
STAN-CS-72-328 SEL-72-02

An Efficient Implement at ion of
Edmonds’ Maximum -Matching
Algorithm

bY

Harold Gabow

June 1972

Technical Report No. 31

This work was supported by the
National Science Foundat ion
Graduate Fellowship Program and
by the National Science Foundation
under grant GJ - 1180

STAN-CS-72-328 ~~~-72-026

c

L

L

L-

L

JUNE 1972

Technical Report No. 31

. .

AN EFFICIENT IMPLEMENTATION

OF EDMONDS' MAXIMUM MATCHING ALGORITHM

bY

Harold Gabow

L

DIGITAL SYSTEMS LABORATORY

Dept. of Flectrical Engineering Dept. of Computer Science

Stanford University

Stanford, California

L

This work was supported by the National Science Foundation Graduate Fellowship
Program and by the National Science Foundation under grant GJ-1180.

\\I>’

I
i
t\

!

m vertex. A maximum matching contains the greatest number of edges possible.

This paper presents an efficient implementation of Edmonds' algorithm for

finding maximum matchings. The computation time is proportional to V3, where

V-is the nwmbtr of vertices; previous algorithms have computation time pro-
4portional to V . The implementation avoids Edmonds' blossom reduction by

using pointers to encode the structure of alternating paths.

An efficient implementation

of Edmonds' maximum matching algorithm

bY

Harold Gabow

--. Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Abstract

A matching in a graph is a collection of edges, no two of which share a

ii

TABLE OF CONTENTS
. .

page no.

I

1

1.

2.

3.

4.

5

6.

7.

Introduction

Some Preliminaries

Statement of the Algorithm

Proof of Correctness

Efficiency and Applications

Acknowledgment

Appendix=.

References.....................,..... 68

1

2

4

31

60

61

62

t

L

. I

L

i

L
‘L

iii

LIST OF FIGURES

Paae no.

Figure 1:
(4

04

(4

(4

Figure 2:
(4

04

(4

(4

(4

The graph Gl 3
Adjacency lists defining Gl 3
A matching in Gl.

Gl after augmenting along (12,9,10,8,6,5,4,2,1,11~.

3
3

A matched graph 6
Values stored by MATCH when searching for an augmenting
pathto .. .

~(8,13),=‘~(12,13)

.........

................

6

7
~(6,13) . 7
P(10,13), P(3,13) 7

.Figure 3: MATCH scans edge xy. 11

Figure 4: MATCH scans edge xy 12

Figure 5:
(a) Gl after 3 edges have been matched l 19

(b) Links assigned in search from '7 , ,

(c) Gl after augmenting along (8,6,5,4,3,7) l .

19

19

Figure 6: The search from vertex 11 21-22

Figure 7: REMATCH augments along (12) * ~(9~11) . . l l . . l 24-26

Figure 8: The search from vertex 11 in Edmonds algorithm . . . 28-29

Figure 4:
.

Rematching an augmenting path l 53-54

Figure 10: v
2i

linked, for 1 i n; v unlinked 57

Figure 11: The paths Q(f,g) and P(v,e) . . . l 59

I
1
L

L

1. Introduction

The problem of finding maximum matchings on nonbipartite graphs has

applications in integer programming and optimum scheduling. For example,

Fujii, Kasami, and Ninomiya ~lg@] have devised an efficient algorithm

for scheduling two processors. The slowest part of their algorithm is a

subroutine for finding maximum matchings.

We present an algorithm for finding maximum matchings on graphs. If

V is the number of vertices in a graph, the running time is proportional

to v3 . The space required is roughly 3.5 V words in addition to the space--_

needed for the graph and the matching.

The basic approach is a carerul implementation of the ideas presented

. by Edmonds [19651. 4His algorithm has running time proportionalto V

[Edmonds, 1965, and Fujii, Kasami, and Ninomiya, 196g-erratum-j. We improve

this by a factor of V. The speed-up is achieved by eleminating the process

of blossom reduction. We use a system of pointers to store the relevant

structure of alternating paths.

This approach is similar to the labelling techniques in the matching

algorithms of Balinski r1967? and Witzgall and Zahn 119651. We can imple-

ment Balinski's algorithm in time v3 by maintaining a stack for vertex

selection. However the generality which has made Edmonds' method so suc-

cessful is lost in this implementation.

After summarizing some well-known ideas in Section 2, we state the

algorithm in Section 3. A proof of correctness is given in the next section.

Section 5 discusses time and space bounds and applications of the algorithm.

The Appendix contain a listing of an ALGOL W program for the algorithm.

2

2. Some Preliminaries

This section summarizes some well-known definitions and results. A

Braph consists of a finite set of vertices and a finite set of edges.

An edge is an (unordered) set of two distinct vertices. A graph Gl is

shown in Fig. 1 (a). In this section Gdenotes an arbitrary graph.

The two vertices of an edge are said to be adjacent. An adjacency

list for a vertex v is an ordered list of the vertices adjacent to v.

The adjacency lists in Fig. 1 (b) define the graph Gl.

A matching in G is a collection of edges, no two of which share a

vertex. Figure 1 (c) shows a matching in G1. Matched edges are drawn

with wavy lines. In this section M denotes a matching. The pair (G,M)

is a matched graph. M is a maximum matchiag in G if no matching in G

contains more edges than M. 6

A wau [H--w, 19691 is a list of vertices (v,, ~,,~~.,vn) such

that for Uicn, v~v~+~ is an edge. A walk is simple if no vertex occurs

more than once in the list. A path is a simple walk. A cycle is a walk

(vpp-9 nv) such that n>3, (vl,v2,...,vn,,) is simple, and vn=vlo

I;et P P (v,,v,,...,v~) and Q =(wl,w2,...,wn) be paths. The reverse

path of P, denoted rev P,is (v,'v~~~,...,v~)' The concatenation of Pe

and Q, denoted PQ, is (vl,v2,...,vn,w1,w2,...,wm).F o r m t o b e a

path it is necessary that vnwl be an edge and that vi $ wj for

I:riSn,l5j Sm.

An alternating walk in a matched graph (G,M) is a walk (vl,v2,...,vn)

such that exactly one of every two edges viWlvi and v&,19 1 < i < n,

is matched. An alternating path is a path that is an alternating walk.

An exposed vertex is a vertex that is not in any edge of M. An wntinq

path is an alternating path whose endsv 1 and vn are exposed vertices.

oh . .
WI . .

c . .
w . .

N . .
P . .

G . .
F

is
. .

. .
w . . n

co . .
-J . . n W *
i
V

W

4

If (V1’V*‘...’ vn) is an augmenting path in (G,M), a larger matching

M' is obtained by replacing the matched edges v2iv2i+l, ISi-, with

the unmatched edges vZiWlvZi, 1Si.m. The construction of M' from M is

called an augmentation. In Fig. 1 (cl, (12, 9, 10, 8, 6, 5, 4, 2, 1, 11)

is an augmenting path. Performing an awntation along this path gives

the matched graph with no exposed vertices shown in Fig. 1 (d).

Augmenting paths are important for the following reason.

Lemma 1: A matched graph (G,M) has an augmenting path if and only if M

is not maximum.

Proof: see C-w 9 19571 or rEdmonds, 19651.

As a consequence, a maximum matching can be obtained by repeatedly

searching for augmenting paths and performing augmentations. The algor-

. ithms presented in [Balinski, 19671, [Berge, lp573, [Witzgall and zahn,

19651, and the algorithm described in the next section are organized

in this manner.

3. Statement of the Algorithm

This section presents an efficient algorithm for finding maximum

matchings on graphs. First the overall strategy is described. Then the

data structures used by the algorithm are discussed and illustrated,and

the strategy is elaborated. Next the algorithm is presented in full

d e t a i l . An example of how it works on a particular graph is given.

Finally an application of Edmonds' algorithm to the same graph is dis-

cussed, and the two algorithms are compared.

The algorithm is called MATCH. The input to MATCH is a collection

of adjacency lists defining a graph. The output is a maximum matching

for the graph, stored in an array MATE. MATE contains an entry for each

5

c-

/
i

,

c

vertex. If u and v are vertices, edge uv is matched if and only if

Mfux 6-4 = v and IMTE (v) = u.

MATCH begins with the empty matching, that is, all vertices are

exposed. It searches for an augmenting path. If such a path is found,

the matching is augmented. The new matching contains 1 more edge than

the previous one. Next, MTCH searches for an augmenting path for the

new matching. This process is iterated until no augmenting path is

found. At this point MATCH halts with a maximum matching.

MATCH searches for an augmenting path in the following way. First

an exposed vertex e is chosen. MATCH scans edges to find alternating

paths to e. --A vertex v is said to be linked when MATCH finds an alter-

nating path that starts with a matched edge and goes frcm v to e. Let

such a path be P(v,e) = (v, vl,...,e), so vvl is a matched edge. MATCH

sets an entry in an array LINK for every linked vertex v. The path P(v,e)

can be computed from LLNK (v). If an edge joining a linked vertex v to

an exposed vertex f 2 e is ever scanned, MATCH finds an augmenting path

(f) * P(v,e). If no such edge exists and no more vertices can be linked,

there is no augmenting path.

Figure 2 illustrates the results of such a search. A matched graph

is shown in Fig. 2(a). Vertex 13 is exposed. Figure 2 (b) shows the

values MATCH stores when it searches for an augmenting path to 13.

. Figures 2(c)-(e) show several paths P(v,e) defined by these values.

The following paragraphs explain

define these paths.

The LINK entry for a linked

how LINK and the associated arrays

vertex is interpreted in one of three

ways, depending on the link type. The three link types are degenerate,

pointer, and pair. The table in Fig. 2(b) indicates 11 vertices are

6

7

10 11

12

i

12,13)

P(10,13)

Fig. 2
A search from vertex 13

(a) A matched graph.
(b) Values stored during

search.

Some paths defined by
these values :

(4 P&13), P&,13) l

w p(6,13).

(4 PWJ3), p(3,13L

P(6,13)

8

linked in one of these ways. The remaining 2 vertices, vertex 1 and

vertex 7, are unlinked. This means there is no alternating path starting

with a matched edge that goes from 1 or 7 to 13. Note that in Fig. 2(c)-

(e), the unlinked vertices are drawn hollow. This convention is used
. .

in this paper in all illustrations of matched pphs with links.

Now we describe the three link types.

Degenerate - In the search for an augmenting path to an exposed

vertex e, MATCH assigns a degenerate &ink to e. This defines a de-

generate alternating path, P(e,e) = (e). Note that if e is adjacent

an exposed vertex f, (f) * P(e,e) is an augmenting path.

to

Figure 2(b) -indicates that vertex 13, and no other vertex, has a

degenerate link.

Pointer - If vertex v has a pointer link, LINK (v) is the number

of another linked vertex. So a path P(LINK(v),e) is defined. The path

P(v,e) is defined as (v, MATE (v)I* P&INK (v),e).

Using this definition and the values given in Fig. 2(b), we compute

~(8, 13):

P(8,13) = (8,wm (8) 1 * p(Lm (8),13) = (8,5) * p(4,13).

P(4,13) = (494m (4) > * P(L=(% 13) = (4,3) * P(2,13).

P&13) = (2,mm (2)) * P(Lm (21,131 = (2,1) * P(l3,13)-

= (WJ3).

P(8,13) = (8,5,4,3,2,1,13).

Note vertices 8,4 and 2 all have pointer links, so the computation is

valid. The path ~(8~3) is illustrated in Fig. 2(c). Also shown is

P(l2,13), which is defined in a similar way by pointer links.

L.

L

9

Pair - For vertex v to have a pair link, MATE (v) must have a pointer l.??..

This is illustrated by the values giiren in Fig. 2(b).

If vertex v has a pair link, LINK(v) is an index into the parcc!:!.el

arrays ElSEl aHci RASE2. The pair of-values BASE1 (LINK (v)), BASE2 (LIW

(v)) specifies vertices that define P(v,e).

As an example, consider vertex 6. The path P(6,13) is shown in Fig.

2 (d). Note that(BASE1 (LINK(~)), BASE2 (LINK (6)))= (8,12). This pair

defines ~(6,13) as follows: Vertices 8 and l.2 are both linked. Hence

there are alternating paths ~(8,13) and P(l2,13) (see Fig. 2(c)). Vertex

6 is in P(l2,13). Let P(I,z,~) denote the portion of P(&l3) from 12 to 6.

mus ~(12,13) T (12,11,9,6). Then ~(6,13) is defined as the path rev-.

p&6) * p(V3). we can compute ~(6,13) as follows:

p(6,13) = rev (~,11,9,6) * p(W3)

= (6,9,1l,W * (8,5,4,3,2,1,13)

= (6,9,11,12,8,5,4,3,2,1,13) l

This is the path illustrated in Fig. 2(d).

In the same way, P(3,13) can be computed. The pair link of vertex 3

specifies the vertex pair (2,6). Since vertex 3 is in ~(6,13), the path

- P(3,13) is defined as rev ~(6,3) * P(2,l3). This path is shown in

Fig. 2(e). The figure also shows the path P(10,13), which can be computed

using t'he rules for pointer and pair links.
.

There is one

an entry for each

unlinked vertex.

other array shown in Fig. 2(b), TOP. This array has

pair link. An entry in TOP contains the number of an

MATCH uses TOP to compute the unlinked ve;.oti.ces Ln

paths P(v,e). For instance , ;if vertex v has a pair link, then TOP
i

(LINK (v)) is the first unlinked vertex in P(v,e). Thus in Fig. 2, the

first unlinked vertex in'P(3,lj) is 1 = TOP (2) = TOP (LINK(3)).

10

It is possible that P(v,e) does not contain an unlinked vertex.

In this case, if' v has a pair link, TOP (LINK (v)) is set to the dummy

vertex 0.

TOP is maintained because it speeds up the computation. Using

TOP, MTCH finds the first unlinked vertex in P(v,e) with a table look-

up* Without TOP, this operation would involve computing vertices in

P(v,e) until an unlinked vertex is reached. Thus TOP enables MATCH to

do in constant time what might otherwi-se require time proportional to

the number of vertices.

Now we can give a more detailed description of how the algorithm

searches for an augmenting path. A search begins by choosing an ex---

posed vertex e, for which no search has previously been made. Vertex

e is given a degenerate link. All other vertices are initially unlinked.

MMCH repeatedly scans edges that emanate from linked vertices. Let x

be a linked vertex, and let xy be an edge emanating from x. When MTCH

scans xy, it processes the edge in one of four ways, depending on

vertex y:

(i) If y is an exposed vertex distinct from e, MATCH augments the

e matching along the path:(y) * P(x,e). The LINK array is used to compute

P(x,e), as described above. This process is illustrated schematically

in Fig. j(a)-(b). After the augmentation, MATCH starts a new search.
.

(ii) If" y is matched with a vertex v = MATE(y) and both vertices

are unlinked, v is given a pointer link, LINK(v)+x. This process is il-

lustrated schematically in Fig. j(c)-(d). After linking v, WTCH con-

tinues the search from e. '

(iii) If y is a linked vertex, the pair link (x,y) is assigned

to certain unlinked vertices. The process is illustrated schematically

11

C

(a) (b)

w
LINK(v)

MATE(v)

V 3JP(v,e)=(v,MATE(v))*P(LINK(v),e)

(cl Cd)

(e)

' Fig. 3

MATCH scans edge xy.

(8)-(b) y exposed:aupent.

(c)-(d) y, MATE(g) unlinked: assign pointer link to v = MATE(y).

(>e y unlinked, MATE(y) linked: no new links.

12

4X
la1 ’

tip

t /

e =rev Rbasq vll)+P(base;?,e) \

(cl

Fig. 4

MATCH scans edge xy
(a) y linked: call PAIR IJNK (y,x).

(b) ul and ~2 step through unlinked vertices to find tip.

(c) v steps through unlinked vertices preceding tip,
assigning pair links.

L

I-

L
L
L

13

in Fig. 4(a)-(c) for (x,y) = (basel, base& First a vertex tip is

computed (Fig. 4(b)). Tip is the first unlinked vertex that is in

both P(base1, e) and P(basep,e). TijP is used to compute -Q efficiently.

Next the link (base1, base2) is assigned (Fig. 4(c)). It is assigned

to the unlinked vertices that precede 9 in P(basel,e) or in P(base
l ,,4

After assigning these pair links, MATCH continues the search from e.

(iv) If y is not in any of the classifications (i) - (iii), MATCH

takes no further action for edge xy. (see Fig. 3(e)). The search from

e is continued.

The search from e ends either when MATCH augments the matching or

when MATCH runs out of edges to scan. In the former case, e is matched'

with a vertex during the augmentation; in the final matching e will be

matched, although not necessarily with the same mate. In the latter case,

e is exposed when the search ends; in the final matching e will still be

exposed.

Now we present MATCH in full detail. First specifications for the

data and the storage areas are given. Then the algorithm is stated.

a The vertices of the input graph are numbered from 1 to V. MATCH

also uses a dummy vertex 0 for boundary conditions.

The graph is stored as a collection of adjacency lists. (An ad-

jacency matrix could be used instead, with no loss of speed). The order

of the vertices in the adjacency list of v gives the order in which the

edges emmat1n.g f'rom v are scanned.

!The output of the algorithm is in MATE. MATE specifies a matching

this way: I:‘ u, v 10 are vertices, MATE (u) = 0 if and only if u is

exposed; edge UJ is matcheld ic and only if MATE (u) =V znd MATE (v) = u.

n

14

Intermediate matchings developed by the algorithm are stored in MATE in

the same way.

There are two bits for each vertex specifying the link type. One

bit specifies whether or not a vertex is linked. If it is linked, the

second bit indicates the link type, pointer or pair. (The degenerate link

type need not be specified.) In the statement of the algorithm below,

these bits are referenced implicitly in tests such as, "If the vertex is

linked, then. ..? (For example; see step M 4.)

The LINK array has an entry for each vertex. If a vertex v is linked

in the current search (as indicated by the linked/unlinked bit described

above), LINK (v),defines P(v,e).-If v is not linked in the current search,

MATCH does not use LINK (v).

In the table of Fig. 2(b), pair links have one level of indirection:

the linking information is stored in BASE1 and J3ASP,2, and a LIE e+ry ,

addresses this information. This is also how the AXOL implementation

of MATCH works. In the remainder of Section 3, and in Section 4, we are

less formal. Ignoring the indirection, we write LINK (v) = (bl,b2),

instead of bl = RAsE1.(LINK(v)), b2 = BASE2 (LINK(v)). This is done

only for convenience.
d

The TOP array has an entry for each vertex pair (bi,b2) that has

been asgigned as a pair link in the current search. It is easy to see

ithere are at most entries in TOP: IIn any search, 1 vertex has a

degenerate link. Of the remaining V-l vertices, half may have pointer

V-l
links and half may have pair links. So at most 2 vertices have

1 J

pair links. Thus there are at most distinct vertex pairs (bl,b2)

having entries in TOP.

We adopt a convention for addressing the entries in TOP, similar to

/-

i

1
t

L

r

the one used for LINK. If v has a pair link addressing the pair

@I,b2) we writ@ TOP (bl,b$ instead of TOP (LINK(v)).

Entries in the TOP array are made and modified by the subroutine

PAIR LINK. If (bl,b2) is a pair link, TOP (blb& has the following

properties: TOP (bl,b,$ is the first unlinked vertex in P(bl,e); it

is also the first unlinked vertex in P(b2,e). If v has the pair link

(bl>b& TOP(b&) is the first unlinkedvertex in P(v,e); it is also

the first unlinked vertex in P~MM!E(v),e). If TOP (bl,b$ is the dummy

vertex 0, there is no unlinked vertex in any of these paths.

The algorithm is presented below. A 'high level" language similar

to the one deeloped by Knuth [1968J is used.

The algorithm consists of four routines. M0CH is the main driver;

it initiates and coordinates searching for augmentations. PAIR LINK

assigns pair links to vertices, using FIRST FREE to find unlinked ver-

tices. REMATCH performs augzwntations by rematching edges.

I t s t a r t s aMATCH constructs a maximum matching for a graph,

search for an augmenting path to each exposed vertex. Iti scans edges

of the graph, deciding to assign new links or to augment the matching.

s MO. [Initialize.J Read the graph into an adjacency structure,

numbering the vertices 1 to V. Create a dummy vertex 0. For

OS% V set MATE(i) + 0; alternatively, start with an arbitrary

matching in MATE. Mark 0 as unlinked, but set LINK(O)&.

Ml. [Start a new search]. Choose an exposed vertex e that has not

been previously examined in Ml. Mark it as linked. If no such

e exists, halt; MATE contains a maximum matching.

I@. [Scan a new edge.] &se a linked vertex x and an edge

emanating from it, xy. Thisvertex-edge pair must not have been

16

scanned previously in W in this search.

erase all links and go to Ml (e is not on

a new search is begun).

If no such pair exists,

an augmenting path, so

M3. [Augment the match1ng.J If y is exposed, set MATE (y)+x,

call REMATCH (y,x), then erase all U&s and go to Ml (REMATCH

completes the augmentation along (y) * P(x,e). See Fig. 3 (a)-(b)),

M4. [Assign pair links.-] If y is linked, call PAIR LINK (y,x)

and then go to I@ (PAIR LINK assigns pair link (y,x) to

unlinked vertices in P(y,e) and P(x,e). Se Fig.4).

M5* [Assign a pointer link!. Set vcE2ATE (y). If v is unlinked,

mark v as having a pointer link, set LINK (v)*x, and go to W

(See Fig. 3(c)-(d)).

M6. [Get a new edge.1 Go to MZ (y is unlinked and MATE(y) is linked,

so this edge adds nothing. See Fig. 3(e)).

FIRST FREE (v) is a subroutine of PAIR LINK. The parameter-m \
v is a linked vertex. FIRST FREE (v) returns the value of the

first unlinked vertex in P(v,e); if none such exists it returns

the dummCy vertex 0.

Fl.e [Return MATE.7 If MATE(v) is unlinked, return MATE(v).

E. [Return TOPJ If v has a pair link, set (bl,b2)+LINK(v) and

return TOP(bl,b2).

F3. [Return TOPJ (MATE()v must have a pair link.) Set (bl,b2)+

LINK(MM!E(v)) and return TOP(bl,b2).

PAIR LINK (basel,base8) assigns the pair link (basel,baseQ)- -

to unlinked vertices. The parameters base and base are linked
---l -

vertices joined by an edge. PAIR LINK sets tip to the first
.

-

--

c.

L

IL

I

L

L
t

c

17

unlinked vertex in both P(baetp?) and P(base*,e). Then it links

all unlinked vertices preceding tip in P(basel,e) and in P(basee,e).

See Fig. 4(b)-(c).

PLQ. [Initialize.) Set ui+FIRST kREZ(base$ for i=l,2. If uly,

return (no unlinked vertices can be linked). Otherwise flag

up 1=1,2.

PLl. [Loop.] Do PIZ for 1 alternating between 1 and 2. Each

time i is set to 1 remove any flag from the dw vertex 0.

PI2. [Find vertices to link.1 Set ui*FIRST F!REE(LINK(MTE(ui)))

(ui is set to the next unlinked vertex in P(basei,e)). If ui is

glagged, set t-ip+-u. and go to PL3. Otherwise flag u 1 reset i according to
1 1

PL1 ,and go to PL2.

a3* [Link vertices in P(basei,e).J (Tip is now set SO all unlinked

vertices between base
- i and tip can be assigned pair links. See

Fig. 4(b).) Set v*FIRST FREE(basel) and do mk. Then set

W-FIRST FREE (base2) and do mk.T h e n g o t o PLY.

PL4* [Link V.-J If v 1! tip, mark v as having a pair link, set

LINX(v)-(basel,ba6e& unflag v, set V-FIRST FREE(LINIC(Wl?E(v)))

and go t0 mk. (See Fig. 4(c).) Othemi6e continue a6 specified

in pL3.

FL?. [Set TOP] Set y-TOP(ba6el,ba6e2)+~ (Tip is the first

unlinked vertex in P(ba6ei,e))*

PL6. [Remove flags.) Dnflag u14 Set %+FIRST Z!REE(LINK(MM!E(U$)).

If ulis flagged go to PL6.

PLT. [Update TOP.] For each pair link (bl,b2) that has been assigned

in the current search from e, if TOP (bl,b2) is linked set TOP (bl,b2)e

(Tip has become the first unlinked vertex in l?(base .,e)),tip.
- 1

18

PI% [Return.: Return.

REMlVJYX (f,v) rematches edges along an augmenting path.

The argument f is a vertex which has become exposed; v is

a linked vertex which will be rematched to f. REMATCH IS a recur-

sive routine.

Wlk LrMatch f and v. 1 Save w+MATE(v). Set MATE(v)-f.

R2. _mematch a path.1 If MATE(w)=v and v has a pointer link,

set MATE(W)CLI call REMATCH(w,LINK(v)) recursively, and

then return.

R3. [Rematch two paths. 1 Ii' MATE(w)=v and v has a pair link,

set (bl,b2)-bINK(v), call REMATCH(bl,b2) recursively, call

MMATCH(b2,bl) recursively, and then return.

R4. _rReturn.1 (MA?YE(w) # v so a path has been compleiely rematched.)

Return.

We illustrate this algorithm by showing how it works on the graph

G1 of Fig. l(a). The input to MATO! is the collection of adjacency lists

in Fig. l(b). MATCH constructs the matching shown in Fig. l(d).

Initially all vertices in G1 are exposed. MATCH searches for an

augmenting path to vertex 1. The first edge scanned, 12, forms such

a path. An augmentation is done by placing 12 in the matching. MATCH

sets MArn(l)W, Mm(e)*3.

In a similar manner, edges 34 and 56 are matched. The matched

graph at this point is shown in Fig. y(a).

MATCH starts the next search at exposed vertex 7. Th# links as-

signed in this search are shown in Fig. y(b). First MATCH scans edge

73 W assigns ,a pointer link to vertex 4. Next, MATCH chooses

19

L

L

12 2

4

7 (a) 3

w

9

2

4

Fig. 3

(a) Gl after 3 edges have been matched.

(b) Links assigned in search frcm 7.

(c) G1 after augmenting along (8,6,5,4,3,7).

20

arbitrarily to scan an edge from vertex 4. This edge, 45, links

vertex 6. Choosing arbiArarily again, MATCH scans edge 68. This com-

pletes an augmenting path, (8) * ~(6,7). The matching which results from

the augmentation is shown in Fig. 5(c).

The matching in Fig. l(c) results when MATCH searches J?rOK, ?-ertes

9 and matches edge Y-10.

The last search is from vertex 11. Figures 6(r)-(f) show the inter-

mediate states of' the search. Each state is illustrated by a graph and

tables. The graph shows the edges of Gl that have been processed. The

tables show the entries that have been made in LINK and in TOP. The

graph also indicates paths P(v,ll) for newly linked vertices v.

Figure 6(a) shows the state of the search after four pointer links

have been assigned. When MATCH scans edge 34, pair links are assigned

to vertices 5 and 7. The result is shown in Fig. 6(b).

Now we give a detailed account of how vertices 1 and 8 are linked,

and Fig. 6(c) is obtained. MATCH scans edge 24. Since vertices 2 and

4 are linked, PAIR LINK ($2) is called to assign the link (4,2).

PAIR LINK first computes tip in steps PI&PI2. x is found to be

0, as follows:

1. In step PLO, the first unlinked vertex in P&,11) is computed

to be vertex 8. This computation is done by the invocation FIRST FREE (4).

: V e r t e x 8 is f l a g g e d .

2. Similarly vertex 1, the first unlinked vertex in P(2,11), is

computed and flagged in step PLO.

30 In step PL2, the next unlinked vertex in P(4,11) is corr,puted

to be 0. Vertex 0 is flagged.

4. In step PI& the next unlinked vertex in P(2,.11) is corr,puted

vertex link
. .

- 11
3 -6-

6-

22

P(

(d)

W

vertex link

t
2 11

vertex link

1 (42)
1,

2 11

3 6

4 6

5 (4,3)

6 11

7 (4,3) ,

8 (42) ,
9 (lo,81

10 8

11 dgn* ,

air link to

(4,3) 0

a

,2 0

0

Fig. 6
The search from vertex 11.

(a) Vertices 2,6,3,4 get pointer links.
(b) Edge 34 links vertices 5,7.
(c) Edge 24 links vertices 1.,8.
(d) Vertex 10 gets a pointer link.
(e) Edge 8-10 links vertex 9.
(f) Edge y-12 completes augmenting

path (32) * P(g,ll).

23

to be 0. Since 0 is alr'eady flagged, tiE is set to 0.

7n steps PLZ-Pa, PAIR LINK assigns the link (4,2) to vertices 1 and

8. The flags on these vertices are also removed. The value tip = 0 is

used in this process. . .

In steps PL?-PL6, PAIR LINK removes the flag remaining on tip = 0.

Now 811 flegs have been removed.

PAIR LINK sets TOP&Z) to 0 in step PL>. This indicates there are

no unlinked vertices in P(4,ll) or P(2,ll).

PAIR LINK resets TOP&J) in step PL7. Vertex 6, the previous value

of TOP (4,3), is now linked. Since there are no longer any unlinked

vertices in P(3,ll) -or P&,11), TOP(4,3) is reset to 0.

Finally PAIR LINK returns, in step PI& Now MATCH continues scanning

edges. Figures 6(d) and 6(e) show how vertices 10 and 9 are linked. Figure

6(f) shows how MATCH finds the augmenting path (12) * P(g,ll) = (l2,9,10,

8,6,5,4,2,1,11).

Subroutine REMATCH performs the augmentation. Figures 7 (a)-(h) show

the intermediate states of the augmentation, Each state is illustrated

by a graph and a stack. The stack is the stack of recursive calls to

@MATCH. The graph shows a setting of IWE. As usual, vertices u and v

are joined by a wavy line if and only if MATE(u) = v and MATE(v) = u.

Half-wavy lines also appear in the graphs, such as edge 68 in Fig. 7(e).

If uv is an edge that is wavy at u and straight at v, then MATE(u) = v

but MATE(v) 2 u. Thus in Fig. 7(e), MATE(~) = 8, MATE(~) = 20.

Figure 7(a) shows the matching when MATCH calls subroutine REMATCH.

In step M3, MATCH sets MATE@) to 9, as indicated by the half-wavy line

between I2 and 9. Then REMATCH(l2,9) is called, as shown in the stack.

The path P(9,l.l) is shown in this-figure to clarify the open?-lion of REMATCH(~,~)

,Li
=

A-
--

P
‘\

s?
\

g

25

P(ll,llj- - _
LINK(ll)=dgn. ----_c__

. .

LINK(4)=6

LINK(Gj=ll

*REMATCH (5,6) -
,&EMTCH (8,10) ,

26

fPEMATCH(8,lOj

(h)

TiEMATCH augments along (12) * P&11)

(r;)-(g) The 'invocation of' -REMATCH at the top of the stac!c is being entered.

(h)
The setting of MATE is shown in the graph.
The augmented matching.

27

l'igure 7(b) shows the results of' REMATCH(l2,9). Vertex 9 is completely

m(r?tched with vertex 12. Also two recursive calls are in the stack. Note

that P(y,ll) is defined as the concatenation of two paths, rev P(lO,p)

and ~(8~1). The two calls on REMATCH process P(9,ll) by processing

these two paths.

The invocation REMATCH(lO,t)) processes ~(8,1.1) in a similar manner,

since vertex 8 has a pair link. The results are shown in Figure 7(c).

Figure 7(d) shows the results of REMATCH(4,2). Vertices 2 and 1

have new mates. A new recursive call is in the stack. Note that P(2,ll)

is defined as the concatenation of (2,l) and P(ll,ll). The recursive call

REMATCH(l,ll) completes the processing of P(2,ll) by processing P(11,ll).

Figures 7(e)-(g) illustrate the other invocations of REMATCH, REMATCH

finally returns with the matching shown in Fig. 7(h).

At this point there are no exposed vertices. MATCH halts in step

Ml, having constructed a maximum matching. Note this matching is identical

to the matching in Fig. l(d).

For comparison we briefly describe how Edmonds' algorithm finds the

same matching in G1' The algorithm develops the matching shown in Fig. l(c)

in-a manner similar to MTCH. We discuss the search for an augmenting path

to vertex U.. This search is illustrated in Fig. 8. The six graphs in

Fig. 8(a)-(f) correspond to those in Fig. 6(a)-(f) for MATCH.

Edmonds conducts a search by growing a planted tree. Such a tree

has an exposed vertex for a root. Its edges are alternately unmatched

and matched. The planted tree in Fig. 8(a) is grown. It is easy to see

the structure of planted trees corresponds to that of pointer links.

When edge 34 is scanned in Fig. 8(a) it completes a cycle (6,7,3,4,5,6,).
*

28

“11

(a) = (b) (cl

b

9

10 P

Cd) (e) (f)

86‘1 1

a 2

bO

C

12 P

Fig. 8
The search from vertex 11 in Edmonds algorithm

(a) A planted tree. ,
(b) Blossom step for 34 yields a pseudovertex a = f6,‘(,3,4,5’f.
(c) Blossom step for 2a yields a pseudovertex b = {11,8,a,2,11.

t
d) A planted tree in the reduced graph.
e) Blossom step for b10 yields a pseudovertex c = TlO,b,gj.
(f) Augmenting path (12 ,c) in the reduced graph.. .

29

C

12P

(h)

11
9

8
12uqd$

10

a-2

0)

Fig. 8 (cont’d)

2

7

3

(g) Augmentation in reduced graph.
(h) Pseudovertex c is expanded.
(i) Pseudoverte,: b is expanded.
(j) Pseudovertex a is expanded.

30

Edmonds defines a blossom as an odd number of vertices joined by a cycle

that is maximally matched. Vertices 6,7,3,4, and 5 form a blossom. The

subgraph of Cl consisting of these vertices and the edges between them

are shrunk into a single vertex, a, called a pseudovertex. This results

in a reduced graph Gl. The planted tree “in G1 is shown in Fig. 8(b).

The pseudovertex a is drawn hollow.

Now the problem is to find a maximum matching in the reduced graph.

Suppose this has been done, as shown in Fig. 8(i). The pseudovertex a can

be expanded into the original cycle (6,7,3,4,5,6,). The matching for these

vertices can be chosen from the edges of the cycle, as shown in Fig. 8(j).

In general, this process can be carried out because one vertex of a blossom

is matched by an edge leading into the pseudovertex. The even number of

ver'cices that remain can be matcheci among themselves.

The Lntermediete steps that construct the maximum matching in G: areI

similar. They are illustrated in Fig. 8(b)-(j). Two more blossoms are

shrunk (Fig. 8(c),(e)) and then expanded (Fig. 8(h), (j)). The end result,

shown in Fig. 8(j), is identical to the matching constructed by MATCH.

The shrinking and expansion operations in Edmonds' algorithm are

title consuming. To construct a reduced graph for each blossom requires

- O($) steps per blossom. The result is a V
4

algorithm. MATCH avoids

shrinking by recording the pertinent structure of blossoms in LINK and TOP.

The factor of V speed-up results from this.

E.L 31

4. Proof of Correctness

L

L

L

L

L

L

L

L

b

We show MATCH operates in 8 valid an@ complete fashion. By valid .

we mean MATCH finds valid augmenting paths and correctly rematches edges

along these paths. By complete we mean MATCH finds an augmnting path

if one exists.

The first five lemmas establish validity and the last two lemmas es-

tablish completeness. More precisely, De-8 2-3 prove ti and M5 set

links so that P(v,e) is an alternating path; Lennaa 6 proves w rematches

edges along P(v,c). Lemma 7 proves each search I@46 is complete; Lemma 8

proves Ml initiates enough searches.

We begin by focusing on the loop I@-?&M!j-M6. This loop scans edges

and assigns pointer and pair links. It terminate8 when an au@nenting path

is found, or when all edges have been scanned.

Lemma 2: During the loop K-&~-M& two matched vertices v and MATE(v)

are always in one of these three states:

0. v and MATE(v) are unlinked.

1. v has a pointer link and MATE(v) is unlinked.

2. v has a pointer link and MATE(v) has a pair link.

-The only possible transition from state 0 is to state 1. The only possible

transition from state 1 is to state 2. Once assigned, a pointer or pair

link is never changed.

These states, and the transitions between them are illustrated in

Fig. j(c)-(d) and Fig. b(b)-(c).

Before proceeding, we introduce a convenient notation. Define U to be

32

the set of unlinked vertices i,n state 1. That is, ..._.

W= @@~‘E(u) hc?s a pointer Iink and u is unlink&],

Proof: The argument is by induction. We check that each time step E

is reached, the classification of the L&&a% holds. Also, we check that

another property holds:
I

(1) Let x be a linked vertex. FIRST FREE(x) retumr the nuder

of a vertex in U.

Property (1) is needed to check the classificrtion.

Step M2 is reached after executing step Ml, Mb, IQ, or b6. We check

the two inductive assertions in each of these four cases.

Case 1: Step Ml. is executed.

Step &E is reached for the first time after Ml. At this point all

matched vertices are unlinked. Hence al1 vertices v, MATE(v) are in state

0, and the dassification holds. Property (1) is vacuously true.

Case 2: S.&p MS is executed.

No new vertices are linked in this’step. So the inductive ussertions

still hold when M? is reached.

$?ase 3:Step IQ is executed.

This step assigns a pointer link to a vertex v. Both v and MATE(v) are

unlinked on entry to M5. SO this is a transition fram state 0 to state 1.

. Property’(l) holds for linked vertices x f v, by inductiar. Property

(2) also holds for vertex v: FIRST FREE(v) returns the value M%(V) in

rtep Fl, and MM!E(v) e U.

Cape 4: Step B#+ is executed.

Step Id+ crlls PAIR LINK. In steps PL3-PI& this subroutine 1inM

33

ver*t .i. ce s coiqjuted by FIRST FREE. SO by (l), step M4 links vertices In U.

Thc-,se ;:ertices Ifiake a ';ransition from state 1 to s3Ze 2. SC 'I;he ClZSS-.

ifiz?';l.oil still holds.

No17 ve check that property (1) holds after step a. We consider

three cases, depending on vertex x.

First suppose vertex x is in state 1. Then FIRST FREE(x) still

returns the value MATE(x) eU.

Next, suppose FIRST FREE$x) = tie.In step PI2, tip is set to a

value returned by FIRST FREE. By induction, tip EU. Hence FIRST FTUCE(x)

EU.

The remai‘;;ing possibility is that vertex x is in state 2 and FIRST

FREE(x) ftip. Note in this case, both x and MATE'(x) are linked vertices

on entry to M4. For if x or MTE(x) is linked in PAIR LINK, FIRST FREE(x)

= 2 (see steps PL3-PL2,l;r-F3).

Let u be the value of FIRST FREE(x) on entry to &. By induction,

ueU on entry to M4. Below we show that after & is executed, FIRST

=(x) = u and ueU. Together these statements imply property (1) for x.

The invocation FIRST FREE(x) returns a value TOP (bl, b2), in step
a

F2 or F3. So TOP(bl,b2) $ tip . This implies TOP (b,,b2) was not changed

in PAIR LINK, step PL7. So the value of FIRST'FREE(x) on entry to M4

I is TOP(bl,b2). Thus u = TOP(bl,b2) = FIRST FREE(x).

Next note vertex u was not linked in PAIR LINK. For if u mere

linked, TOP(bI,b2) would have been changed to tip In PK7.T h u s \lclJ

c .m4-CLl I, er M4 is executed.
L

Thus property

L

(1) holds for all linked vertices :- a:l’tcr &$+.

follows by induction,

OED

i

34

Lemma 2 enables us to ignore such possibilities as a linked vertex

being assigned a new link, or becoming unlinked. In particular, we can

define a partial order@on the set of linked vertices, as follows:

v@w if and only if w is linked after v.

For example, in Fig. 4, 1193, ll@4, 3@S, m, .sl, 7@8. For

the purposes of@, we consider vertices linked in the ssme invocation

of PAIR LINK as being linked simultaneously. So neither 5@7 or 7@5

is true.

We also make several definitions relating to the lists (paths)

ph,e> l The precise rules that define these lists are given below.

,Q. In any search, the exposed vertex e is linked by the degenerate
-=_

alternating path P(e,e) = (e).

1. If v has a pointer link, LINK(v) contains the number of another

linked vertex, and P(v,e) = (v,*TE(v)) * P(LIm(v),e).

2. If v has a pair link, LINK(v) contains the numbers of two

linked vertices bl,b2. Vertex v is in P(bi,e), for i = 1 or i = 2

(but not both). For this value of i, P(v,e) = rev P(bi,v) * P(b3-i,e).

These definitions are illustrated schematically in Fig. 3(d) and

e Fig. 4(c). In the latter, vertex vll has the pair link (basel,base2).

We also use a list notation, writing

phe) = (vo,v1,v2)..., V2&

Herev =l~, v2n=e.
0

The last subscript is even because P(v,e)

starts with a matched edge, ends with an unmatched edge, and is alternating.

For convenience, define v2n+l to be 0, the dummy vertex which is unlinked.

This allows us to treat boundary conditions in a uniform manner.

Finally, we define a useful function:

I ,

i

m
35

L

L

L

L

L

L

If v is a linked vertex, free(v) is the first unlinked vertex

in P(v,e).

For example, in Fig. 6(a), free(s) = 7; in Fig. 6(b), free(j) = 8;

in Fig. 6(c), free(j) = 0. The third equality is due to the convention
. .

that 0, an unlinked vertex, is the last vertex in any path P(v,e). In

general, if P(v,e) contains no "real" unlinked vertices, free(v) = 0.

In the proof of Lemma 3, we show FIRST FREE(v) computes free(v),

for linked vertices v.

The first goal is to prove P(v,e) is an alternating path beginning

with a matched edge. This is done in Lemma 5. We begin by showing that

P(v,e) is well-defined and has several useful properties.

Lemma 3: In the loop E&+-~-M6, each time step MZ is reached, the

following Properties hold for every linked vertex v.

(1) P(v,e) is a well-defined list of vertices.

(2) v2i is linked and v2i+l = MATE(v2i), for all i in 0 sisn.

(3) If V2i+l is unlinked for some i in O-cidn, then P(v,e) =

p(v,v2i-1) * P(v2i>e) '

(4)
m

If v has a pair link (bl,b2), then TOP(bl,b2) = free(v) =

free (MATE(v)).

These properties are illustrated in Fig. 6(b) for the linked vertex

v = 7* As shown, P(v,e) = P(7,ll) = (7,3,4,5,6,8,11). Clearly properties

(1) and (2) hold. The path decomposition of property (3) holc:s Par L = 2,

v
5

= 8, m.7: p(v,e) = ~(7~1) = P(~J) * ~(6~1) = P(V,V
3

) * P(-Q
+,e) l Ti;c

� ,~ L 3. -
0.s bdJng OP TOP to an unlinked verte:: described j.n (4) holds :L'or verte;: 7

T!Cth pair lid: (bl,b,) = ($3) and TOP ($3) = 8.c

Property (3) may seem overly restrictive. It seems'natural to claim

36

the decomposition P(v,e) = P(v,v~~-~) * P(v2i,e) holds for all i in

o-den. Huwever this more general statement is false. This is illus-

trated in Fig. 6(c). Taking v = 8, P(v,e) = (8,6,5,4,2,1,11). For

i= 1, P(v,q * P(v2,4 = (8,6) * P(~,u.) = (8 6 5 4 3 7 6 8 u.) d P(v,e).t t I 2 > 9 9 t

. .

Proof: The argument is by induction. We check that the Lemma is true each

time step M2 is reached.

Step I@ is reached after executing step Ml, &, m, or M6. It is

easy to check the Lemma after Ml, MS, and 6 This is done in Cases

l-3, below. The main part of the proof is checking the Lemma after step

M4, which assigns pair links. This is done in Case 4.

Case 1: Step Ml-As executed.

After Ml, the only linked vertex is e. Vertex e has a degenerate

link that defines P(e,e) = e. Properties (l)-(b) are easy to check:

Property (1) P(e,e) is clearly well-defined.

Property (2) For i = 0, Vertex v = e is linked. Also vl = O\= MATE(e).
0

Property (3)-(4) These properties are vacuously true.

In the remaining cases we proceed inductively. We assume that on

entry to step M4, M5, or M6, Properties (l)-(b) hold for all linked ver-

tices. We show that after the step is executed, the Properties still

hjold for all linked vertices.

Case 2: Step M6 is executed.

This step changes nothing. So the Properties still hold.

Step IQ is executed.Case 3:

Step IQ assigns a pointer link to a vertex v. We must check Properties

does

(4) hold after Mj for linked vertices x, x@v, and also for v.

If x@v, Properties (l)-(b) hold for x on entry to m. Step M5

nothing to modify these Properties, so they ?re still valid on exit.

For vertex v, the list P(v,e) is defined as (v, MATE(v))* P(LINK(v),e).

Note LIMV) 0 v, as illustrated in Fig. j(c)-(d). Now we verify

37

(l)-(4) for v.

Property(l)

The list P(LINK(v),e) is well-defined, by induction. So P(v,e) is

the concatenation of two well-defined lists, and hence is well-defined.

Property(2)

Property (2) holds for vertices in P(LINK(v);e), by induction. Hence

Property (2) holds for v2i and v2i+l, 1s i s n.

For i = 0, the definition of P(v,e) shuws vO = v, v1 = MATE(v).

Property(j)

SuPPose v2i + 1 is unlinked for some i in 2 s i < n. The following

equalities show Property(j) holds in this case.

P(v,e) = (v,MATE(v)) * P(LINK(v),e) def'n

= (v,v,) * P(LINK(v), v2ie1) * P(v2i,e) induction

= p(vjv2i-1> * P(v2i,e> def'n

For i = 1, P(v,e) = (v,vl) * P(v,,e), by definition. This is

independent of whether v
3

is linked or unlinked.

Property(4)

This Property is vacuously true, since v has a pointer link.

Case 4: Step I& is executed.

This case is the main portion of the proof. The argument is lengthy,

38

and divides into two parts. Part A analyzes the operation of PAIR

LINK, the subroutine called in Mk. The analysis depends on the in-

ductive assumption of Properties (l)-(4). Part B uses the results of

the analysis to verify that Properties (l)-(4) hold on exit from Mk
. .

Part A: Analysis of PAIR LINK

The conclusions of this analysis form a description of how PAIR

LINK and its subroutine FIRST IXEE operate. The description is given

below, as Properties (5)~(13). Then each of these 8 Properties is

proved in turn.

Description of PAIR LINK

(5) Let-k be a vertex that is linked on entry to M4. Then FIRST

FREE(x) returns the value.free(x).

(6) In step PLO of PAIR LINK, u is initialized to the first
i

unlinked vertex in P base ,e), for i=1,2.
L

(7) In the loop PLl-PL2, step PLl varies i according to the sequence

1 = 1,2,1,2,... l Step PI2 sets u to the next unlinked vertex in
i

P(base$,e). If step PL2 is entered with u set to the dummy vertex 0,
i

PI2 resets u. to 0.
e

(8) Thz loop PLO-PI2 terminates when u1 assumes a value that has

been assumed by I+, or vice versa. Tip is set to this common value.

. (9) Tip is an unlinked vertex that is in P(base.,e) and in
-1

P(base2, e). No unlinked vertex that precedes tip in P(basel,e) is

also in P(base2,e). No unlinked vertex that precedes h&p in P(base2,e)

is also in P(basel,e).

(10) In the loop PL3-PL&, variable v assumes the vaiues of all

unlinked vertices that precede tip in P(ba.sel,e) or in P(base. 2,4

39

TX se vc,tizcsi e;,cluding tip, aYe Pssigned pair links (b~ze, ,brce).-I -i

(11) In the loop PLl;,-PL6, variable ul assunles the -.-Cites of cl.1

L

the unlinked vertices that are flagged in PLO-PI2 but not linked in

PL3-PL4. These vertices, including tip, are made unflagged.
. .

(12) In step PL?, an entry for the new pair link (basel,base2)

is added to TOP and initialized to tip.If v is any vertex that re-

ceives the pair link (basel, base) in PL3=PLb, then free(v) = free2

(MATE(v)) =TOP (basel, base2).

(13) In step PT,?, some entries in TOP are reset to tip, GO the

following is true: If x has a pair link (bl,b2), then free(x) = free

(M'E(::)) = TOP(bl,b2).

Now we prove the Properties of the description.

Property (5)

If FIRST FREE returns in step Fl, MATE(x) is unlinked. Pr*operty

(2) implies P(x,e) = (x,MKCE(x),...). Hence MATE(x) = free,(x). Thus

FIRST FREE returns free (x).

If FIRST FREE returns in step $2, x has a pair link (bl,b2).

Property (4) implies TOP(bl,b2) = free(x). Thus FIRST FREE returns

free (x).

If FIRST FREE returns in step F3, both x and MATE(x) are linked,

and x has a pointer link. The classification of Lemma 2 implies MATE(x)

hc?s a pair link (bl,b2). Property (4) implies TOP(bl,b,) = freeL

(pATE(MTE(x))) = free (x). Thus FIRST FREE returns free (-7)

Property(G)

First.we introduce a notational convenience: Variables u, base

40

stand for y, base1 or u2, base2.

The assignment

u + FIRST -(base)

initializes u to frea(base), by Property (5). Thus u starts out with- -

the value of the first unlinked vertex in P (base,e). Note u is the

dumqy vertex 0 if there are no "real" unlinked vertices in P (base,e).

Step PI& returns if ul = u2* In this case we define tip to be

this common value. Note that Properties (T)-(g) are satisfied by this

definition.

&ED for (6)

Property (71 -=.

It is clear that i varies between 1 and 2. We analyze the assign-

ment in step PI2,

u + FIRST FREE(LINK(MATE(u))),

assuming PI2 is entered with u set to an unlinked vertex in P (base,e).

First suppose u - 0. From step MO it is clear that MATE(O) = 0,

LINK(o) = 0. So PIQ executes the assignment, u - FIRST FREE(O). FIRST

FREE(O) returns 0 in step Fl. Thus PI2 resets u to the dumnly vertex 0.

e Now the main case is treated, u f 0 on entry to PI2. We show step

PI2 computes the first unlinked vertex beyond u in P (base,e) and as-

signs this value to u.
.

First note that Property (3) can be applied with v = base and

v2i+l = u* Property (3) is valid for v = base,.by induction.T h e u n -

linked vertex u has an odd subscript 2j+l in P (basqe), by Property (2).

Since u f 0, j < n. So if j > 0, Property (3) holds.

Property (3) can be written in the following way:

i 41
L

r

L (14) P(base,e) = P(base,u 0 * P(MATE(u),e)

L-

L

Here u' us defined as (bas&, the vertex that precedes u by two in

P(base,e). Also MATE(u) = (base)2j, by Property (2).

We have proved (14) for jw. If- j = 0, u = (base)l and MATE(u) =

base. Since u' = (base)_1 is undefined, we interpret P(base,u') as the

empty list. Then (14) holds for j = 0. So (14) is valid for any un-

linked vertex u-A0 in P(base,e).

By Lemma 2, MATE(u) has a pointer link. The definition of pointer

L- link implies this further decomposition:

(15) P(base,e) = P(base, u') * (MATE(u),u) * P(LINK(MATE(u)),e).
-=.

L.
So the unlinked vertex that follows u in P(base,e) is free (LINK

(mm(u))). The assignment of PL2 computes this value, by Property (2).

Thus PL2 sets u to the next unlinked vertex in P(base,e)

L

ProperiLy (,q)

We begin by ploving tnis ~.3!reWdm3ry result :

(16) An unlinked vertex u occurs at roost once in z! I.ir,t P(bsze,e).

The proof is by contradiction. Suppose 1.1 occurs more 'thm once in

'P(base,e). First we show LINK(MATE(u))@MATE(u). Then we use the sup-

position to derive a contradiction.

As noted in the proof of Property(T), MATE(u) has a pointer link.

Thus, as illustrated in Fig. j(c)-(d), LINK(MAI!E(u))@MATE(u).

Now consider the decomposition (lj), applied to the first occurrence of u

in P(base,e). The second occurrence of u is in P(LINK(MATE(u)),e). So by

Property (2), MATE(u) occurs with an even subscript in P(LINK(MATE(u)),e).

Property (2) also implies that at the time LINK(MATE(u)) was assigned a

link, the vertices with even subscripts in P(LINK(MATE(u)),e) were all

linked vertices. Thus LINK(M&IZ(u))@MATE(u). This is the desired
. .

contradiction.

m for(16)

Now we prove Property (8). The loop PLO-PI2 terminates when u as-i

sums the value of a vertex that has already been flagged. Tip is set

to this vertex. We show below that at some point, u
3-i

took on the value

tip. For convenience, we take 1 =l, and argue in terms of ui = u1 and

u3e,i = u2*

Case 1: --.Tip 2 0.

I n t h a t s t e p , ul o r u2 w a s a s -Tip was flagged in step PU3 or PI2.

signed the value tip. If the assignment was made to ul, then u1 assumed

the value tip twice in the loop PLO-PL2. Then Properties (6) and (7) imply

tip occurs twice in P(basel,e). But this contradicts (16). We conclude

that u2 previously took on the value tip.

Case2: Tip=O.

Variable u1 may assume the value 0 more than once in loop PLO-PI.&

Indeed, by Property (7), once ul assumes the value 0, it is always reset

to 0 in PI2. However if u2 # 0, the flag on 0 is removed before PI2 is

executed again for u1' So for tip to be 0, we must have ul = u2 = 0.

@D for (8)

Note that Property (8) implies both ul and u2 assume the value 9

InPLO-PI% Hence tip is in P(basel, e].

Property (9)

This woperty is illustrated in Fig. 4(b). 2 is shown as the first.

r
L

i

-

L

L

L

L

43

unlinked vertex that is common to both P(basel,e) andP (b a s e

noted above, Property (8) implies tip occurs in P(basel,e) and in P(base2,e).

We show below that if t is an unlinked vertex that precedes tip in P(basel,e),

t is not in P(base2,e). This suffices to establish Property(g) since

the argument for t in P(baseg,e) is similar.

First note the decomposition (14) holds for u = tip:

(17) P(base,e) = P(base, tip') * P(MATE(tip),e).

This was proved for tip d 0 in the discussion of Property (7). If tip = 0,

define tip'= e and take P(MATE(tip),e) = P(O,e) to be the null list. Then

the decomposition holds for all values of tip.

So P(base2, e) decomposes into two parts. We show that t does not

belong to either-part.

Suppose t occurs in P(baseQ,a'). Thus ul and u2 assume the value t

before they assume the value tip. This cannot be, since it contradicts

Property (8).

Suppose t occurs in P(MA!TE(tip),e). Consider the decompostion (7)

for base = basel. Vertex t occurs in P(basel,tip'), by hypothesis, and

in P(M&E(ti&),e), by supposition. Thus t occurs twice in P(basel,e). This

cannot be, since it contradicts (16).
e

Thus t does not belong to P(basel,e).

QED for (9)

Property (10)

In step PL3, variable v is initialized by the assignment

w- FIRST FREE (base).

This is the same as the initialization in step PLO.

In step PL& variable v is reset by the assignment

44

v+ FIRST FREE (LINK(MTE(v))).

This is the same as the resetting in step PL2.

So it is easy to see that v assumes the values of all unlinked

vertices preceding tip in P(base,e), and these vertices are linked.
._

This is illustrated in Fig. 4(c).

QED for (10)

Property (32.1

In the loop PLO-PI2, a vertex is flagged when its number is assigned

toy or ~2. The loop terminates when u
1

assumes the value tip, which

was previously assumed by u3-i' Again, take 1 = 1, for convenience.

So the vertices that are flagged in PLO-PI2 are these: the vertices

that precede 9 in P(basel,e); the vertices that precede tip in

P(baseQ,e)j tip and the first k unlinked vertices following tip in

P(baseQ,e), for some k. The. vertices in the last set correspond to the

k values assigned to y;! after tip. .

The vertices in the first two sets are made unflagged and linked

in the loop PL3-PL4.

Now we show that the loop PL5-PL6 processes the vertices in the

third set. Begin by considering the decomposition (17) for base = base2.

The decomposition shows the vertices in the third set are the first

(k + 1) unlinked vertices in P(MATE(tip),e).

In step PL5, u1 is initialized by the assignment u14ip. Thus ul is

set to the first unlinked vertex in P(MATE(tip),e).

In step PLY, u1 is reset by the assignment ulc FIRST FREE(LINK(MATE

(11~))). Thus u1 takes on values of consecutive unlinked vertices in

P(MATE(tie),e).

so % takes on the val.ues of the ;rertices in the third set. These

c.

t 45

-

L

-

i

L

-

L

L-

L-

.-

vertices are unflagged. When u1 assumes the value of an unflagged

vertex i aLI. (k + 1) vertices of the third set have been processeti,

so the loop halts.

(Note again the special case, --when 0 is the last of the (k + 1)

vertices. When

is removed from

no flag, so the

u1 assumes the value 0 for the first time, the flag

0. Then in step pz6, Q,. is reset to 0. Now
u1

has

loop terminates.)

QED for (11)

Property (l2)

We begin by proving that free(v), the first unlinked vertex in
-=_

P(v,e), is tig. Then we prove a similar equality for free (MATE(v)).

First note that free(base) = tip.- - For by Property (lo), every

vertex preceding a in P(base,e) is linked after steps PL3-PL4.

Now consider a vertex v that has the link (basel, base2). For

convenience, suppose v is in P(basel,e). Figure 4(c) illustrates this

situation. By definition, P(v,e) = P(basel,v) * P(baseT h e,,e).

list P(base,,v) contains no unlinked vertices, since free(basel) = tip- -

and v precedes tip. So the first unlinked vertex in P(v,e) is the

the first unlinked vertex in P(base2,e). Thus free(v) = Tree (base)
L

= tip, as claimed.

. Next consider a vertex MATE(v), where v has the link (base:L,

base2 > . WC rewrite the decomposition (14):

P(basy> = P(basel,v') * P(MATE(v),e).

Verte;: tip occurs after v in P(bnsel ,e), whence tip OCCUYS :':.n

P(~NvLe)* So free(base$ = tip = free (MATE(V)), FS claimed.- -
I . Q,EDfor(E?)

46

Property (13)

Suppose 2: has a pair link (bl, b2). The case (bl,b&

(basel,basee) is treated in Property (12).S o a s s u m e x@v.

Note that on entry to PAIR LIN&, free(x) = free(MTE(x)) =

TOP(bl,b*), by Property (4). Let u be this common value.

If u is not linked in PL3-PL4, then free (x) and free (MATE(x))

do not change. Also TOP (bl,bp) is not modified in pL7. So the

three values remain equal, and Property (13) holds.

Suppose u is linked in PL3-Pa. A decomposition similar

to (14) holds:

P(x,e) =“P(x,u') * P(MATE(u),e).

The vertices in P(x,u') precede u, so none of them are unlinked.

So the first unlinked vertex in P(x,e) is the first unlinked vertex

in P(MA!VE(u),e). Thus free (x) = free(MATE(u))= 9, by Property (l.2).

The proof that free(MATE(x))= tip in this case is analogous.

&ED for (13)

B. Proof of Properties (l)-(4)

Now that PAIR LINK has been analyzed, it is easy to check that

Properties (l)-(4) hold for all linked vertices after step a.

. If no vertices are linked in PAIR LINK, step PLO returns. Nothing

is changed in step a. So Properties (l)-(4) still hold after I&.

Now suppose one or more vertices are linked in PAIR LINK. Let

v be such a vertex. We check Properties (l)-(4) for v and for all

vertices x@v, below.

Vertex v has the pair link (basel, baseg). For definiteness,

choose v in P(basel,e). *Thus P(v,e) = rev P(base,,v) * P(baseg,e).

fPe 47

This is illustrated by vertex vll in Fig. 4(c).

L

Property (1)

Property (I.) holds for vertices x@v on entry to M& by induct:.on.

Since PAIR LINK does not reset any entries in LINK or MATE, the 3.is-L~

P(x,e) do not change. Hence Property (1) still holds for vertices ::

on e:rit from I&.

In particular, the lists P(basel,e) and P(base,,e) are well-defined..

Also, P(basel, v) is well-defined, since Property (10) shows v occurs

in P(basel, e). Thus P(v,e) = rev P(base19 v) * P(base
*'

e) is well-

defined. SQ, (1) holds for v.

C

L.

C

Property (2)

Property (2) holds for vertices x@, since the only possible

change in the list P(::,e) is that some unlinked vertices become linked.

Now we check that the vertices with even subscripts in P(v,e),

v2i" are linked. Writing P(v,e) = rev P(basel, v) * P(base2,e), we

check the two portions of P(v,e) separately.

All vertices in P(basel,v) are linked. This is a consequence of

Property (10). So the vertices v2i in rev P(basel,v) are certafnly linked;

. Now we check the vertices v2i in P(baseQ,e) lOn entry to M& the

even-subscripted vertices in P(basel, e) are linked, by Property (2).

Thus vertex v has an odd subscript in P(basel,e). So in P(v,e), base
- 1

has an odd subscript, and baseg has an even subscript. Thus the vertices

v2i
in P(base2,e) are the vertices with even subscripts in P(base

pd l

So h-operty (2) for base2 shaIs these vertices v are linked.2i .

48

It rema ins only to the ck that -J
2 irl = MA'E('J;,~). This is il-

luskxted in Fig. 4(c). The proof follows ecsily fror!: the pro;?ertie=,

just established.

Q,ED ?or (S)
. .

Property (3)

Property (3) holds for vertices x@v, since the only possible

change in the list P(x,e) is that some odd-subscripted vertices become

linked.

Now we check Property (3) for v. Write P(v,e) = rev P(basel, v)

* P(baseg, e). Let v
214

be an unlinked vertex in this list. As

noted above, all vertices in P(base , v are linked.1) So vTiA1 has

an odd subscript, 2j+l, in P(basepe). So for j > 0, the following

equality holds:

P(v,e) = rev P(basel,v) * P(based e f ' n2,e)

= rev P(basel,v) * P(base,,L v2i-lJ * P(v2i3e)

-operty (3)

= p(y,v2i-1) * P(v2ije) def ‘n

so Property (3) holds for v in this case.

For j = 0, the definition of P(v,e) ,+':es Property (3).

G'JD f'or (3)

Property (4)

This Property was proved in the analysis of PAIR LINK, as

Properties (12) and (13).

QED for V-0

t

L

L

.
49

Now the inductive hypotheses have been verified for all cases.

The Lemma follows, by induction.

It is easy to conclude from Lemma;' 3 that P(v,e) is an alternating

walk beginning with a matched edge. First a simple induction shows P(v,e)

is a walk. The argument is illustrated in Fig. 3(d) and Fig. 4(c).

Then Property (2) of Lemma 3 shows P(v,e) is alternating, with the first

edge matched.

The proof that P(v,e) is simple is more involved. It depends on

another relationship between linked and unlinked vertices, proved in

Lemma 4. First-%e give a definition extending free to a function of two

variables:

If v and w are linked vertices and w E P(v,e), then free (v,w) is

the first unlinked vertex beyond w in P(v,e).

For example, in Fig. 2(e), free (10,6) = 1; free (10,13) = 0; free (10,lO)

= 7* In general, free (v,v) = free (v).

Strictly speaking, free (v,w) is not well-defined. We have not shown

P(v,e) is simple, so w may occur more than once. We agree to always choose
e

the first occurrence of w.

Lemma 4: Suppose v and w are linked vertices and w E P(v,e). Then

free (w) = free (v,w).

Figure 2(e) illustrates the Lemma. Taking v = 10 and w = 3, free (3)

= 1 = free (10,3). This figure also disproves two modifications of the

Lemma that one might conjecture. First, free (3) = 1 4 7 = free (lo),

SO the conjecture free (w) = free (v) is false. Second, one might hope

that P (w,e) is a sub-path of P(v,e). This is not the case in Fig. 2(e).

50

The proof' is by induction. We show the Lemma is true each time

a link is assigned.

Suppose v is assigned a pointer link, so P(v,e) = (v,MATE(v))*

P(LINK(v),e). Let w be a linked vertex in P(LINK(v),e). So free(v,w) =

C o m b i n i n gfree(LINK(v),w). By induction, free(w) = free(LINK(v),w).

these equalities, we see the Lemma holds after a pointer link is assigned.

To check the Lemma after pair links are assigned, we consider four

cases. These depend on whether v and w are linked during the current

execution of PAIR LINK or were previously linked.

Case 1: v and w were previously linked.

Suppose prior to the execution of PAIR LINK, u = free(w) = free(v,w).

If u is unlinked after PAIR LINK, this equality still holds. Otherwise,

decomposition (15) derived in Lemma 3 holds for v end w:

pbJ,e) = P(v,u') * P(MATE(u),e)

p(w,e > = P(w,u') * P(MATE(u),e)

If t is the first unlinked vertex in P(MATE(u),e), t = free(w) = free(v,w).

Case 2: v was previously linked.

Vertex w is linked by PAIR LINK, so MATE(w) was previously linked.

Furthermore, MATE(w) E P(v,e) by (2) of Lemma 3. So by Case 1, free(MATEe

(w)) = free(v,MATE(w)). Property (4) of Lemma 3 shows free(w) = free(MATE

(w)). Also free(v,w) = free(v,MATE(w)), since MATE(w) and w are consec-

utive vertices in P(v,e). Combining equalities we get free(w) = free(v,w).

Case 3: w was previously linked.

Vertex v is linked by PAIR LINK. Let P(v,e) = rev P(basel,v) * P(base2,e).

If w E P(basel,v), Case 1 shows free(w) = free(basel,w). Since-m

free(basel,w) = tip =-w free(v,w), the desired equality holds.

If w E P(base2, e), Case 1 shows free(w) = free (base2,w).S i n c es

P(base2,e) is included in P(v,e), f'Ne(v,w) - f'ree(bare+,x), and the

desired equality holds. .

Case 4: vandwwerepreviou8lyunlinlsed.

It is clear from Fig. 4(c) that+.. - free(w) - f?ee(v,w).

m induction the Lemn hold8 eaCh tlm a 11nk ir 888igked.

N~ we can complete the proof that P(v,s) is en eltemating path.

Lenm 5: If v is (L linked vmtex, P(v,e) 18 rlmple.

Proof: We a88ort the Lennn IS true each flm l link 18 e88i@Ed.

Sdppoee v-is assigned a pointer link, 80 P(v,e) = (v,MTE(v))

* P(LIr?K(v),c). The walk P(LIHlC(v),e) 18 iirpyle, by Induction. It does

not contain v or MATE(v), 8ince both vertices were previously unlinked.

Hence P(v,e) Is simple.

Suppose v is assigned a pair link. Let P(r,s) = rev P(ba8el,v)

* P(bam+e). Both P(barel,e) and P(km+p) 8x-e simple, by induction.

So P(ba8el,v) i8 al80 simple, It SUffhe8 t0 8horr P(ba8el,r) is disjoint

f'ran P(bdsep,e).
e ,

Consider the @%ph before the pair link (e8el, ba8eQ) 18 a88igXMd,

as ill&rated in Fig. 4(b). Suppolre w c P(ba8el,e) n P(basee,e). We

Ishow w /P(basel,v). We can choose w to be linked, since MATE(w) is also

in the in§ion, and w or MATE(w) is linked: Lemma 4 implies

free(basel,w) = free(w) = free(baseQ,w). Referring back .-to Fig. b(b),--

either free(w) is 9 or free(w) lies beyond tip. Since v is assigned

a link (base1, base2), v does not lie beyond w. Equivalently, w f

P(base@

Thus P(basel,v) and $base2,e) are dlsJoint, and P(vje) is simple.

c

By lnciuction the I7,czmna holds each tjnle a link 1; axL;;neci.

Note our results ao not show that, as one might ;;:les;; from "5~. J(b),,

MATE(3-p) is the first vertex common to P(basel,e) anci P(base2, e). For

example, consider Fig. 7. Suppose an edge joining 7 and l2 is scanned

next. PAIR LINK is called. It sets tip to vertex 1, the first unlinked

vertex common to P(5,13) and P(l2,13). These two paths join an6 diverge

semral times before vertex 1. mm1) = 2 is certainly not the first

comon vertex. In general, although P(basel,e) and P(baseQ,e) may join

and diverge arbitrarily before joining at tip, the argument in Lemma 5 shows

only linked vertices occur between the intersection and MATE(tip).

We conclude from Lemma 5 that in step IQ, when MATCH scans an edge

xy leading to an exposed vertex y, (y) * P(x,e) is an augmenting path.

Now we analyze step IQ and REMATCH to see how the matching is augmented.

Figure g(a) shows (y) * P(x,e) when REMATCH (y,x) is called in M3.

The hollow vertices x2i+1 may or may not be linked. The convention for

half-wavy edges, introciuc~d in Fig. 7, is used. Thus MATE(~) re: x but

MATE(x) + y.
m

Figure g(b) shows (y) *P(x,e) when REMATCH (y,:.) returns. The 25th

has been remstched and the augmentation is complete.

. Lemma 6 shows REMATCH accomplishes the transformation shown in Fig.

8(a)-(b) l First we make some definitions. If z is a vertex, let M(z)

be the value of MATE(z) when the search begins in Ml. Define a set Z

that grows and shrinks as REMATCH resets MATE, by

2 = [M(z)j MATE(MArn(z))~ z).

A wrtex in 2 is at the straight end of a half-matched .edge, as illustrated

53

p(x,e >

. .

mm---m--o
Y X Xl x21-1 x2i (4 x2if 1 X2n-1 e 0

p(x,e) -c

C-----‘h,.a
Y X Xl x21-1 X2i b) x2i+l X2n-1 e

P(v,.e)

o---
f V Vl LINK(v) V3 (cl V2m Z

LINK(v) V3 Cd)
V2m Z

LINK(v) V3 W V2m Z

()a
w

(1C

(1d
(>e

Fig. 9

The augmenblng path y) * P x,e),
JIematchinr an au$lenting path

On entry to REMATCH (y,x).
On exit. *
The path (f) * P(v,z): v has a pointer link.
On entry to REMATCH (f,v). ,
On entry to REMATCH (v,, LINK(v)).
On exit.

54

P(w)

base,
(0

Ym V2m+l

P(w)

base2 (9)
V2m Z

--.

base2 0-d
V2m Z

P(v,e)

.

base2 V2m Z

0)

Fig. 9 (co&d)

The path(f) * P(v,z): v has a pair link.
(f) On entry to KEMATCH(f,v).
(g) On entry to REMATCH (basel,basee).
(h) On entry to REMATCH (base ,basel).
(i) On exit from REMATCH (f,vf.

I

f
IL

55

by x and 0 in Fig. g(a) and z = v2m+l in Fig. 9(c).

i

Lemma 6: Suppose REMATCH(f,v) is called with v a linked vertex, vf an

edge, f { P(v,e). Set z to the first vertex in P(v,e) that is in Z,

and set m so z = v2m+l' Suppose these conditions hold:

(>a z in unlinked or V~Z.

(b) MATE(v.) = M(v.) for 0 r: i s 2m.
1 1

Then REMATCH(f,v) returns with MATE reset in the following way:

L

Z =

(1C

tc) MAm(v2im1) = V2rj mm(V2i) = V2i-19 for 1 S i 5 m.

(d) WE(v) = f.

In Fig, 904, (y> * P(x,e) satisfies conditions (a) and (b) with

0, m = il. Figure g(b) illustrates conditions (c) and (d). Clearly

and (d) imply REMATCH works correctly.

Note vertex z of the Lemma exists. This is true because 0 E P(v,e)

since 0 = v2n+l = M(e).

L Proof: The proof is by induction on the linked vertices v ordered by@.

If m = 0, MATEQWI!E(v)) # v. In Rl, MATE(v) is set so (d) holds.

Then REMATCH returns in R4. Since condition (c) is vacuous, the Lemma
e

is true in this case.

Suppose m > 0 and v has a pointer link. Figure 9(c) shows the path

- (f) * P(v,z) when REMATCH is entered.. (Edge vf is shown half-dotted,

meaning MATE(f) may or may no-L be se-i; to v.) Condition (b) oho::s P(--,z)
L

is still T,ell-fiefine;i by MATE and LINK.

L

L

Figure c)(d) shops .the pz-"zi; a:Xer MATE(v) &W WTE(vl) are reset In

Rl c?.nd R2. We see th& for the recursive call REMATCH(vl,LINK(v)), vertex

z stays the same and m decreases by 1. Condition(a) holds because z is

unlinked or LINK(v) @v @z, and condition(b) still holds. So by induction,

REMATCH(vl,LINK(v)) returns with edges rematched as in Fig. y(e). So

56

conditions (c)-(d) are valid when REMATCH (f,v) returns.

Next, suppose m > 0 and v has a pair link. Figure y(f) shows

(f) * P(v,z) on entry to REMATCH. Note z E P(base2,e). This is true

because Fig. 4(b)-(c) and condition (a) together imply z does not pre-

cede tip in P(basel,e) or P(base2,e). Figure 9(g) shows the path after

Rl. Note at this point, v E P(basel,e) n 2 and z E P(base2,e) n Z.

For the recursive call REMATCH(basel,base2), z is reset to v.

Condition (a) holds because z is unlinked or base&)v@z,a n d c o n d i t i o n

(b) still holds. So by induction, REMTCH(basel,base2) returns as sho;:n

in Fig. y(h).

For the recursive call REMATCH(base2,basel), z is reset to v. Con-

dition (a) holds because base@v, and condition (b) is still true. So

by induction REMATCH (base2,basel) returns as shown in Fig. 9(i). So

conditions (c)-(d) are valid when REMATCH(f,v) returns.

The Lemma now follows by induction.

We have shown MATCH finds valid augmenting paths and correctly

rematches edges along these paths. The last two lerrmas show MP,TCH
s

finds all possible augmenting paths. First the search FE-M6 is

proved complete.

Lemma7: If a vertex v is joined to e by an alternating path

(vv' 1' ""V2n = e) beginning with a matched edge wl, either v is even-

tually linked or the search W-M6 finds an augmenting path.

Note this result shows that if an augmenting path to e exists, MX46

finds an augmenting path. For suppose (f,vo,vl,...,v2n = e) is an augmenting

path. By the Lemma, either v. is linked or W-M6 finds' an augmenting path.

57

In the former case, IQ-M6 finds (f) * P(v,,e) or some other augmenting path.

Proof: Suppose M&M6 terminates at M? without finding an augmenting
. .

path. Suppose v2i is linked, for 1 < i < n, and v is unlinked, as

shown in Fig. 10. We derive a contradiction below. This proves the

?Jemma .

LL--
V Vl V2 Yi-1 Yi V2i+l V2n-2 V2n-1 e

Fig. 10

We begin-by showing that for all i in 1 S i < n, vertex v2i 1 is

linked and free(v2i-l) = v. The proof is by induction.

First let i = 1. Note vertex vl is linked. For suppose the con-

trary. At some point in the search, in step M2, edge v2v1 is scanned

from the linked vertex v2. Then step m is executed and MATE(vl) = v

is linked. But this contradicts the original assumption that v is un-

linked. We conclude vl is linked.

So P(vl,e) exists, and equals (vl,MATE(vl) = v,...). Vertex v is

the first unlinked vertex in this path. So the inductive assertion holds

for i = 1.

.
Next suppose the assertion is true for some i and v2i-1, where ioz.

We prove the assertion for i + 1 and v2i+l. At some point in the search,

in step I@, edge v2i 1 v2i is scanned with both vertices v
2i-1 and v2i

linked. Then step & is executed, and PAIR LINK (v~~-~, v
2i) is called.

This guarantees that during the rest of the search, free(v2i-l) = free(v2i).

(See Fig. 4(c))* So v = free(v2& But P(v2i,e) = (v~~,MATE(~~~),...).

Thus MATE(v~~) = v2i+l is linked.

F?.arthermore, Property (4) of Lemma 3 implies free(v2i+l) = free(MATE

(v2i+1 1) = v. So the inductive assertion holds for i + 1.

By induction, the assertion holds for all i in 15 i s n. In

particular, ~2~~1 is linked and free(v2nel) = v.

So at some point in the search, in step W, edge ~2~ le is scanned

with both vertices v2n-1 and e linked. Then PAIR LINK(VZn_,,e) is

called. This

But this

is false, and

invocation links v = free(v2n l).

contradicts the original assumption. So that assumption

the Lemma is true.

&ED

Now we show the algorithm halts with a maximum matching. It is

clear from our discussion that MATCH always halts. Let M be the final
--.

matching in MATE.

Lemma 8: If e is an exposed vertex of M, there is no augmenting path

to e.

I n s o m e e x e c u t i o n o f M l , a s e a r c hProof: (Witzgall and Zahn [1969]).

for an augmenting path to e is started. Call this search S(e). S(e)

ends in E without doing an augmentation M3. Let D be the set of edges

emanating from linked vertices which are scanned in Mz during S(e). We

first show no edge of D is rematched in an augmentation done after S(e).

Suppose the contrary. Let Q(f,g) be the first augmenting path

- MATCH finds after S(e) that includes an edge in D. Let this edge be

w I , with v linked to e. Choose p maximal so v v
2P2P+l

is a matched

edge in P(v,e) n Q. As shown in Fig. 11, Q(f,g) = (f,w0,wl,...,w2q =

v2pJ w2q+1 = v2p+lJ l l l �Wt&l�E5). All vertices are shown solid, regard-
I

less of links. Note the case w
2q = v2p+19 w2q+l = v2p is possible. It

is tr ~1.3 by a similar argument.

59

P

e

“2m-1

Q(f&l) --_

P(v,e),_ yp+2

-*
f wo

-1-
Wl V w2q wzq+ 1 wzq+z WZn-1 cl

Fig. 11

The paths Q(f,g) and P(v,e).

The alternating walk (wC,wl,...,w2q-2'w2q-1~V2p'v2p+l~~~*9v2m-l' 4

L-

L

!s simple, by the choice of p. So Lemma 'j' shows WC is linked in S(e).

But then the augmenting path (f) * P(w,,e) is discovered in S(e),

contradicting the assumption e is exposed.

So no edge of D was rematched after S(e). If the search M&M6

starting from e is repeated after MATCH halts, exactly the same edges

D will be scanned. No augmenting path will be found. By Lemma 7, there

is not augmenting path to e in the matching M.

60

5e Efficiency and Applications

MATCH requires at most O(G) time units when executed on a random access

computer. For the search Mz-bf6 is done at most V times. We shuw below that

&ach of the steps W-M6 uses O(V2) time units per sear&l,
-.

Step IQ scans an edge emanating from a linked vertex. ML may be executed

twice for every edge of the graph. This requires O(V2) time units.

Step M3 calls REMATCH to augment the matching. M3 is executed at most

once in a search. It requires time proportional to the length of P(v,e),

or O(V) time units.

Step &t calls PAIR LINK to assign pair links. &#+ is executed for edges

joining two linked vertices. So & may be executed O(V2) times. In all
-=.

executions, no links are assigned. PAIR LINK returns in step PLO,

in constant time. executions, PAIR LINK links vertices,

requiring O(V) time units (in step PLT). So the total time used in M4 is

we.

Step M!j assigns a pointer link. M5 may be executed

requires O(V) time units.

tfmes. This

Step M6 does no processing for an edge, but just transfers control. M6

may be executed O(d) times. This requires O(V2) time units.
a

So MATCH requires a total of O(s) time units.

The space needed by MATCH can be seen from the listing in the Appendix.

The adjacency lists of the graph require V I 43 words, where E is the number

of edges. The matching, stored in MATE, uses V words. For the search Mj-M6,

2.5 V words plus 2 V bits are used: 1.5 V words in the table (BASE,TOP)

describing pair links, and V words (LINK) plus 2 V bits (FREZJTR) for link

information for vertices. Step NZ is implemented in a breadth-first manner,

requiring a queue (LINKQUEUE) of V words.

i
E

\--

L

i
t
L
L

61

This amounts to 2 V L 4 E words for the graph and matching, and 3.5

V words plus 2 V bits for MATCH itself.

Note procedure REMATCH is recursive, so it uses a run-time stack. IAti

is easy to see only lword (LINK(L)) per recursive call need be saved. Thus

at most 0.5 V words are needed for the stack. The stack may share the storage

allocated to LINKQUEUE, since these two data areas exist at different times.

MATCH can be used to speed up the scheduler devised by J?ujii, Kasami,

and Nnomiya [196g'J. They solved this problem: Compute an optimum schedule

for N tasks to be executed by 2 processors, assuming the tasks have equal

length and arbitrary precedence constraints. The approach is to construct a

compatibility Braph, showing which tasks may be executed simultaneously; find

a maximum matching on the compatibility graph; sequence the matched task pairs

' and the unmatched tasks according to precedence constraints. This algorithm
4was thought to require time proportionalto N [Fujii, Kasami, and Ninomiya,

lg6g-erratumI. 3But the first and last steps may be executed in time N , and

we have shown the matching can be done in time N3 . So the scheduler is an

3N algorithm.

MATCH can bee generalized to find maximum matchings on weighted graphs.

In a weighted graph, each edge has a weight which is a real number. The problem

is to find a matching withmaximum weight. Matching on ordinary graphs is

the special case of this problem where all edges have the same weight. An

algorithm has been developed which takes time proportional to v3 log v. This

and other generalizations are currently being investigated and programmed.

6. Acknowledgement

The author wishes to thank Professor Harold Stone for introducing him to

the problem of maximum matching,- for many stimulating conversations, and for

reviewing the manuscript witi great energy and perspicacity.

62

7* Appendix
This section contains a listing of an AmL w program for

the maximum matching algorithm.

Global Storage Declarations

i-kGif\' IfvTE(;FR V,E; STRl &\1(;(10) NAW;
C(!MMFFJT V IS T H E NUMSEP I-IF VF-‘HTfCE: IN Ttiiz bRAfH,

F I S THE h;UMYEF. OF FDGFS IN TtiE &Aft-d.
NJ4 +lE I S THF I\A?F GF T H E G R A P H ;

INTFIFI,r?SIZE:~=3;
PkAO (PlA4E,V,E);
C 0 M M EN T PKDCFSS E4ClI GRAYH U N T I L fW-%-DATA CAKD iS KEAd;
dHILF v>o Do
HFGIh
INTFGEP Ac?PAY ~JFIGHH3R(V+L::V+?~E);
IfbTEGFf? 4xRAY fw2TIl::V+Z*E);
C IGICAL ‘1RR4Y Fi?EF,PTR (0::V);
Ir,TFGEP A?.RAY LINK,MATF (G::Vl;
IluTE3fY A%t?AY BbSF (1:: (V-1) CfV 2,1x2);
IYTEGER A’<KAY TClP (1 : : IV-11 DIV 2) ;
I?JTfGER A&PAY L Ir\itQUt:UE4 1 : :V 1;
INTFi;Pix HEAl’l,TAIL,PAIRNUY,LIhKVTX,PLECFINPHR,H;
INTEGER TiP,F,.J;
INTFGER A R R A Y FWFVTX(l::Z);

C6F’:MENT NF I GHPOR

NFXT(X)

Fux4X)

PIP(X)

a
1 INK(X)

M A T E (X)

WWYlN, I)

TOP(N)

Ct:h:TAINS THF A D J A C E N C Y L I S T S OF T i t uRAPH.

I F X IS A VEPTFX, Thf! ADJACEWY L I S T O F X I S
I fsE IGhPOn (NFXl f X) 19 NEtGr-ltSOH(NtXT(N~XT(X))),...).
T H E L A S T V E R T F X I N TI-E LI5T iS NEIGHBOR(Y),
LJYERE NFXTfY) I S 0.

I S TRUF IF VFRTFX X I S U N L I N K E D .

I S FfilSF I F VFRTEX X H A S A PAI6 L I N K .

I f VE-RTFX X bAS A POfNTEK Lib&, LINKlX) I S
Tt-lF PO1 NTER.
I F VFRTEX X H A S A PAlR L I N K , LirJK(X) I S T H E
NUM5FR CIF Tt-f PAIR L I N K . 11 IS UStl, A S A N
I N D E X I N T O RASk A N D T G P .

I F VERTEX X I S O N A MATCHEli tUliE, MATE(X) I S
T H E V E R T E X M A T C H E D T O X .
I F V F R T F X X I S EXPC)SFD, MATE(K) I S 0 .

I F N I S THE NUMRER (3): A P A I R LINK, dASE(N.1)
A N D RASF(N,Z) ARF TI-t ADJACENT LINKED V E R T I C E S
W H I C H FCRM THF P A I R .

IF N IS THE hUMBET? CF A PAI& LINK, AND X IS A
L I N K E D V E R T F X W I T H L I N K Nc TticN TOP(N) IS T H E
FIRST- UhLlhKEI) V E R T E X iN Yo(,tXPOSEDvTX~,THE
A L T F P N A T I N G P A T H F@CM X T O TW tXPilSED V E R T E X .

63

Routines for Reading and Printing a Graph

L
WRITF(” “); wrlITF(” “1;
(p/R 1 Tf. (f’Sf*edr “,NAMF, “*rCr***“) ;
hR ITF(“V=“,V,“E=“,E 1 ;
WRI TF(“AT:JhCFNCY L I S T S ” 1 ;

.
REGIN
WHETE(I ,“:“I;
J :=NEXT(I);L
W H I L E J>!-l 0l-l

BfGiY
W~ITEIIN(NFIGHB%?(J));

L J :=NFXT(J);
END

E N D ;
L E N !) WR I TFGHAPH;

64

.Routines for Searching for Augmentations

wr;l~ Tf. [“s~~qr:H f[,H FXPi1SFD VTX”, FXpC?SFOV TX 1 ;
C:l ‘IM f-h T IrJIl IALlZE. l..IFK FXPCSf-0VTX’ AN!) +4AKk A L L c;THER V E R T I C E S

UIJL T NK FI: t
F:JP I :=J UNTIL v I;() FQFE(I) :=fJlR(l):=THUE;
FGFi (tjXi-‘rlS~!,VTX 1 : =F’ALSF ;
L I I;‘K@Jt’i.Jf: (1 I : = F X FGSE3VTX;
PAIRNUY:=t-EA’,:=Td IL:=l;
c !?bYF NT TH(S I!’ SFTS L I N K V T X T3 .4 LI!vKtil) JERrkX F<IcIM LINKQUEUE

,rr-1;vi) FxAM~NFS ThE EDi;F:T FtiAMTIh~ F R O M LlNl(VTx;
hhfLE hTAD<=TA rL--,Ij3

PEGIN
L ir\rKVTX :=I INK:WtCIFt Hf-‘ID);
IiF4 i?: =l-E40+1;
PLICE :=NFXT(LlhKVTXI;
WHI tt PI*ACFl=O 1x1

3 E G I “1
CCr:YEr\!T SFT NRHF T O T H E Y E X T V E R T E X AOJACEUT 13 LINKVTX;
YEIHR :=VfIGH-rnOK (P L A C E) :
P1 h(;E_:= NFXTWLACF);
CC’4PFfVT I F NRHR I S LINKFOr 4SSlGh P A I R dNl(S;
I F dHEf-(Ni31K) TIdEN f’AIRLThK(LINKbTX~NBHK)
ELSF 1” MATF(NPtiv I=0 ThPN

til?GIrY
c(‘i,YMfrF?T I F N P H R I S EXPClSED A U G M E N T T H E M A T C H I N G ;

a Y4TF(NRbR):=LrNKVTX;
bit’ I Tc (“4 UCIME N T ” 1 l

Ht;M4TCti~r~BHH,I I&/TX) ;
GCTfl DOYE
E ND

. C O M M E N T I F NBF4R A N D MATE(NPHR1 A R E UNLINKE1, A S S I G N A
PCINTER LIhK;

E L S E IF FRFF(MbTF(NBhf.?)) T H E N M4KEL1hKfLIlvKVTX,MATk{NBtiR11;
F N O W H I L E P L A C E ;

FNO ~WILFHFW;
D O N E :
FNn S E A R C H ;

Routine for Assigning Pair Links

r,wv,EYT W15 I P\c3P F L A G S UhLINKFD VHtTICfS A L T E R N A T E L Y I N
F’(~ASC1,5XPltSFDVlX) br\ll, tWMSE2, EXfOStiMh It U1\711. TM

FlRST CclMNf?N IJNLIftKkl? VFQTEX I S FIWJW. A VE3TEX I S
FI fl,C;I;Er, OY SFTTtfvG I TS PTK V A L U E T O k ALSE;

+iii J:LE 1’TY (k) l2f.l
!?E~IN
PTH(F) :=F<F;
3 :=3-J;

C;I?W+JT I F T H F Ehlr) QF P(HASpJ,EXPOSEDVTX) HA5 btkiJ KfACHED,
OON’T Gn ANY FURTHE!!;

I F FPEEVTX t J)=O THEhI J==+Jt
FR FEVTYI 3) l -.-FI~STW?FEfLINK(MATfd~RFEVTXlJ))));
E-ND;

66

\rdtliLF +-‘T!3(FIPSlFRFf! (LINK(YATF(F) 1)) 00
PTklFD :=TR1JF;

CLIMY FNT 3FSFT ENTYlFS I N ,TOP ARRAY WhICH HALE JUST k3EtN
LTNKf-0;

FiiJti I := 1 U N T I L PAIRNUP-1 D C
I F -FRFF(TT!p(L)) THFN TOP(I) := T I P ;

CLIP’~ EN T R U M P PA IRNUM Fclc! ThE N E X T PAIQ L I N K ;
PAIRNUM := FAIRhUM+L:
END :

EN.1 PAIC:LIhJK;

Routine for Assigning Links

YKOCEDUQF M4KEL IYK (INTEGER V A L U E C,FKEEVTX);
CCJg1YENT I’H‘fS DRrlCfD1JRF A S S I G N S 4 L I N K L T O A VERTlrX FHkEVTX;

BEG1 N
FKEE(i=PFEVTX) := F A L S E ;
1 INK(FKEEVTXl := L;
CUMl~FfVT PLACF F K E F V T X A T T H E F N D OF ThE CUEUE L1F CI/‘JKkD

V E R T I C E S ;
T A I L :=TAIL+l;
1 INKQUEUE(T61LI :=FREFVTX;
I F PTR(FRf-EVTX) T H E N WRITE(“PTR.: ‘0;
WRITEC!NIFKFFVTX,L,” ” 1 ;
END MAKFL I N K ;

67
Routine for Rematching

PRCIC FDUF’.E RFMA TCH (1 NTEGEY ViLiJE F ,L I;
C O M M E N T T H I S PRflCEl’2jJPE M A T C H E S L T O F.ANC CONT’INUES HkYAJCHING

Al. I;\[; P(L ,FWOStDvTX) 0 Y CALLWIG 11 S E L F Kk::UK!ii i/ELY;
% F’ i; 1 nJ . .

iv 17, I T F i 1;;: (” “! A T C t-f ” , F 9 1. 1 ;
f-l: = V4T.f (1 1;
:SATF(L) :=F:
C P VI Ss E Y T IF: THE Ft3LL I’UJIblG T E S T FAILS, THt RE.PIIATCriiNii ALUNG

P(L.,FXPi2SFOVTX) ‘ I S COpPLFTf;;
IF MATt:(ti)=C Tl4FN

IF PTil(l 1 T H E N
R E G T N
Cf?Mf+tilQT I f C hAS A PclIkTFIK L I N K , KEWITCH ALU& P fL, EXWSEDVTX 1;
YATF (ti) :=L INKtL.1;
RF-MATCl~(H,LIhiK(L)):
END

FLSF .

(, r1 M A I? v ‘r fF c. H A S 4 P A I R L I N K , REYATCH dLCIN(; YldASEl,EXf'USEDVTXI
A’\J[‘l Pmwz2, EXPOSEDVTX);

FOR I :=1,2 fit
KF~ATCH(~~~~F(LI~~K(L),I),6AS~(L)r3-I~):

END F(FMAT-0-1;

Driver Routine

COM:?ENT T H I S I S T H E “4AIN PROGRAM;

c 0 Fl ‘4 E ?J I- ?,?FAT, Ibnf-‘tJT GRAPti A N D STOKF IT I N AD3ACEEUCk L I S T S ;
RFAf);;?hDH;
CGP4ylEN r idKI Tf: GUT T H E ADJACf-NCY L I S T S ;
WPI TFGRAFH;e
kP~TE(“START “I A T ” ,TZPf-(I));
C C1MMltfil l- INI IIALIZE;
F;?tR i :=O U N T I L V !3tl ?lATEIIl:=O;
LINKW):=O;
CflMv!!i\(T SFAHCH FnR A U G M E N T I N G P A T H S Tn EACt’ EXPClSkO V E R T E X :
~‘:rIx 1: =1 U N T I L V I70 If MATE{ I)=0 T H E N SEAR2W I);
WR I TE (“F.NI) Y :I\T” ,TIMEUI);
CCMYENT WR.ITE I?i.JT I-I-E M A T C H I N G ;
WRITF(“MAXiMAL fVTCflINGV):
FOK I :=L U N T I L V DO LJRiTI-C-N{” f’,f,M4TE(I));
COMMENT REGIN T H E NEXT GKAPH:
KCAWNAMF,V,W;
END
E NI) .

I,’
‘,

References

Balinski, M.L., 1967. ?&belling to obtain a maximum matching," in
R.C. Bose and T.A. Dowling, ed., Combinatorial Mathematics
and Its Applications, University of North Carolina Press,
Chapel Hill, North Carolina, pp. 585.602, 1967 l

BwFb c*, 1957. "Two theorems in graph theory," Proceedings of the
National Academy of Science, Vol. 43, pp. 842-844, 1937.

Edmonds, J., 1965. "Paths, trees and flowers," Canadian Journal of
Mathematics, Vol. 1'7, pp. 449-467, 1965.

Fujii, M., Kasami, T., and Ninomiya,
two equivalent processors,
its, vol. 17, pp* 784-789,
15yll.

H 09 1969. "Optimal sequencing of
"SIAM Journal of Applied Mathemat-
1969, and erratum, Vol. 26x,

Harary, F., ='1969. Graph Theory, Addison-Wesley, Reading, Mass., 1969.

Knuth, D., 1968. The Art of Computer Programming, Vol. 1, "Fundamental
Algorithms," Addison-Wesley, Reading, Mass., 1968.

Witzgall, D. and Zahn, C.T. Jr., 1965. "Modification of Edmonds' Algor-
ithm for maximum matching of graphs/ Journal of Research of
the National Bureau of Standards, Vol. 6gB, pp.gl-98, 1965.

