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THE M NIMUM ROOT SEPARATION OF A PCLYNOM AL

1. Introduction. Let A(x) be a polynom al of degree n>C with

conpl ex coefficients 2, and conpl ex roots o> so t hat

—) . \

Y=y D Lp— -
A(x) Z i=0 8% anTrj=l(x aj). (1)

We define sep(A), the mnimumroot separation of A by

sep(A)=min K? -ozkl ) (2)

OZJ:?éO/k

with the convention that sep(A)= » in case A has only one distinct root.
The computing tine required by any algorithmto isolate the zeros
of A depends inversely on sep(A). Hence we are interested in easily com

putabl e functions f(ao,...,an) of the coefficients such that
O<f(ao,...,an)§ sep(A). (%)

Hei ndel, [3], in analyzing the conputing time of an algorithm
based on Sturm s theorem for isolating the real zeros of any polynoni al
with integer coefficients, used a weak |ower bound for sep(A) due to

Collins. Pinkert, [9], presents an anal ogous algorithmfor isolating all

zeros, real and conplex, of any polynomal with Gaussian integer coefficients.

H's algorithmis based on Sturms theorem and the Routh-Hurwitz theorem and
uses a stronger |ower bound for sep(A) obtained nore recently by Collins.
Horowi tz, using another sinpler approach, has recently obtained a third

| ower bound, interm. diate in strength, but just slightly weaker than the
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stronger bound of Collins. In the followi ng, these three bounds are all
derived, with the hope of stimulating further research on the problem

If A(x) has rational conplex coefficients, we can easily conpute
anot her polynonial, having the same roots, with Gaussian integer co-
efficients. Further, if A(x) has Gaussian integer coefficients, we can
easily conpute another polynomal A*(x) with CGaussian integer coefficients,

having the sane roots as A(x) and having only sinmple roots, nanely

A*(x)=A(x)/gcd(A(x),A" (%)), (&)

where A (x) is the derivative of A(x) and '"ged'" denotes the greatest common
di vi sor. Hence in the following A is assumed to have Gaussian integer co-

efficients and no nultiple roots.

Also, the three |lower bounds to be obtained will all be of the form

0<g(n,d)<sep(A), (5)

where n=deg(A), the degree of A and d=\(A), where ,, is some "sem -norni.
In the next section we introduce the notion of a sem-normfor a ring and
then derive some |emas which will be used in deriving the root separation

t heor emns.
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2. Sem-Nornms and Resultants. If g is any comutative ring, a

sem -norm for g is any function y from g into the non-negative real nunbers

satisfying the following three conditions for all a, bg £:

v(a)=0 if and only if a=0, (6a)
v(a-b)< vla)+u(b), (6b;
v(ab)< v(a)v(b). (6¢)

These conditions inply also

v(-a)=v(a), (6d)

viatb)< v(a)+u(b). (6e)
Anormfor £ is a seni-normfor g such that
v(ab)=vla)y(b). (7)

For the ring G of the Gaussian integers a famliar normis
, _,.2..2\1/2 : N :
v(atbi)=|at+bil={a +b ) . Asem-normfor G which is not a normis
v(a+bi)=|atbi| =|a|+|b].
Any seni-norm ., On a comutative ring £ can be extended to a semi-

normon the polynomal ring gfx] by the definition

T n i,_.7n £)
V() 12022 )7 j=p(ay) (&)

By induction on r, repeated application of (8) extends v to a sem-norm on
ﬂxl,...,xrj , Which is easily seen to be independent of the order in which
the indeterm nates x, are adj oi ned.

As a special case, (&) defines |A\ and |A for any Gaussian poly-

h

nomal A(x;,...,x_) £6[x ,...,x ] as extensions of the sem-norms for G

defi ned above. For integral polynonials A(xl,...,xr) with rational integer

coefficients, the norm‘A\l has been used extensively for the analysis of
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al gebraic algorithms. See, for example, [1], [2], [7] and [&]. Its
extension to Gaussian polynonials, however, iS new
If Mis an arbitrary matrix (or vector) over g, we define

\ 7 RN

where the sunmation extends over all entries of M It is easy to verify
that the conditions (6a)-(6c) hold for matrices over @henever the opera-
tions are defined. In particular, this extends v to a sem-normfor the
ring of all n by n square natrices over g.

By conbining the semi-norm extensions for polynomals and matrices,
we obtain the follow ng general analogue of Hadamard' s determ nant theorem

([61, p. 20t

Theorem1l. Let g be a comutative ring, v a sem-normfor g, Man

n by n mtrix over . Then

, n ;
videt(M))< ”i=1\)<M1_”’ (10)

wher e Mi is the i ™ row of M and det(M) is the deternminant of M

Proof. By induction on n, the case n=l being trivial. W denote
by M, ; the element of Min the ith row and j th colum of M by M'L ; the
submatrix of M obtained by deletion of the ith row and | th col um. By

Laplace expansi on,
7T on+l i+ \
14 V= /_ ' )
detM)=) =1 1) ]Mljdet(M lj>' (11

By (6) and (11),

. 1 nt . R .
v(detM))< ) ?ziv(Mlj)v(det(M’lj)). (12)
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The i™" row of M .. is a subrow of M

1j i+1°? S0

' n+l .
v(det(M lj>)§ Wi=2v<Mi> (13)

by the induction hypothesis. gy (12) and (13),

v(det ()= (Mpv) ) ME0n ). (1)

. ntl .
Si nce ?=1\)(M1j)=v(Ml), this conpletes the induction.

A corollary of Theorem 1, needed in Section 3,w |l now be obtained by

consideration of certain submatrices of the Sylvester matrix of two poly-

nonials, A and B, over ». Let m=deg(A), n=deg(B). The Sylvester matrix

of Aand B is the mn by mtn matrix S whose successive rows are the co-

efficients of the polynomals xn‘lA(x), .. esxA(x), A(x),X m'lg(x),
. . . < i n i
B ,» B . ) =i =)
xB(x), B(x). Diagrammatically, if A(X) ' i=02:X  and B(x) Li=obix , then
aﬁ] am-l aO
im A %0
am Am a
S= o |,
T b,
“n bn-l bO
bn bn—l . bO

in which all mssing entries are zero. By definition, the resultant of
A and B, res(A,B), is the determinant of S

Theorem 2. Let A and B be polynom als over a comutative ring »




with senmi-normy. Let m=deg(A)>0, n=deg(B)>0, c=res(A,B). Then
n m ,
v(c)<u(a) v(B) . (16)

Al'so, there exist polynomals U and V over g such that AUrBV=c, deg(U)<n,

deg(V)<m,
n- 1 m .
v(U)<v A) w(B), (175
and
/ -1
w(V)<u(8) ™ (B)" . (18)
Proof. If 8, is the ith row of S then V(Si)=”<A) for l<i<n and

v(8;)=y(B) for n+l<i< mtn, and (16) fol lows from Theorem 1. Now consi der

mn- i
the matrix s which is obtained by adding to the last colum of S x

tines the i thcoI um of S, for 1<i<mtn. det(s*)=det(s)=c and the |ast
colum of S contains the entries Xn-lA(x),...,XA(x), A(X), xm-lB<x),...,
xB(x),B(x) . Applying the Laplace determ nant expansion theoremto the
last colum of S we obtain AU+BV=c with deg(U)<n-1 and deg(V)<m-1, where
the coefficients of U and V are the cofactors of the last colum of S*.
Each coefficient of Uis the determnant of a matrix obtained from S

by deleting one row of coefficients of A and the |ast colum, and so
Theorem 1 yields (17), and simlarly (18) hol ds. 4

3. Root Separation Bounds. For each of the first two root

separation bounds we will =:se the follow ng upper bound on the roots of
a pol ynomi al .
Theorem 3. Let A be any non-zero Gaussian polynomial, and let o

be a root of A Then

| <[ & /la | (19)

wher e an=1dcf(A) .
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Pr oof . [A\2lanl, so (19) holds for |q|<t. Let A<X)—>jil=oaix and

n_tn-1 i
assune lo|=l. Then a o =L;:Oaid , SO
131 lol "0 2yl -lal - (20)

Dividing (20) by lof'.

. {-n+l Tn-l
‘an"‘a|3§2=é‘ail'|0‘l TUg) ol <Al (21)

from which (19)is immediate.l

Theorem 4. (Collins, 1970)Let A be a Gaussian polynon al of

degree n=2 with only sinple roots, and d=|al. Then
sep(A)>(2d)-n(n-1)/2. (22)

Proof. Let gg,«--s0 be the zeros of A and A=sep(4). W may
choose notation so that A=ldl-02|. Let D be the discrimnant of A

so t hat

=a2n-2W

( -oz)2
n <k ¥y %

D , (23)

and ([10], Section 28), Dis a Gaussian integer. Since the oy are

distinct, pD# and hence Ip|=1. Combining this with (23), we have

\21’1'2 '2. (2)4)

l<la | njq{l@j-o{k
L. 2
Dividing by A™,
-2 2n-2 2
N slanl Wj<k !aj ak\
(i,k)#4(1,2)

(25)

) 2
There are (n"-n-2)/2 factors lg;-oy |” in (25) and lozj-ozklslozj|+|ozk|<
Qd/\an[ by Theorem 3. Hence,

2 2
A-2£(2d)n —n-2/|an‘r1 '51’1. (26)

Now n2-5n+220 and lan\zlso
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[@2)

o) 2
A2 (2a)® 'n'2|an\2<(2d)“ -, (27)

fromwhich (22) is imediate. l
Theorem 5. (Horowitz, 1973) Let A be a Gaussian pol ynom al of

degree n>2 with only sinple roots, and d=|A|, Then

sep(A)z(nd)_un+? (28)

Pr oof . Leto(,l,...,o(,n be the zeros of A and7\=sep(A). V& may
suppose that)\=lo(1»0(2‘. By Theorem 2, there exist Gaussian poly-

nomals U and V such that
AUHA 'V=c, (29)

deg(U)<n-2 and deg(V)<n-1, where c=res(A,A'). Since A(x)=anﬂ?=l(Xﬂ¥i),

we have
A'(x)=arzgl=lﬁlsisn(x-o(i). (30)
if ]
Eval uati ng (30) at x=oCl, we obtain
' _ n
ANK )=a T o el Ay ) (31)

Hence, evaluating (29) at x=K and using (31 ),

] n
{anﬁi=2 (0(1 -p(i )}V(oCI)=C . (32)
By [ 10] , Section 28, c=a D, where D is the discrimnant of A a non-

zero Gaussian integer. Hence V@Cl)#o and by (32),
sep (A)=D/V@ﬂ1/n2=5@(11xi)- (33)

|A"|<n]A] so

‘V'I Snn-ldEn—2 (34)

by Theorem 2.  Since deg(V) =n-1 and |a] <d,
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n-lsnn-ldBn-ﬁ .

|v(ey)|£|V]-d (35)
From (33) and (35), using |D|=1 and |al~o,i]<2d,
sep(A)ZE-n+2n-n+ld-un+5, 36)

The proof is conpleted by observing that n>2. Il

In order to obtain the third root separation bound, we construct
a CGaussian polynom al B* whose roots are all the differences O’i_o’j
with i#j. The idea of constructing B*x as a resultant was suggested
by sone current research of R Loos, [5]. After obtaining upper
bounds for the coefficients of B¥, we will apply the follow ng theorem
to obtain a | ower bound for the roots of B*, and hence for sep(A).

Theorem 6. Let A(><)=Z1;.E=Oaixi be a conplex polynonial of degree

n>0, W th aOf 0. If o is any root of A then

. 1/i
!d‘>%rnlnlsi_<_n 'aO/aj_l. . (37)
a,#0
1
Proof. Let A*(x)=an(x-1)=er.1=Oan_ixl. A* is a polynomial of

degree nwhose roots are the reciprocals of the roots of A for
-1

A*(X>=anxn”?=1(x-l' op)=aimy (1o )=ga, T (-0 )}y (5 oy )3

(aO/an)ﬁLl(x— O’i-l)zaoﬂli‘ﬂ (x-a,-l) . Hence A*(a_l)=o and from[4],

a
n 1

Exercise 4.6.2.20, we have

-1 1/i
lO( ‘<2 naxlsign‘ai/ao‘ > (38)

fromwhich (37)is immediate.1 (39)
Theorem 7. (7ollins, 1973) Let A be a Gaussian poly-

nonial of degree n>2 with only sinple roots and d=|A|. Then
1 -
sep(a)>4(efn?/2a)™, (+0)

where e is the base of the natural |ogarithm
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Proof. Let B(x) be the resultant of A(y) and A(x+y). If the

coefficients and roots of A are given by (1), then,

(y=(a,=x)). (L1)

A(x+y)=anﬂ?=1 .

Expressing the resultant B(x) as a symetric function of the roots of

A(y) and A(x+y) by the theorem of van der Waerden ((10], Section 29,

B(x)=a5 "My g (x-(0q0y)- (x2)

Since o =0 if and only if i=j, B(x)=x B(x), where

2n

B(x)=a_ T34 (x=(050), (43)
is a polynonmial of degree n(n-1) with B(0)#. Also, (43) can be witten

inthe form
B()=aamm, (5= (aym0) %) (1)

so that if B(x) Z(B 1) then b, ;=0 for i odd.

Expanding A(xt+y) in a Taylor series,
AGery) =y T i) /1, (u5)

wher e A(i) is the it*‘h derivative of A Let

w3,y = (A ety ) -4 () oy A2 /20 (06)
Let Mbe the Sylvester matrix of A(y) and A(xty). If we subtract the
ith row of Mfromthe (n+i) th row and then divide the latter by x, for
l<i<n we obtain a matrix M such that det(M)=x"det(i). The first colum
of M contains a, in the first row and zeros el sewhere. Hence det(lM)=

andet(M*), where M results from M upon deletion of its first row and

colum. But M* is the Sylvester matrix of A(y) and A¥(x,y),so

B(x)=a_B¥(x) (47 )

where B*(x) is the resultant of A(y) and A*(x,y).
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W& now proceed to obtain bounds for the coefficients of B*. Let

‘7k+l

ar () Nenia )/t (46)

k
so that Afi is the result of deleting fromA* all terns of degree
k+l or greater in x. Since A* and Ay are both of degree n-1 iny,

B*(x)=B¥(x) (nodul o xkﬂ) for k=0. Hence the coefficients of xk in

k
B*(x) and B;(x) are identical, and if B*(x) Zn<8 l)bl%xl t hen

Il <|Bg| . (%9)
Now 18 Uy)/1tl< (B)a, so, by (48),
X,¥) \Zk D)d<en ., (50)
By Theorem 2 and (50),
n_(k+1)n 2n-1

‘Bﬁlfe n d . (51)

By (49) and(51), together with jbg!zl,

1/2kze—n/2n-5n/2d-n+l/2

!bg/bgkl (52)
for k=1. Since b%ie=o for i odd, by Theorem 6,
1/2 2.\ "
‘ozi”ozj|%(e 123/ )", (53)

conpleting the proof.)

The conputing tine of an algorithm e.g. [9], for isolating the
zeros of a Gaussian polynomial Ais donmnated (in the sense of [2]) by
a polynom al function of n=deg(A), log d where d=|A], and -log sep(A).
If "." denotes codom nance of functions as in [2] and if Cl(n,d),
H(n,d) and cg(n,d) are the bounds on sep(A) given by Theorens L, 5 and

7, then we have

~1og ¢, (n,d)~n" Log d, (54)



12

whereas

-1og H(n,d)~-l0g C.(n,d)~n | 0g nd. (55)

o
In this sense the last two bounds are equivalent.
. o 2
When n=2, sep(A) can be given explicitly. If A(x)=ax +bx+c has two

distinct roots, then
2 1/2
sep(A)=|b -hac\ / /\a‘. (56)
Al so, by Theoreml, sep(A)>1/2d. Let a=k, b=2k-1 and c=k-1 with k>l.

Then d=|ARLk-2 and sep(A)=1/k<h/(kk-2)=k/d.

Def i ne
L(n,d)=min{sep(A):deg(A)=nglAl<d}. (57)

Then, we have just shown,

L(2,d)~d-1. (58)

It does not seem unreasonable to ask for an explicit relation such
as (58) for L(3,d), but we have thus far not succeeded with this
apparently sinple problem W know only, by Theorem 57 and sone
obvi ous exanpl es, that

- -1
d72<L(3,d)=d ", (59)

where "<" is the domi nance rel ation.
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