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1. Introduction

For a denumerably infinite sccchastic matrix P = (pij),

i,j = 1,2,... a vector x satisfying

(1.1) xi>0 ,x+0, x’r = x’w - CI 5 .u

is called an invariant measure; any positive multiple of an in-

variant measure is one also. If an invariant measure satisfies, in

addition,

X.2)

1
i

it is called a stationary distribution.

In this note we shall display an algorithm for computing a

L
I

:r;L-;:tionary distribution x (under conditions on P which ensure*

existence and uniqueness) from successive finite matrix truncations

L : F P . A similar algorithm when P is a finite matrix has been previously

described (Styan, 1970).

.
It is now well known (Feller, 1968) that for an irreducible

(Ind recurrent (persistent) P an invariant measure always exists,

and is unique f) to positive multiples; and is elerr.:rtwise  strictly

;3s.i-tive . In two previous papers (Seneta, 1967, 1963) two al-

:,orithms were discussed \;lhich yielded pointtlise convergence to such

x :, of vectors computed from -the successive truncations of P ,

Aen x is normed so th;:,Y a fixed element is unit;y. If P is ii1

~xt positive-recurrent, its invariant measure can be normed to

.~UA.sfy (1.2), so that 2 (unique) stationary distribution exists,

dl;i  it *is in this form (of a stationary distribution) that
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2.

invariant measure is usually required to be computed, from the

Markov chain context in which stochastic positive-recurrent P are

il9portant. This problem was touched on but not discussed to any

extent in the two papers cited.

We shall not necessarily have present in this note the ir-

reducibility of P , but work under the probabilistically restrictive

butclassical, assumption that P satisfies

(1.3) SUP
j

finf Pij) ) 0
i

i.e. that there is at least one column of P ) say the j*-th, with

positive elements, which are in addition uniformly bounded away from

zero i.e. for at least one j , say j = j*

(1.4)

L
inf p..

=3
2 6(j) > 0 .

2. Markov Matrices.

Finite stochastic P with a positive column are classically

known as Markov matrices (Bernstein, 1946). The condition (1.3) is

a natural way of extending this terminology to the infinite case,

s i n c e , moreover as we shall now sketch, the implications are the

same as in the finite case.
*

The positivity L:l?ne)  of the j -column implies that the

index set of P contains a single essential class C of indices

Le. a single closed self-communicating class), which contains j"

and is therefore aperiodic. Indices outside C , if any, are in-

essential and lead to C The in t p ,�- l
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recurrent under (1.3) for ,

I

where Pr = IP(rJ1ij ' A matrix P containing a single essential

aperiodic class, C , which is in fact positive-recurrent, is some-

times called regular; for such P it is well-known that, element-

wise, as r-we, ergodicity obtains, i.e.

L

(2.1)
i

PP+l l x'

L tlhere x-r is the (unique) stationary distribution of P , and only

L
,

L

c

those elements of x =w {x(i)) are positive for which i c C . In

the present situation where (1.3) holds, it can be deduced that the

elementwise approach to the limit in (2.1) is in fact (uniformly)

geometric. This 'geometric ergodicity' testifies to the restric-

tiveness of condition (1.3).

For the sequel it is convenient, and results in no loss of

generality to take j fC

=l , so that

(2.2)
> i = 392 ,.....

If wz denote by Cn>P = ; (n]Pij) the (n x n) northtqcst corner

truncation of P , then
WP is in general substochastic, and in

virtue of (2.2) contains a single closed finite set of int-?j-ces,

WC ' which contains the index 1, and so is aperiodic .



4.

3. The Algorithm

Define the vector y = {ycji) > 0 by
* rr

y(j) = S(j) if j satisfies (1.4)

= 0 otherwise .

'i-

L

Clearly, by assumption,
yQ9 with at least first element

positive. Focus attention on the following infinite system of

equations, which is certainly satisfied by the unique stationary

distribution corresponding to P :

(3.1) x' (I - (P - 1 l y�)) r y'ad 5 w Y
i

where xh is a vector of unknowns; and on the corresponding (n x n)

northwest truncated system fbreach n = 1,2,.....

(3.2)
(n)? ' ( (n)I - ((njP g (n):  l (n)Y'))  = (n)Y'

iL
where (nIz ' is a vector of unknowns.

It should be noted that the subtraction CL; (,)l * t
0v (n)?

from (nI P does not alter the location of the zero and positive

elements of (n)P and so does not change its essential structure;

however (n)' w (n)t ' (n,Y' now has each row sum strictly less than

unity, and by a well known property of such matrices the matrix

%I1 - (nIP - (n)t ' Cn&) has an inverse, and, furthermore 3
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elementwise, SO that the inverse has non-negative entries {and indeed

at least one column, the first , strictly positive, in virtue of

(2.2)). Xt thus follows

(3.3)

i

(n)?' = (n)Z'((n)I - ((n)P - (n): ' (n)y:))-l ALSO,Y . Y

1 with (n)!' L (njx'

is the unique solution to (3.2), and, further, from (3.2) since

It

t

L

it follows that

(3.4)
(n)C(n)L - (n)C(n)l + (n)C"(n)lc l (n)Y�*(n)_1 2. (n)Y�*(nji

on account of the substochasticity  of (& . Hence, since

(n)Y' B'o~ 4 0 it follows from (3.3) and (3.4) that- Y *

(3.5)

where

(3,6)

0 < H1) 2 (,)2(l) 2 (& ' (n)l < 1
we-

(n): = ((,pG)l ; and from (3.2) that
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Now since

i t roilows t;h;tt

(3.7)

te(if we ex

putting
in

nd,

,Z(i

I
c

I

n)E

for the present instm.ce only, the definition of

)=O for i>n) (n): by
. Thus we knuw that the limit

f
L

i

L

exists for each i -z 1,2
‘*‘* ’ :

If we put 2% = {z*(i))
llthou& we do not yet know it to be finite,

?

(3.5) and (3.6) give, by Fcttouvz  i,ema.!
L

I (3.8)

which implies

*1 fi '
Z ?Z p-



L-

?ow in fact, equality must hold at all entries, for otherwise,

by stochasticity of P . Thus

** :*; 1

Z =z P
w w

and from (3.8) p

Thus ZtCI is the unique stationary distribution corresponding to P .

L
‘,
I
L..

i

L
t

c

Thus, to summarize: the successive solutions
(nIZ1 9

n = 1,2,... for the finite systems (3.2) converge elementwise to the
---

unique stationary distribution corresponding to P . Moreover, from (3,~)v---w >
the elementwise convergence is monotone increasing in

Cn)E ' thus providing a steadily

improving bound for the required limit vector.

4. Convergence Rate

It appears that little, in general, can be said about the

convergence rate. This is borne out by the following simple example.

Let p =w {pi) be a probability vector with all entries positive
63

i.e. p. > 0 ,
1 c n.-1.

i=l '1 Thr, infinite matrix

(4.1) P 2 1 l p�

rr 5
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t
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clearly satisfies (1.41, and has unique stationary distribution p .

If we indicate with a subscript n
c

the usual truncations, then

(4.2)
WP = (n)t l (n)Pt

?nd corresponding to its Perron-Frobenius  eigenvalue,

has left and right positive eigenvectors respectively

It follows that

: L!.  l 3 >
(n) Pk

k-l

1

'(*)?I k>l-
= I

3 k =o .

Qx~ a permissible choice cf y is cz 9 w7-, le
N ;I .: " ‘)

Case (3.3) becomes
:. 0<6<1 p in which

= IA T m-a> Qn)Pq  l (n)l>]k  ] p q
k=O ,n

6
l =- (1-6) ((n)p_I’(n)l-’  tni

.
l * CnlEq - (n)Z_' = (b3) (1 - (n)pq.

_ - (n)??
l- (1-s) ((&

CnPq
- (n)!? W



L

1

L

and we notice that, since Cnlpc1 already coincides with the first n

elements of the stationary distribution p 4 that the rate of point-
- -

xi se convergence is that of

( 4 . 4 ) 10 :‘i
i=l

C’ > 0
L

all F, Cp.=l
i 1 , we em arran,~e to make the convcrccrlcc

-u- this quanti.ty to zero quite slog e.g. if we choose p4 = const
j.-i.l_+Y)

L.

3 Y>O 3 then (4.4) is O(n
:y

> a n -f do.

It may be relevant t5 :10+ -2 -!Aat for: -i:his rather specialized

exarlple 3 one of tilt appr(zG32ati.05 Lechniques described in Seneta

(19671, that of finding successive left Perron-Frobenius eige,>vector.-

Of MP and norming always so that e.g. the first element is

unity, "settles down" immediately to the elementsof the stationary

distribution similarly normed, for (n)p/pl coincides with thec.

first n elements of P/P1 ' However, it is also known by example

(Example (1) in the paper just cited) that the eigenvector con-

vergence for this method can be slow also; and in any case the

'convergence radius' (reciprocal of the Perron-Frobenius eigenvalue)

‘(n;p_t t1 -l + 1

again at rate (4.4).
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We conclude with ijnother simple exanp3.e.

is given by pil

If P t' ipij}

= a ,  p.l,i+l = 1 - ii 9 i. = 1,2,... . . . .

(1 < 3 < 1 , antI p.. = 0
3-J

01 Iwrt9i.:;(~ ., *1 1 id We tcfke y = {y( -1 > } to IIC

tleFincd by y(l) = (l-y);3 , y(j) = r) othert~risc!, wiere o<y< 1 ,

strai$tforwarJ calculatiolis l;ive

(,)z(i) = C(n) (1 - ali , i = 1,2,.
l l 9 n

where

L
1

'I'lle difference between the required i-th component and <ts approx-

imations obtained from the n-th ti-uncation is thus

t
x(i) - (,)2(i)  = a(l-&l

/

i

y(l-a)" \
l - y  +  y(l-a)”  i

L
.

so that the pointwise convergence rate is geometric and independent

of y l

i
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