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ABSTRACT: The minimum root separation of a complex polynomial A is
defined as the minimum of the distances between distinct
roots of A. For polynomials with Gaussian integer coeffi-
cients and no multiple roots, three lower bounds are de-
rived for the root separation. In each case the bound is
a function of the degree, n, of A and the sum, d, of the
absolute values of the coefficients of A. The notion of
a semi-norm for a commutative ring is defined, and it is
shown how any semi-norm can be extended to polynomial
rings and matrix rings, obtaining a very general analogue
of Hadamard's determinant theorem.
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1. Introduction. Let A(x) be a polynomial of degree nX with

complex coefficients a
i
and complex roots a., so that

J

A(x)=xyZO aixi=anrij'_,(x-aj).

We define sep(A), the minimum root separation of A, by

sep(A)=min
a* f I Vcyk 'I
J ok

( )1

(2)

with the convention that sep(A)= a in case A has only one distinct root.

The computing time required by any algorithm to isolate the zeros

of A depends inversely on sep(A). Hence we are interested in easily com-

putable functions f(a
0
,... ,a,) of the coefficients such that

O<f(a ,.
0

..,a,)5 sepiil). ( >7/)

Heindel, [3], in analyzing the computing time of an algorithm

based on Sturm's theorem for isolating the real zeros of any polynomial

with integer coefficients, used a weak lower bound for sep(A)  due to

Collins. Pinkert, [9], presents an analogous algorithm for isolating all

zeros, real and complex, of any polynomial with Gaussian integer coefficients.

His algorithm is based on Sturm's theorem and the Routh-Hurwitz theorem and

uses a stronger lower bound for sep(A) obtained more recently by Collins.

Horowitz, using another simpler approach, has recently obtained a third

lower bollrld, interm, <iiate in strength, but just slightly weaker than the
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stronger bound of Collins. In the following, these three bounds are all I

derived, with the hope of stimulating further research on the problem.

If A(x) has rational complex coefficients, we can easily compute

another polynomial, having the same roots, with Gaussian integer co-

efficients. Further, if A(x) has Gaussian integer coefficients, we can

easily compute another polynomial A*(x) with Gaussian integer coefficients,

having the same roots as A(x) and having only simple roots, namely

A*(xj=A(x)/gcd(A(x)  J’(x)) 3 (4)

where A'(x) is the derivative of A(x) and "gcd" denotes the greatest common

divisor. Hence in the following A is assumed to have Gaussian integer co-

efficients and no multiple roots.

Also, the three lower bounds to be obtained will all be of the form

(5)

L where n=deg(A), the degree of A, and d=V(A), where v is some "semi-norm".

In the next section we introduce the notion of a semi-norm for a ring and
-

L then derive some lemmas which will be used in deriving the root separation

theorems.

i-
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2. Semi-Norms and Resultants. If p is any commutative ring, a

semi-norm for p is any function v from @ into the non-negative real numbers

satisfying the following three conditions for all a, b$ p:

v(a)=0 if and only if a=O, (6 a)

h-b)< v(a)+v(b),

V(d)_< v!a)v(b)*

(Cb\
:
!

(6 1‘Cl

These conditions imply also

V(-+v(a>,

vja+b)_<  v(a)+v(b).

1
.

i

A norm for /p is a semi-norm for @ such that

v(ab)=v(a)v(bj. (7)

:
L For the ring G of the Gaussian integers a familiar norm is

vca+bi)=\a+bil=(a2+b2)1/2. A semi-norm for G which is not a norm is.

i

Any semi-norm I, on a commutative ring c can be extended to a semi-

norm on the polynomial ring @x] by the definition

.
C7n

V ‘L i=Oa  $) =~ ~=OV(ai)  ’)

L

L

By induction on r, repeated application of (8) extends \J to a semi-norm on

a x I which is easily seen to be independent of the order in whichx17*-, r J

the indeterminates xi are adjoined.

As a special case, (e) defines \A\ and \A\~ for any Gaussian poly-

i

L

nomial A(xl'...,xr) EG[xl,...,xr]  as extensions of the semi-norms for G

defined above. For integral polynomials A(x~,...,x,)  with rational integer

coefficients, the norm IAll has been used extensively for the analysis of
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algebraic algorithms. See, for example, [l

extension to Gaussian polynomials, however,

I, Fl,

is new.

I
4

[7] and [F]. Its

If M is an arbitrary matrix (or vector) over Ip, we define

v(M)=jm;--;v/Mij),
2,

(3c ‘),

where the summation extends over all entries of M. It is easy to verify

that the conditions (6a)-(6c)  hold for matrices over @whenever the opera-

tions are defined. In particular, this extends v to a semi-norm for the

ring of all n by n square matrices over R.

By combining the semi-norm extensions for polynomials and matrices,

we obtain the following general analogue of Hadamard's determinant theorem

([6], p. 2~3.‘ .

Theorem 1. Let @ be a commutative ring, v a semi-norm for @, M an

n by n matrix over e. Then

v(det(M))( fly,lV(".' CW
1

where M is the i th row of M and det(M) is the determinant of M.
i

Proof. By induction on n, the case n=l being trivial. We denote

by M.
bj

the element of M in the i
th

row and j
th

column of M, by M'
i,j

the

submatrix of M obtained by deletion of the i
th

row and j
th column. By

Laplace expansion,

det{M)=nn+l(-l)j+%l det(M'
L j=l* 1-j 1.j

).

By (6) and (ll),

v(det~M)j<~~~~~~~Mljjy(det(M1lj)).- i-r

(11)

L

t
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The ith rilw of M'
lj

is a subrow of M
i+l'

so

w(det(M'lj))<  Fy-$(Mi)-

by the induction hypothesis. BY Cl?) and (13>,

Since
+n+l
zj=lV(Mlj)=V(ML)  1 th is completes the inducti0n.q

A corollary of Theorem 1, needed in Section 3, will now be obtained by

consideration of certain submatrices of the Sylvester matrix of two poly-

nomials, A and B, over /$J.
\_ Let m=deg(A),  n=deg(B). The Sylvester matrix

of A and B is the m+n by m+n matrix S whose successive rows are the co-

efficients of the polynomials x"-lA(x), . . ..ti(x).  A(x)& "-+3(x), . . . ,
. .

xB(x), B(x). Diagrammatically, if A(x)=xCOaixl and B(x)=?&bixl, then

S=

a a
m m-1 l **

a
m a

m-l

.
.

a
m

bn bn 1 . . .

1
13 bII n-l

.
.

b
n

aO

aO

.
.

.

a
m-l . . .

aO

b3

bO

.
.

b
n-1 l ** bO

in which all missing entries are zero. By definition, the resultant of

A and B, res(A,B), is the determinant of S.

Theorem 2. Let A and B be polynomials over a commutative ring x?
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Also, there exist polynomials U and V ov"rEsuch that AU+BV=c, deg(U)ti,

dedV)W

and

aJ)2(L’ A
n-l

) vmm> (17;

be a root of A. Then

l&l <( A

where a
n
=ldcf(A).

with semi-norm V. Let m=deg(A)X,  n=deg(B)X, c=res(A,B). Then

V(41\)(d%B)m* (16)

\J(V)<V(A)~~J(B)~-~~ (18)

Proof.
.thIf Si is the 1 row of S then g(Si)=v(A)  for l<i<n and- -

v(Si)'~(B) f or n+l<i< m+n,  and (16) follows from Theorem 1. Now consider_ _
--

the matrix SK
m+n-i

which is obtained by adding to the last column of S x

times the i
th
column of S, for l_<i<m+n. det(S*)=det(S) =c and the last

-x-
column of S contains the entries x"-lA(x) ,...,xA(x),  A(x), xm-'B(x),...,

xB(x),B(x)  . Applying the Laplace determinant expansion theorem to the

last column of S* we obtain AU+BV=c with deg(U)s-1 and deg(V)s-1, where

x-
the coefficients of U and V are the cofactors of the last column of S .

Each coefficient of U is the determinant of a matrix obtained from S

by deleting one row of coefficients of A and the last column, and so

Theorem 1 yields (17), and similarly (18) holds.4

30 Root Separation Bounds. For each of the first two root

separation bounds we will :.se the following upper bound on the roots of

a polynomial.

Theorem 3. Let A be any non-zero Gaussian polynomial, and let d

/‘“,I
(19)



Proof. IAl>!an\, so (19) ho Ids for 1~14.

assume lo

Dividing

21.
n \7n-1 i

Then ana =ij-=Oaia  , so

la I'\~ln$?~~[ail-lQ!)i*n

n-l
20) by !,I ,

Let A

la i*l~l~~~=(ail-l~li-n'l~~~~lail</Al,n

from which (19) is immediate.~

i
and

(20)

(21)

Theorem 4. (Collins, 1970) Let A be a Gaussian polynomial of

degree nr2 with only simple roots, and d=(Al. Then

sep(A)>@)
-n(n-1)/2

. (22)

Proof. Let cY1~*-Yo!n be the zeros of A and x=sep(A).  We may

choose notation so that r\=Icy1-o12(. Let D be the discriminant of A,

so that

1
,

L
L -

L
1
L

D,a2n-2 (23)
n

and ([lOI, Section 28), D is a Gaussian integer. Since the 0, are
J

distinct, Dfo and hence 1D(>l. Combining this with (23), we have

(24)
1 1

2n-2
,an. 7-f 10, -akW j I20

Dividing by h2,

Y2<1  anI 2n-2 vja I Crj-crk
(j&)4(1,2)  ’

I’. (25)

There are (n2 -n-2)/2 factors 1
~j’~k

I2 in (25)

2d/\a 1
n.

by Theorem 3. Hence,

~B2~(2d)n2Bn-2/~anln2-3n.

Now n2-3n-J-2a  and Ian\>1  SO

(26)
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L
22) is immediate. 8from which

Theorem 5. (Horowitz, 1973) Let A be

degree n22 with only simple roots, and d=IA

-4n+5
sep(A)>(nd) .

a Gaussian polynomial of

. Then

(28)
L

Proof. Let$,...,dn be the zeros of A andh=sep(A).  We may

suppose thath=\o(l,-&2\. By Theorem 2, there exist Gaussian poly-

nomials U and V such thati

i

L
AU+A'V=c, (29)

deg(U)a-2 and deg(V)tn-1, where c=res(A,A'). Since A(x)=an??=l(x&i~),

1 we have

A ’ (“)=“~=l’l<i*nCx-O$)  ’ (30)

ifj
Evaluating (30) at x=5, we obtain

I
i

L
A � (A~)=anfl~=2dll-&) l (31)

L Hence, evaluating (29) at x=v(L and using (31
Y

-c"n'Y=2Kl%)]V(0$)=c. (32)

BY [ 101 , Section 28, c=anD,  where D is the discriminant of A, a non-

zero Gaussian integer. Hence V($)fO and by (32),
L
L sep (A)=DIV(Q$Ily3$+L)  l (33)

t

1 IVInn-ld2n-2 (34)

L
by Theorem 2. Since deg(V)  In-1 and 14 Cd,
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From (33) and (35), using 1~121 and (Crl-ai\Qd,

sep(A)k2
-n+2,-n+ld-4n+5

. (36)

The proof is completed by observing that nr2. m

In order to obtain the third root separation bound, we construct

a Gaussian polynomial B* whose roots are all the differences a -i CI'.
J

with ifj. The idea of constructing B* as a resultant was suggested

by some current research of R. Loos, [5]. After obtaining upper

bounds for the coefficients of B*, we will apply the following theorem

to obtain a lower bound for the roots of B*, and hence for sep(A)=

Theorem 6. Let A(x)=zzoaixi be a complex polynomial of degree

nx), with a,f 0. If a/ is any root of A, then

(37)

Proof. Let A*(x)=xnA(x-l)=E=Oan-ixi. A* is a polynomial of

degreemwhose  roots are the reciprocals of the roots of A, for
-1

an(aO/an)~~=l(x- pi -l)  =aoT?& (x-$) . Hence A*(a-')=O and from [4],

Exercise 4.6.2.20, we have

la-'lQ maxl<i~nlai/a()ll'iy- (38)

from which (37) is immediate.1 (39)

Theorem 7. ("ollins, 1973) Let A be a Gaussian poly-

nomial of degree nr2 with only simple roots and d=lAl. Then

sep(A)$&(e n-k 3i2d)-",

where e is the base of the natural logarithm.

(40)



1C

Proof. Let B(x) be the resultant of A(y) and A(x+y). If the

coefficients and roots of A are given by (1), then,

Expressing the

A(⌧fy)=an~,l(Y-(olj-⌧)  > l (41)
. .

resultant B(x) as a symmetric function of the roots of

A(Y) and A(x+Y ) by the theorem of van der Waerden([lO], Section 2@,

Since ~~=a.  if
J

and only if i=j, B(x)=x%(x), where

B'x)=a~nfi~j  (X-(ai-~j > >, (43)

is a polynomial of degree n(n-1) with B(O)&. Also, (43) can be written

in the form

so that if ~(x)$?~-') 'gixl then ii=0 for i odd.

Expanding A(x+y) in a Taylor series,

(45)

where A(i the ith derivative of A. Let

Let M be the Sylvester matrix of A(y) and A(xCy). If we subtract the

th th
i row of M from the (n+i) row and then divide the latter by x, for

l<i<n we obtain a matrix E such that det(M)=xndet(6?). The first column

of Z contains a in the first row and zeros elsewhere. Hence det(fi)=
n

andet(M*), where M* results from E upon deletion of its first row and

column. But M* is the Sylvester matrix of A(y) and A*(x,y), SO

Z(x)=anB*(x) (47 >

where B*(x) is the resultant of A(y) and A*(x,y).
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We now proceed to obtain bounds for the coefficients of B*. Let

A*k(X'd =zicA i(y)/i!]xi-l, ( )4 e

so that Ak is the result of deleting from A* all terms of degree

k+l or greater in x. Since  A* and Ak are both of degree n-l in y,

B*(x)sBk(x) (modulo x
k+l

) for kX>. Hence the coefficients of xk in

B*(x) and B*(x) are identical, and if B*(x)=
k

~n(n-l),,++xi
Li=O i

then

bfi"&l. (49)

Now lAfU(y)/i!(< (?)d, so, by (48),

jA$x,y) @!$&kenkfld. (50)

By Theorem 2 and (50),

1 I
B$+ ,enn(k+1bd2n-1
k -

. (51)

i

i

L
I
i

L

i

i

By (49) and (51),  together with 155121,

1 b;/bzk 1 1/2k>e-n/2n-3n/2d-n’1’2
-

for k21. Since br=O for i odd, by Theorem 6,

I 5.
1/2n3/2d)-n Y

(52)

(53)

completing the proof.)

The computing time of an algorithm, e.g. [9], for isolating the

zeros of a Gaussian polynomial A is dominated (in the sense of [2]) by

a polynomial function of n=deg(A),  log d where d=\Al, and -log sep(A).

If "-" denotes codominance of functions as in [2] and if cl(n,d),

H(n,d) and C2(n,d) are the bounds on sep(A) given by Theorems 4, 5 and

7, then we have

-log ClS(n,d)a210g d, (54)

L
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b-

..%.

-log H(n,d),- log C2(n,d)a log nd. ( 5)5

In this sense the last two bounds are equivalent.

sep(A) can be given explicitly.
2

When n=2, If A(x)=ax +bx+c has two

distinct roots, then

sep(A)=(b2-4ac\112/\a\. (56)

Also, by Theorem 11, sep(A)>l/2d. Let a=k, b=2k-1 and c=k-1 with krl.

Then d=(Akbk-2 and sep(A)=l/k4+/(4k-2)=It/d.

L(n,d)=min

Then, we have just shown,

Define

):deg(A lAl<d}. (57)

(58)

It does not seem unreasonable to ask for an explicit relation such

as (58) for L(3,d), but we have thus far not succeeded with this

apparently simple problem. We know only, by Theorem 57 and some

obvious examples, that

d-3,L(3,d)<d-1, (59)

where "1" is the dominance relation.
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