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ABSTRACT

A subroutine for generating uniformy-distributed floating-point
nunbers in the interval [0,1) is presented in ANSI standard Fortran.

The subroutine, URAND, is designed to be relatively nachine independent.
URAND has undergone minimal testing on various nmachines and is thought to
work properly on any machine having binary integer number representation,
integer multiplication modulo m and integer addition either modulo m
or yielding at |east Log, (m) significant bits, where m is some
integral power of 2 .

Upon the first call of URAND, the value of mis autonmatically
determ ned anti appropriate constants for a linear congruential pcnerator
are conputed fol | owi ng the suggestions of D. E. Knuth, volume 2. yrAnD
is guaranteed to have a full-length cycle. Readers arc invited to apply
their favorite statistical tests to URAND, using any binary nachine, gand

report the results to the authors.

The project was supported by the Ofice of Naval Research, Contract
NOOO14-67~A~0112-0029.
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URAND -- A Universal Random Nunmber Cenerator
M chael A Ml colmand Ceve B. Mler
The Fortran subroutine for conputing random nunbers which we des-

cribe in this brief report is intended for publication in a forthconing

Prentice-Hal | textbook: Conputer Methods for Mathematical Conputations,

by G E Forsythe, M A Milcolmand C B. Mler. Qher Fortran sub-
routines in this book (e.g. the linear equation solver, QD.E solver,
etc.) are sonewhat novel in that they are coded in a relatively machine-
i ndependent style. Anong other things, this means that each subroutinc,
i f necessary, deduces necessary paraneters of the conputer arithmetic
systemat the tine it is executed. Techniques related to those given in
Mal col m (1972) are used for obtaining floating-point parameters. |In the
sane spirit we have attenpted to programa relatively machine i ndependent

random nunber generator which we nmodestly call URAND which stands for

"universal random nunmber generator,” and fortuitously for "uniform random
nunber generator ." To date, URAND has undergone only nininal testing on
an 1BM 360, CDC 6600, PDP 10 and SIGVA 7. Since it is purported to work
properly on most conputers in use, URAND nust be tested on many nore com
puters using a variety of statistical tests. W encourage readers to

try URAND on their conputers and test it using their favorite statistical
tests. Feedback I'rom OUr readers will be greatly appreciated. WC are
particularly interested in learning of results of the "spectral test"
described in Knuth, vol. 2, p. 82.

A source listing of URAND in ANSI standard Fortran is included at

the end of this report. W will briefly describe the rationale which |ed



to sone of the seemngly "randonf statements in URAND.

A linear congruential sequence of' integers is obtained by sectting

Yn+l = aYn + € (modulo Ny, n>1, (%)

on the n-th call of URAND. These are converted into floating-point

nunbers in the interval [0,1) and returned as the value of URAND. The
resulting value of erl+l Is returned through the paraneter |Y and
shoul d be used for the actual parameter in the subsequent call. (n the
first call of URAND, 1Y should be initialized to an arbitrary integer
val ue.

The values of m a and ¢ are conputed automatically upon the
initial entry. The main assumption here is that the machine uses binary

I nteger nunber representation and multiplication IS pertormed modulo M

where m is a power of 2 . This assunption sinplifies the conputation

of (¥). URAND discovers the value of m2 by testing successive powers
of 2 until a multiplication DY 2 produces no increase in magnitude.
It is also assumed that integer addition is either nodulo m, or at

| east fog,(m) significant bits are returned. The values of a and c

are conputed fallowing the advice of Knuth which he sumarizes (see p. 78
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and p. 155, vol. 2):
1) Pick a to have three properties:
anmd8 =5
m/100 < a <m- ym
The binary digits of a have no obvious pattern.
ii) Pick ¢ as an odd integer with
Cat-Lis.

In the source code, a is called IA, and cis called 1¢ . The random
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bit pattern of a is achieved by calling DATAN(1.D0) which returns the
doubl e-precision value of =/ which, on a binary machine, is the shifted
bit pattern of = . The division by 8.D0 and multiplication by m/2 is
hopeful Iy acconplished wthout unduly altering this pattern. The double-
precision value is finally converted to an integer, nultiplied by
8 and incremented by 5to insure a mod 8 = 5. The resulting value of'
a is roughly %w wg . This satisfies the inequality constraints. The
value o1 ¢ is conputed directly fromthe definition (ii). W realize
that some Fortran conpilers don't convert constants |ike 8.p0 to exact
floating-point representations, but this problemwill probably be of little
consequence.

The sequence [Yn] is guaranteed to have maxinum period |ength
m by Theorem A given in Knuth, p. 15. However, one nust renenber that
the least significant binary digits of the Y will not be very random
Wen t he Y ~are converted to floating-point nunbers, the least signi-
ficant digits are usually not inportant. To conpute = random integer
between 0 and k-1 , one should multiply the result of' urawp by k
and truncate the result.

W wish to thank Fred Fritsch and Neil Goldman for testing earlier

versi ons of URAND.
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FUNCTI ON URAND(IY)

| NTEGER 1A,IC,ITWO,IY,M2,M
DOUBLE PRECI SI ON HALFM
DOUBLE PRECI SI ON DATAN,DSQRT
DATA M2/0/,1TW0/2/

IF (M .NE. 0) GO TO 20

| F FIRST ENTRY, COWPUTE MACH NE | NTEGER WORD LENGTH

M= |
10 M = M
M= ITWO*M2

IF (M.GT. M) GO TO 10
HALFM = M2

COWUTE MULTI PLI ER AND | NCREMENT -FOR LI NEAR CONGRUENTI AL METHCD

| A = 8*IDINT(HALFM*DATAN(1.D0)/8.D0) + 5
IC = 2*IDINT (HALFM*(0.5D0~DSQRT(3.D0)/6.p0)) T 1

S IS THE SCALE FACTOR FOR CONVERTING TO FLCATING PO NT
S = 0.5/HALFM

COWPUTE NEXT RANDOM NUMBER

20 1Y = IY*IA + 1C

THE FOLLOAN'NG STATEMENT |S FOR COVPUTERS WHERE THE
WORD LENGTH FOR ADDI TION | S GREATER THAN FOR MULTI PLI CATI ON

|F (1v/2 .GT. M) 1Y = (1Y - M) - M

THE FOLLON'NG STATEMENT IS FOR COWPUTERS WHERE | NTEGER
OVERFLOW AFFECTS THE SIGN BI T

IF (1Y .LT. 0) 1Y = (1Y + M) + M
URAND = FLOAT (IY)*S

RETURN

END
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