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Abstract

Let S denote a set of k-dimensional boxes each having integral

sides. Let I'(S) denote the set or all boxes which can be filled

completely with translates of elements of S . It is shown here that S

contains a finite subset B such that l?(B) = I'(S) . This result was

proved for k = 1,2 in an earlier paper, but the proof for k > 2

contained an error.

This research was supported in part by the National Science Foundation
under grant number GJ-992, and the Office of Naval Research under
contract number N-00014-67-A-0112-0057  NR 044-402. Reproduction in
whole or in part is permitted for any purpose of the United States
Government.
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Let N and P denote the sets of non-negative and positive

integers respectively, and let Nk and Pk denote the sets of k-tuples

of elements of these sets for each kcP l Natural ordering and ordering

by division in P may be extended to Pk in the usual way: thus,

(a,, . . a) a☺ 5 (bl)  - l
,bk) just when ai < bi for i = 1,. .,k , and-

(al,...,ak)/(bl,...,bk) just when ailbi for i = l,...,k . We shall

use Dedekind's notation a0 for the greatest common divisor of

a,bcP , and write AA for the greatest common divisor of a non-empty

subset A c P . Also, avb denotes the least common multiple of

a,bcP , while VA denotes the least common multiple of a non-empty,

finite subset A c P .- These concepts and notations extend in an obvious

way to Pk ordered by division.

Let [a,i;] denote the interval in Pk , ordered naturally, having

lower end a and upper end 6 ; that is, [&El = {ii: &Pkanda_<xzEj,

and this set is non-empty only when ;<I?. Also, let- i = (1, . . . ,l)

denote the k-tuple of l's in Pk . The interval [i,d] is called a

k-dimensional box with dimensions &Pk which we denote d , and the

interval [i+EJ.+t] with teNk is called a translate of the box z .

A set Q' of sets is said to pack a set A just when some subset of fl

is a partition of A . The closure of a set S of k-dimensional boxes

is defined to be the set r(S) of all k-dimensional boxes which can be packed

with the set of all translates of all elements of S . It is easy to see

that 7 is a closure operation; that is, S 5 r(S) = l?@(S)) for all

sets Z , and l?(R) c r(S) for all R c S . The finite basis theorem- -

for box packing which was discussed in [l] is as follows; Every set S

of k-dimensional boxes contains a finite subset B such that r(B) = 1'(S) .
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Unfortunately, the proof given in [1] breaks down for k > 2 , and it

is the purpose of this paper to give a correct extension of the proof

given for k = 1 and 2 . In an effort to discover a relationship

between this theorem and known results concerning basis theorems in

lattice theory, we have formulated some of our lemmas in a general

sett

what

ing. It appears that the situation involving box-packing is outside

is already known generally about closure operators.

A sequence (xn: neP) of elements of a lattice L is said to be

stab le just when x~Ax~+~ = x A X = . . .
n n+2 for all neP . We record

the obvious fact that stability of a sequence is a property inherited by

subsequences.

Lemma 1. Subsequences of stable sequences are stable.

A lattice L is said to be locally finite just when the interval

(ycL: x 5 y 5 z} is finite for all x,z~L . Important examples of a

locally finite lattices are the set Pk of k-tuples of positive integers

ordered by division and Pk ordered naturally. Later we shall require

the fact that every infinite sequence of elements of Pk ordered by

division contains an infinite stable subsequence. This fact is implied

by the following result.

Lemma 2. Every infinite sequence of elements of a locally finite lattice

with a least element contains an infinite stable subsequence.

Proof. We use the K'dnig infinity lemma which asserts that an infinite

rooted tree all of whose vertices have finite degree has an infinite path

starting at the root of the tree. In our application, the vertices of the



L

L

tree will be certain (possibly finite) subsequences of a given sequence

x = (xn: neP) whose elements belong to a locally finite lattice with

a least element & . First, X is designated the root, and then the

rest of the tree is defined by specifying the vertices joined below any

given vertex j; = (yn: neP) in the tree. For each d in the (necessarily

finite) interval [P,yl] = {z: P < z Lyl] , let s(&d) denote the

subsequence of 7 consisting of all elements y
i

with i > 2 such that

yl~yi = d 8 The vertices joined below i in the tree are the non-empty

sequences s(f,d) for all de[O,y+ Thus, every vertex in the tree

has finite degree. Also, since every term of 2 is the initial term of

some sequence which is a vertex in the tree, the tree is infinite.

Applying the Kbnig infinity lemma, we conclude that there exists an

infinite path (2,: neP) in the tree. Let sn denote the first term

of Gn for all nc.P , then s = (s,: neP) is a stable subsequence of 2 .

To see this, recall that 2
n+k

is a subsequence of ?
n with sn deleted

for all keP , and s r\y
n is the same for all terms y of ;2.n . Hence,

'nAsn+l Y-?"n+2 = "' for all neP . This completes the proof.

Now we establish certain properties possessed by the closure

operator r . In fact, what we want to prove can be proved in a wider

context, and since it doesn't cost us any extra space, we do this. To

see that r (as defined for box packing) has the property assumed in our

next lemma, note that if translates of all of the boxes in a set X are

used to pack a box y , then none of the elements of X is larger than y .
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Lemmajl. Let S denote a set of elements belonging to a locally

finite lattice L . Let I' denote a closure

if yeL , _XCL, and yerthe property that

Let

( >1 B(S) = {s&3: if s@(X) for some X c-

Then I’(B(S)) = I’(S) , and B(T) = T for all

operator on L having

x> 9 then yeI'[xeX:  x <y} .-

S, then SEX] .

T 5 B(S) .

Proof. Let B = B(S) . If S\l?(B) = fl , then S c r(B) which implies-

r(s) c r(r(B))  =- r(B) c r(S) because B c S .- That is, r(s) = r(B) .

Now suppose S\r(B) fs fl , and select y&\T(B) so that all x&3 with

s < y are elements of r(B) l Such a minimal element y exists in

S\r(B) because L is locally finite. Since yhr(B) , we have ybB ,

so there exists a subset X C_ S with y&(X) , but y/X . Let

z = (xcx: x 5 y} , then we have y&(Z) and ykZ . Also, Z c I'(B)-

because y is minimal in S\f?(B) . This means ya(z) c r(r(B)) =

l?(B) E I'(S) because B c S ; that is, ye!J(B)  , a contradiction.

Finally, suppose T c B , then elements teT have the property

possessed by all elements of B ; namely, tel?(X) for some X c S

i m p l i e s  tcX , and this is true in particular for all X c T . We-

conclude that T = {tc:T: if te(x) f or some X c T, then tc-X] = B(T) .

This completes the proof.

Lemma 4. Let EnePk with bn = (b

(6 : n = 1,...,2k)
nl

,. ..,b
nk

) for n = 1,...,2k , and

suppose
n is stable. Let

P;j="k Abk for
2 -1,j 2 ,j

j = l,...,k . Then there exists an integer p such that I'@ ,...,b
1 2k

]

contains all boxes having dimensions
(ql+-*?qkBk) with  ql☺ �**☺qk 2 p l
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P r o o f  l Let p,(r) = bl i~...  vb for i,r = l,.. .,k . We shall
J 2r, i

show by induction on j that there exists a number p4 such that every

box having dimensions

(2)

with ql,..-,q. ,>p.
J 3

is an element of r{l$,..

For 3 = l., boxes having dimensions

(b11x + il*lY J bp vb2z 7 l * l 9 blk Vb2J

J

for all x,yc-N are elements of r [$J2j . But, there exists an integer

pl such that q1~1e{bllx+b21y:  x,ycN} for all ql ,> p1 because

bllhb21 divides @, . Thus, the claim is true for j = 1 .

Now we suppose the statement is true for some j > 1 , and then

prove it for j+l l Let IJ-l(r) = b
l l �2’+l,i

V vb
2*‘, i

, and note that

the statement involving (2) also applies to the stable sequence
.

(bn : n=2J+l,...,2
j+l) . Thus, there exists a number p! such that

J

every box having dimensions

with qlf-.,q. >p! is an element of !?{5 .
J J 2J+l

,...,b
2’.j+1 3 l Boxes having

dimensions given by (2) and (3) have boxes in their closure with dimensions

C4) (q~B~t~O*~qjpj ☺ ⌧v,+,(j) +wj+l(j) t  Pj+,(j) Vc15+2(j), l .,p,(j) V$(j))

for all ql?..., qj _> maX[Pj,Pi]  and all X,YEN . Now we observe that

clj+l(j)~pj+l(j)  divides pj+l , and there exists an integer

'j+l -> max{pj,pj} such that q. B.
J+l J+l

E IXPj+l(;i)  + wj+l(;j)  : x,Y~TJ~ for

6
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all q
j-f-1  z �j+l l

Also, note that +(j) v$(j) = pt(j+-1) by

definition for j = l,...,k + Thus, we have shown that (2) holds for

j+l if it holds for j . This completes the proof.

Lemma 5. Let S = (Sn: neP) denote a stable sequence of k-dimensional

boxes, and let S = [gn: n&J . Then B(S) is finite.

Proof. The proof is by induction on the dimension k of the boxes.

First, we prove the statement for k = 1 . Let S = (sn: neP) denote

a stable sequence of 1-d-imensional boxes (that is, snip for all neP ),

and let S = [sn: neP] , and suppose B(S) is infinite. Let

6 = (b,: ncrP) denote the elements of B(S) ordered according to their

sequential ordering in s . Since 2 is stable, this is also true of 6 .

Furthermore, since B(S) is infinite, z tends to infinity. The closure

of B(S) contains the closure of Iby 5 3 which is (blx+b2y: x,ytN] >

but this set contains all large multiples of blAb2 . Since every element

of' B(S) is a multiple of blAb
2' and since 6 tends to infinity, it

follows that there exists jeP such that bj@{-bl,b2] , but bjf{bl,b2) .

This contradicts the definition of B(S) , so B(S) must be finite

when k = 1 .

Now suppose there exists some kcl_P such that the statement is

false; furthermore, suppose k is minimal, and k > 1 . Let i=(,n: neP)

denote a sequence of k-dimensional boxes, let S = (sn: neP) , and

suppose B(S) is infinite. Also, let 6 = (6 n: neP) denote the elements

of B(S) ordered by their sequential ordering in s , and let

bn = (b
r-0" .,bnk) for all neP . Note that each of the sequences

(bnit neP) for i = l,... ,k tends to infinity. If this were not true,
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an infinite subsequence c = (c*: neP)

> such that c
lk = '

C -- 13(C) infinite.

:;‘11l)::(!(~.l1(‘).1(11:  0  I ’  ;I, :: I,;t,

let Cx = (5,: ntP] . Evidently, c"' is an infinite stable sequence,

and B(C*) = C* is infinite. Since C* has dimension k-l , this

contradicts the minimal property of k . Thus, each of the sequences

(bni: neP) for i = l,... ,k tends to infinity.

According to Lemma 4, there exists an integer p such that

r(bl, -0 .,b
;Ik

) contains every box having dimensions
(q1% t � l ,s,B,)

with ql,.*.,qk>p' Thus, there exists EJeB(S) such that

icjI {+.,6
21c

] but bj er$,...,i; k] . This contradicts the
2

definition of B(S) , so the proof is complete. Now we are ready to

prove our main result.

Theorem. Let S denote a set of k-dimensional boxes, then there

exists a finite subset B of S such that I'(B) = r(S) . In fact, one

can take B = B(S) .

Proof. We showed that l?(S) = i?(B(S)) in Lemma 3, so it is enough to

prove that B(S) is finite. Suppose B(S) is infinite. Then we can

form an infinite stable sequence c = (tn: ncP) using distinct elements

of B(S) . B-u-t T-(; rl: ncP] 2 B(S) $ so T = B(T) by Lemma 5. F3-l.t

B(T) is finite according to Lemma 5, so we have a contradiction and the

theorem is proved.
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The construction given in Lemma 4 involves packing a large box by

cutting it with a plane into two smaller boxes, then the smaller boxes

are treated in a similar way. We call this simple packing. It is

interesting to note that a slight alteration of the foregoing argument

yields the result that P(S) contains a finite subset T such that

every element of P(S) can be simply packed with translates of elements

of T . We leave the proof as an exercise.
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