
Two Papers on the Selection Problem

TIME BOUNDS FOR SELECTION

Manual Blum, Robert W. Floyd,’ Vaughan Pratt,

Ronald L Rivest, and Robert E. Tarjan

and

EXPECTED TIME BOUNDS FOR SELECTION

Robert W. Floyd and Ronald L Rivest

STAN-CS-73-349

April 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

L

i

i
L

L

L

Time Bounds for Selection

bY .

Manuel Blum, Robert W. Floyd, Vaughan Watt,

Ronald L. Rive&, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of

n numbers is shown to be at most a linear function of n by analysis of

a new selection algorithm -- PICK. Specifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

extreme values of i , and a new lower bound on the requisite number

of comparisons is also proved.

This work was supported by the National Science Foundation under grants
GJ-992 and GJ-33170X.

1

1. Introduction

In this paper we present a new selection algorithm, PICK, and derive

by an analysis of its efficiency the (surprising) result that the cost

of selection is at most a linear function of the number of input items.

In addition, we prove a new lower bound for the cost of selection.

L

c

The selection problem is perhaps best exemplified by the computation

of medians. In general, we may wish to select the i-th smallest of a set

of n distinct numbers, or the element ranking closest to a given

percentile level.

L

i

L

b

Interest in this problem may be traced to the realm of sports and

the design of (traditionally, tennis) tournaments to select the first

and second-best players. In 1883, Lewis Carroll published an article [l]

denouncing the unfair method by which the second-best player is usually

determined in a "knockout tournament" -- the loser of the final match is

often not the second-best! (Any of the players who lost only to the best

player may be second-best.) Around 1930, Hugo Steinhaus brought the

problem into the realm of algorithmic complexity by asking for the

a minimum number of matches required to (correctly) select both the first

and second-best players from a field of n contestants. In 193%

J. Schreier [83 showed that no more than n+ rlog2(n)l -2 matches are

required, and in 1964, S. S. Kislitsin [63 proved this number to be

necessary as well. Schreier's method uses a knockout tournament to

determine the winner, followed by a second knockout tournament among

the (at most) rlog2(n)l players who lost matches to the winner, in

order to select the runner-up.

2

i

-

i

_--
L

-

C-

i

i

L

L

L
i

For values of i larger than :_‘ , the minimurn number LA' mtttche::

required to select the i-th best player from n contestants is known

only for small values of n . The best previous general selection

procedure is due to Hadian and Sobel [4], which requires at most

n-i+ (i-l) [log2(n-i+2)1 matches. They create a knockout tournament

of n-i+2 players and then successively eliminate i-l who are "too

good" to be the i-th best (using replacement selection).

No consistent notation has developed in the literature for the

"i-th best". We shall use the following two operators:

i0S F- (read "i-th of S") the i-th smallest element of S ,
def

for lziz\S[. Note that the magnitude of i 0 S

increases as i increases. We shall often denote

iClS by i 9 when S is understood.

xps = (read "x's rank in S") the rank of x in S , so that
def

xpses=x.

The minimum worst-case (minimax) cost, that is, the number of binary

comparisons required, to select iQ
e will be denoted by f(i,n) , where

I IS = n . We also introduce the notation:

F(a) = lim sup f(Lab-1) I +bn)
n 9

def n + a
for O<a<l ,- -

L

to measure the relative difficulty of computing percentile levels.

m In Section 2 we prove our main result, that f(i,n) = o(n) , by

analysis of the basic selection algorithm, PICK.

L-

L

In Section 3 PICK is "tuned-up" to provide our tightest results:

and

max F(a) 5 5.430;
o<a<1- a

~(a) 5 1+4.43oj~,/~+lo.86i rlog,(+Q?a) forO<a_<p,

where @ = .203688’ . In Section 4 we derive the lower bound:

F(O.!) 2 l+min(a,l-a) , for O<a<l.- -

There is no evidence to suggest that any of the inequalities (1) -(3)

is the best possible. In fact, the authors conjecture that they can be

improved considerably.

(1)

(2)

(3)

2. The New Selection Algorithm, PICK

In this section we present the basic algorithm and prove that

f(i,n) = s(n) . We assume that it is desired to select i@S , where

I 1S =n.

PICK operates by successively discarding (that is, removing from S)

subsets of S whose elements are known to be too large or too small to

be iQ , until only i-0 remains. Each subset discarded will

contain at least one-quarter of the remaining elements. PICK is quite

similar to the algorithm FIND (Hoare [5]), except that the element m

about which to partition S is chosen more carefully.

PICK will be described in terms of three auxiliary functions

b(i,n) , c(i,n) , and d(i,n) , which will be chosen later. We will

omit argument lists for these functions in general, as no confusion can

4

arise. Since we are interested in the asymptotic properties of PICK,

we will also omit details to be given in Section 3 regarding the case

when n mod c # 0 .

PICK: (Selects i0S , where ISI = n and 1 < i < n)- -

1. (Select an element m&3):

(a) Arrange S into n/c columns of length c , and sort each

L column.

(b) Select m = bQT , where T = the set of n/c elements
def

which are the d-th smallest element from each column. Use

PICK recursively if n/c >l .

2. (Compute mpS): Compare m to every other element x in S

for which it is not yet known whether m < x or m > x .

3. (Discard or halt):

If mpS = i , halt (since m = iQS) f otherwise

if mpS > i , discard D = {x 1 x >m) and set n en- D ,I I

otherwise discard D = (x Ix <m] and set n+n- D ,I I

i+-i-D .I I
Return to step 1.

This completes the description of PICK. We are now ready to prove:

Theorem 1. f(i,n) = o(n) .

Proof: We show that a reasonable choice of functions b(i,n) , c(i,n) ,

and d(i,n) result in a linear time selection algorithm. Let h(c)

denote the cost of sorting c numbers using Ford and Johnson's algorithm

[21- It is known [3] that:

L

i

h(c) = c
l<,j<c

bg2(3j/4)l . (4)
- -

'/'he cost of step l(a) is n*h(c)/c , making obvious the fact that c(i,n)

must be bounded above 'by a constant in order for PICK to run in linear

time.

Letting P(n) denote the maximum cost of PICK for any i , we can

bound the cost of step l(b) by P(n/c) . After step 1, the partial

order determined for S may be represented as in Figure 1:

b-l columns with

d-th smallest <m

n/c -b columns with

d-th smallest >m

f- T = (d-th smallest

element from

each column)

Figure1

Here we have the n/c columns of length c portrayed with their

largest elements on top. Since the recursive call to PICK in step l(b)

determines which elements of T are <m , and which are > m , we

separate the columns as in Figure 1. Every element in box G is clearly

greater than m , while every element in box L is less. Therefore only

those elements in quadrants A and B need to be compared to m in

step 2.

6

It is easy to show that no elements are ever incorrectly discar&ci

in step 3:
/

if mpS>i, m is too large, so that m and all larger

elements may be discarded, and symmetrically for the case mpS < i .

Note that at least all of G or all of L will be discarded. It is now

obvious that

P(n) 5 w+ P(n/C)+n+P(n-min(IL1,IGI)) .
(5)

To minimize P(n) we choose c = 21 , d = 11 , and b = n/2c = n/42

(so that m is the median of T , and T is the set of column medians).

This implies

P(n) 5 9$ + P(n/21) +n+ P(31n/42) ,

since h(21) =-66 . This implies by mathematical induction that
L

58 n
P(n) 5 3 = lg.& n .

(6)

(7)

. The basis for the induction is that, since h(n) <19 n for n < 10 ,5

L any small case can be handled by sorting. PICK runs in linear time because

c a significant fraction of S is discarded on each pass, at a, cost pro-

portional to the number of elements discarded on each step. Note, however,

that we must have c 2 5 for PICK to run in linear time. Q.E.D.

3. Improvements to PICK
s

The main result that f(i,n) = s(n) , has now been proved. We thank

the referee for his comment: "The authors have a right to optimize (if they

don?, someone else will)." This section contains a detailed analysis of

our improved versions of PICK.

We describe two modifications to PICK: PICKl, which yields our best

overall bound for F(a) , and PICK& which is more efficient than PICK1

for i in the ranges i<Bn or i > (l-p)n for g = .203688- . The

description and analysis of PICKl is relatively detailed and lengthy -- we

do not expect the average reader to wade through it! The optimized algorithm

is full of red tape, and could not in practice be implemented efficie

7

but in principle f'or any particular n could be expanded into a decision

tree without red-tape computation. The basic differences between PICK

;Ind PICKl will be listed shortly. We assume (by arguments of symmetry)

that i 5 m/a throughout this section.

Theorem 2. F(a) L 5.430; ,for O<a<l.- -

i-

i

h

.

Proof: By analysis of PICKl, which differs from PICK in the following

respects:

(>i The elements of S are sorted into columns only once, after

which those columns broken by the discard operation are restored

to full length by a (new) merge step at the end of each pass.

(ii) The partitioning step is modified so that the number of comparisons

used is a linear function of the number of elements eventually

discarded.

(iii) The discard operation breaks no more than half the columns on

each pass, allowing the other modifications to work well.

(iv) The sorting step implicit in the recursive call to select m is

partially replaced by a merge step for the second and subsequent

iterations, since (iii) implies that 213 of the set T operated

on at pass j were also in the recursive call at pass j-l .

The term "k-column" will be used to denote a sorted column of

length k . The optimal value of the function c , l$, will be used

explicitly throughout for clarity. The algorithm is presented as three

separate procedures, each of which selects i0S from S , given that

the partial order already determined for S is one of three types.

Procedure P1CK.l is the outermost procedure, which assumes that no

information is known about the elements of S .

8

Procedure PICKl: (Selects iQS from S ,where ISI =n and l<i< [n/>]) .- -

1. If n 5 45 , sort S , print i.8 , and halt.

2. Sort S into Ln/l5] 150columns and possibly one (n mod 15)-c0h.m~

3. Use procedure PICKla to select i0.

Procedure PICKla: (Same as PICKl, except that S is already sorted into

15-columns).-_-_

1. If n 5 45 , sort S , print i@S , and halt.

2. Sort the set T of column medians into 150columns and possibly

one (m/l57 mod 15) -column.

3. Use procedure PICKlb to select i0S .

Procedure PICKlb: (Same as PICKla, except that T is also already sorted

into 15-columns).

1. Use procedure PICKla to select m , the median of T .

2. Partition A U B of Figure 1 about m as follows, stopping

as soon as it becomes clear that mpS < i or mQS>i:

(i) Insert m into each 7-column of B , using binary

insertion (3 comparisons/column).

(ii) Insert m into each 7-column of A , using a linear

search technique beginning near each 15-column median.

3. If mpS=i,print m (=iOS) J and halt, otherwise

if mpS>i, discard G U Ix 1 xeB and x >m] , otherwise

discard L U [x I xeA and x <m) and decrease i by the

number of elements discarded.

4. Restore S to a set of 150columns by the following merge

operations. Here XI I will denote the number of elements

inaset X. Let U be the set of columns of lengths < 15

(in fact, each column of U has length 5 7). Let Y c U

9

L-

t

L

L

be the set of shortest columns of U , such that

IYI : /Ul/15 , and let I/ be the set of all7-columns in

U-Y . split (T-(V 1.1 Y) into two subsets X and W such

that-t W contains w co3.umns, W's columns are not shorter

than X's , and Iw~+ 1x1 = 7w . Then

(1i Extend every column in W to length 7 by using binary

insertion to place each element of X into a column of W .

(ii) Now every column in U-Y is a 7-column. Merge them

pairwise to form 14-columns.

(iii) Use binary insertion to place each element of Y into

a 14-column. Now S has been restored to a set of

15-columrls.

5* Restore the set T of column medians to 159columns as follows.

Let Z c T be those column medians which were column medians

in step 1. The elements of Z are already sorted into columns

of size 8 or greater, since step 3 of the recursive call at

step 1 discarded Z in strings of those sizes.

(i) Merge the columns of Z together to form 15.columns and

some left-overs, treating each column size separately:

8-co1umns : Merge these pairwise to form 15-colu1m~

with one element left over. Write this as

2(8): 8+7, 1 leftover.

g-columns: 5(9): p-6, 96, 9+3+3, no leftovers.

lo-columns: 3(10): lot5, 10+5, no leftovers.

ll-columns: Set aside l/45 of the ll-columns and

break them into l-columns, then do

4(11)+1(l): 11+4, 11+4, ll+3+1, no leftovers.

12-columns and larger: set aside some elements for

binary insertion into the remaining columns

Sort the leftovers into 15-columns.

c-

(ii) Sort T-Z into 15-columns.

Now T has been restored to a set of 15-columns.

6. Decrease n by the number of elements discarded in step 5.

If n ,< 45 , sort S , print i0S and halt, otherwise

return to step 1.

This completes the description of the algorithm. To analyze PICKl, we

introduce the following notation:

Pi(n), Pla(n), Plb(n) = the maximum costs, respectively, of
def

procedures PICK& PICKla, and PICKlb.

v = the number of comparisons made in step
def

PICKlb (2ii).

d = the number of elements from A U B
def

discarded in step PICKlb (3).

ga,gb = the number of
def

found in step

&a,lb = the number of
def

found in step

W>X,Y = the number of
def

in PICKlb (4).

elements from A, B

PICKlb (2) to be >m .

elements from A, B

PICKlb (2) to be <m .

columns in sets W , X , Y

Since h(15) = 42 , we have immediately:

pi(n) ,<
42 n
15 + Pla(n) = 2.8n + Pla(n)

Pla(n) 5
42 n
225 + Plb(n) = .18Zn+ Plb(n) .

(8)

(9)

L-

11

The following lemma demonstrates the tradeoff created in step PICKlb(2)

between v and d :

Lemma1 vsd+n/30 .

Proof: There are two cases to consider, since either L or G is

discarded in step PICKlb(3).

Case 1 (L is discarded): There can clearly be at most one

comparison for every column in A , plus one for each element of A

discarded.

Case 2 (G is discarded): Thus I IL +la+Ib = i+l < [n/21+1 <

IL1 + IB\-- < IL1 +gb+ab l- Thus gb 2 4a , but Ia _> v-n/30 as

in case 1, yielding the lemma since d=gb here.
Q.E.D.

The following lemma allows the costs of step PICKLb(4) to be bounded:

Lemma2: 1x1 < 6d/7 l w

Proof: We have d >7(w+x+y) - \w\ - 1x1 - \Y(, and 7w- \W\ = \x(,-

yielding d->7x+'i'y-\~) _> 7x, but 6x2 1x1 , so-that d>7\X\/6 .

- Q.E.D.

Step PICKlb(5i) takes, in the worst case, 21/20 comparisons/element

. to merge and sort Z into 15-columns (detailed analysis omitted -- this

happens when z contains only 8-cohmns). Since \Zl = n/30 , this step

takes at most 7 n/200 comparisons. We may now write the following

recurrence for Plb(n) :

12

pwn) I PlaUn/151) + 3(n/30) + (d+n/30) + 3(6d,/7) +
-----VW-

step 1 step 2i Step 2ii step 4i

i 13(7n/30 -a)/15 +' 4(7n/30 -a)/15 + 7n/200 +
\

i step 4ii step 4iii
/v

step 5i

42(7n/30 -a)/225 + Plb(lln/l5 -d)
\

.
L k/ /

step 5ii subsequent iterations

L Simplifying yields

Plb(n) 5-_ (&i) ' (27000 1575) l

13197 n + 3546 d
(E)

I

i The right-hand side of (12) is maximum at d = 0 , so that

L Plb(n) < w- = 2.4436 n , (13)

L

. and

Pla(n) ,< 2.6305 n , (14)

w-4 L 5.430; n .

Since

UEl
1;:545 c

= h45
-t-l5 < 5.43 n ,

(15)

(16)

the basis for the induction yielding (12) is justified, thus also taking

care of steps PICKl(l), PICKla(l), and PICKlb(6), and yielding our theorem.

Q.E.D.

While PICK1 provides a good uniform bound on F(a) , better results

can be achieved for values of a near 0 or 1 . We now present the

algorithm PICK?, which yields the following result.

13

Theorem 3. ~(a) s 1+4.43oj ~/B+lo.86irlog2(Bla)la, for o <a 5~ , 07)

where B = .203686 .

Proof: By analysis of PICK2, which is essentially the sElme as PICK

with the functions b(i,n) f c(i,n> > and d(i,n) chosen to be i ,

2 , and 1 , respectively, and with the partitioning step eliminated.

In detail:

L

i
I
c

Procedure PICK2: (Selects i8S , where ISI = n , and i <@n) :

1. Compare the elements of S pairwise to form Ln/2_1 pairs and

possibly one left-over.

2. If i <p Ln/;iJ use procedure PICK?, otherwise use PICKl, to

select m as the i-th smallest element of the set T of

lesser elements

one left-over

c 0

I

of each pair. See Figure 2.

k - J

i-l pairs

with smaller

J

pairs with smaller element > m

element < m

Figure 2

3. Discard all elements known to be > m , that is, those elements

in the circle G of Figure 2.

4. Use procedure PICKl to select iQS from S .

14

I

i

c

This completes the description of procedure PICK2. Note that this

reduces to a simple knockout tournament when i = 1 ! Using P2(i,n)

to denote the maximum number of comparisons used by PICK2 to select

W, we may derive:

R(i~n) L Ld2J +min(Pl(Ln/2J),E!(i, Ln/2J))+pl(2 i) . (18)
step 1 step 2 step 4

For particular values of i and n , procedure PICK2 is called

t = bg2(gn/i)l t'imes in succession during the recursive calAs at

step 2, before procedure PICK1 is called. Thus

E&n) 5 C Lq@J + P1(Ln/2tj)+t Pl(2 i) .
O<j<t

(19)

This directly implies our theorem. The proper value for @ 9 .203688’ ,

is the largest value such that P2(@nl,n) < Pi(n) .
Q-E-D.

The results of this section are summarized in Figure 3, where

our bounds for F(a) are plotted against a . It is not unreasonable

a to conjecture that the true curve for F(a) is unimodal and peaks at

CX= l/2 . The relative complexity of the algorithm PICK1 leads the

authors to conjecture that our upper bound can be significantly improved.

4. A Lower Bound

In this section a lower bound for F(a) is derived through the use

of an "adversary" approach (this technique is called the construction of

an "oracle" by Knuth. See for example [i], Section 5.3.2.) The selection

0

,
Bounds on F(a)

P i-0 u-l
w wl

,-

process may be formulated as a game between the selection algorithm

(plawr A) J who is trying to find i&3 with as few comparisons as

possible, and his adversary (player B), who is trying to force player A

to make as many comparisons as possible. The players take alternate

turns: each play by A consists of posing a "comparison question", such

as "Is x < y Trr (for any x,y&), to which player B on his turn must

respond with either "Yes" or "No". Player B's responses may be completely

arbitrary, as long as he does not contradict his previous responses to- - -

A's questions. When A has extracted enough information from B to determine

iQS , the game is over.-_

The advantage of this approach is that a non-trivial lower bound for

the length of this game can be found, independent of A's strategy, simply- -

by supplying a sufficiently clever strategy for B. The length of this

game is of course here the usualminimax cost, that is,

f(i,n) = min max c(A,B) ,
def A B

(20)

where c(A,B) is the length of the game between particular A and B

strategies.

Player B in this game of course plays the role of the "data".

A strategy for player B is in effect a rule for calculating a particularly

bad (that is, costly) set of data for A's strategy, since an actual set

of numbers can always be constructed that are consistent with B's replies.

A good strategy for player B is thus a procedure for "bugging" any given

player A stratea.

We will now describe the particular player B strategy which yields

our lower bound. As the game progresses there will of course be many

elements x such that player A has determined enough about x to know

17

b*

i

L

c

that x # iQ, that is either x < i0 or x > i8 . Player B will

initially consider all elements x6 to be members of the set U , meaning

that player B (and thus playerL. A as well) is uncertain as to whether

x<iQ, x=i0 ,or x>i0. After a while, though, player A will

be able to force the issue regarding particular elements, that is, force

player B to decide the status of a particular element x&J . If B

decides that x > i0 , he will remove x from U and place it in set G .

Similarly if he decides that x < i-0 , he will remove x from U and

place it in set L . Both G and L are initially empty. The element

that turns out to be iQ will thus be one (any one) of the elements still

in U , so that as long as IUi > 1 the game must continue. Our player B

strategy thus attempts to keep U as large as possible for as long as

possible.

The game must actually consist of two phases as far as B's strategy

is concerned. As long as IL\ < i-l and IG\ < n-i , player B has

complete freedom to put an element XEU into either L or G . After one

of L or G fills up, however, B is quite restricted and must play

differently, since he is not allowed to make I I-L >i or I IG 2 n-i+1 .
-

At that time, however, the game "degenerates" in the sense that player A

has merely to find the minimum (or maximum) element of U .

During the first phase, player B will never remove more than one

element x from U on a single turn. This will not cause any complications

as long as x is a maximal (or minimal) element of U and player B puts

x into set G (set L). Each element placed in set G (set L) is

assumed to be less than (respectively, greater than) all previous elements

placed in that set, as well as greater than (respectively, less than) any

elements still remaining in U and L (respectively, U and G)* This

18

rule completely defines B's responses except when player A wishes to

compare two elements x,yeU . In addition, player B will only remove

an element from U when A makes.such a request.

Player B will always restrict membership in U so that every

member XCU is either a maximal or minimal element of U (or both) with

respect to the partial order already fixed on S by B's previous responses.

In fact, B will maintain the even stronger condition that for each element
- -

,

h..

XdJ , there will be at most one- - - - y& for which it is known whether x < yP---

ory<x. The partial order for S assumed by B may thus always be

diagrammed:
-_

>
set U

Set U therefore contains only three "element-states", and we define

* (4 to be -1 , 0 , or 1 respectively according to whether x is the

lesser element of a pair, an isolated element, or the greater element of

a pair. B's strategy for a comparison between two elements x,yeU is

now easy to state (we assume without loss of generality that a(x) < O(y)):

c

w respond " x is less than y '0 and

(ii) if a(x) = a(y) = 0 do nothing, otherwise

if D(x) = -1 remove ‘x from U and place it in L ,

otherwise remove y from U and place it in set G .

Essentially B's strategy creates a new pair in U if a(x) = a(y) = o ,

otherwise one element is removed from U and the number of pairs in U

decreases by one. Let

c = the number of comparisons made so far, and

p = the number of pairs currently in U .

It is simple to verify that B's strategy maintains the condition

C-pf21UI = 2n , (21)

as long as the game is still in the first phase (this is clearly true

atthestart when c =p=O and IUi =n). At the end of phase one,

either L or G is full, so that

IUl 5 n-min(i-l,n-i) . (22)

Furthermore, it must take player A at least IUI-l-p comparisons to

finish the game during the second phase, since he must at least do the

a
work of finding the smallest (or largest) element of U , which requires

IUl-1 comparisons, of which p have already been made. The total

number of comparisons made is thus at least

f&n) 2 c+ IV\ -1-p 2 n+min(i-l,n-i) -1, for l<i <n- -

from (21) and (22). Taking the limit as n --) 03 , keeping

i = lJX(n-1)J +l , we get

F(a) 2 l+min@, 1-a) .

This bound is also plotted in Figure 3.

(4)
2

20

.

5. summary

The most important result of this paper is that selection can be
- -

performed in linear time, in the-worst case.wm - - No more than 5.4305 n

comparisons are required to select the i-th smallest of n numbers,

for any i , l<i<n .- - This bound can be improved when i is

near the ends of its range.

A general lower bound is also derived which shows, in particular,

that at least 3n/2 - 2 comparisons are required to compute medians.

The authors believe that the constants of proportionality in both

the upper and lower bounds can be considerably improved.

References

[l] Carroll, Lewis. "Lawn Tennis Tournaments," St. James's Gazette

(August 1, lQ83)1 pp 5-G. Reprinted in The Complete Works of

Lewis Carroll. New York Modern Library (1947).

[2] Ford, L. R. and S. MI Johnson. "A tournament problem," The American

Mathematical Montly 66, (May 1959), pp 387-389.

[3] Hadian, Abdollah. Vptimality properties of various procedures for

- ranking n different numbers using only binary comparisons," Technical

Report 117, Dept. of Statistics, Univ. of Minnesota, (May 1969).

(Ph.D. Thesis). 61 pp.

I41 and Milton Sobel. "Selecting the t-th largest using binary

errorless comparisons," Technical Report 121, Dept. of Statistics,

Univ. of Minnesota, (May 1969), 15 pp.

[5] Hoare, C. A. R. "Find (Algorithm 65),” Communications of the ACM

(July lg61)> pp 321-322.

[6] Kislitsin, S. S. "On the selection of the k-th element of an ordered

set by pairwise compar$.sons," Sibirsk Math. 2. 5 (1964), PP* 55?-564*
(MR 29, no. 2198). (Russian).

21

[7] fiuth, Donald E. The Art of Computer Programming, Volume III,

Sorbing and Searching, Addison-Wesley (1973).

[8 3 Schreier Jbsef. "0 systemach eliminacjii w turniejach," ("On

elimination systems in tournaments"), Ma-thesis Polska 7 (lp32),

pp= 154-160 (Polish).

L

22

Expected Time Bounds for Selection

bY

Robert W. Floyd and Ronald L. Rivest

L:

Expected Time Bounds for Selection

Robert WI Floyd and Ronald L. Rive&

Stanford Computer Science Department

Stanford University

Stanford, California 94305

Abstract

A new selection algorithm is presented which is shown to be very
-^

efficient on the average, both theoretically and practically. The

number of comparisons used to select the i-th smallest of n numbers

is n+min(i,n-i)+o(n) . A lower bound within 9% of the above

formula is also derived.

Keywords and Phrases: selection, computational complexity, medians,

tournaments, quantiles

CR Categories: 5.30, 5-39

This work was supported by the National Science Foundation under
grants GJ-992 and GJ-33170X. ,

1

c

i

L

1. Introduction

In this paper we present new bounds (upper and lower) on the expected

time required for selection. The selection problem can be succinctly

stated as follows: given a set X of n distinct numbers and an

integer i , lLi_<n, determine the i-th smallest element of X

with as few comparisons as possible. The 5th smallest element, denoted

by i0X, is that element which is larger than exactly i-l other

elements, so that 1QX is the smallest, and nQX the largest,

element in X .

Let f(i,n) denote the expected number of comparisons required to

select i0X . Since a selection algorithm must determine, for every

tcx , t#i0X, whether t < i@X or i0X <t , we have as a trivial

lower bound

f(i,n) > n-l , for l<i<n .-

The best previously published selection algorithm is FIND, by

C. A. R. Hoare [l]. Knuth [2] has determined the average number of

comparisons used by FIND, thus proving that

f(i,n) 5 2((n+l)H, - (n+3-i)Hn i+l-(i+2)Hi+n+3) J (2)

where

Hn = C j-l .
l_<j_<n

(3)

This yields as special cases

f(l,n) s 2n+o(n) ,

and

f(rn/2l,n) < 2n(l+ an(2))+o(n) < 3.39n +0(n) .-

(4)

(5)

L

No bounds better than (1) or (2) have previously been published.

In Section 2 we present our new selection algorithm, SELECT, and

derive by an analysis of its -efficiency the upper bound

f(M) ,< n+min(i,n-i)+@n213 hJ3(n)) . (6)

A small modification to SELECT is then made, yielding the slightly

improved bound

f(i,n) L n+min(i,n-i)+(g(nl/2) + (7)

An implementation of SELECT is given in Section 3 with timing results

for both SELECT and FIND.

The authors believe that SELECT is asymptotically optimal in the

sense that the function

F(a)
= lim sup f(Lab-l)J+l,n)

def n-+03 n > O_<a<1

is bounded b 1e ow by the analogue of the right-hand side of (7), so that

A lower bound just a little better than l+ .75 min(a,l-a) is derived

in Section 4, within 9% of our conjecture and the performance of SELECT.
a

In what follows t pX will denote the rank of an element teX ,

so that (tpX)BX =t l E() will denote the expected value of its

argument, and P() will denote the probability of an event.

F(a) 2 l+min@,l-a) , for O<a<l . (9)

2. The Algorithm SELECT

The algorithm SELECT utilizes sampling. A small random sample S

of size s = s(n) is drawn from X . Two elements, u and v ,

(u < v) 9 are selected from S , using SELECT recursively, such that

3

i

L

the interval [u,v] is quite small, yet is expected to contain i9X .

Selecting u and v partitions S into those elements less than u

(set A), those elements between u and v (set B), and those elements

greater than v (set C). The partitioning of X into these three sets

is then completed by camparing each element x in X-S to u and v .

If icrn/21 , x is compared to v first, and then to u only

if x<v. If i 2 [n/21 , the order of the comparisons is reversed.

With probability approaching 1 (as n 3 CD), iQX will lie in set B Y

and the algorithm is applied recursively to select i0X from B.

(Otherwise SELECT is applied to A or C as appropriate.)

If s(n) ., u , and v can be chosen so that s(n) = o(n) ,

E(lBI) = 44 , and P(iQXkB) = o(n-') , then the total work expected

is:

s(s(n) > to select u and v from S ,

+ (n-s(n))(l+(min(i,n-i)+o(n))/n) to compare each element in X-S
to u,v,

+ s<lBI> to select i@X from B ,

+ o(l) to select i9X from A or C .

= n+min(i,n-i)+o(n) comparisons total.

This can in fact be done; the low order term is s(n2/3 lnV3(n)) .

Figure 1 shows a geometric analogy of the procedure SELECT.

It is not hard to show (see [3]) that for any teS we have

E(t PX) = i;; (t p s) ,
f-f (10)

k

1
/

/
/

/
/ \

/ / I \

/ / I \

/ / I \

+-x
- nQX

Figure 1

a(t px) = J (t pS)(s -tpS-l)(n+l)(n-s)

(s+l)2(s+2) (11)

We wish to choose u and v so that E(upX) 5 i s E(vpX) ,

~(1~1) = E(vpX)-E(upX) is o(n) , and P(i < upX or i > vpX)

o(n-')

=

. To do this we choose ups and vpS so that

E(u pX)+ '2d~(u pX) 2 i 2 E(v pX) -2 da(v pX)
J (12)

where d = d(n) is a slowly growing unbounded function of n . In

fact, since

co 2

20
i

erf(x)dx 5 + , for some constant c , (13)

we will choose d =&n(n) .

= o(n-')

This ensures that P(i <upX or i > vpX)

. The above equations mean that

and

Let g(i,n) denote the expected number of comparisons made by

SELECT. It will be shown inductively that

di,n> = n+min(i,n-i)+@n2/3 1n113 (1)n . 05)

The above is true for all n less than some fixed N , so the basis for

induction is clearly satisfied. We proceed with the inductive step by

determining the cost of SELECT as a function of s(n) and n , and

then optimizing the choice of s(n) l

6

L

The cost of selecting u and v can be estimated as follows.

First we apply SELECT recursively to S to select u , then we extract

v from those elements of S -which are greater than u . (Note that

selecting u means determining which elements of S are greater than

u as well.) These two operations cost

g(ups,s) +g(vps -u pS+l,s -ups)

<2s+vps=ups+8(s 213 lnV3(s))

_< 2s+2d&+@s213 In1i3(s))
(16)

comparisons.

The C;ost of ccxnparing each element in X-S to u and v is easy

to compute. There are n-s(n) elements to compare, and the probability

that two comparisons will be made for an element is just

min(u pS,s+l-u p S)/(s+l) , so that the total is

(n-s(n))(l+min(i,n-i)/n+ds 42) . 07)

The cost of finishing up, if iQX falls in B , is at most

d bl/% IBI> l m-t

E(IBI) =

so that

bps-Ups)+ = 2dns
-l/2

~(IBI/~,IBI) = 3dns-1/2+@(dr&~2)2~3(m(~s-1/2))113) . (19)

On the other hand, if i.QX falls in A or C , the expected

cost of finishing up is at most 3n/2 , and the probability that

i.QXeA or iQXcC is, from (13), less than c/(dn) , so that the

total work expected in this case is less than 3c/(2d) , which goes to

zero as n+a.

7

The total expected cost of SELECT is thus

@;(i,n) ,< 2s+2dJs+ 8(s213 1nV3(s))

+ (n-s)(l+min(i,n-i)/n+ds42)

+2dns -1'2+ 3c/(2d)

5 n+min(i,n-i)+ s+d/s -min(i,n-i)s/n

+3dns -l/2
+%/(2d)+&~~/~ lnq3s) . (20)

.-

The principal increasing and decreasing terms in s in this

expression are s and 3dns -l/2
. Choosing s(n) to make them

equal willapproximately minimize
did4 l Thus we choose

i
L

I

2/3s(n) w n &Y3(n) (21)

which, together with (20), yields (25>, which was to be proved. This

L completes the analysis of SELEZT.

L

We now introduce a small modification to SELECT in order to reduce

the second-order term to the praised &n112) . Let Sic S2 c . . . c S
k
= X

be a nested series of random samples from X of sizes s1,s2,...,s
k=n'

For each sample S. , let
J

u
j

and v.
a J

be chosen from S
j

as in

(14) so that

2 p '3 =
(i-d/F). (g)

and

vjpSj =(i+d/F)*(g) .

(22)

Thus it is very likely, for any j , that u.pX <i<v PX .
3 - - j

Furthermore, as j approaches k (i.e., as sj gets large), u. and
I 3

2
surround iQX ever more closely. In fact, uk =i$X =v

k* The

8

i

i

L

E(uj-lPsj)

And similarly E(vj 1

bound the search for

representation of the

cost of finding u
3

and v
3

directly fYom S is of course
prohibitive for large values of si

3
. However, since

= (uj-lPsj-l)' 'j+'
sJ 1+1 L "j Psj '. (23)

psj) >"j Ps*
J

, we can use uj-l and vj-1 -to

2
and v

3 l

See Figure 2 for a graphical

modified SELECT.

/ .
UJ-1 \ .

Ij-1
f' 1 l - r3

0 I I \

? \ 'j-1

'

\

/ Pj iV + iz.

/ I
1 j J
1 .

/ \ .
uk-l, :k-1

.
I \

-23
k-l

. - 1
i@X x=s

k

Figure 2

I \

I

v-

1
L

- . . .

The modified algorithm runs as follows. Draw a random sample
sl

of size sl from X , and select u
1

and vl using this algorithm

recursively (and the ranks given in (22)). Determine the sets A2' B2 '

and 5’ a partition of S
2

, by comparing each element in S2-Sl to

u1 and v
1 (using the same order of cconparison strategy as the original

SELECT). Next, determine u2 and v2 by amlying this algorithm

recursively to B2 (in the most likely case; else
52 or C2).

Extend the partition of S2 determined by u2 and v2 into a

partition A3 , B
3 ’ c3 of s

3
to u2

by comparing each element of S3-S2

and v
2 with the same comparison strategy. Continue in this

-_
fashion until a partition Ak , B

k' Ck of the set Sk =X has been

created. Then use the algorithm recursively once more to extract iQX

from Bk (Or +c Or c
k t if necessary).

This "bootstrapping" algorithm has the advantage that the expense

of computing a good bounding interval [uj,vj] for i0X is reduced

by first computing at a fraction of the cost the less tight bounding

interval [u
j -1' "j -1

that the probability

The probability that

. We keep d(n) = .!nl/2 (n) as before, to ensure

that iQX is not in [uj,vj] is of order o(r?') .

2 Or 2
is not in the interval [uj -1' "j -1 1

inceis also negligible, :-v.
3.

4J-lj-1 P’j)

S .

<-
J

24-77

and

E(uj pS.-u
J j-lPsj) =

(24)

. (25)

10

i

C-

!

To compute the cost of the algorithm, we assume inductively, as

before, that

dj,m> = m+min(j,m-j)+&ml/2) 3

for m <n , lLj_<m . w>

The expected size of B
j

is easily estimated:

E(IBjl) ,- (vj_lpsj_l-uju~~s j-l)’ sj
(>'j-1

(27)

The cost of selecting u~,v~~..*,~-~,v~-~ from the sets B2~ l l l �Bkul
is just

c
2_<j_<k-1

(g(Uj PBj,IBjI)+g(Vj PBj -U. pB.+l,IB
3 3 3

1 O"j PBj))

< c-
2sjsk-1

(4ds./ql+2dT) ,
J - (28)

whereas the cost of selecting u
1 and v1 from Sl is less than

2sl+2dEl , (29)
-

while the cost of selecting uk = vk=iOX from Bk is atmost

3dn/qG . (30)

The cost of partitioning S2-Sl,S3-S2,...,Sk-Sk-l about u1 and vl ,

u2 and v
2' . . . , ukul and v~-~ is just

22 (
2_<jLk

sj'sj-l)(l+min(i,n-i)/n+d/ql) l

Adding these all together, we have

(31)

I i

i

g(i,n) 5 n+min(i,n-i)+

+ sl(l-min(i,n-i)/n)+ d$ - dn/ql
' (32)

This sum can be approximately minimized if we let

geometrically with ratio r2 , so that

sl,s2,...,s
k increase

s
3

= r2j-2 s1 , and

g(i,n) ,< n+min(i,n-i)+ (e+ +) l 2sfsk rj
5 n+min(i,n-i)+ (e+ $).(rk;i;l).r2

5 n+min(
L

&n-i)+&
c >

r2
r-l

This is approximately minimized when s1 = 1nV2n , and r 4 32= .
7

yielding

g(i,n) 5 n+min(i,n-i)+O(nl/2) , (34)

which was to be shown.

3. Implementation and Timing Results

In this section we present an ALGOL implementation of SELECT

(a revised form of the simpler version given in Section 2)7 and give

timing results that demonstrate that our theoretical results yield

fruit in practice.

We assume that it is desired to have the same input-output

relationships as FIND . That is, we are given an array segment

X[L:R] and an integer K such that L 5 K IR ; we wish to rearrange

the values in X[L:R] so that X[K] contains the (K-L+l)-th smallest

value, L 5 15 K implies X[I] <X[K] , and K <I <R tinplies

X☯Il 2 X☯Kl l An implementation of the complicated version of SELECT

given in Section 2 will not be given, since no advantage is obtained

over the simpler version except for unrealistically large values of n .

The innermost loop of the algorithm is obviously the partitioning

operation. Any reduction in the complexity of partitioning will show

up as a significant increase in the efficiency of the whole algorithm.

The basic algorithm, however, requires partitioning X about both u

and v simultaneously into the three sets A 7 B , and C , an inherently

inefficient operation. On the other hand, partitioning X completely

about one of u , v before beginning the partition about the other can

be done very fast. We therefore use an improved version of Hoare's

PARTITION algorithm [l] to do the basic partitioning, A further (minor)

difference is that after partitioning has been completed about one

element another sample is drawn to determine the next element about

which to partition. This permits a very compact control structure at

little extra cost.

A listing of the procedure as written in ALGOL 60 is given on page 27.

The element T about which to partition is first determined. It

was found experimentally that sampling was worthwhile only for values

of N (the size of input set) greater than 600 . This is due to the

expense of computing square-roots, logarithms, etc., which cost more

than they are worth for small N ! If sampling is performed, the

recursive call to SELECT leaves the desired element T in X[K] ; if

sampling is not done, the algorithm partitions about whatever was

in X[K] initially (this'is good if X was already sorted). The

partitioning phase is initialized to obviate subscript range checking.

Note that there is really no good way to avoid re-partitioning the

sample or at least moving most of it later, but having it located

around X[K] probably minimizes the number of exchanges necessary.

Since one of L 7 R change each iteration, the number of elements

remaining always decreases by at least one, thus ensuring termination.

Timing results were then obtained for FZND (exactly as published)

and SELECT (as given on page 27). The testing was done in SAIL (an

AIx;OL dialect) on the PDP-10 at Stanford's Artificial Intelligence

Laboratory. These results are given in the description of the

algorithm on page 27.

SELECT clearly outperforms FIND. This results from a slightly

faster partitioning scheme combined with a large reduction in the

partitioning required due to the effective use of sampling.

14

4. Lower Bounds for F(a)

In this section we present new lower bounds for the expected number

of comparisons required for selection. Although we believe SELECT to be

(first-order) asymptotically optimal, we have been unable to derive a

lower bound for F(a) equal to the upper bound of l+min(a,l-@ produced

by our analysis of SmT. The bounds derived here are within 96 of that

value, for all a , though, and the strength of these results relative

to the weakness of our methods lends support to our conjecture.

We will define a sequence Fj(a) , for 0 < j < 03 , of lower bounds- -

for F(a) such that Fj(a) < FI
-_

j+l(~) , for all j ,> 0 and a 7

O<a<l.- _ The functions Fe(a) 7 F,(a) , F2(a) ., and F3@) have

been computed -- the function F3(@ thus being our best lower bound

for F(a) . These bounds have been plotted against a in Figure 3. The

value of F3@) at a = .5 is 1.375 7 which tapers off as Q: approaches

0 or 1, essentially becoming identical with l+min(a,l~) near the

extremes.

We first prove a basic result.

Theorem 1. Any selection algorithm that has determined iQX to be

some element yeX must also have determined, for any xeX ., XfYY

whether x <y or y <x .

Proof. Assume that there exists an x incomparable with y in the

partial order detemnined by the algorithm. Then there exists a linear

ordering of X 7 consistent with the partial order determined, in which

x and y are adjacent (since any element required to lie between x

and y would imply a relationship between x and y in the partial

order). But then x and y may be interchanged in the linear order

15

without contradicting the partial order -- dmonstrating an uncertainty

of at least one in ypX 7 so that y is not necessarily i0X .

Q.E.D.

The following definition provides the basis for the lower bound

computations.

Definition 1. The key comparison for an element XCX tx # i@X , is

defined to be the first comparison x:y such that
i

b

ii

Note

X can in

and iQX

Y = iQX or x<y<iQX or iQX<y<x. (35)

that determining which comparison is the key comparison for

general only be done after all. the comparisons have been made

has been selected. Each element x , x # i0X , must have

a key comparison, otherwise x would be incomparable with i.QX ,

a contradiction by Theorem 1. This proves

Lemmal. A selection algorithm must make exactly n-l key comparisons

to select iQX , where 1x1 =n.

We now define two more essential concepts.

Definition 2. A fragment of a partial ordering (X,,<) is a maximal

connected camponent of the partial ordering, that is, a maximal subset

S 5 X such that the Hasse diagram of 'I < " restricted to S is a

connected graph.

Any partial ordering can be uniquely described up to isomorphism as

the union of distinct fragments. A selection algorithm thus begins with

a partial ordering consisting of n fragments of size 1 . To illustrate,

let Fk be the set of all fragments having at most k elements:

16

a

and so on.

Definition 5. A Joining cpmparison is any comparison between elements

belonging to distinct framents.

Note that each joining comparison reduces the total number of

fragments by one, implying the following.

Lemma 2. A selection algorithm must make exactly n-l joining

comparisons to select i0X , where 1x1 =n.

Proof. As long as more than one fragment exists, there must be same

element incomparable with iQX 7 since elements in distinct fragments

are incomparable. The lemma then follows from Theorem 1.

Our lower bounds will be derived from the conflicting requirements

of lemmas 1 and 2 -- a selection algorithm can not in general have all

of its joining ccmparisons be key comparisons, or vice versa. In fact,

the authors make the following conjecture:

Conjecture. Asymptotically (as n -+ CO), the average probability that

a joining ccznparison will turn out to be a key comparison is at most

max(a,l-@ . (361

We must use the asymptotic average probability, since near the end

of an algorithm, the probability of a particular joining comparison being

17

a key comparison may easily exceed (36). This happens because near

the end there are often elements with a significant probability of

actually being i0X 7 and a comparison with one of these elenents

can have a somewhat larger probability of turning out to be key. As

an example, consider the comparison of a previously uncompared element

x with an element y which is known to be the i-th smallest of the

remaining n-l elements. Then

P(x:y is key) = P(y = 53X <x)+P(x =iQX <y)

= (n-i-Q/n , (37)

L

i.

L

which, for a < l/2), is a little larger than max(a,l-@ = 1~ =

(n-i+l)/(n+l) .

Unfortunately, we could not find a proof of our conjecture, which

would imply the optimality of Select for all values of a . Our

results stem therefore from an analysis of only those joining comparisons

in which at least one of the framents being joined is small. We are

left with just a small finite number of cases (i.e., possible types of

joining comparisons) to consider, since we will not distinguish between

the various kinds of large fragments that might participate in a

joining comparison. We want to estimate, for each type

comparison, the probability that it will turn out to be

These probabilities will then be used in an interesting

lower bound for F(a) .

of joining

a key comparison.

way to derive a

As noted above, the probability that a joining comparison will turn

out to be a key comparison is certainly affected by the probability that

one of the elements being compared is actually iQX. The following

argument shows that we may treat this latter probability as being

18

Z

I

r. Y .
.@’.

x #’

negligible, for large n . Given some E 7 O<e<l, it is easy to

see that there exists an integer m such that the maximum probability

that any element xeX is actually iQX is at most s if the largest

fragment has size at most n-m‘. For if x is incomparable with m elements

from other fragments, then it has a chance of being i0X of at most

P(x = i0X) 5 (2nmCI+CI!))
-l/2

(38)

which is less than E for m > (2 ~@14)s~)-~ . So except for a

finite number of comparisons near the end, the probability that any

element is i0X is at most E . As n--ta, these latter comparisons

form a negligible proportion of the total number of comparisons made, and-_

their effect on the probability that an average joining comparison will

be a key comparison becomes insignificant. We will therefore assume

from now on that the probability that either element being compared is

iQX is zero.

To derive Fk(a) we need to cOMpute the probability that each

joining comparison in which the smaller frapent has at most k elements

will turn out to be a key comparison. These comparisons can be divided

into two types: those for which both fragments belong to sFk , and

those for which only one frapent has k or fewer elements. The first

case is somewhat simpler to handle so we shall treat it first, by means

of an example.

Consider the comparison of the smaller of a pair of elements x < z ,

to an isolated element y :

(39)

19

As a result of this comparison7 we will end up with either

vy or 1: .
0-N

The probabilities of these two outcomes are not equal -- the first

occurs with probability 2/3 while the second occurs with probability

l/3 l This happens because the first outcome is consistent with the

two permutations x <y < z and x < z <y , whereas the second

outcome is only consistent with y <x < z . Since each permutation

consistent with the input f'rapents is equally likely, the probability

of each outcome is proportionalto the number of permutations consistent

with that outcome.

We must now consider each permutation consistent with the input

fragments separately, since to determine whether x:y is a key compari-

son requires knowing the relative order of x , y 7 i0X, and all

elements previously compared to either x or y . Let us consider

the permutation x < y < z first, consistent with the first outcome.

With respect to i0X 7 these three elements may be in one of four

positions. That is, iQX may be greater than from zero to three of

these three elements. In only two of these cases will x:y turn out

to be a key comparison:

(1i iQX<x<y<z - - this will be a key comparison for y ,

(>ii x<iQX<y<z -- this will not be a key comparison,

(iii) x<y<iBX<z - - this will be a key comparison for x ,

(>iv x<y<z<iBX -- this will not be a key comparison,

since x has already been compared

to z .

20

The probability of each of these four cases occurring, given that

x<y<z, follows the binomial distribution with p = a , so that
-

case (i) occurs with probability (1~)~ and case (iii) occurs with

probability ~o?(~-cx) . The analysis of all three permutations consis-

tent with (39) can be represented graphically, using horizontal lines

to indicate the relative positions of iQX that make x:y a key

comparison:

The total probability that x:y turns out to be a key comparison

is thus the average probability that x:y is a key comparison in each

of these three cases. This is just (finally!):

P(x:y is key) 3 2= (l-a) +2cx2(l-a) + 3 . (42)

Whenever both fragments are small, the probability of a comparison

joining them turning out to be key can be computed in the above fashion.

This completes our description of the analysis of a comparison joining

two small fragments.

When an element x belonging to a small fragment is compared to an

element y from an arbitrary fragment having more than k elements,

the analysis can not be done in the above fashion since we essentially

know nothing about y ; its probability distribution and probability

of already having had a key comparison must remain totally unspecified.

It is still possible, however, to derive an upper bound on the probability

21

that the comparison x:y will turn out to be a key compari.sJn, S~IICC

if x and y fall on different sides of iQX the comparison can

not be a key comparison. It is thus easy to see that

P(x:y is key) 5 max(P(x < iQX),P(x > i0X)) .

For example, to cOrnpare x of the fragment:

V X

(43)

(44)

against an arbitrary y , the case analysis can be represented graphically

as before, using a horizontal line to indicate the relative position of

iQX making a key comparison possible:--6 X 6
X

or G X
- - - -6

X

- -

for x <iQX for x >iOX

We have then directly from (43) and (45)

P(x:y is key) 5 max(J+ 3a2(l-a)/2,(l-~)'+ 3C? 1~)~ + 3a2(l-a)/2) .

(45)

This kind of analysis is simple to carry out for an x belonging to

any small fragment, so that we now have ways of computing (an upper

bound for) the probability that any comparison joining a small fragment

to another fragment will turn out to be a key comparison.

We will now describe how specific results such as (46) and (42)

above can be combined to derive
Fk(a) l

We will assign a weight to a

partial ordering which is a lower bound on the expected number of non-key

22

joining comparisons yet to be made in selecting i0X . The total

number of comparisons made on the average is thus bounded below by

n-l (for the joining comparisons) + the weight of the partial ordering

(to ensure that n-l key comparisons are made as well). The weight of

a partial ordering is defined to be the sum of the weights of its

constituent fragments. The weight of a fragment will be computed from

the specific probability results already calculated by means of a

linear programming technique.

What we want is to ensure that the expected weight of a partial

ordering does not decrease as a result of a joining comparison by more

than the--probability that that joining comparison was non-key. This

guarantees that the weight of the initial partial ordering is a valid

lower bound for the expected number of non-key joining comparisons made.

Since we only have data for those fragments with k or fewer elements,

only those fragments will be assigned positive weights -- all larger

fragments will have weight zero. (In particular, the weight of the

final partial ordering, in which i0X has been determined, must be

zero.)

Let us consider the computation of F2(a) as an example. Let w1

be the weight of the fragment @ and let w2 be the weight of f .

The weight of the initial partial ordering is therefore just nwl . We

want to maximize wl
subject to the constraints imposed by our previous

computations about specific kinds of comparisons. For example, a

comparison between two isolated elements is non-key with probability

2a(l-c4 , yielding the inequality:

2wl-w2
5 2a(l-a) .

23

(47)

Comparing an isolated element against an arbitrary element from a

fragment with more than two elements yields the inequality

w1 ,< min(a,l-a) . (48)

A computer program was written to generate all the relevant

inequalities like (47) and (48) for a given k . Note that when two

fragments are being joined such that two different outcomes are

possible, both in Pk) the probability of each outcame must be

considered when computing the expected weight of the resultant fragment

after the comparison has been made. The linear programming algorithm

MINIT of Salazar and Sen [4] was used to determine the maximum weight w1

possible for the isolated element. The value l+wl is then our

lower bound for F(a) .

When k= 1 the solution takes a particularly simple form:

F(a) 1 Fl(a) = 2a(l-a) . (49)

The functions F2@) and F3(@ are too complicated to give here, but

are as plotted in Figure 3. For the case of computing medians they

reduce to

4
F2(3 = +

1 11
F3(V) = 'Bn .,

(50)

(51)

which is within 9s of the best possible value of 1.5 n .

This completes the description of our lower bound derivations. The

results show that SELECT is at least near-optimal, and we suspect that

a more powerful combinatorial analysis would demonstrate optimality.

The weakness in our method lies in the restricted nature of the

24

c

i

.

L-e
.

-\90
.

-E:
.

c

4
.

-a E
.

4
.

-2
.

inequalities derivable for the case of a comparison between a small

fragment and an arbitrary fragment belonging to a large fragment. In

any case these lower bounds &re the first non-trivial lower bounds

published for this problem.

(PARTITION)'r and YKLgorithm 65

References

Ill Hoare, C. A. R. "Algorithm 63

C.ACM 4 (JULY lg61), 321.

(FIND)/

[2] Knuth, Donald E. "Mathematical analysis of algorithms," Computer

Science Dept. Report STAN-CS-71-206. Stanford University (March

1971) l 27 PP.

[31 Lindgren, B. W. Statistical Theory. The MacMillan Co., New York

(1962) l

[4] Salazar, Rodolfo C. and Subrata K. Sen. "Algorithm 333 (M~IT

algorithm for linear programming," C.ACM 11 (June 1968), 437-440.

26

I

L

IL

L

The Algorithm SELECT - for finding the i-th smallest of n elementsm-

by Robert W. Floyd and Ronald L. Rive&

:;tanf'ord Computer Science T)epayt,rneni;

Stanford TJnjversit,y . .

Stanford, Cal:i.f'ornia ($1305

Keywords: selection, medians, quantiles

CR Categories: 5.3% 5.39

DESCRIPTION: SELECT will rearrange the values of an array segment

X[L:R] so that X[K] (for some given K ; L < K < R) will contain- -

L 5 15 K will imply X[I] _<X[K] ,the (K-L-+1)-th smallest value,

and K ,< 15 R will imply X[I
-_

1 > Xkl- . While SELECT is thus functionall:?

equivalent to Hoare's algorithm 1
FIND , it is significantly faster on the

average due to the effective use of sampling to determine the element T

about which to partition X . The average time over 25 trials required

by SELECT and FIND to determine the median of n elements was found

experimentally to be:

n I 500 1000 5000 10000

SELECT 89 ms. 141 ms. 493 ms. 877 ms.

FIND 104 ms. 197 ms. 1029 ms. 1964 ms.
4

The arbitrary constants 600 , .5 , and 3 appearing in the algorithm

minimize execution time on the particular machine used. SELECT has been

+ shown to run in time asymptotically proportional-to N+min(I,N-I) ,

where N = L-R+1 and I = K-L+1 . A lower bound on the running time

within 9s of this value has also been proved. 2

REFERENCES:

[l] Hoare, C. A. R. "Algorithm 63 (PARTITION)" and "Algorithm 65 (FIND)~~,

CACM 4 (JULY 1961), 321.

i

L

L
ti

c2 1 Floyd, Robert W. and Ronald L. Rives-t. "Expected Time Rounds 1'01

Selection," Stanford CSD Report No. 349 (April, 1973).

ALGORITKM:

procedure SELECT(X,L,R,K); value L,R,K; array X;

begin integer N,I,J,S,SD,LL,RR,T; real 2;

while R > L do begin- -

if R-L > 600 then begin- -

comment Use SELECT recursively on a sample of size S to get an

estimate for the (K-L+l)-th smallest element into X[K], biased

slightly so that the (K-L+l)-th element is expected to lie in

the smaller set after partitioning;

N := R-L+&

I := K-L+l;

Z := an(N);

S := .5* exp(2*Z/3);

SD := .$*sqrt(Z*S*(N-S)/N) *sign(I-N/2);

LL := max(L,K-I*S/N-tSD);

RR := min(R,K+(N-I)+S/N+SD);

SELECT(X,LL,RR,K)

end;

T := X[K];

comment The following code partitions X[L:R] about T. It is similar

to PARTITION but will run faster on most machines since subscript

range checking on I and J has been eliminated.;

.-I L;.-

CT := R;

28

I .‘L
-

L--

i

I
I

i

L

exchange(X[L],X[K]);

if X[R] > T then exchange(X[R],X[L]);

while -K < J do begi: n ._

l&J 1);exchange(X[I

I := I-tl;

J := J-l;

while X[I] <T do I := I+l;

while X[J] > T do J := J-l;

end;-

if X[L] -
-_

- T then exchange(X[L],X[J])

else begin J l -.- J+l; exchange(X[J],X[R]) end;

comment Now adjust L, R so they surround the subset containing

the (K-L+l)-th smallest element;

ifJ_<KthenL:=J+l;

j-f K 5 J then R := J-P
>

end

end SELECT

29

