the matched task pairs
~and the unmatched tasks according to precedence constraints. This algorithm
was thought to require time proportionalto l\f‘[Fujii, Kasam , and Ninomiya,
1969-erratum]. But the first and last steps may be executed in time N3, and
we have shown the matching can be done in tinme N3. So the scheduler is an
Nal gorithm

MATCH can be generalized to find maximum natchings on weighted graphs.

In a weighted graph, each edge has a weight which is a real number. The probl em

is to find a mtching with'meximm Wei ght. Matching on ordinary graphs is
the special case of this problemwhere all edges have the same weight. An
al gorithm has been devel oped which takes time proportional to 3 log v. This
and other generalizations are currently being investigated and programed.
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7. Appendi x
This section contains a |isting of an ArgorL W program for
the maxi mum matching al gorithm

G obal Storage Declarations

BEGIN INTEGER V,E35 STRI NG 10) NANME;

COMMENT vV ST H ENUMBER OF VERTICES IN THE WRAPH.
F | STHE NUMBER OF FDGES IN THE GRAPH.
NAME | STHENAMEGFTHE GRAPH;

INTFIELDSIZE:=3;

PEAD (NAME,V,F);

COMMENT  PROCFSS EACH GRAPHU N T | LFND-OF~-CATA CARD IS READ;
WHILE v>0 DO

BEGIN

INTEGER ARRAY NEIGHBIR{V#+Ll::V42%E);

INTEGE R ARRAY NEXT{L::V+2%E);

L 1IGICAL ARRAY FREF,PTR {0::V);

INTEGER ARRAY L INK,MATE (0::V);

INTEGER ARRAY BASF (12:  (V=1) DIV 2,1::2);
INTEGER ARRAY TGP (1 : :(V=1)DIV2 )

INTEGER ARRAY L INKQUREUE(L 2V );

INTFGER HEAD,TAILyPATRNUM,LINKVTX o PLACE ¢ NBHR ¢ H;
INTEGER TIP,F,J3;

INTFGER ARRAY FFEFVTX(12:2);

COMMENT NF | GHROR CCMTAINSTHFADJACENCY LISTSUFTIituRAPH.

NEXT(X) | F XIS A VERTEX, THFEADJACENCYLIST OF X IS
( NE IGHBOR (NEXT ( X) )y NEIGHBOR(NEXTINEXT(X)))yeoele
THE LAST VERTFX INTRELISTISNELGABOR(Y),
WHERE NEXT(Y)l SO.

FREE(X) | STRUFTFVERTEX X IS UNLINKED.
PTR{X) | SFALSE| FVERTEXXH A S APAIKLINK.
’ L INKIX) | fVERTEX X HAS A POINTER LINK, LINK{X)I] S

THE FODINTER.

| FVERTEXX HAS APAIRLINK,LINK(X)IS THE
NUMBER OF THE PAIRL I N K . ITISUSEDA S A N
INDEX INTOBASEAND TGP.

MATE(X) | FVERTEXX | S O N AMATCHED EDGE, MATE(X) | S
THE VERTEX MATCHED TO X
IF VERTFX X1 S EXPOSEDyMATE(X)IS 0

BASE(N, ) | FNI STHENUMBER CFA P A | RLINKyBASE(IN,1)
A N DBASF(N,2 )ARFTFEADJACENTLINKED VERTICES
WHICHFCRMTHEPAIR.

TOP(N) [F N IS THE NUMBERCF A PAIR LINK, AND X 1S A

LINKED VERTFX WITH LINKNeTHcNTOP(N)IISTHE
FIPSTUNLINKEDV ERTE XINPUXeXPOSEDVTX)y THE
ALTFPNATING PATH FRCMX TO THEEXPUSEDVERTEX.
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LINKQUEUE

HEAD

TATIL

PAIRNUM
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CONTAINS THE QUEUE CF LINKED VEKTICES TD BE
FXAMINED. '

POINTS TG THE EIRST ENTRY LN THE QUEJE,
POINTS TO THE LAST ENTRY [N THE QUERUE.

STGRES THE NFXT PAIR LINK NUMBER T bE ASSIGNED;

Routines for Reading and Printing a G aph

PROCENDURE READGRAPH;
COMMENT THIS PROCFOHURE READS THE GRAPH AND CONVERTS IT Ty ADJACENCY
LISTS IN NEIGHRQOR AND NEXT;
BEGIN INTEGFER V1I,V2;
FOR T:=1 UNTIL V D3 NEXT(I):=0;
FAOR 3= v42%F STEP -2 UNTIL V+2 DO

BEGIN

READOM(VL,V2);
NETGHROR(T) :=Vv2;
NEXTOT)e=NEXT(VL);

NEXT(VL):=13

NEIGHBOR(I-1) 2=Vl
NEXT{T-1)3=NEXT({V2)}
NEXT(V2):=I-13

END 5

END READGKAPHS

PROCEDURF WRITEGRAPH;
CCMMENT THIS PROCENURE WRITES THE ADJACENCY LISTS OF THE GRAPH;

REGIN

WRITE(™ W) WRITE(" )3

WRITE (st

"y NAME o W%k ) g

WRITE(MY=%,y,wE=n _£);
WRITE("ARJACFENCYLISTS”);
-FUOR f:=1 UNTIL V DO

REGIN

WRITE(Trzv)s

$=NEXT(I);

WHILEUJ>IDO

BEGIN

WRITESNINFEIGHBORTJ) ) s

T=NFXT(J) g

END
END;

EN!)WR | TEGRAPH;
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. Routines for Searching for Augnentations

DROULCFENURFE SEARCHOINTREGFR VALUE EXPOSEOVTIX);

COMMENT THLS PROCENURFE SEARCHES FOUOR AN AUGHENTING PATH Tu EXPOSEDVTX,
AN FXPOSFD VFRTFX. IT SCANS EDGES NF THE uRAPH, UFCIDING WHEN
TC ASSIGN LINKS AND PERFORM AN AMUGMENTATIONS

REGIN
WRI TE { "SEARCH FUR EXPOSFD VIX", FXPOSFOV TX )
COMMINT INTTTALIZES LINMNK EXPOSEDVTXy ANDMAKEA L LGCTHERVERTICES
UNLTNKECS
FIP |:=Q UNTIL V IiQ FRFE(I) :=PTRA(] ):=TRUE;
FREE(EXPNSENVTIX) i =FALSE S
LINKQUEUF (1Y : =FX POSEDVTX;
PAIRNUM:=FEADI=TAIL:=1;
COMME NT THISLCOPSFTISLINKVTXT2 A LINKED VERTEX FRUM LINKQUEUE
AND EXAMINES THE EDGFS EMANATINGFROMLINKVTAG
WHILE HEADL=TA IL_DND
REGIN
LINKVTX =L INKQUEUEF({HFAD}
HEANI=HEAD+1;
PLACE::=NEXT(LINKVTX);
WHI LE PLACE~=0 DO

REGI“
CCMMENT  SFTNBHFTO THE YEXT VERTEXADJACENT T LINKVTX;S
NOHR :=NEIGHBOR (PLACE):
PLACE:=NEXTIPLACE) ;
CCAMENT | FNBHR | S LINKFD,ASSIGNPAIRLINKS;
| F-~FREE(NSAR) THEN PATRLINK(LINKVTX yNBHR)
ELSE IF MATE(NBHR )=0 THEN
BEGIN
COMMENT  |F NPHR IS EXPOSED AUGMENT THE MATCHING;
. MATF(NRHR ) 3=L INKVTX 3
WRITFE (MALIGMENT "y,
REMATCHINBHR L INKVTX) §
GCTO DONE
END
. COMMENT | FNBHR A N DMATE(NBHR)A R EUNLINKE)Dy, ASSIGN A
PCINTER LINK;
ELSEIFFRFF(MATF(NBHR))T HE NMAKELINK{LINKVTXMATE(NBHR) )3
FNO WHILEPLACE;
FND WHILEHEADS
DONE:
END SEARCH;
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Routine for Assigning Pair Links

PROCFDURE PATRLIANK (INTFGFR VALUF RASEL,RASE2);
CLMMENT  THIS PROCFDURF ASSIGMS PALR LINKS TO UNLINKED VERTICES IN
P{RASEL,FXPOSEDVTX) AND P(BASFE2,EXPISEDVTX). BASEL AND EASE 2
ARF AGJACENT LINKED VERTICIS.
THESE VARTABLES ARF USFD [N PAIRLINK:
FREFVTXA(T) tF T IS 1 CR 2, FREEVTXiI) STEPS THKUUGH TKFE
UNLINKED VERTICES IN PUBASEL e XPUSEDVTX) W

TIP - IS SET TO THE FIRST UNLINKED VERTEX THAT IS IN
ROTH PIRASEL,EXPOSENVIX) AND P(BASE2,EXPOSEDVTX);
BREGIN :

INTEGEF PHOCFDURE FIRSTFREF (INTEGER VALLE L),
COMMENT  THIS PRCCEOURE RETURNS THE VALUE OF THE FIRST UNL INKED
VERTEX IN PlLLyEXPOSFDVTX);
RIEGIN
COMMENT  STCRE ~THE VALUE IN THF GLOBAL VARIABLE F AND
RFTLEN F3
Fe= 1F FREF{MATE(L)) THEN MATE(L)
FLSF
TOP(LINKUIF PTRUIL) THEN MATE(L) FLSF L))
r
END S

FREEVTX{1):=FIRSTFRFF(RASFL1)3
COMMENT 1F THE FOLULIDWING TEST FAILS THE PRACFDURE EXLIS,
SINCFE NO LINKS MAY BE ASSIGNED:

IF FREEVIX(1)-=FIPSTFRFFIBASF2) THFN

REGIN

PTR(FRFEVTX(1)) :=FALSE

FREEVTIX(2):=F

J1=23

COMMENTIHISINOPFLAG SUNLINKEDVERTICFSALTERNATELY IN

' P(RASEL, EXPOSENVIX) AND P(BASE2, EXPOSEDVIA Je UNTIL THE

FIRST CUMMNN UNLINKEDR VERTEX| SFUOUNDe A VERITEXI| S
FIAGGEDRYSFTTING I TSPTRV AL UE T OFALSES
wH TLE PTR (+} DO

REGIN

PTR{F):=FALSFE;

Ji=3-J3 o i

COMMENT I F T H FENDOF P{BASFJ,EXPOSEDVTX) HAS BLEN REACHED,

DAON'T GO ANY FURTHER;

| FFREEVTIX (J)=D THEN J:=3-J3

FREEVTX{3) a=FIRSTFRFEE(LINK(MATE(FREEVTX(JII));

E-ND;
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COMMENT  MAKF FENTRIES IN RASE AND TOP;

TOP{PATRNUM) :=TIP:=F3

BASFA(PAIRNUM,1) :=BASEL;

BASC(PALRNUM,2):=BASF 2} .

WRITE("PATR: ("yRASELBASF2,") TIP IS",TIP,y" ")

COMMONT  RESET PTR TO TRUE FCR VERTICES AsUVE TIP3
OTR{F) :=TRUE}
WHILEF =-PTR(FIPSTFREE (LINK(MATE(F))) ) DO

PTR(F) :=TRUF;

COMMENT  LINK AL L UNLINKFG VFRTICES WRICH PRECEDE TiP IN
P{RASFL EXPUSENVTX) AND PIBASE2,EXPULSEDVIX);
FAR 1:=1,2 DO
IF FIRSTFREC(RASE(PAIRNUM, [))-=TIP THEN

BEGIN _

MAKEL INK {PAIRNUM, F);

WATLE FIRSTERECILINKIMATE(F) ) )I-=TIP DO

MAKELINK(PAIRNUM,F);
TN

CUMMENT  RESFT ENTRIEST N -TOP ARRAY whICH HAVE JUST BEEN

LINKFD;
FUR I 2=LUNTILPAIRNUM-1ID C
|F -FREE(TOPLL)) THEN TOP({I) 2= | P
COMMENT R UM PPAIRNUMFORTHENE X TPAIRLINK;
PAIRNUM := PAIRNUM+L;
END

END PAIRLINK;

Routine for Assigning Links

PROCEDURE MAKELINK (INTEGERYV A L U ELyFREEVTIX)
COMMENY THISPROCEDIJRFASSIGNS 4 LINK L TO AVERTEXFREEVTXS
BEGIN
FREE(FPFEVIX):=FALSE;
{t INK(FREEVTX} = L;
COMMENT PLACFFKEFVTX AT THE FNDOFTREQUEUEUFLINKED
VERTICES;
TAIL:=TAIL+]1;
LINKQUEUE(TATL) $=FREEVTX;
| FPTRIFREFEVTX)IT H E NWRITE("PTR:");
WRITECN(FREEVTX,L," “)s
ENDMAKEL INK ;
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Routine for Rematching

PROC EDUPE RFMA TGH ( I NTEGER VALUE F oL )3
COMMENT THISPRNCECUREMATCHESLT OFhANDCONTINUESRE“ATCH[NG

ALONG P(L 4FXPOSEDVTX) DY CALLINGITS E L FRECURSIVELY;
B3FGIN .
WPRITEON (" MATCH " Ful)s
H:=MATE (L)
MATE(L) s=F3
COMMENT [FTHE FCLLIWINGT E S TFATLS,y THE REMATCHING ALONG
PLL FXPOSENVTX) ' | SCONPLETE;S
[F MATE(H)=L THEN
IFPTRILITHEN
PEGIN
COMMENT | fLHAS A POINTERL | N K, RENATCH ALUNG P (L, EXPGSEDVTX )3
MATFE (H) =L INK(L )3
REMATCH(HLINKIL))
END
FLSF '
COMMENT  IF L HAS 4 PAIRLINK, REMATCH ALONG P(BASEL,EXPOSEDVTX)
AND P(BASE2, EXPOSEOVTX)
FNR |:=1,2 DC
REMATCH(RASFILINK{L) oI )oBASEILINKIL) y2-1))3
END RFMATCH;

Driver Routine

CUMMENT THIS IST H EMAINPRQOGRAM

CIOMMENT  READIMPUT GRAPHA N DSTOREITI NADJACENCYL I STS ;
READGRADPH;

COMMENT  WRITFCUTT H EABJACENCYLISTS

WRITFGRACHS

WRITE("STARTMA T 7 ,TIMF(1));

CUMMENT INI TIALIZES

FOR [:=OUNTILV DOMATE(I):=0;

LINK(O):=0;

COMMENT SFARCHFORAUGMENTINGPATHS TOEACHEXPOSED VERTE X
FOR [:=1UNTIL VNDOIFMATE(I)=0T H E NSEARCHII);

WR I TE(M"END MAT™ ,TIME(L1));

CCMMENT  WRITEQUTTFEMATCHING;

WRITF("MAXIMAL MATCHING:™):

FOR [:=1U N T I LVDUWRITECN{" »,1 ,MATE(]))}

COMMENT BEGINT H ENEXT GRAPH;

READ(NAMEZV,F )3

END

END .



68

Ref erences

Balinski, M.L., 1967. "Lebelling t 0 obtain a maxinum matching, " in
R.C. Bose and T.A. Dowling, ed., Conbinatorial Mthemtics
and Its Applications, University of North Carolina Press,
Chapel HIT, North Carolina, pp. 585-602, 1967 .

Berge, C., 1957. "Two theorens in graph theorﬁ/," Proceedi ngs of the
National Acadeny of Science, Vol. k43, pp. 8Lk2-8ik, 1957.

Ednonds, J., 1965. "Paths, trees and flowers," Canadian Journal of
MVat hematics, Vol. 17, pp. Lkg9-L67,1965,

Fujii, M., Kasami, T., and N nomya, k., 1969. "Optinal sequencing of
two equivalent processors, "SI AM Journal of Applied Mathemat-
ics, vol. 17, pp.784-789, 1969, and erratum Vol. 20, p.141,
1971.

Harary, F. ,1939. G aph Theory, Addison-\Wesley, Reading, Mess.,1969.

Knuth, D., 1968. The Art of Computer Programming, Vol. 1, "Fundanental
Al gorithns, ™ Addrson-\esley, Reading, Mass., 1968

Witzgall, D. and zemn, C.T. Jr., 1965. "Mbdification of Edmonds' Al gor-
i thm for maxi mum nat ching of graphs,” Journal of Research of
the National Bureau of Standards, Vol. 698, pp.91-98, 1965,




