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Abstract

This report discusses a modified version of Edmonds's algorithm for

partitioning of a set into subsets independent in various given matroids.

If ,***,
?l ?'$ are matroids defined on a finite set E , the algorithm

yields a simple necessary and sufficient condition for whether or not

the elements-of E can be colored with k colors such that (i) all

elements of color j are independent in
?l
. , and (ii) the number of

elements of color j lies between given limits, nj 5 l/Ej\/ < n! . The- J
algorithm either finds such a coloring or it finds a proof that none

exists, after making at most n3 +n*k tests of independence in the

given matroids, where n is the number of elements in E .
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Let ,...,
%

T be matroids (i.e., pregeometries) over the n-element

set E . Edmonds [l] has given an efficient algorithm for determining

whether or not the elements of E can be partitioned into k disjoint

subsets, E = EIU...UEk , such that E.
J

is independent in r/l
j

for

all j . The purpose of this paper is to present his algorithm in a

somewhat different way, which indicates how he might have discovered it

in the first place; and to extend the algorithm slightly so that bounds

are placed on the number of elements in the subsets E. .
J

In order to make this report somewhat colorful, we shall imagine

that the elements of E are being painted with k colors, so that Ei

contains the elements of color j . The reader is assumed to know the

basic definitions of matroid theory, since by now there are dozens of

papers in which these definitions occupy the first two pages. Edmonds's

paper [l] indicates the wide variety of applications for matroid

partitioning.

Derivation of an algorithm

The natural way to get the elements colored is to start with them

all blank and successively to paint them. Many combinatorial algorithms

have the following general form: "Starting with a certain configuration,

i

try to find a better configuration by some reasonably straightforward

method. If this succeeds, replace the initial configuration by the

improved one, and start again. If this fails, prove that no better

configuration exists." Of course it is not always possible to carry out

the latter proof; but in many important cases, such a proof is possible,

i
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hence a rather simple algorithm emerges. Matroid partitioning is such a

Suppose we have painted certain elements and that Ei is the set

of elements having color j ; we assume that E
j

is independent in n
j '

Let E. = E\(EIU 0.. UEk) be the unpainted elements. If x is some

element not of color j , we could paint it with that color if xUE
2

were independent in R
j
. On the other hand, if xUE

J
is dependent,

there is a unique circuit PC XIJE
j '

and we can paint x with color j

if the color of any element y of PnE
J

is scraped off. Then perhaps

we can paint y with some other color.
-_

A sequence of such repaintings  might be denoted by, say,

X-+ y3z40
3

meaning "paint x with the current color of y , then repaint y with

the current color of z , then repaint z with color 3 2' In general

we may write

X-, y a x UEj\y is independent in ?Q
j

when yeE.
J

and xbE. ; and
3

x-+0
j

e xUE.
3

is independent in "//1
j

where x is an element of E\E
J

and 0
J

is a special symbol distinct

from the elements of E ; we may think of 0
i

as a Qtandard' element

of color j , whose color never needs to be washed off. Note that if

x+0
J

then x 4 y for all yeE
J

.

In effect, this arrow notation defines a directed graph on the n+k

vertices E u {"l,-o',o,] > and X
-+y-z-oq

is an oriented path

from x to 0
3

. We shall denote oriented paths, as usual, by writing

x --a+ y CJ there is a path x = x0 -+ x
1

-+ . . . + x
m =YJ _m>l.
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If x is uncolored and there is a path x -? Or , this path

specifies a repainting which results in a net increase of one more

element painted the r-th color. This would give us a way to decrease the

number of unpainted elements. However, we have

consideration: All the If -2' relationships have

respect to a particular choice of the E. , and
J

invalidate future ones. In fact there do exist

correspond to no correct repainting.

overlooked an important

been calculated with

some repaintings may

paths x f Or which

Fortunately this problem does not arise when we consider shortest

paths instead of arbitrary paths.

Lemma. In terms of the above notation, let x = x0 -+ x1 -+ . . . 3 xm = Or ,- - - - -

X. -ct X.1 for j > i+l . Then if xi is painted the color of xi+1 , for
J - - - - - -

O<i<n, the resulting elements of color j are independent g 77'(.,w- 3
for l<j<k.- -

Proof. The result is trivial when m = 1 . If m>l, consider what

happens after making just the m-th step of the repainting: Let xm 1

have color s , and let

E'r = ErUxm 1

E; = Es\xm-l
L-

E !
J

=E. ,
J

for j#r,s .

-

Let -+* denote relations in the directed graph corresponding to these E! ;
J

andlet x! =x
1 i for 0 < i <m , xm 1 -= OS . The lemma will follow by-

induction, if we prove that ~6 4' Xi ~' . . . -+' X; 1 and X: f' X! for
J

j < i+l .
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To prove that xi 4' x1+1 ' the only nontrivial case occurs when

X’i+l has color r . In this case, i+l < m-l and we must show that

the set I = E~\x~+~IJx~ is independent in 7?(
r' If it were dependent,

it would contain a unique cycle P ; and P must contain both xi and

X
m-l since l\xi and I\x,_I. are independent. But this would imply

that xi + xm 1 , contrary to hypothesis.

On the other hand if xi -+? xl for j > i+l , we reach an immediate
J

contradiction unless x! has color s
J

and j <m-l . Otherwise we find

that E;\xj Uxi is independent but Es\xj Uxi is dependent; thus there

is a unique cycle PcEs\xjUxi, and x
m-l and x

i are both in this

cycle, so 2
i

-+x
m-l

. This contradiction completes  the proof.
El

This lemma tells us that an existing coloration can be improved

( i.e., the number of unpainted elements reduced by one) if we can find

a path from an uncolored element to 0r for some r l This would give

us an algorithm if we could show conversely that a better coloration

exists only when there is such a path. Indeed, it isn't hard to convince

oneself that this is true: Consider any painting Eo,E1,...,Ek  where

each E
j

has \iEjjl = n.
3

elements, and suppose there is another one

E~>Ei>***>Ek where E3 has nj+Ejr-sjO elements. O-hus, the second

coloration has one more element of color r .) Then there is some

element x in Er
r which is independent of Er , because Er has rank

n
r in '/lr and it could not span all of the n,+l elements in E' .

r
We can repaint x with color r ; then if x was painted color s ,

we can find some y in Ei which is independent of Es\x , etc. Each

repainting brings the E
j

closer to the E! ,
J

so the process eventually

terminates by finding an uncolored element to paint.
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So we know that the above path method will indeed lead to a good

algorithm for matroid partitioning. However, experience with other

algorithms; for which matroid partitioning provides a generalization,

encourages us to look for more: We would like to find a "simple reason"

that the painting cannot be extended, so that a person who doesn't

necessarily believe that our computer program is correct can see for

himself that the best painting it has found is optimum. This is far

more desirable than if we merely said "the computer has made an exhaustive

search and found nothing better." A simple reason that improvements are

impossible -is what Edmonds has called a good characterization. The

programmer can present his supervisor with a convincing answer, whether

the algorithm succeeds or not.

Therefore let us try to find a good characterization. Suppose there

is no oriented path x f Or satisfying the conditions of the lemma, for

any uncolored xeE0
and for some fixed

B. =
3 c 1xxcE.andxd'Or]  ,J

value of r . Let

-

A. = E.\B
J J j'

for 0 < j < k . Then B. is empty, for if xeBo the shortest path- -

x 4 0
r

would satisf'y  the conditions of the lemma. Let

A =Ao!]AIU...UAk , B = BIU-.UBk ,

so that we have partitioned E into two disjoint sets A and B .

Experience with other algorithms suggests that we might be able to use

these sets A and B to obtain a "good characterization".

If x is independent of A. in n. , then either x is independent
3 3

of E. in 7$'., or XCB. , or x -+ y for some ycB. .
J J J

These three cases
3
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imply that either XCB or B
3

is empty. In other words, the following

statement holds for 1 < j < k :- -

if XEA, and either Bj # fi or j = r, then x depends on A. in fl
3 j l

A little fiddling around with this condition, and simplifying, leads to

the good characterization that is desired:

Theorem 1. Let %+*-•,n,, -be matroids on a set E . It is possiblem-v -m

to find disjoint subsets El,...,Ek of E , such that-- - E- - is independent
j -

in ~j and jiEj// = nj , if and only if-VP-

WI I IIEII- g max(n
-_ j=l

j -rj(A),O)

for all A c E , where- - rj - -is the rank function inR
j l

Proof. The condition is necessary, for if E1> l **,Ek is such a collection

of subsets and A c E then llEj nAi( 5 rj(A) , hence-

/iEj fl (E\A)\./ > nj -rj(A) .-

Also clearly j/Ej fl (E\A)lI > 0 . Summing over j- gives

k
IiE\AiJ ,> 22 m=(n

j=l
j -rj(A),O)

which is the condition of the theorem.

Conversely, if we have disjoint subsets E ,...,E
1 k with E

j
independent in n j and //Ejil 5 nj and j/~,// <n , the algorithm

r
sketched above will be able to increase

II IIE
r without changing the

number of elements in the other sets E
j

l This must be so, for if the

algorithm fails, the set A constructed above satisfies the condition

rj(A) = llAjli or (A. = E
J

,j and j # r) , for all j . Therefore

7
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Hence II B II = Ii E /I - /I A II < c m=intj - r
J

condition of the theorem.

il IIBr <n
r-rr(A)  l

A),O) contradicts the

cl

The special case of this theorem in which all n
j

are identical

and all nj = rj(E) was proved by Edmonds [2].

A similar characterization applies when we ask whether or not all

elements can be painted.

Theorem 2. Let ?+ ' ",?tk be matroids on a set E .- - - It is possible- -
to find disjoint subsets-I__ El,=..,E k of E, such that F:.- - is independent

J-
in nj and //Ejj/ 5 "j

k

l -* uEk > if and only if- -

i.

such x J until this is no longer possible. A constr

l/A/j = C min(rj(A),nj)
j=l

for all A c E , where-_I - rj - - -is the rank function in q. .
J

Proof. The condition is necessary,

in any such partitioning.

since j/ A/ = x //Ej nA// < x min(rj(A),nj

Conversely, the condition is sufficient. Consider an algorithm which

looks for paths x .--+' 0
r where xcEo and j/E,// < n$ , and which paint::

preceding Theorem 1 can be used,

B. =
3 1 1x XEE., and x f

J

Then we find /Ajll = r.(A) or
J

all elements are painted, or A0

> x min(rj(A),nj) .

II IiA. = n! for I_< j <k. Hence either

is non:pty and j/All = //Aoil+  . ..+ lisll

R

but with

Or for some r with

u&ion like that

iErll < “;I l
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Theorem 2 is implicit in the paper of Edmonds [l], who proved it

when all the n!
3

are infinite. To get the general case, simply "truncate"

5
by saying that a set is dependent in 311

ii
whenever it contains more

than n! elements.
J

Furthermore we can derive Theorem 1 from Theorem 2,

by setting n! = n
3 j

and introducing a new matroid no with all sets

independent and n*o = 11 E 1) - (nlf . ..+ nk) . However, the following

theorem seems to be a mild generalization of Fdmonds':: theorem, not so

readily deducible .f.hw it:

Theorem 3.
k-tRl� l  l  4 k be matroids on a set E--_I , and let- -

be pairs of numbers with nj < n!

(nj'n5)

- - - for l<j_<k.
- J  - - g is possible to

find disjoint subsets El,...,E k of ET-,-such that E is independent

in ~j

j -
and nj < //Ej/j '"5 s E- = EIU...UE

k , if and only if both- - - -
the conditions of Theorems L and 2 hold for all A c E .

- -

Proof. Consider an algorithm which first looks for a painting satisfying

Theorem 1; if it fails, it finds a set A which violates the first

condition. 1-f it succeeds, it continues to extend the painting as in

Theorem 2. If this fails, it finds a set A which violates the second.

condition.

The algorithm

The proof of Theorem 3 leads essentially to the following algorithm,

which either finds a partition E ,...,E
1 k as specified in that theorem,

or finds a set A which proves that no such partition is possible. For

ease in description, the algorithm is not "optimized" here.

9



begin EO :=E; for j :=luntilk do E. :=$; for XFE do color(x) :=O;

for j :=l until k do for i :=y u&i1 nj do augment(j);_I-
while E. + fi $-0 augment(O);

for j :=l until k do output E.;
J

exit: end.

procedure augment (integer value r);

begin for xeE do succ(x) :=none;- -
A:=E;

B :=if r > 0 then {Or] else {OjI /jEjli <n;];

comment later SUCC(X) will be set to y if there is a shortest

path x 3 y +* Oj for some Oj now in B. Also

A = (xlsucc(x)  = none];

while B h fi do

_ begin C :=@;

for yeB do for xeA dom-
begin j :=color(y);

if xUEj\y independent in n.
- J

then begin succ(x) :=y; A :=A\x; C :=C Ux;- -
if color(x) = 0 then go to repaintPm-

end

end;

B :=C

end;

output A; output "This set A violates the condition of Theorem";

output if r > 0 then 1 else 2; go to exit;- -
repaint: while xeE do

begin y :=succ(x); j :=color(x); E
3
:=Ej\x; j :=color(y);

E
j

:=Ej Ux; color(x) :=j; x:=y;

end

end.

10
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The innermost loop of this algorithm is the test whether x UEj\y

.) timesis independent in n.,
J

and it is performed at most O(n'+-nk

per call of augment, where n = 11 El1 . Hence it is performed

O(n +n*k) times in all3 . However in practice this estimate

at most

is probably

much too high since the loop will terminate quiclily. (The loop "for XEA"

:;1lould consider those x~E:~ before the other x':: .) It is an open

question whether this O(n3) upper bound can be reduced.

Discussion

Consider a very special case of this algorithm, namely the "bipartite

matching" or "distinct representatives" problem. Given an n xk matrix

of O's and l's , it is desired to encircle exactly one 1 in every

c

row and at most one 1 in every column. Here m
j

corresponds to

column ,j and element x torow x,and n
,i
"0, n! =l forall j .

3
A s et 11: . of rows is

- (*]'I where row x

independent in q
J

if and only if F:. = pl or
J

1'Ij contains a 1 in column j . In this case the

test for independence is, of course, extremely simple> and the algorithm

runs in O(n3 +n2k) units of time . Hoper-oft  and Karp have shown how to
-

reduce this to O(n"') when n=k.

If this example is slightly generalized so that a set E *
J ls

independent in m
j

iff row x contains a 1 in column j for all

xcE. ,
3

and if we allow arbitrary n
j

and n!
3

, we have the problem of

encircling exactly one 1 in each row, and between n
j

and n! of
J

them in column j . The algorithm works in O(n5+n2k) units of time

for this case also. Ford and Fulkerson [4, 51 call this the "system of

restricted representatives" ,(SRR) problem, and they proved Theorem 3 in

this case. The conditions in both Theorems 1 and 2 can be simplified in

11
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the SRR problem, to

r~esyectively, by altering the kx2-t; A whenever 0 < rj(A) < n. or n? B
J J

Another 5rnportant  case of the algorithm occurs when k = 2 and 7~
2

is taken as the orthogonal complement (or dual) to some matroid n .

Then this algorithm can be used to find maximum-cardinality intersections

of q and 7& (See Edmonds [3, p. 821.)

The algorithm can also probably be generalized to allow the E *s-_ J
to overlap, with each x appearing at least n

X
and at most nrx times,

and where the set (j /xiEj) is independent in some given matroid n,, .

Edmonds [3, p. 831 shows essentially that

xch an a&l;orithm if all the lower bounds

A

matroid intersection would give

are zero.
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