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1. | ntroduction

Knuth, [11], Dixon, [6] and [7], and Heilbronn, [8], have recently
investigated in considerable depth the average number of divisions perfornmed
in the Euclidean algorithm for integers. Although nmany interesting questions
remain unanswered, the relatively elementary result of Dixon in [7] al ready
suffices to completely determne the average conputing time of the Euclidean
algorithmto within a constant factor, which factor is in any case dependent
on the particular conputer used and inessential details of the inplenentation.
Such a determnation of the average conmputing time of the Euclidean algorithm
is the main result of the present paper. The maxi num and nini rum conputing
times of the Euclidean algorithm for integers will also be derived since,
al though their deternmination is quite elementary, they have apparently not
previously been published. These conputing tines are ail derived as functions
of three variables, namely the lengths of the two inputs and the length of the
resulting g.c.d. (greatest common divisor). Previous results on the conputing
time of the Euclidean algorithm ([2] and [11], Section L4.5.2, Exercise 3%0) have

been linmted to upper bounds on the maxi mum conputing tinme.



2. Domi nance and Codom nance

The relations of dominance and codom nance between real-val ued functions
were introduced in [3], where they were used in the analysis of the conputing
time of an algorithm for polynomial resultant calculation. The related concepts
and notation have subsequently been adopted by several authors, for exanple,
Brown, [1], Heindel, [9], and Musser, [12]. The definitions and sone funda-
mental properties will be repeated here since they will not yet be famliar to
many readers.

If f and g are real-valued functions defined on a conmon donmain S we say
that f is domnated by g, and wite f € g, in case there is a positive real
nunber c¢ such that f(x)< ceg(x) for all x S. W my also say that g doni nates
f, and wite g » f. Domnance is clearly a reflexive and transitive relation.
It is inportant to note that the definition is not restricted to functions of
one variable since the elenents of S may be n-tuples.

Knuth ([lo], pp. 104-108) defines f(x)=0(g(x)) in case there is a positive
constant ¢ such that [£(x)|< c-]g(x)]. As long as one is dealing only wth non-
negative valued functions, this formally coincides with the definition above of
f< g. Athough Knuth inplies that this definition is applicable only when f
and g are functions of one variable, he in fact uses it for functions of nore
than one variable (e.g. [11], p. 388) in a manner which is consistent with our
definition. Thus dominance is apparently a new notation and term nol ogy but
not a new concept. Although Knuth discussed at length the |ogical weaknesses
of the Onotation, he chose not to abandon it in favor of 'the nmore natural
notation of an order relation.

If f < gand g4 f then we say that f and g are codonminant, and wite
f~g., Codonminance is clearly an equivalence relation. |If f < g but not g 4 f

then we say that f is strictly donminated by g, and wite £4 g. W may al so

2
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say that g strictly domnates f, and wite g »f. Strict dominance is

clearly irreflexive and transitive. Wereas the O notation has no counter-
parts for the codoninance and strict dom nance relations, it wll beconme
apparent that these are inportant concepts in algorithm conputing tine anal yses.
Furthernmore, the O-notation has a somewhat different meaning in asynptotic a-
nal ysi s than the one used by Knuth (see, e.g., [5]).

If f and g are functions defined on S and S, is a subset of S it will

1
often be convenient to wite f < g on S, in case f, < g,» Where £, and g, are

the functions f and g restricted to s,. Also, if Sc& s x...x5, a Cartesian prod-

uct, we will denote by fa the function f restricted to ({a}nsgx...xsn)ﬂs; that is,
fa(xg,...,xn)=f(a,x2,...,xn) for (a’XE’“"Xn)E S. Simlarly we may fix any
other of the n variables of f.

Dom nance and codom nance have the follow ng fundanmental properties, nost
of which were listed by Musser in [12].

Theorem 1. Let £, fl,fg, g 8 and & be non-negative real valued functions
on S, and let ¢ be a positive real nunber. Then

(a) f~vef

(b) If £, L8, and f, £ g, then f+f,4 g +g, and £, £,< g, &,-

(c¢) If f. £gandf, { g, then £+, < g

(d) max(f,g)™ f+g.

(e) If 1<f and 14 g, then f+g £ f-g.

(f)y If 1L f, then f~f+c.

(g) Let s€s;x...xS and aes . Iff<Lg, thenf <g,.

1

(h) Let S=SIUSE' If f £gons and £< gon S,, then f < gon S

1

Proof. These properties follow imediately from the definition, except
for (e). To prove (e), assume 1 £ f and 1< g so that, for sonme positive real
nunber ¢, cf> 2 and cg > 2. W then have (cf-2)(cg-2)> 0, so
Prgth> 2c(frg) > o(f+g)+Hh. Hence o fg> c(f+g), cfg> ftg and f+g 4 fg. |

3
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%. Conputing Tinme Functions

Let A be any algorithmand let S be the set of all valid inputs to A
(the elenents of S may be n-tuples). W associate with A a conputing tine
function ty defined on S, tA(x) bei ng the nunmber of basic operations per-
formed by the algorithm A when presented with the input x, a positive in-
teger. This assunes that the algorithm is unanbiguously specified in terms
of sonme finite set of basic operations. Changing the set of basic operations
(as in reprogramming the algorithm for a different conputer) will result in
changing the conputing tine function ta Alternatively, we could take the
view that this represents a change in the algorithm However, if B, and B,
are two sets of basic operations such that each operation in By can be per-
formed by a fixed sequence of operations in B,, and vice versa, then the com

puting time functions associated with B, and B, for any algorithmA are co-

1 2

donminant, and we wll concern ourselves only with the codom nance equival ence

class of tA' Thus the choice of basic operations is somewhat arbitrary. W

assune a choice which is consistent with any of the existing, or conceivable,
random access digital conmputers but, in order to avoid the triviality of
finiteness, with a menory which is indefinitely expandable.

The function t, is frequently too complex to be of interest for direct

A

©

S

study. Instead, we ordinarily deconpose Sinto a disjoint union S = U 1S

where each S is a non-enpty finite set, S being a denunerable set. The choi ce
of deconposition is nade on the basis of some prior know edge or some conjecture
about the general behavior of £y Rel ative to a deconposition J={Sl,sg, 330003

o . . . + -
of S we define maximum mninmum and average conputing tine functions, t,, t, and

»

tA onop as follows, where |Sn| denotes the nunber of elements of Sn.

(1)

+
tA(Sn)=maxX p SntA(x) ,
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tA(sn)=minXE SnrA(x), (2)
* —-—
£, (8,)=1 XESntA(S>}/lSn|' ()
As illustration, and in preparation for our analysis of the Euclidean

algorithm let us consider the conmputing tinmes of the classical algorithns
for arithmetic operations, that is, addition, subtraction, multiplication
and division, of arbitrarily large integers. W assune that all integers are
represented in radix formrelative to an integral base g>2, as discussed by
Knuth in [11], Section 4.3. W know that the conputing tines of these al-
gorithms depend on the lengths of the inputs.

Fol | owi ng Musser, [12], we denote by LB(m the B-length of the integer a,
that is, the nunber of digits in the radix formof a relative to the base 8.
If [x]lis the ceiling function of x, the least integer greater than or equa

to x, we have
LB(a)=f10gB(la\+1)], ()
for a#0, and we define LB(O)=1.

In nost contexts the base g is fixed and we wite sinply L(a) for the
length of a. The omission of the subscript is further justified by the ob-

servation that, y being any other base, we have

L~L,
oL (5)

wher e LB and L are functions defined on the set | of all integers. In fact
A

we can use the definition (4) when a is any real number and we thenhave
LB(a)'vzn([a\+2) on R (6

where fn is the natural logarithmand Ris the set of all real nunbers, and
(6) clearly inplies (5). The length function also has the following easily

verified fundanental properties:
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L(atb) < L(a)+L(b) for a,b £1, 7)
| the set of integers,

L(ab)~L(a)+L(b) for a,b€ I-{0}, (8)

L([a/b])™L(a)-L(b)+L for a,b €I and |a| >|b|>0. (9)

We will also need the followi ng theorem

n
Theorem 2. (a) L(rrrl 21 1 L(a )for ars ..,ané l. (b) L(T

n .
i=181) ™

n
Zi=lL<ai) for al,...,ani I-{-1,0,1}.
Proof. L(ab)< L(a)+L(b) for a,b €I, so L{ ﬂll1 131 Zl"l (ai) by i nduc-
tion on n, proving (a). To prove (b), assume first that 2§]ai‘<3 for 1<i < n.

Then L(T‘[Il1 12 )> log Trn_l‘al‘ (log 2)1og2 1la. ‘> 10882)10g2 —(logBQ)n—(log 2)

B
Z 1=1k(a;), s Z?=1L(ai)5 (Logyp)L(M_ )2, ) -

Next, assune LB(ai)z 2 for 1<i<m, and |et zi=LB(ai). Then L(TT
£,-1 n

(Maylad ) 2 Log (8 ' )=Z=1( £;-1) 22;1’21/2’ 5021=1 Lia;) 2L ;)

Combi ning these two cases, we nmay assune L(ai)=1 for 1<i < m and L(ai)z 2

>1
—18;)2 °%

. n
for ml<i < n. Then z i=lL(ai)§ (1og23)L(nmi=lai) + 2L(wri‘=m+lai)5 2(1og25)
{L(ﬂrz:lai)ﬂ(ﬂ’;:mﬂai)}s l#(105;2B)L(Trri;lai) since L(a)+L(b)< 2L(ab) for
a,b€ 1-{0}.}

It should be noticed that a sinple inductive proof of (b) was not

possi bl e because n is regarded as a variable, not as an arbitrary but fixed
positive integer. As an inmmediate corollary of Theorem2, we have

L(a®)~bL(a) for a,b€ T,]a|> 2 and b> 0. (10)

If A, Mand D are the classical algorithns for addition (or subtraction),
mul tiplication and division, respectively, as described in [11], Section 4.3,

then we clearly have
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tA<a,b)~L(a)+L(b) for a,bé& I1-{0}, (11)

tM(a,b)"’L(a)-L(b) for a,b €I-10}, (12)

tD(a,b)wL(b) . L([a/b]) for a,b€ 1 and |a|>[bl>0. (13)

ivus, for these algorithns, the natural deconposition of the set

g=(a,b):a,be I] consists of the sets s _=f(a,b):L(a)=mgL(b)=n}. I we

3

, +, . + . - *
wr ite t "m,n) in place of t (sm ), and simlarly for ¢t and t , then from

b

“11), (12} and (1%), and using (9), we have

+ - * :
tA(m,n)~tA(m,n)NtA(m,n)~m+n, (1)
+ - *

t‘M(m,n>~ Ri(m,n)NtA(m,n)v mn, (15)
t;-(m,n)ru tg(m,n)wt;(m,n)mn(m-rﬁl} for m> n. (16)

Thus for these algorithns the maxi num mininum and average conputing
times all coincide. This will not be the case for the Euclidean algorithm

to which we now turn.
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L. The Maxi mum and M ni num Conputing Tines.

For sinplicity, and without |loss of generality, we wll consider the
follow ng version of the Euclidean algorithm for which the pernissible in-
puts are the pairs (a,b) of positive integers with a>b. The output of the

algorithmis the positive integer c=gcd(a,b).

Al gorithm E
(1) [Initialize.] cc-a; deb.
(2) [Divide.] Conpute the quotient g and remainder r such that c=dqtr
and 0<r < d, using algorithmb.
(3) [Test for end.] eed; de—1r; if d#0, go to (2).

(4) Return.
This algorithm conputes two sequences, (al,ag,...,a£+2) and (ql,qg,...,qﬂ)

for 1< i< t, and a . =0.

such that alza, a2=b, ai=qiai+l+a 40

jpp W O=a, <a,

a

12003 4 are the successive val ues assuned by the variable ¢ and SPERRRSL!

)

are the successive values assumed by the variable g. ) is called

<a1""’a£+2

the renmai nder sequence of (a,b) and (ql,...,qﬁ) is called the quotient sequence

of (a,b). Steps (2) and (3) are each executed 7 times; this is the nunber of

divisions performed, which we denote by D(a,b).

. th

By (13), the conputing time for the | execution of step (2) is

~ L(q,)L( The conputing tinme for the ith execution of step (3)is

ey

certainly domnated by L(a since at nost it requires copying the digits of

i+1)

a In an inplenentation of the algorithmin which a |arge integer

i+l

and ai+2.

is represented by the list of its digits (e.g. [4]) such copying is unnecessary
and the conputing tine for each execution of step (3)is~1. For the sane
reason, we wll assume that the single executions of steps (1) and (4) have

conputing times~1. W then have
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tgab)m) 1 1(a,) Llay,,) (17)

If instead we were to assume that copying is required in steps (1) and (3),

(17) woul d still hold after adding L<a1> to the right hand side. But L(al)ﬁ"

L(q1)+L(a2) <4 L<q1)L<a2)’ so (17) holds in any case.

From(17) we will derive the maxi rum mininum and average conputing tines
of AlgorithmE, by analyzing the possible distributions of values of the a, and
a4 obtai ning the codom nance equival ence classes of these conputing tinmes as

functions of L(a), L(b) and L(c). Thus we consider the deconposition of & nto

the sets
S, k= (2,b) iL(a)=maL(b)=n&L(gcd(a,b))=k} , (18)
with m>n>k >1 W my verify that each set Sm,n,k is non-enpty as follows.
[ f m=k, then (B‘ml,gml )€ Sm,n,k' If m>k, |et a=”§|+5k'| and b=5n'| - Then
c=gcd(a,b)=ek'l, L(a)=m, L(b)=n and L(c)=k, so (a,b)E€ S ok As above, we will
wite t'g(m,n,k) in place of t;(sm,n,k), and similarly for t% and t;.
Theorem 3. t—;(m,n,k) 4 n(m-k+1).
Proof.  Since b=a > a5> . ..>a ., we have by (17) that
tg(ab) & L(b)) 1 1(a,). (19)

Since L(a) ~L(atl) for a > 1 and since q, > 2 ve obtain, by Theorem 2,

)

- -1

I = + + .
Since a;=q;a; ,*a; > qa; ta, o, we have q 1< a /a. ., for i</ and hence

P-1 . o . , .
M=1(9;71)< aja,/aa . Combining this with q,7a,/a, vields
-1 2
1= (ag+1) < ab/e”. (21)
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Since L(ab/c2) <L(a"/c” )~ L(a/c)~L(a)-L(c)+l, (19), (20) and (21)

yield
eg(a,b) 4 L(b) {L(a)-L(c)H1} (22)

from whi ch Theorem 3 i s immediate. f§

W now proceed to prove that t;(m,n,k)Nn(m-k+l), for which purpose we

need the followi ng tw theorens.
Theorem k. tE(a,b) > D(a,b){D(a,b)+L(gecd(a,b))}.

Proof. Let (ql,...,ql) and (all o ’a£+2> be the quotient and renai nder

sequences of (a,b), c=gcd(a,b) and k=L(c). By (17),

Z
eg(ab) 2 ) [L(a,). (25)
Si nce a£+2=0, a,,17¢ and ai=qiai+1+ai+2 > ai+l+ai+2’ a sinple induction
shows that a ., . > cF,, where F, is the i'N termof the ribonacci sequence,

: i
defined by F =0, F;=1 and F  =F +F . But([10], p. 82) F, 4 > 97//5, where

i +1
$=(1+/5)/2, and ¢2>/5 SO Fi. > ¢*. Hence Xf=1L(ai)22f=210gB(cFi)_>_

1(1o c)+z 2 10g ¢ > 4(log ¢)+(* %) (log #). So for k >2 and 1 >k
gB i=1 g = gB 2 gB * - = ’

f=lL(ai) > %kz+(1/"16)(1og8¢ I v ki+4° while for k=1 and I > b,

2 2 2 2
ZleL(ai) > (1/16)(10g8¢)£ > I ~ki+y . For 1 <3, Z f=lL(ai) > L(c)=k~kf+e .

So by Theorem 1, part (h), Zf=l > kﬂ+/22 for all k and ¢, proving the theorem

since #=D(a,b). il

Theorem 5. For every positive integer n, there exist positive integers
e and f with e > f, L(e)=L(f)=n, gcd(e,f)=1, and D(e,f)=n.

Proof. Let F<h> be the generalized Fibonacci sequence defined by th>=1,

10
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thj=h, and ngg F< )+ F<h> for i >0. 1If e=F(h) (h

i i+l = ntl and f=F ) then e >f >¢

and Féﬁ, E(h’>. * % F§h>=h, Féh)=1, 0 is the remainder sequence of (e, f) so

ged(e,f)=1 and D(e,f)=n. Hence it suffices to show that for every n > 1 there

. -1
is an h >1 such that Bn <F( )_ (hil < B It can be verified by calculation

that for n <6 this holds with h=n.

Si nce Fr<]h)=1«*n 1+th for n > 1 (see [10], Section 1.2.8, Exercise 13) and

=(g"-f™)//5 where P=-g l=3(1-/5) for n > 0 (see [10], Section 1.2.8, Formula
(14)), we have |F_-g"/5|=|B"/v51=(18/21"//5)8". Bur |B/817< 009, so
| F_-g"//51<.005 ¢" for n >5 and hence F_/F__; < 1.005 p"/.995 gt < 1.011p <
1.64 for n >6.

Assune as induction hypothesis that Bn-l < lgr\:’)< (h) < a with h>n>6.

Let k be the least positive integer for which B < F“fr{ Then k > h and

(kl

P pD o a1/ 0E (ke J< K/ (k-1)<1/6, so B < (7/6)88T <(7/6) 8"

(k)

n+1}

(k) -
A'so, T O/F 1=(F +KF Y/ {F +KF L 1< max(F . /F ,F /F 1} < 1.6k, so
(k) (k) n n n+l (k) (k) n+l
Foyp < LBUF 0 <(7/6)(1.64)8" <2a" < 8 . Hence A < F 1l SF 4o <8

and k > htl > n+l, conpleting the induction. |

+
Theorem 6. t_(m,n,k)~n(m-k+1).

gl

E(m,n,k) > n(m-k+1).

Using Theorem 5, choose e and f with e > f > 0, L(e)=L(f)=n-k+1, gcd(e,f)=1

Proof. By Theorem 3, it suffices to prove that t

and D(e,f)=n-k+1. Let b=f and d=e+qf where ¢ is the | east non-negative integer

such that e+qf > emk. If ¢g=0 then d=e, m=n and L(&)=m-k+l. If ¢=1, then

m> n so d=etf < 2e < 2g™ KL | pNK2 o mektL oy g (@) mmektl. 11 g > 2 then

a=etqf < 2e+(q-1)f < 2(et+(q-1)f)< o “k < gm <1 and L(a)=m-k+1. Al so, gcd(a,b)=

ged(f,etqf)=gecd(e,f)=1 and D(&,5)=D(e, f)=n-k+1.
Let c=ek'| , a=ac and b=bc. Then c=gcd(a,b), L(c)=k, L(a)=m, L(b)=n and

D(a,b)=n-k+1. Hence by Theorem k tf(m,n,k) » (n-k+1) {(n-k+1)+k} ~n(n-k+1).
11
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Also, by (17), t;(m,n,k) ¢ L(q)L(a,)(m-nt1)(n). So by Theorem 1, part (c),
+
tE(m,n,k) > n(n-k+1)+n(m-ntl)~n(m-k+1). ]

In the next theorem we obtain the mnimm conputing time of the Euclidean
algorithm which is nuch easier.

Theorem 7. té(m,n,k)fun(m-n+l)+k(n-k+l) .

Pr oof . By (17)> t};(m’nak) >_ L(ql>L(3‘2)~n(m-n+l>‘ Si nce qi=[ai/ai+lj we

L L -
have q,, .> ali/ai+1 and So ]Ti=l(qi+1) > TTi=1(ai/ai+1>“a/C- BY (17), tE(a,b)""

i+l
Y Lnlatlag,) 2 1)) fbla)vu(e))  TlaH) 2 Lle)L(a/e) 2 L(e)L(b/e) ~

L(c){L(b)-L(c)+1}. Hence té(m,n,k)»}_k(n-kﬂ) and by Theorem 1, Part (c),

t(m,n,k) ¥ n(mn+l)+k(n-k+).

: y
[ f n=k, | et a=gm| and b=sn | so t hat c=en and D(a,b)=1. By (17), this

shows t hat tE(

m,n,k) 4 n(mn+l) < n(m-nt+l)+k(n-k+1).

If n>k, let a=gm|+5k'| and b=gn'| . so that c=ak'1, L(a)=m and D(a,b)=2.

gl
Part (h), concludes the proof. .

Then by ( 17), t_ (m,n,k) £ n(mn+l)+k(n-k+l) for n > k. Application of Theorem 1,

12



5. The Average Conputing Tine

As observed in the proof of Theoreml4k, if a > b and (81’32""’az+1’az+2)

¢£//‘5. Since e > /5, we

is the remainder sequence of (a,b), then a > Fool 2
have £ /ng > in a +1. That is,
D(a,b) < (n )" (in a +1), (24)
with (£n¢)_1=2.078 . . ., Dixon established in [6] that for every >0
|D(a,b)-r4n a| < (4n 51)%-*-G (25)

for alnost all pairs (a,b) with u>a>b>1, as u - «, Where
-2
=121 2, (26)

and we have 7=0.8i276:.e¢ . By nore el enentary neans, Dixon proved in [7] the
weaker result that

D(a,b) > %/n a (27)
for alnost all pairs (a,b)with u>a >b >1as u-e. In the following, we
will show how Dixon's weaker result can be used to prove that the average
computing time of the Euclidean algorithmis codonmnant with its maxi num com
puting tinme of n(mk+l). Before proceeding to the detailed proof, however, |
shall present an intuitive sketch.

It is a well-known result (see [11], Section 4.5.2, Excercise 10) that
the proportion of pairs (a,b)with u >a >b >1 for which ged(a,b)=1 approaches
6TT_2 as U »o. We will first generalize this result to the pairs (a,b) wth
u>a>b>vasu-v-owo Nextw set u-= Bn_k-% and v = Bn-k and concl ude,
combining this result with Dixon's, that, for n-k |arge, at least half of the
pairs (a,b) for which u >a >b > v satisfy both ged(a,b)=1 and D(a,b) > #in a.
For each pair satisfying these conditions and each ¢ with Bk'|_<_ c < Bk'iév e
obtain a pair (a,b)=(ac,bc) With gecd(a,b)=c, L(a)=L(b)=n and L(c)=k. If m>n

than from each pair (a,b) we obtain at |east

13



%am_n pairs (Z,E) of the form (aq+b,b6)for which L(:)m and these also

n- k

satisfy L(§)=n, L(gcd(z,ﬁ))=k and D(:,g) > 1in g The pairs (:,g) o)

: . -2 . : = =
obtained constitute at least .ookg = of all pairs in Sm,n,k and tE(a,b) z

= = *
n(m-k+1) for all (a,b), so tE(m,n,k) > n(m-k+1) for n-k>h, say. But it is
*
trivial that tE(m,n,k) ¥ n(m=k+1) for n-k<h for any constant h, and so

- m,n,k)™n(m-k+1).

g
Theorem 8. Letuand v be positive integers withu>v, let w= u-v, and

let g be the nunber of pairs of integers (a,b) such thatu> a,b > v and

gcd(a,b)=1. Then lq/w2'6/7'€|§ (2in w + 4)/w.

Proof. Let v, be the number of integers a such that k|a and u>a > v.
Then
‘ \)k-w/k\<l y (28)
and vi is the nunber of pairs (a,b) for which k‘gcd(a,b) and u>a, b >v. By

the principle of inclusion and excl usion,

=) ey Ay (29)

where # i's the Mbius function. By (28),

_ 1v§-w2/k2\< 2w/ k+1 (30)

Mul tiplying (30 by/¢(k)/w2 and sunming, we have, by (29),

.} |0/ Y, 4 (1)K <(28 1) fw, (31)
| where H is the harnonic sumZ‘l’;ll/k. Using
i

© 2
w Z = A(K) /K= 6 (32)
‘ together with (31) yields

2 ® 2

| q/w —ﬂ2/6 | <(eH+1) +Z N (33)
—

1k




©

2 -2 . .
BUtZEWﬂl/k </Wx dx and H < fn wtl, which establishes the theorem
after substitution in (55).'

Theorem 9. There is a positive integer h such that for n-k% there

-2k+ : . - k+* -
are at |east 0.0eggn 2hetl pairs (a,b) for which en K S a >b > sn k
ged(a,b)=1, and D(a,b) > %/n a.
Pr oof Set u=f n-kts v=g" K w= u-v. Since 6/1'[2 >0.6, lim
oo, € B I 8 > . ) W @

(2inw+l) /w=0, and gcd(a,b)=gcd(b,a), by Theorem & there exists h, such that
there are at least 0.3 W pairs (a,b) for whichu>a >b > v and gcd(a,b)=1,

for n-k > hl. By Dixon's theoremthere is an h, such that if n-k > b, t hen

D(a,b) < /n a for at nost 0.05pairs (a,b) withu>a, b > 1. Hence if

h=max(hl,h2) and n-k > h there are at nost (1/u)w2 pairs (a,b) for which
u>a>b >v, ged(a,b)=1 and D(a,b) > /n a. The theorem follows since
“and (/8-1)%/8 > (2-1)°

w > (/a-1)g" /2 > 0.08. |

Theorem 10. There is a positive integer h such that for n-k> h, there

are at |east 0.004 Bm’rn-k pairs (a,b) such that a > b, L(a)=m, L(b)=n,

L(ged(a,b))=k and D(a,b) > 2n g™ K

Proof. Choose an h for which Theorem 9 holds. For every pair (a,b)
; -1 .
satisfying Theorem g and every integer satisfying Bk | S<e< Bk = we obtain

a pair (ac,bc) With ac > bc, L(ac)=L(bc)=n, L(gcd(ac,bc))=L(c)=k, and

D(ac,bc)=D(a,b) > i4n a > £in Bn'k. The mapping £((a,b),c)=(ac,bc) thus
defined is one-one so there are at |east (0.0232n'2k+1) (/8-1) Bk'l >0.008p
pairs (a,b) with a > b, L(a)=L(b)=n, L(gcd(a,b))=k and D(a,b) > %/n Bn'k. | f

m=n this conpletes the proof, so assume m > n. For each pair (a,b) with

m m-1 m-n-1

L(a)=L(b)=n there are at least |(g"-g" 1)/al> (g"-g" ") /8" > (1-5"1)5 >

%Bm-n pairs (aq+tb,a) with L(ag+b)=m. Since gcd(aq+b,a)=gcd(a,b) and

15
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2n-k m+n-k

D(aq+b,a)=D(a,b)+l we obtain at least (0.008g ) (28" )=0.00kg

pairs (aq+b,a) for which ag+b > a, L(ag+b)=m, L(a)=n, L(gcd(aq+b),a))=k
and D(aq+b,a) > i/n Bn_k. | |

*
Theorem 11. tE(m,n,k)Nn(m-k+l) .

Proof. Let c1=min(l,%£n 8). By Theorems L and 10, there exist h and

¢, > 0 such that tE(a,b) > ch(a,b){D(a,b)+L(gcd(a,b))} > cgcl(n—k){cl(n-k)+k}

> cglc n(n-k) for n-k>h and for at |east 0.0ohsmm'k el enents of S Every

2 m,n,k’

-k+ -k+
mkl, b<5nk1andc<gk,

mtn-k+2 * gc

SO S, 4 Nas at nost g elenents.  Hence, t_(m,n,k) > 0.004 c;

~ n(n-k) for n-k>h. By Theorem 7, t;(m,n,k) 2 n(m-n+l) > n > n(n-k) for n-k< h.

el ement of S_ is of the form(ac,bc) With a< g

0Lk

08-2n<n—k)

Hence by Theorem 1, Part (h), t;(m,n,k) > n(n-k). By Theorem 7, t;(m,n,k) >

n(m-n+l) so by Theorem 1, Part (c), 0

E(m,n,k)_} n(n-k)+n(m-nt+l)=n(m-k+1). Hence

by Theorem ¢, t;(m,n,k)fv n(m-k+1).
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