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Abstract

Let S denote a set of k-dinensional boxes each having integral
sides. Let r(s) denote the set or all boxes which can be filled
conpletely with translates of elements of S. |t is shown here that
contains a finite subset B such that 1?(B) = r(s) . This result was
proved for k = 1,2 in an earlier paper, but the proof for k > 2

contained an error.
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Let N and P denote the sets of non-negative and positive

k and Pk

integers respectively, and let N denote the sets of k-tuples
of elements of these sets for each keP . Natural ordering and ordering
by division in P may be extended to p® in the usual way:  thus,

(a, . . "ak)f(bl" . ’bk) j ust when a; <_b, for i =1,. .,k , and
(al,...,ak)l(bl,...,bk) j ust when ailbi for i =1,...,k . W shall
use Dedekind's notation aAb for the greatest common divisor of

a,beP , and wite AA for the greatest common divisor of a non-enpty
subset Ac P. Aso, avb denotes the |east comon multiple of

a,beP , While VA denotes the |east common nultiple of a non-enpty,
finite subset A < P. These concepts and notations extend in an obvious

way to Pk

ordered by division.
Let [a,b] denote the interval in Pk , ordered naturally, having

lower end a and upper end ©; that is, [a,b] = {x: %eP and a <x<b},

and this set is non-enpty only when a <b . Also, let i=(1, ...,

k

denote the k-tuple of 1l'sin P The interval [1,d] is called a

k-di nensi onal box with dinensions &ePk whi ch we denote 4 , and the

interval [I+E,3+E] with ten™ is called a translate of the box d .
A set ¢ of sets is said to pack a set A just when sone subset of ~
is a partition of A. The closure of a set S of k-dinensional boxes

is defined to be the set r(s) of all k-dinmensional boxes which can be packed

with the set of all translates of all elements of S. It is easy to see
that © is a closure operation; that is, S cr(S) =r(r(s)) for all
sets 5, and I?(R c r(s)for all Rc_S. The finite basis theorem

for box packing which was discussed in [1]is as follows; Every set S

of k-dimensional boxes contains a finite subset B such that r(B) = r'(s) .
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Unfortunately, the proof given in [1] breaks down for k > 2 , and it
I's the purpose of this paper to give a correct extension of the proof
given for k = 1 and 2 . In an effort to discover a relationship
between this theoremand known results concerning basis theorens in
lattice theory, we have formulated sone of our lemmas in a genera
setting. It appears that the situation involving box-packing is outside
what is already known generally about closure operators.

A sequence (xn:neP) of elements of a lattice L is said to be
stable just when X AX 4 T XgAX 5. .. for all nep . V& record

the obvious fact that stability of a sequence is a property inherited by

subsequences.
Lenma 1.  Subsequences of stable sequences are stable.

A lattice L is said to be locally finite just when the interva

{yeL: x <y <z} is finite for all x,zeL . Inportant exanples of a
locally finite lattices are the set P of k-tuples Of positive integers
ordered by division and Pk ordered naturally. Later we shall require
the fact that every infinite sequence of elements of P ordered by
division contains an infinite stable subsequence. This fact is inplied

by the following result.

Lemma 2. Every infinite sequence of elements of a locally finite lattice

with a least elenment contains an infinite stable subsequence.

Proof . W use the kénig infinity |ema which asserts that an infinite
rooted tree all of whose vertices have finite degree has an infinite path

starting at the root of the tree. In our application, the vertices of the

AN
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tree will be certain (possibly finite) subsequences of a givensequence

X = (xn: necP) whose elenents belong to a locally finite lattice with

a least element 1. First, x is designated the root, and then the

rest of the tree is defined by specifying the vertices joined bel ow any
given vertex y = (yn: neP) inthe tree. For each d in the (necessarily
finite) interval [Z,yi] ={z:1<2 S’yl}, | et s(y,d) denote the
subsequence of y consisting of all elenents Y, with i > 2 such that
ViAY; = d . The vertices joined belowy in the tree are the non-enpty
sequences s(y,d) for all de[l,yl]». Thus, every vertex in the tree
has finite degree. Also, since every termof x is the initial term of
some sequence which is a vertex in the tree, the tree is infinite.
Applying the Konig infinity lemma, we conclude that there exists an
infinite path (;En: neP) inthe tree. Let s~ denote the first term

of ;En for all neP |, then s = (s,: neP) is a stable subsequence of x .
To see this, recall that in+k is a subsequence of ;{n with S, del et ed

for all kep , and SRS is the sane for all terms y of x Hence,

n
S_AS =8 As = ... for all neP . This conpletes the proof.

n  n+l n+2

Now we establish certain properties possessed by the closure
operator r . 1n fact, what we want to prove can be proved in a w der
context, and since it doesn't cost us any extra space, we do this. To
see that [ (as defined for box packing) has the property assuned in our
next lemma, note that if translates of all of the boxes in a set X agre

used to pack a box y , then none of the elenents of X is larger thany .



Lemma 5. Let S denote a set of elements belonging to a locally
finite lattice L . Let r denote a closure operator on L having
the property that if yeL ,X< L, and yer(x) , then yer{xex: x <vl.
Let

(1) B(S) = {seS: if ser(x) for some X ¢ S, then seX

Then r(B(s)) = 1'(S) , and B(T) =T for all TcBYS) .

Proof . Let B=B(S) . If s\r(B)=¢, then S c r(s) which inplies
r(s) c r(r(s)) =r(B) c r(S) because B¢ S . That is, r(s) = r(B) .
Now suppose S\I'(B) £ # , and select yes\I(B) so that all xeS with
s <y are elenents of r(B) .Such a minimal element y exists in
S\I'(B) because L is locally finite. Since yfr(B), we have y¢B ,
so there exists a subset X ¢ Swith y&X) , but yfx . Let
z = {xex: x <y}, then we have yer(z) and yfz . Also, Z c |'(B)
because y is mniml in s\r(B) . This means yer(z) ¢ r(r(s)) =
| ?(B) < I'(S) because B c S; that is, yer(B), a contradiction.
Finally, suppose T ¢ B, then elenents teT have the property
possessed by all elenents of B ; nanely, ter(x) for some X ¢ S
implies tcX , and this is true in particular for all Xc T . W
conclude that T = {teT: if ter(x) for some X c T, then tcx} = B(T) .

This conpletes the proof.

Lemma 4. Let b eP* with b =(b_,...,b ) for n:l,...,zk, and

_— n n nl nk

suppose (Bn: n = 1,...,2k) is stable. Let B.=b AD for
J 2 "l)j Z )zj

j =1,...,k . Then there exists an integer p such that r{Bl,...,E N
2

contains all boxes having dinensions (qlal,...,qksk) with g, ---,q > P



e Let up.(r) = b, .Vv...vb - for i,r = 1,...k. W shall

27,

show by induction on j that there exists a number p, such that every
J

box having dinensions

(2) (qlBlJ"}qJﬁJ )HJ+1(J))"'}HK<J))
with SIERREPL zpj is an el ement of r{bl,....,bgi}
For j = 1, boxes having dinensions
(bygx + D50¥ »D Vs 5Dy VDo)
for all x,ycN are elenents of T {61,62} . But, there exists an integer

Py such that qlﬁle{bllx+ b, ¥: x,yeN} for all 4, > By because

by Abyy di vi des By - Thus, the claimis true for j =1 .

Now we suppose the statenent is true for some j > 1 , and then

prove it for j+l.Let u!l(r) = b rVoeVb oo and note that
2 +1,i .. 2 51

the statement involving (2) also applies to the stable sequence

(b n:23+1,...,23+l). Thus, there exists a nunber p!J such that

N
every box having dimensions

(5) (qlﬁl""’qjgj » H5+l<j)7--°)H}'{<j))

Wt h ql,...,qjng; is an element of r{b . ,...,b .Boxes having

2d+1 2
di mensi ons given by (2) and (3) have boxes in their closure with dinensions

1!

for all Ay > max{pj,pj} and all x,yeN . Now we observe that
uj.ﬂ(j)/\uéﬂ(j) di vi des Bj+1 , and there exists an integer

' - s ' AN
Pip > maX{Pj;pj} such that 0j+lB<j+l‘{Xuj+l<3)+yuj+1(3)' x,yeN} for
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al | qj+l > Py . Al so, note that “t(j) vu%(,j) = ut(jﬂ) by
definition for j = 1,...,k. Thus, we have shown that (2) holds for

j*1 if it holds for j . This conpletes the proof.

Lemma 5. Let s = (én: neP) denote a stable sequence of k-dimensional

boxes, and let S = {én: neP} . Then B(S) is finite,

Proof.  The proof is by induction on the dinmension k of the boxes.
First, we prove the statement for k =1 . Let s = (sn: neP) denote

a stable sequence of 1-dimensional boxes (that is, s, €P for all nep ),
and let S = {sn: neP} , and suppose B(S) is infinite. Let

b = (bn: ncP) denote the elenents of B(S) ordered according to their
sequential ordering ins. Since s is stable, this is also true of b .
Furthermore, since B(S) is infinite, © tends to infinity. The closure
of B(S) contains the closure of {bl,bg} which is {blx+b2y: x,yeN} ,

but this set contains all large multiples of byAD, - Since every el enent

B(S) is a multiple of b; Ab,, and since btends to infinity, it

of
follows that there exists jeP such that bjer{bl,bg} , but bjﬁ{bl,bg} .
This contradicts the definition of B(S) , so B(S) nmust be finite
when k = 1 .

Now suppose there exists some kcP such that the statenent is
fal se; furthermore, suppose k is nminimal, and k >1 . Let s = (5n: nep)
denote a sequence of k-dinensional boxes, let S = {En: neP} , and
suppose B(S) is infinite. Also, let b = (Bn: neP) denote the elenents
of B(S) ordered by their sequential ordering in s, and |et

b= (b

N nl""’bnk) for all neP . Note that each of the sequences

(bni: neP) for i =1,...,k tends to infinity. |If this were not true,
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say for i =k . we could find an infinite subsequence ¢ = (c_: neP)

Iy

) such that ¢ ¢, = ... . Since

€ 1k = ok

n (Cnl"' nk

v S . \ 1 1 1 - .
C = {(‘n‘ neP} < B(S) , we have C-- B(C) infinite. Also, ¢ is a
stable scquence since ¢ ds a subscquencae 017 a e Lahle nequence.  Now

. ~X - X X

_L_‘Al'» M M “oe M 1o H e~y ) -. . - 1

et ¢ ((nl’ ’(n,k-l> for all ncP , let ¢ - (cn, n«pP) , and
X - . =X . . Lo

let ¢ ={c :nP}. Evidently, ¢ s aninfinite stable sequence,

and B(C*) = C* s infinite. Since & has dimension k-1 , this
contradicts the mnimal property of k . Thus, each of the sequences
(bni: neP) for i =1,...,k tends to infinity.

According to Lemma 4, there exists an integer p such that

r{b,,...,b 3 contains every box having dinensions CH- | @@m@
2
with dy5--+»9, >p . Thus, there exists BjeB(S) such that

BJ,/, {Bl""’B,)k} but Bj er{Bl,...,E/ This contradicts the

£

definition of B(S) , so the proof is conplete. Now we are ready to

prove our main result.

Theorem Let S denote a set of k-dinmensional boxes, then there
exists e finite subset B of S such that I'(B) =r(S) . |n fact, one

can take B = B(9)

Pr oof . W showed that 1?(S) = r(B(s))in Lemma 3, so it is enough to
prove that B(S) is finite. Suppose B(S) is infinite. Then we can

forman infinite stable sequence t = (t_: neP) wusing distinct elenents

n
of B(S) . ButT-= {En: ncP} c B(S) , so T = B(T) by Lemma *. But
B(T) is finite according to Lemma 5, so we have a contradiction and the

theorem is proved.
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The construction given in Lemma & invol ves packing a |arge box by
cutting it with a plane into two smaller boxes, then the smaller boxes

are treated in a sinmlar way. W call this sinple packing. It is

interesting to note that a slight alteration of the foregoing argunment
yields the result that P(S) contains a finite subset T such that
every elenent of r(s) can be sinply packed with translates of elenents

of T . W leave the proof as an exercise.
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