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ABSTRACT

An algorithmis presented for conputing the unique stationary
distribution of an infinite stochastic matrix possessing at |east one

colum whose el enents are bounded away from zero. g apentwise conver gence

rate is discussed by means of two exanples.
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1. | ntroducti on

For @ denumerably infinite stcchastic matrix P :{pij}’
i,j =1,2,... a vector x satisfying
U 1
(1.1) x>0 ,x %0, x P = x

is called an invariant nmeasure; any positive nultiple of an in-

variant neasure is one al so. [f an invariant neasure satisfies, in
addi tion,
[ o o]
1.2) x1l = % % =1
~o i=1 *

it is called a stationary distribution

-

In this note we shall display an algorithm for conputing a
stationary distribution x (under conditions on P which ensure

exi stence and uni queness) from successive finite matrix truncations

-

EP. Asimlar algorithmwhen Pis a finite matrix has been previously
described (styan, 1970).

It is now well known (Feller, 1968) that for an irreducible
and recurrent (persistent) p an jnvariant measure al ways exists,
and is unique, to positive multiples; and is eler .rtwise strictly
positive. In two previous papers (Seneta, 1967, 1963) two al-
sorithms Were discussed which yiel ded pointwise convergence to such

x , of vectors conputed from -the successive truncations of P ,

shen X 1S normed SO tha, a fixec element is unity. |f P is in

tact positive-recurrent, itS invariant nmeasure can be normed to
~atisfy (1.2), so that 2 (unique) stationary distribution €Xists,

and it isin this form(of a stationary distribution) that
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invariant neasure is usually required to be computed, fromthe
Markov chain context in which stochastic positive-recurrent p are
important. This problem was touched on but not discussed to any
extent in the two papers cited.

Ve shall not necessarily have present in this note the ir-
reducibility of P, but work under the probabilistically restrictive
butcl assical, assunption that P satisfies

(1.3) sup {inf p;:1 >0
j |

3 ]

i.e. that there is at |east one colum of P, say the j*~th,VWth
positive elenents, which are in addition uniformy bounded away from

. . . L3
zero i.e. for at least one j , say j =3

(1.4) inf p.. >68(3) > 0 .
i 4

2. Markov Matrices.

Finite stochastic P with a positive colum are classically
known as Markov matrices (Bernstein, 1946). The condition (1.3) is
a natural way of extending this termnology to the infinite case,
since, noreover as we shall now sketch, the inplications are the
same as in the finite case.

The positivity (c1one) of the | *col um inmplies that the
i ndex set of P contains a singleessential class ¢ of jndices
(i.e. a single closed self-comunicating class), which contains j*
and is therefore aperiodic. |Indices outside C, if any, are in-

essential and lead to C The in £ o i- .
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recurrent under (1.3) for |,

(r) . . (r-1) . ¥
PJ*]* })(:p.*k ij* > l)rclf pkj* }Epjgk =63 ) >0

where pPT = {prf}?)} . A mtrix P containing a single essential
aperiodic class, C, which is in fact positive-recurrent, is some-
times called regular; for such Pit is well-known that, element-
Wise, as r + «, ergodicity obtains, i.e.

.

(2.1) PP-»]_ . x

~

where X is the (unique) stationary distribution of P, and only

t hose el enents of X = {x(i)} are positive forwhich i ¢ C. In
the present situation where (1.3) holds, it can be deduced that the

el enentwi se approach to the Iimt in (2.1) is in fact (unifornly)
ceometric. This 'geonetric ergodicity' testifies to the restric-

tiveness of condition (1.3).

For the sequel it is convenient, and results in no |oss of

generality to take j * = 1 so that

(2.2) Pj; > 8(1)> 0 s 1 = 1,2,... ..

| f we denote by ()P = .‘(n)pij} the (n X n) northwest COrner
truncation of P, then (m)? s in general substochastic, and in

virtue of (2.2) contains a single closed finite set of incices,

(n)C » Which contains the index 1, and so is aperiodic



= 4,
. 3. The A gorithm
‘ Define the vector y = {y(j»} > 0 by

#H

y{(j)

6(3) if j satisfies (1.4)

=0 ot herwi se .

Gearly, by assumption, 'y 4 0 , with at least first elenent
positive. Focus attention on the following infinite system of
equations, which is certainly satisfied by the unique stationary

distribution corresponding to P :

1 ] 1

(3.1) X (I - (P - 1.y N =y

-~ ~

where X is a vector of unknowns; and on the corresponding (n x n)

s,
L

nort hwest truncated system foreach N = 1,2,.....

(3.2) NN S "M = ’
| ' m? Y mF T iy T Y
| where  ,z ' is a vector of unknowns.

It should be noted that the subtraction c:¢ 1 !
Mz (n)¥

from (nyP does not alter the location of the zero and positive
¢lements Of (¥ and so does not change its essential structure;

!
] however (P - (31 - ¢ y¥ now has each row sumstrictly less than

unity, and by a well known property of such matrices the matrix

1 .
ol = P - (ml T (Y 2 has an inverse, and, furthermore

(= (P -

v * ' 1
(F =l ¥ ) F L (P - 1y R

k=0
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el ementwi se, so that the inverse has non-negative entries {and indeed
at |east one colum, the first —strictly positive, in virtue of

(2.2)). It thus follows

1 [} ?
= - - . -1
(3'3)3' % F ¥ Yl T Y Tl ¥ T 20, 40,

. '
( with m?% 2 ()Y

is the unique solution to (3.2), and, further, from (3.2) since

' '
(n)?. - (n)?, ‘(n)

1]

.
P+ . . '
(m?% "ty = (n)Y

it follows that

ARlAATR y
(3.4) (n)E"(n)]i - (n)E'.(n)}. + (n)E'.(n)% . ’ﬁl(meMﬁI@\d@ ! !

on account of the substochasticity of (myP - Hence, since
n ) !

()Y 20,40 it follows from (3.3) and (3.4) that

3.5 :
(3.9) 0 < 8(1) < (1y2(1) < 4z ¢ yl<d

where  (n): = {y2(i)} ; and from (3.2) that

(3.6) z ' ' '
M 2 (P -l Y * Y
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Now Since

(’ ’Z: . . ’ v 4
R ] ()"

i L Tollows that

(3.7)

4

~

7
(n+1 )5 2 n)z

(if we eXtena, for the present instance ONly, the definition of

putting (n) o

(n2(1) =0 for i>n) s we xnoe that the Iimit

Z*(i) = lim z(1)
no (n)

exists for each ; _ o .
7€s++« 5, although we do not yet know it toO be finite.

If we put Zf:{zix-(i)} ,

(3.5) and (3.s6) give, by Fatou's lemna

0 < §(1) < 2" <1
(3.8) X wr T T,
zZ >z (P—l'y)+y'
which inplies
E PR 0
z 2z P

-~
¢ N
lv
1O
-~
TR
o
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vow in fact, equality nust hold at all entries, for otherw se,

Nt %!

by stochasticity of P . Thus

and from (3.8) ,

St

N
1 et
"
)

%
Thus z° is the unique stationary distribution corresponding to P .

Thus, to sunmarize: the successive sol utions (2 >

n=1,2,... for the finite systens (3.2} converge elementwise to the

uni gue stationary distribution corresponding to P . Mreover, from (3.7)

)

t he el enentwi se conver gence 1S nonotone Increasing In z , thus pr ovi di ng a st eadi | y

n)

i mproving bound for the required limt vector.

4. Convergence Rate

It appears that little, in general, can be said about the

convergence rate. This is borne out by the follow ng sinple exanple.
Let p = {p,} be a probability vector with all entries positive

. e. Py > 0, 'Zl P, = 1 . The infinite matrix
1= -
(4.1) P = '

[
[yo]



clearly satisfies (1.4), and has unique stationary distribution p .

-~

If we indicate with a subscript n the usual truncations, then

(4.2) :
(n)F * (n)? L (n)P

1
(n)2 L

has left and right positive eigenvectors respectively '
()R » (ml -

and corresponding to its Perron-Frobenius ©igenvalue,

It foll ows that

u.3) Pk{: " k-1 !
(n) (R D) ()t (b s k21

) | . k=0

Now a permissible choice cf v is ¢p , Wy re

~

0 < 8§ <1, in wich
case (3.3) becones e

! '

z =
)2 7 82 [T - (1-9 ol (e 17

= 8yP I (1-o)k . 'k
(M= 5 T eyl (R

=

and using (n4,3)

[5; - L k '
k=0{(l 8) ((n)p (13 ] En

S. ;
1= (1< ' )
P “(mD) Fn

. f ¢ '
B T2 G (i_fi_ii_- (R " D
l - (l"é) ((n}p" (n)l) (n)—~
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and we notice that, since (n)h, already coincides with the first n

elements of the stationary distribution p, that the rate of point-

wi se convergence is that of

1

I zero as n =+ o,

are

Since we/at liberty to choosce the {pi} » within the constraint

b, >0 all 1, X Py = 1 , we can arrange t0 nmake the conversrence
|
»r this quantity tO zero quite slow €.0. jf we choose p. = const
J:, [

=1+ . -
J CL+y) s ¥Y>0 5, then (4.4) is 0(n Y) as N+ o,

It may be relevant t- o+ ., *hat for +this rather specialized
exauple , one of the approximation techniques described in Seneta
(1967), that of finding successive |eft Perron-Frobenius eigeavector-
of (yP and norming al ways so that e.g. the first elenment is
unity, "settles down" immediately to the elementsof the stationary
distribution simlarly normed, for (H)E/pl coincides with the
first n elenents of p/p; - However, it is also known by exanple
(Exanple (1) in the paper just cited) that the eigenvector con-
vergence for this method can be slow also; and in any case the
‘convergence radius' (reciprocal of the Perron-Frobeni us eigenvalue)

[y, 1170 41

again at rate (y.uy).
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! 10.
e conclude with another sinple example. |f P = {p..}
| +J
i . : L i
L i s given by Piy a, Py i+ =1l=-ii ,1i=21,2,....
0 <a <1, and ij = 0 of hervise . o . d we take y.={yCji)} 1O be
= defined DYy y(1) = (1-y)a , vy(3) = n otherwvise, where g < vy < 1

straishtforward calculations give

(i) = om -t i o=1,2,.
wher e
)
L
C(n) = a { 1=y )
T2 { To oyewman o

—-

The difference between the required j-tp conponent and its approx-

I mations obtained from the n-th iruncation IS thus
: /
x(i) - yz(i) = all-a)il y(1-a)"
L il—y + y(1-a)? |
o that the pointw se convergence rate is geometric and independent

of ..
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