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1. Introduction

Knuth, [ll], Dixon, [6] and [7], and Heilbronn, [8], have recently

investigated in considerable depth the average number of divisions performed

in the Euclidean algorithm for integers. Although many interesting questions

remain unanswered, the relatively elementary result of Dixon in [7] already

suffices to completely determine the average computing time of the Euclidean

algorithm to within a constant factor, which factor is in any case dependent

on the particular computer used and inessential details of the implementation.

Such a determination of the average computing time of the Euclidean algorithm

is the main result of the present paper. The maximum and minimum computing

times of the Euclidean algorithm for integers will also be derived since,

although their determination is quite elementary, they have apparently not

previously been published. These computing times are ail derived as functions

of three variables, namely the lengths of the two inputs and the length of the

resulting g.c.d. (greatest common divisor). Previous results on the computing

time of the Euclidean algorithm ([2] and [ll], Section 4.5.2, Exercise 30) have

been limited to upper bounds on the maximum computing time.



2. Dominance and Codominance

The relations of dominance and codominance between real-valued functions

were introduced in [3], where they were used in the analysis of the computing

time of an algorithm for polynomial resultant calculation. The related concepts

and notation have subsequently been adopted by several authors, for example,

Brown, [l], Heindel, [9], and Musser, [12]. The definitions and some funda-

mental properties will be repeated here since they will not yet be familiar to

many readers.

If f and g are real-valued functions defined on a common domain S we say

that f is dominated by g, and write f 5 g, in case there is a positive real

number c such that f(x)5 cog(x)  for all x S. We may also say that g dominates

f, and write g 2 f. Dominance is clearly a reflexive and transitive relation.

It is important to note that the definition is not restricted to functions of

one variable since the elements of S may be n-tuples.

Knuth ([lo], pp. 104-108) defines f(x)=O(g(x)) in case there is a positive

constant c such that If(x)\_<  c*lg(x)l. As long as one is dealing only with non-

negative valued functions, this formally coincides with the definition above of

f(_ g* Although Knuth implies that this definition is applicable only when f

and g are functions of one variable, he in fact uses it for functions of more

than one variable (e.g. [ll], p. 388) in a manner which is consistent with our

definition. Thus dominance is apparently a new notation and terminology but

not a new concept. Although Knuth discussed at length the logical weaknesses

of the O-notation, he chose not to abandon it in favor of 'the more natural

notation of an order relation.

If f 1 g and g& f then we say that f and g are codominant, and write

fag. Codominance is clearly an equivalence relation. If f 5 g but not g 1 f

then we say that f strictly dominated by g, and write f4 g. We may also
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say that g strictly dominates f, and write g >f. Strict dominance is

clearly irreflexive and transitive. Whereas the O-notation has no counter-

parts for the codominance and strict dominance relations, it will become

apparent that these are important concepts in algorithm computing time analyses.

Furthermore, the O-notation has a somewhat different meaning in asymptotic a-

nalysis than the one used by Knuth (see, e.g., [5]).

If f and g are functions defined on S and Sl is a subset of S, it wili

often be convenient to write f -( g on S 1 in case fl 5 gl, where fl and gl are

the functions f and g restricted to Sl. Also, if S C Slx...xS n'
a Cartesian prod-

uct, we will denote by fa the function f restricted to ((a}nS2x...xSn)flS; that is,

fa(x2,...,xn)=f(a,x2,...,xn)  for (a,x2,...,xn)E S. Similarly we may fix any

other of the n variables of f.

Dominance and codominance have the following fundamental properties, most

of which were listed by Musser in [12].

Theorem 1. Let f, fly f2, g, q and g2 be non-negative real valued functions

on S, and let c be a positive real number. Then

(a) ffJcf

(b) If fl -( gl and f2 1 g2, then fl+f2A gl+g2 and fl. f2< gl* g2.

(c) If f, ( g and f2 3 g, then fl+f2 5 g.
.J-

(d) max(f,g)df+g.

(e) If 15 f and 15 g, then f+g < f-g.-

(f) If l-( f, then fdf+c.-

(g) Let SCSlx...xSn and ak Sl. If f 5 g, then fa 1 ga.

(h) Let S=SluS2. If f 3 g on Sl and f< g on S2, then f 5 g on S.

Proof. These properties follow immediately from the definition, except

for (e). To prove (e), assume 1 -( f and 15 g so that, for some positive real

number c, cf)2 and cg>2. We then have (cf-2)(cg-2)>  0, so

c2fg+4z 2c(f+g) 2 c(f+g)-&. Hence c2fg_> c(ffg), cfg_> f+g and f+g 4 fg* I
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30 Computing Time Functions

Let A be any algorithm and let S be the set of all valid inputs to A

(the elements of S may be n-tuples). We associate with A a computing time

function tA defined on S, tA(x) being the number of basic operations per-

formed by the algorithm A when presented with the input x, a positive in-

teger. This assumes that the algorithm is unambiguously specified in terms

of some finite set of basic operations. Changing the set of basic operations

(as in reprogramming the algorithm for a different computer) will result in

changing the computing time function tA'
Alternatively, we could take the

view that this represents a change in the algorithm. However, if Bl and B2

are two sets of basic operations such that each operation in B 1
can be per-

formed by a fixed sequence of operations in B2, and vice versa, then the com-

puting time functions associated with Bl and B2 for any algorithm A are co-

dominant, and we will concern ourselves only with the codominance equivalence

class of t
A'

Thus the choice of basic operations is somewhat arbitrary. We

assume a choice which is consistent with any of the existing, or conceivable,

random access digital computers but, in order to avoid the triviality of

finiteness, with a memory which is indefinitely expandable.

The function tA is frequently too complex to be of interest for direct

study. Instead, we ordinarily decompose S into a disjoint union S = UIzlSn,

where each S The choice
n

is a non-empty finite set, S being a denumerable set.

of decomposition is made on the basis of some prior knowledge or some conjecture

about the general behavior of tA. Relative to a decomposition @fC= s1,s2,s3,... 3.
+

of S we define maximum, minimum and average computing time functions, - and
tA' tA

*
tA ond as follows, where IS,1 d enotes the number of elements of Sn.

t;(Sn)‘maxx  6 S tA(X)  3
n

(1)
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(3)c

I As illustration, and in preparation for our analysis of the Euclidean

algorithm, let us consider the computing times of the classical algorithms

for arithmetic operations, that is, addition, subtraction, multiplication

and division, of arbitrarily large integers. We assume that all integers are

represented in radix form relative to an integral base p2, as discussed by

!

L

L
,
L Knuth in [ll], Section 4.3. We know that the computing times of these al-

gorithms depend on the lengths of the inputs.,
L Following Musser, [12], we denote by L

P
(a) the B-length of the integer a,

that is, the number of digits in the radix form of a relative to the base B.L
If 1x1 is the ceiling function of x, the least integer greater than or equal

to x, we have

(4)
for a#O, and we define Lp(0)=l.

In most contexts the base p is fixed and we write simply L(a) for the

I
1

length of a. The omission of the subscript is further justified by the ob-

servation that, y being any other base, we have

I,
L-L
6 Y'

(5)

where L
B
and L are functions defined on the set I of all integers.

Y
In fact,

we can use the definition (4) when a is any real number and we thenhave

i

LP(a)N1n(lal+2) on R, (6
I

i
c where Rn is the natural logarithm and R is the set of all real numbers, and

(6) clearly implies (5). The length function also has the following easily

verified fundamental properties:
c
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L(a+b) 5 L(a)+L(b) for a,b EI, (7)

I the set of integers,

L(ab)wL(a)+L(b)  for a,bg I-{Oj, (8)

(9)L([a/b])"LL(a)-L(b)+l  f or a,b 61 and IalL\b\X.

We will also need the following theorem.

n
Theorem 2. Ca) 'C$=lai) 4_ c

i=lL(ai) for al,...,anE I.

c r&Jai) for al,...,anE I-{-l,O,lj.

Proof. L(ab& L(a)+L(b) for a,b "I, so L($,lai)~~~=lL(ai)  by induc-

tion on n, proving (a). To prove (b), assume first that 2s\ai\<p for 15 i 5 n.

Then L(TfBlai)l log T?- lall=.(logg2)log2<,l)ail>  (logg2)log22r%log~2)n=(logR2)6 1-l

1
2=lL("i)Y So C2=1L(ai)< (10p2p)L(~=lai) '_

Next, assume L (a.)> 2 for l<i<n, and let
@1- -- Ri=L

13
(ai). Then L(fly=Lai)-->log

B

(fly=l\d j 2 l"g*Cfly=lB
11-1

,c
= F=l( 'iB1)  L

1
2=11i/2, so yzl L(ai) _QL(flyElai).

c

Combining these two cases, we may assume L(ai)=l for 1Li 5 m and L(a)? 2

for m+l< i < n. Then- - 1
y=lLCai)5 (10P2B)L(~i=lai)  + 2L('~=m+lai)' 2(10g2B)-

c (IfL i=lai)+L(r~~+~ai))5  4(10g2P)L((=lai) since L(a)+L(b)L 2L(ab) for

a,bE I-IO).1

It should be noticed that a simple inductive proof of (b) was not

possible because n is regarded as a variable, not as an arbitrary but fixed

positive integer. As an immediate corollary of Theorem 2,‘we  have

L(ab)*bL(a) f or a,bC: I,la\> 2 and b> 0. (10)

If A, M and D are the classical algorithms for addition (or subtraction),

multiplication and division, respectively, as described in [ll], Section 4.3,

1
i

then we clearly have
6



t,(a,b)"L(a)+L(b) for a,bE I-TO], (11)

t,,(a,b)NL(a)*L(b)  for a,b &I-JO), (12)

tD(ayb)mL(b)  l L(☯a/bl)
for a,b& I and \a\>lb\W. (13)

iit!iS, for these algorithms, the natural decomposition of the set

d=f(a,b):a,bE  I] consists of the sets Sm ,={(a,b):L(a)=m&L(b)=n).  If we
Y

1

:~r ite t '(m,n) in place of t+(Sm  ,),
*

and similarly for t- and t , then from
Y

'11)' (12) and (13)' and using (9)' we have

t~(m,n)~t~(m,n)~t~(m,n)~m+n, (14)

( 5)1

++I
tD\m,n)Wt&m,n) ~ti(m,n)Nn(m-n+l) for m> n.- (16)

Thus for these algorithms the maximum, minimum and average computing

times all coincide. This will not be the case for the Euclidean algorithm,

to which we now turn.
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4. The Maximum and Minimum Computing Times.
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For simplicity, and without loss of generality, we will consider the

following version of the Euclidean algorithm, for which the permissible in-

puts are the pairs (a,b) of positive integers with a>b. The output of the

algorithm is the positive integer c=gcd(a,b).

Algorithm E

(1) [Initialize.] cc-a; dt-b.

(2) [Divide.] Compute the quotient q and remainder r such that c=dq+r

and O< r < d,- using algorithm D..

(3) [Test for end.] ct-d; dt-r; if d#O, go to (2).

(4) Return.

This algorithm computes two sequences, (al,a2,~.~,ae+2)  and (ql,q2,..*,q1)

such that a =a,
1

a2=b, ai=qiai+l+ai+2 with O<ai+2<ai+l for 15 i_< R, and aR+2=0.

al’“-‘a~+l are the successive values assumed by the variable c and ql,...,qR

are the successive values assumed by the variable q. (al,...,aj+2) is called

the remainder sequence of (a,b) and (ql,...,qL)  is called the quotient sequence

of (a,b). Steps (2) and (3) are each executed ,! times; this is the number of

divisions performed, which we denote by D(a,b).

By (13)’ the computing time for the i th execution of step (2) is

N L(qi)L(ai+l) ' The computing time for the i th execution of step (3) is

certainly dominated by L(a
i+l)

since at most it requires copying the digits of

ai+l
and a

i+2'
In an implementation of the algorithm in which a large integer

is represented by the list of its digits (e.g. [4]) such copying is unnecessary

and the computing time for each execution of step (3) is-l. For the same

reason, we will assume that the single executions of steps (1) and (4) have

computing times&l. We then have

8I
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t,;a’b)h, c (17)

If instead we were to assume that copying is required in steps (1) and (3)’

(17) would still hold after adding L(al) to the right hand side. But L(al)*'

L(QfL(a2) 4, ~~q$Jb& so (17) holds in any case.

From (17) we will derive the maximum, minimum and average computing times

of Algorithm E, by analyzing the possible distributions of values of the ai and
i

L

q ;, obtaining the codominance equivalence classes of these computing times as
L

functions of L(a), L(b) and L(c). Thus we consider the decomposition of &into

L
S
m,n,k =c (a,b):L(a)=m&(b)=n&L(gcd( a,b))=k) Y

iL

L

I
L

L
c

I
L

L

the sets

(18)

with m > n > k > 1.- - - We may verify that each set Sm n k is non-empty as follows.
Y Y

m-l m-l
If m=k, then (p P s

m-l k-l
If m>k, let a=p +p and b=p

n-l
,p

m,n,k'
. Then

c=gcd(a,b)=gk-', L(a)=m, L(b)=n and L(c)=k, so (a,b)E Sm n k. As above, we will
Y Y

write t'(m,n,k)
E

in place of tG(Sm n ,), and similarly for t- and
*

t
Y J E E'

Theorem 3. ti(m,n,k) 4, n(m-k+l).

Proof. Since b=a2> a3> . ..> a R+l, we have by (17) that

tE CaYb) -( L(b)t f,lL(4i) ' (19

Since L(a) dL(a+1) for a > 1 and since q- > 2 we obtain, by Theorem 2,
R-

1 :,lL(gi)" L(qe~i=l"+cQ+l)). ( 0)2

Since ai=qiai+l+ai+2> qiaiS2+a i+2, we have qi+l< ai/a+2 for i< R and hence

R-l
nizl(qi-'-l)<  ala2/aRaL+l. Combining this with qR=al/aL+l  yields

9
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Since L(ab/c2) 5 L(a2/c2 M L(a/c)-L(a

yie Id

tEbyb) 5 L(b) [L(a)-L(c)+l) ,

from which Theorem 3 is immediate.#

>-Lb > 1+ Y (19) Y PO) and (21)

(22)

We now proceed to prove that t~(m,n,k)~n(m-k+l), for which purpose we

need the following two theorems.

Theorem 4. tE(ayb) _) D(a,b > {D(a,b)+L(gcd (a&) 13 .

Proof. Let (qy-4Q and ( al , . . . . yaR+2 > be the quotient and remainder

sequences of (a,b), c=gcd(a,b) and k=L(c). By ( 17 > Y

tE(a'b) 2 (23)

Since aa+2 =o, aI+1 =c and ai=qiai+l+ai+2  2 ai+l+ai+2, a simple induction

shows that a8+2-i _> cFi, where F is the i
th

i
term of the fibonacci sequence,

defined by F
0
=O, FL=1 and Fi+2=Fi-f-Fi+l. But ([“I, P* 82) Fi+l L Bi/S;, where

$b=(l+J5)/2, and f12>fi so Fi+3 > fli. Hence 1 :,lL(ai)L$ fIklogg(cFi) 2

L(log$)+
1

;;; lDge'ii 2 i(log$)+(~~2)(log$?& So for k 12 and R 2 4,

z
:=lL(ai) > &kR+(1/16)(log  )12 k k1+j2

8
while for k=l and R 2 4,

z
fZIL(ai) 2 (l/16)(log@12  1 B2NkB+J2. For 15 3,

I
fCIL(ai) 1 L(c)=k"kJ+J2.

So by Theorem 1, part (h)' zf=1 2 k,!+R2 for all k and R, proving the theorem,

since 8=D(a,b). 1

Theorem 5. For every positive integer n, there exist positive integers

e and f with e 2 f, L(e)=L(f)=n, gcd(e,f)=l, and D(e,f)=n.

Proof. Let FO-4 wbe the generalized Fibonacci sequence defined by F. ~1,

10
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F (h
1

>+ Fch)
i+l

for i 2 0. If e=Fi;; and f=dh)
n

then e 2 f > C

and

> =h, and F$$,=F(h
i

Fch) Fch)
n+l' n ' l **'

P-L
F1

P-4-h, F. =1, 0 is the remainder sequence of (e,f) so

gcd(e,f)=l  and D(e,f)=n. Hence it suffices to show that for every n > 1 there-

is an h ,> 1 such that Bn-1_< FLh)< F(;;l < p .- It can be verified by calculation

that for n < 6 this holds with h=n.-

Since F O-4 =F
n n l+hFn for n 1 1 (see [lo], Section 1.2.8, Exercise 13) and

Fn=($n-@n)/JS where $=-@-l=h(l-0) for n 2 0 (see [lo], Section 1.2.8, Formula

WL we have IFn-~n~~=I~n/~~=(~$l~~n/~)~no But @/@15< -009, SO

1 F,-an/8 I< -005 8” n-1for n 2 5 and hence F,/F,-1 < 1.005 an/.995 jd < l.Oll$ <

1.64 for n 2 6.

Assume as induction hypothesis that R
n-l P-4 045 Fn < Fn+l < 8" with hs? 6.

wLet k be the least positive integer for which Bn 5 Fn+l. Then k > h and

F(k)/Fi;;l)={F +kFn+lj/~Fn+(k-l)Fn+l)<  k/(k-l)q/6,n+1
so F

Also F(b)/FCk'=(F

< (7/6)F,+1(k%(7/6) $.

Y n+2 n+l n-f-1+kFn+2)/{Fn+kFn+13<  max{Fn+l/F- n yFn+2/Fnf13 < 1*64y So

Fck) 04
n+2 < 1'64Fn+1 < (7/6)(1.64)$  < 2~~ 5 B

n+l (k) 04. Hence p" ,< Fn+l < Fn+2 < p
n+l

and k > h+l > n+l, completing the induction. I- -

Theorem 6. ti(m,n,k)dn(m-k+l).

Proof. By Theorem 3, it suffices to prove that t&n,n,k) 2 n(m-k+l).

Using Theorem 5, choose e and f with e 1 f > 0, L(e)=L(f)=n-k+l, gcd(e,f)=l

and D(e,f)=n-k+l. Let 6=f and Z=e+qf where q is the least non-negative integer

such that e+qf 2 p
m-k

. If q=O then Z=e, m=n and L(Z)%-k+*l. If q=l, then

m > n so Z=e+f 5 2e < 213
n-k+1

L B
n-k+2 m-k+l

Le and L(B)=m-k+l. If q 2 2 then

a=e+qf 5 2e+(q-1)f < 2(e+(q-l)f)<  2prnBk 5 prnWk+' and L(a)=m-k+l. Also, gcd(a,6)=

gcd(f,e+qf)=gcd(e,f)=l and D(Zi,E)=D(e,f)=n-k+1.

Let c=p
k-l

, a=zc and b=Ec. Then c=gcd(a,b), L(c)=k, L(a)=m, L(b)=n and

D(a,b)=n-k+l. Hence by Theorem 4 t$( m,n,k) ) (n-k+l)i(n-k+l)+kj&n(n-k-t?)._

11



Also, by 07)’ t;( m,n,k) ) L(q,)L(a,)m(m-n+l)(n). So by Theorem 1, part (c),

ti(m,n,k) ) n(n-k+l)+n(m-n+l)an(m-k+l).  1

In the next theorem we obtain the minimum computing time of the Euclidean

algorithm, which is much easier.

Theorem 7. ti(m,n,k).+n(m-n+l)+k(n-k+l).

Proof. By (17)'  t~(m,n,k) > L(ql)L(a2)Nn(m-n+l)o  Since qii['i/ai+l' we-
.s

have qi+l> ai/ai+l and So ~~,l(qi+l)  > Tlf,l(ai/ai+l)=a/c* BY (l-7)' t~(a,b)N

I f,lL(4i)L(ai+l)  ,> ‘(‘)z i,lL(qi)NL(c)~i=lL(qi+l)  L L(c)L(a/c)  ,> L(c)L(b/c)  N

L(c){L(b)-L(c)+l).  Hence ti(m,n,k

q-v'k) 2. 4m-n+l)+k(n-k+l).

) > k(n-k+l) and by Theorem 1, Part (c-

m-l
and b=p

n-l
If n=k, let a=B so that c=p

n-l
and D(a,b)=l. B Y (17)) this

shows that ti(m,n,k) 5 n(m-n+l) 1 n(m-n+l)+k(n-k+l).

m-l k-l
If n > k, let a=b +b and b=B

n-l
, so that c=e k-1, L(a)- and D(a,b)=2.

Then  by ( 17) Y t,( m,n,k) 3 n(m-n+l)+k(n-k+l) for n > k. Application of Theorem 1,

Part (h), concludes the proof. II

12



59 The Average Computing Time

i

L

c

i

As observed in the proof of Theorem 4, if a 2 b and (al,a2,...,ap+l,aR+)

is the remainder sequence of (a,b), then a 1 F1+l  2 @'/Js. Since e >J5, we

have 1 ln$ 2 &n a +l. That is,

D(a,b

7

) 5 (h @)-'(1n a +l), ( 42

with (In fl)-‘=2.078  . . ., Dixon established in [6] that for every

\D(a,b)-TRn  aI i (an a)2 ( 5)2

for almost all pairs (a,b) with u > a > b > 1, as u -+a, where- - -

( 6)2

>o

and we have T=o.&276~  l l . By more elementary means, Dixon proved in [7] the

weaker result that

D(a,b) _> *Rn a (27)

for almost all pairs (a,b) with u 2 a 2 b 2 1 as u + cp. In the following, we

will show how Dixon's weaker result can be used to prove that the average

computing time of the Euclidean algorithm is codominant with its maximum com-

puting time of n(m-k+1). Before proceeding to the detailed proof, however, I

shall present an intuitive sketch.

It is a well-known result (see [ll], Section 4.5.2, Excercise 10) that

the proportion of pairs (a,b) with u > a 1 b 11 for which gcd(a,b)=l  approaches

6f2 as u --+a. We will first generalize this result to the pairs (a,b) with

u>a>b>vasu-v+~b. Next we set u =- - p
n-k+*

and v = B
n-k

and conclude,

combining this result with Dixon's, that, for n-k large, it least half of the

pairs (a,b) for which u > a 1 b 1 v satisfy both gcd(a,b)=l and D(a,b) 1 *in a.

For each pair satisfying these conditions and each c with B
k-l k-&
Lc<p w e

obtain a pair (a,g)=(ac,bc) with gcd(a,'$)=c,  L(a)=L(G)=n and L(c)=k. If m > n

than from each pair (a,6) we obtain at least

i

t-

L 13



+Pm-n pairs (iyE) of the form (aq+6,6)for which L(I)=m and these also

satisfy L(F)=n, L(gcd(I,c))=k and D(z,L) 2 *an B
n-k

. The pairs (z,b=) so

obtained constitute at least .004g
-2

of all pairs in Sm n k and t$,b=) 2
Y Y

n(m-k-El)  for all (z,b=), so tL(m,n,k) 2 n(m-k+l) for n-k%, say. But it is

trivial that tE(m,n,k) 1 n(m;k+l) for n-k9 for any constant h, and so

Theorem 8. Letu and v be positive integers withu>v, let w= u-v, and

let q be the number of pairs of integers (a,b) such thatu> a,b 2 v and

gcd(a,b)=l. Then lq/w2%/$I_< (2Pn w + 4)/w.

Proof. Let Vk be the number of integers a such that k\a and u> a 2 V.

Then

1 vk-w/k)'l  Y ( 8)2

and vt is the number of pairs (a,b) for which klgcd(a,b) and u> a, b ,> v. By

the principle of inclusion and exclusion,

(29)

where/ is the Mobius function. BY (28) '

I
2 2 2

,vk-~ /k I< 2w/k+l (30)

Multiplying (30 by/(k)/w2  and summing, we have, by (29)'

I’ 1qw2- “,_,~(k)/k2!<(eHw+I)/w,

where H is the harmonic sum
W

co
k=l/ ( k)/k2=2/6

together with (31) yields

1 q/w2 -?-,'6  \ <( 2Hw+l > +I ;zw+lb'k2 .

(31)

(32)

(33)

14



/ -

L

t
i

t-

L

c k+11/k2 <

co
But co /W

xB2dx and H$ Rn w+l,  which establishes the theorem

after substitution in (33). 1
Theorem 9. There is a positive integer h such that for n-k%, there

2n-2k+l
are at least O.O2(j pairs (a,b) for which @

n-k+* n-k
>alblB ,

gcd(a,b)=l, and D(a,b) 1 gin a.

Proof. rSet u=p
n-k+*

1
n-k

d,V=fj ,W=u"V. Since 6/? > 0.6, lirnw+ co

(2Rn w+4)/w=O, and gcd(a,d)=gcd(b,a), by Theorem 8 there exists hl such that

there are at least 0.3 w2 pairs (a,b) for whichu> a ,> b 2 v and gcd(a,b)=l,

for n-k > hl. By Dixon's theorem there is an h2 such that if n-k > h2 then

D(a,b) < +Rn a for at most 0.05 pairs (a,b) withu? a, b 2 1. Hence if

h=max(hl,h2) and n-k > h there are at most (l/4)w2 pairs (a,b) for which

u > a 2 b 2 v, gcd(a,b)=l and D(a,b)  2 *an a. The theorem follows since

w 2 (JR-a3n-k and (J~-l)~/p > (~2-1)~/2 > 0.08. I- -

Theorem 10. There is a positive integer h such that for n-k> h, there

m+n-k
are at least 0.004 B pairs (a,b) such that a _> b, L(a)=m, L(b)=n,

L(gcd(a,b))=k and D(a,b) 1 $,!n p
n-k

.

Proof. Choose an h for which Theorem 9 holds. For every pair (a,b)

satisfying Theorem 9 and every integer satisfying pk-l Lc<Bk-* we obtain

a pair (ac,bc) with ac 2 bc, L(ac)=L(bc)=n, L(gcd(ac,bc))-L(c)=k,  and

D(ac,bc)=D(a,b)  _> &,!n a 2 $,!n pn-k. The mapping f((a,b),c)=(ac,bc) thus

defined is one-one so there are at least
2n-2k+l

(0.02g ) (J-B-I) gk-' 2 0.008p~~-~+l

pairs (a,b) with a 2 b, L(a)=L(b)=n, L(gcd(a,b))=k  and D(a,b) 2 $an gnsk.  If

m=n this completes the proof, so assume m > n. For each pair (a,b) with

L(a)=L(b)=n th ere are at least [(B"-B"-' )/a]? (pm-Bm-l)/@n 2 (l-~W1)@m-n-l~

+Bm-n pairs (aq+b,a) with L(aq+b)=m. Since gcd(aq+b,a)=gcd(a,b) and

15



i

D(aq+b,a)=D(a,b)+l  we obtain at least (0.008~ 2n-k) (+pm-n)q)o()4pm+n-k

pairs (aq+b,a) for which aq+b 2 a, L(aq+b)=m, L(a)=n, L(gcd(aq+b),a))=k

and D(aq+b,a) 2 fRn B
n-k

. 1

Theorem 11. t~(m,n,k)~n(m-k+l).

Proof. Let cl=min(l,$j!n 8). By Theorems 4 and 10, there exist h and

c2 > 0 such that tE(a,b) 2 c,D(a,b){D(a,b)+L(gcd(a,b))] 2 c2cl(n-k){cl(n-k)+kl

> c2c n(n-k) m+n-k
- I.2

for n-k>h and for at least 0.004~ elements of S
m,n,k' Every

element of S m-k+1m n k is of the form (ac,bc)  with a< B k
YY Y b< Bn-k+1 and c< p ,

so s
m+n-k+2

m n k has at most 0 elements. Hence,
Y Y

tl(m,n,k) 2 0.004 cFc2p-2n(n-k)

AJ n(n-k)for n-k%. By Theorem 7, ti(m,n,k) Jn(m-n+l)  2 n h n(n-k) for n-k< h.

Hence by Theorem 1, Part (h), ti(m,n,k)  > n(n-k).- By Theorem 7, tl(m,n,k) L

n(m-n+l) so by Theorem 1, Part (c), ti(m,n,k)  $ n(n-k)+n(m-n+l)=n(m-k+l). Hence-

by Theorem 6, t~(m,n,k)~n(m-k+l).
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