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Abstract
This report discusses a nodified version of Edmondsts al gorithm for
partitioning of a set into subsets independent in various given natroids.
| f Wﬁ""’”& are matroids defined on a finite set E, the algorithm
yields a sinple necessary and sufficient condition for whether or not
the el ements-of E can be colored with k colors such that (i) all
el enents of color | are independent in o and  (ii) the nunber of
elenents of color j lies between given linits, ny < HEjH <nt . The

algorithmeither finds such a coloring or it finds a proof that none

exists, after making at nost n° +n%k tests of i ndependence in the

given matroids, where n is the nunber of elements in E
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Let Mys e e M be matroids (i.e., pregeonetries) over the n-el ement
set E. Ednonds [1] has given an efficient algorithm for determ ning
whet her or not the elements of E can be partitioned into k disjoint

subsets, E = E,U...UE such that E.J I's independent in 'mj for

K
all j . The purpose of this paper is to present his algorithmin a
sonmewhat different way, which indicates how he mght have discovered it
inthe first place; and to extend the algorithmslightly so that bounds
are placed on the nunber of elenents in the subsets E.J .
In order to make this report sonewhat colorful, we shall inagine
that the elements of E are being painted with k colors, so that &,
contains the elenents of color j . The reader is assumed to know the
basic definitions of matroid theory, since by now there are dozens of
papers in which these definitions occupy the first two pages. Edmonds's

paper [1] indicates the wide variety of applications for matroid

partitioning.

Derivation of an al gorithm

The natural way to get the elenents colored is to start with them
all blank and successively to paint them Mny conbinatorial algorithms
have the following general form "Starting with a certain configuration,
try to find a better configuration by some reasonably straightforward
method. If this succeeds, replace the initial configuration by the
inproved one, and start again. If this fails, prove that no better
configuration exists." O course it is not always possible to carry out

the latter proof; but in nmany inportant cases, such a proof is possible,



hence a rather sinple algorithmemerges. Matroid partitioning is such a
case.

Suppose we have painted certain elenents and that E. s the set
of elements having color j ; we assume that Ej is independent in 7713'
Let B, = E\(Elu UEk) be the unpainted elenments. [|f x is sone
el ement not of color j |, we could paint it with that color if XUEJ.
wer e independent in mj . On the other hand, if xUEJ. i s dependent,
there is a unique circuit PC XUE;} , and we can paint x with color j
if the color of any element y of PnEj is scraped off. Then perhaps
we can paint y with sone other color.

A sequénce of such repaintings mght be denoted by, say,

X =y =2z -0

3

meaning "paint x with the current color of y , then repaint y with
the current color of z | then repaint z with color 3." In general
we may wite

X -y e X UEJ.\y i s independent in mj

when yeE, and xﬁEj; and

J
x—»oj @ xUEj i's independent in mj
where x is an elenent of E\EJ. and OJ, is a special synbol distinct
fromthe elenents of E; we may think of 0. as a 'standard' el enent
of color j , whose color never needs to be washed off. Note that if
X —+OJ. then x -y for all yc—:Ej

In effect, this arrow notation defines a directed graph on the n+k
vertices E U {Ol,...,ok} s and X -y oz —»05 is an oriented path

fromx to 05 . W shall denote oriented paths, as usual, by witing

+ .
x— Yy @therelsapathx=xo-»x1—»...-»xm:y, m>1.



If x is uncolored and there is a path x N 0., this path
specifies a repainting which results in a net increase of one nore
el ement painted the r-th color. This would give us a way to decrease the
number of unpainted elenents. However, we have overlooked an inportant
consideration: Al the " »" relationships have been calculated with
respect to a particular choice of the E.J , and sone repaintings nay
invalidate future ones. In fact there do exist paths x N 0, whi ch
correspond to no correct repainting.

Fortunately this problem does not arise when we consider shortest

paths instead of arbitrary paths.

Lema. In terms of the.above notation, let x = Xg = Xy —»xm:or,

X4 -|-'x.J for j > i+l . Then if X is painted the color of Xiq 0 TOF

0 <i<n, the resulting elements of color j are independent Emj,

for 1<j<k.

Pr oof . The result is trivial when m=1 . |f m > 1, consider what
happens after making just the mth step of the repainting: Let X1
have color s , and |et

E = FE UX

T r m 1
Bs = Es\xm—l
Ej' :E.J , for j #£r,s

Let -t denote relations in the directed graph corresponding to these EJ! ;

and let x!l =x, for 0 <1i<m, Xty = Oy . The lemma will follow by
i i i RIS | R t 1
induction, if we prove that Xt -t x] Co x! and x! 1 g for
j < itl.
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— To prove that X! o x£+l , the only nontrivial case occurs when

xi,, has color r . In this case, i+1 < ml and we nust show that

the set | = BN 4 Uy i s independent in m, . 1f it were dependent,

it would contain a unique cycle P;and p pust contain both x. and
1

Xm | since I\xi and I\Xm—l are independent. But this would inply
t hat X, > x 9, contrary to hypot hesi s.
L Cn the other hand if x! - x'.Jfor j > i+l , we reach an inmediate
contradiction unless X!J has color s and j <m| . COherwise we find
L t hat Eé\xj Ux, i's independent but ES\Xj Ux, is dependent; thus there
is a unique cycle PEES\XjUxi , and X and X, are both in this
- cycle, so iii XL This contradiction completes the proof.
- This lemma tells us that an existing coloration can be inproved
(i.e., the nunmber of unpainted el enments reduced by one) if we can find
) a path froman uncolored element to 0r for sonme r.This would give
L us an algorithmif we coul d show conversely that a better coloration
exists only when there is such a path. |ndeed, it isn't hard to convince
- onesel f that this is true: Consider any painting EsEqs e e osBy wher e

each EJ. has HEJ.H =n. elements, and suppose there is another one
E('),E]'_,.‘.,El’i wher e EC’J has nj+6jr—6jo el ements.  (Thus, the second
coloration has one nore elenent of color r.) Then there is some
element x in E; whi ch is independent of E, because Er has rank
n. in 7, and it could not span all of the n +1 el ements in E;‘
Ve can repaint x with color r; then if x was painted color s ,

we can find sone y in E! whi ch i s independent of ES\X , etc. Each
repainting brings the E‘j closer to the E!J , SO the process eventually

termnates by finding an uncolored element to paint.



Derivation of good characteristics

So we know that the above path method will indeed lead to a good
algorithm for matroid partitioning. However, experience with other
algorithms; for which matroid partitioning provides a generalization,
encourages us to look for more: W would like to find a "sinple reason”
that the painting cannot be extended, so that a person who doesn't
necessarily believe that our conputer programis correct can see for
hi msel f that the best painting it has found is optimum This is far
nore desirable than if we nerely said "the conputer has made an exhaustive
search and found nothing better." A sinple reason that inprovenments are

i npossi bl e is what Ednonds has called a good characterization. The

programmer can present his supervisor with a convincing answer, whether
the algorithm succeeds or not.
Therefore let us try to find a good characterization. Suppose there

is no oriented path x - O satisfying the conditions of the |emm, for

any uncol ored ek and for sone fixed value of r . Let
_ +
Bj = {xlerj and x - 0} ,
A = EN\B .
J j\ Jl

forO0 < ] < k . Then B, is empty, for if xeB the shortest path

X o Or woul d satisfy the conditions of the lema. |Let

A :AOl“JAlU"'UAk , B = BlU'”UBk '

so that we have partitioned E into two disjoint sets A and B .
Experience with other algorithns suggests that we mght be able to use
these sets A and B to obtain a "good characterization".

If x is independent of Aj in m_.a, then either x is independent

of E.J in 772_.J, Oor xeB. i or Xx -y for sone yeB_.J. These three cases



inply that either xeB or B, is enpty. In other words, the following

J
statenent holds for 1 <j <k :

if xeA, and either Bj;égéor j = r,then x depends on A in 7
J J.

A little fiddling around with this condition, and sinplifying, |aads to

the good characterization that is desired:

Theorem 1. Let ml,...,mk be matroids on a set E. It is possible

to find disjoint subsets &

1B Of E, such that E, is independent

in My and |l =n,, if and only if
k
nall < llell- .Z max(n, -rj(A),O)
Jz

for all Ac E, where , is the mank function in '
— J.

Proof.  The condition is necessary, for if ELs | :3“&5 is such a collection

of subsets and A ¢ E then IIEJ najl < r.(a) , hence

]jEj N (E\Q) || > n, -rJ.(A) :
Also clearly HEJ n(EV)[| > 0 . Summing over | gjvyes
' k
IE\NAl > 20 max(n, -r.(4),0)
which is the condition of the theorem
Conversely, if we have disjoint subsets El""’Ek with E.
J
i ndependent in 7, and HEJ_H < n; and IE |l <n . the al gorithm
sketched above will be able to increase |4l without changing the
number of elenents in the other sets E. This nust be so, for if the
J

algorithm fails, the set A constructed above satisfies the condition

Tj(A) = HAJ-H or (A-J: EJ. and j £#r) , for all j . Therefore




1Bl = el - flag )l < max(n, -7,(4),0) ; ana B, < n -r (a) .
Hence B =fE]-[a]<Z max(n, - T . 4),0) contradicts the

condition of the theorem
O

The special case of this theoremin which all W(j are identical
and all n, = rj(E) was proved by Ednonds [2].

A simlar characterization applies when we ask whether or not all

el enents can be painted.

Theorem 2. Let Mys - -+»M, be matroids on a set E. |t js possible

to find disjoint subsets Eys--,E Of E  such that Ej s independent

my and HEJH Sy and E=E U.. UE, if and only if

in

ja

k
hall = ji Min(rj(A),ng)

for all Ac E, where rj is_the_rank function in 773~.J.

Proof . The condition is necessary, since || 4] = 2 HEJ- najl < 22 min(l’j(A),nj
in any such partitioning.
Conversely, the condition is sufficient. Consider an algorithm which
+ . . .
| ooks for paths x - 0. where xeB, and j/E // <n!, and which paint::
such x , until this is no longer possible. A construction |ike that

preceding Theorem 1 can be used, pyt with

- + .
B:] - {XlerjJ and x - OI‘ for some r with HErH < n;} .

Then we find HAJ.H = fJ-(A) or HA.JIj =ni for 1< <k . Hence either
all elenments are painted, or 4, ;g nonempty and “A“ = ”AOH+ Lt HAkH

> Z i [
mln(rj (A))nj) D



Theorem 2 is inplicit in the paper of Ednonds [1], who proved it
when all the n!J are infinite. To get the general case, sinply "truncate"
7723. by saying that a set is dependent in mj whenever it contains nore
t han n!J el enents. Furthernore we can derive Theorem 1 from Theorem 2,

by setting n!J = nJ and introducing a new matroid My with all sets

i ndependent and n} = | E |- (n+. ..+ n However, the follow ng

K
theorem seens to be a mld generalization of Fdmondsts theorem not so

readily deducible fromit:

Theorem 3. My . oMy be matroids on a set E | and let (n ,n')
- ) ) 37

be pairs of numbers wthn, <n  for 1<j<k . 1t is possible to

find disjoint subsets Bisev 5B of E , such that EJ_ is independent
in My and ny <[] <nland E = y...yg . if and only if both

the conditions of Theorens 1 and 2 hold for all Ac E.

Proof . Consi der an algorithmwhich first looks for a painting satisfying
Theorem 1; if it fails, it finds a set A which violates the first
condition. 1f it succeeds, it continues to extend the painting ac in
Theorem 2. |f this fails, it finds a set A which violates the sccond

condi tion.
O

The al gorithm

The proof of Theorem 3 | eads essentially to the follow ng al gorithm
or finds a set A which proves that no such partition is possible. pq

ease in description, the algorithmis not "optimized" here.



begin EO :=E; for j :=1 until k do E :=p; for xe& do col or(x) :
for j :=1 until k do for i :=1 until n do augnent (j);

while £ # ¢ 40 augnent(O);

for j :=1 until k do output E.J;

exit: end.

procedure augnent (integer value r);
begin far xeE do succ(x) :=none;
A: =E;
B:=if v > 0 then {Q] else {0, [[&,| <n:1;
comment | ater succ(x) will

be set toy if there is a shortest
path x -y =¥ oj for sone oj now in B. Al so
A = {x|suce(x) = none];

while B £ ¢ do
- begin C :=¢;

for yeB do for xeA do
begin j :=color(y);
i f XUEj\y I ndependent in ?7zJ.
t hen begi.n succ(x) :=y; A :=A\x; C :=C yux;
if color(x) = 0 then go to repaint
end
end;
B:=C
end;
output A output "This set A violates the condition of Theorent;
output if r> 0 then 1 else 2; go to exit;

repaint: whil e xeE do
begin y :=succ(x); j :=color(x); Ej ::Ej\x;j :=color(y);
Ej :=EJ. Ux; color(x) :=j; x:=v;
end

end

10



The innernost |oop of this algorithmis the test whether XUEJ.\y
i s independent in 'mJ_., and it is performed at nost O(n2+nk,) tines
per call of augment, where n = | E||. Hence it is performed at npst
CXn§+n2k) times in all  However in practice this estimte is probably
much too high since the loop will termnate quickly. (The |oop "for xeh"
should consi der those By before the other x's.) It js an open

question whether this o(nﬁ) upper bound can be reduced.

Di scussi on

Consi der a very special case of this algorithm namely the "bipartite
matching" or "distinct representatives" problem Gven an n xk matrix
of Os and 1's, it is desired to encircle exactly one 1 in every
row and at nost one 1 in every colum. Here 7773. corresponds to
colum j and element x +to row x , and n, =0, n!J =1 for all |
A s et L of rows is independent in mj if and only if EJ:.:yéor
EJ. = {x} where row x contains a 1in colum j . In this case the
test for independence is, of course, extrenmely sinple, and the al gorithm

2k) units of time. Hoperoft and Karp have shown how to

runs in (Xn5+n
reduce this to O(n2‘5) when n =%k .
If this exanmple is slightly generalized so that a set Ej is

I ndependent in ’mj iff rowx contains a 1 in colum j for all
xgEj, and if we allow arbitrary n(j and n!J , We have the probl em of
encircling exactly one 1 in each row, and between nJ. and nJ! of
themin colum j . The algorithmworks in O(nj+n2k) units of time
for this case also. Ford and Fulkerson [L4, 5] call this the "system of
restricted representatives" ,(SRR) problem and they proved Theorem % in

this case. The conditions in both Theorens 1 and 2 can be sinplified in

11



the SRR problem to

=
AN

< HE- 2 {ay]x, @) = o]

A

and H Al <70 {nj Ir'](/\) > 0}

J

respectively, by altering the set A whenever 0 < rj(A) < r} or n? .
= 2 and 77(2

Anot her important case of the algorithm occurs when k
is taken as the orthogonal conplenment (or dual) to some matroid 7 .

Then this algorithmcan be used to find maxi mumcardinality intersections
of m, and 7M. (See Edmonds (3, p. 82].)

The al gorithm can al so probably be generalized to allow the Ej tg
to overlap, with each x appearing at |east n. and at nost n’ times,
and where the set {j |X€Ej} i's independent in sone given matroid m.. -
Ednmonds [3, p. 83] shows essentially that matroid intersection would give

such an algorithm i f all the |ower bounds are zero.
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