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ABSTRACT

A subroutine for generating uniformly-distributed floating-point

numbers in the interval [O,l) is presented in ANSI standard Fortran.

The subroutine, URAND, is designed to be relatively machine independent.

URAl!?D has undergone minimal testing on various machines and is thought to

work properly on any machine having binary integer number representation,

integer multiplication modulo m and integer addition either modulo m

or yielding at least QJ"g;l (4 significant bits, where m is some

integral power of 2 .

Upon the first call of URAND, the value of m is automatically

determined anti appropriate constants for a linear congruent&l generator

arc computed following thf: cugt:cstions  of D. E. Knuth, volume 2. URAND

is guaranteed to have a full-length cycle. Readers arc invited to apply

their favorite statistical tests to URAND, using any binary machine, and

report the results to the authors.

The project was supported by the Office of Naval Research, Contract
NOOOlk-67-A-0112-0029.



IL

t

. ;“,,“; I,. , .̂.,  *

URAND -- A Universal Random Number Generator

Michael A. Malcolm and Cleve B. Moler

The Fortran subroutine for computing random numbers which we des-

cribe in this brief report is intended for publication in a forthcoming

Prentice-Hall textbook: Computer Methods for Mathematical Computations,

by G. E. Forsythe, M. A. Malcolm and C. B. Moler. Other Fortran sub-

routines in this book (e.g. the linear equation solver, O.D.E. solver,

etc.) are somewhat novel in that they are coded in a relatively machine-

independent style. Among other things, this means that each subroutine 9

if necessary, deduces necessary parameters of the computer arithmetic

system at the time it is executed. Techniques related to those given in

Malcolm (1972) are used for obtaining floating-point parameters. In the

same spirit we have attempted to program a relatively machine independent

random number generator which we modestly call URAND which stands for

"universal random number generator," and fortuitously for "uniform random-

number generatw .” To date, URAND has undergone only minimal testing on

an IBM 360, CDC 6600, PDP 10 and SIGMA 7. Since it is purported to work

pmperly 3n most computers in use, URAND must be tested on many more com-

puters using a variety of statistical tests. We encourage readers to

try URAND on their computers and test it using their favorite statistical

t

tests. FeetfbtJck I'rom our rearic)~'s w.i.11 be greatly appreciated. WC arc

particularly interested in learning sf' results o1' the "spe(:tral  testI

described in Knuth, vol. 2, p. 82.

A source listing of URAND in ANSI standard Fortran is included at

the end of this report. We will briefly describe the rationale which led
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to some of the seemingly "random" statements in URAND.

A linear congruential  sequence of' integers is obtained by settin?J

Yn+l -
- aYn + c (mxlulo m), n>l,_

on the n-th call of UFWJD. These are converted into floating-point

numbers in the interval [O,l) and returned as the value of URAND. The

resulting value of Y
n+l is returned through the parameter IY and

should be used for the actual parameter in the subsequent call. On the

,first call of URAND, IY should be initialized to an arbitrary integer

value.

The values of m, a and c are computed automatically  upan the

initial entry. The main assumption  here is that the machine uses binary

integer number repxsentation  and multiplication is perf'ormed  module m

where m is a power of 2 . This assumption simplifies the computation

of (*) . URD discovers the value of m/2 by testing successive powers

Df 2 until a multiplication by 2 pxxduces  n3 increase in magnitude.

It is also assumed that integer addition is either modulo m , or at

least &3g2(m) significant bits are returned. The values of a and c

are computed fallowing the advice Df Knuth which he summarizes (see p. 78

and p. 155, vol. 2):

i) Pick a to have three properties:

a mod 8 = 5

m/l00 < a < m - 'jx,

The binary digits of a have no obvious pattern.

ii) Pick c as an odd integer with

c 1 1w- - v-3rn26 -

In the source code, a is called IA , and c is called IC . The random



bit pattern of a is achieved by calling DATAN(l.DO) which returns the

double-precision value of f/i1 whi(*h, on a b3.na.r.y machine, is the shirt'ted

bit pattern o_t' 7r . The divislion by 8.DO and mult.iplication by m/2 j:;

hopefully accomplished without unduly altering this pattern. The tiouble-

precision value is finally converted to an integer, multiplied by

8 and incremented by 5 to insure a mod 8 = 5 . The resulting value of'

a is roughly $r ;z-. This satisfies the inequality constraints. The

value oi c is computed directly from the definition (it). We realize
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that some Fortran compilers don't convert constants like 8.DO to exact

floating-point representations, but this problem will probably be of little

consequence.

The sequence [Y,] is guaranteed to have maximum period length

m by Theorem A given in Knuth, p. 15. However, one must remember that

the least significant binary digits of the Yn will not be very random.

When the Yn are converted to floating-point numbers, the least signi-

ficant digits are usually not important. To compute a random integer

between 0 and k-l , one should multiply the result of' URAND by k

and truncate the result.

We wish to thank IFred Fritsch and Neil Goldman for testing earlier

versions of URAND.
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FUNCTION URAND(IY)
INTEGER IA,IC,ITWO,IY,MZ,M
DOUBLE PRECISION HALFM
DOUBLE PRECISION DATAN,DSQRT
DATA M2/O/,ITW0/2/
IF (M2 .NE. 0) GO TO 20

IF FIRST ENTRY, COMPUTE MACHINE INTEGER WORD LENGTH

M = l
10 M2 = M

M = ITWO*M2
IF (M .GT. M2) GO TO 10
HALFM= M2

COMPUTE MULTIPLIER AND INCREMENT -FOR LINEAR CONGRUENTIAL METHOD

IA = 8*IDINT(HALFM*DATAN(l.DO)/8.D0)  + 5
IC = 2*IDINT(HALFM*(O.5DO-DSQRT(3.DO)/6.D0))  + 1

S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT

S = O.S/HALFM

COMPUTE NEXT RANDOM NUMBER

20 IY = IY*IA + Ic

THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE THE
WORD LENGTH FOR ADDITION IS GREATER THAN FOR MULTIPLICATION

IF (IY,'2 .GT. M2) IY = (IY - M2) - M2

THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE INTEGER
OVERFLOW AFFECTS THE SIGN BIT

IF (IY .LT. 0) IY = (IY + M2) + M2
URAND = FLOAT(IY)*S
RETURN
END
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