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Abst r act

The nunber of comparisons required to select the i-th smallest of
n nunbers is shown to be at nost a linear function of n by analysis of
a new selection algorithm-- PICK  Specifically, no nore than
5J@oé n comparisons are ever required. This bound is inproved for
extrene values of i , and a new | ower bound on the requisite number

of conparisons is also proved
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1. [ ntroduction

In this paper we present a new selection algorithm PICK and derive
by an analysis of its efficiency the (surprising) result that the cost
of selection is at nmost a linear function of the nunmber of input itens.
In addition, we prove a new |ower bound for the cost of selection

The selection problemis perhaps best exenplified by the conputation
of nedians. In general, we may wish to select the i-th smallest of a set
of n distinct nunbers, or the element ranking closest to a given

percentile |evel.

Interest in this problemmy be traced to the real mof sports and
the design of (traditionally, tennis) tournanents to select the first
and second-best players. In 1883, Lewis Carroll published an article [1]
denouncing the unfair method by which the second-best player is usually
determned in a "knockout tournament” -- the loser of the final match is
often not the second-best! (Any of the players who lost only to the best
pl ayer may be second-best.) Around 1930, Hugo Steinhaus brought the
probleminto the realmof algorithmc conplexity by asking for the
m ni mum nunber of matches required to (correctly) select both the first
and second-best players froma field of n contestants. 1n 1932,
J. Schreier [8] showed that no nmore than n+ ngg(nﬂ -2 matches are
required, and in 1964, S. S. Kislitsin [6] proved this nunber to be
necessary as well. Schreierts method uses a knockout tournament to
determine the winner, followed by a second knockout tournanent anong
the (at nost) [1og20ﬁ1 pl ayers who | ost matches to the winner, in

order to select the runner-up.
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For values of i larger than 2, the minimum nunber of matches
required to select the i-th best player fromn contestants is known
only for small values of n . The best previous general selection
procedure is due to Hadian and Sobel [4], which requires at nost
n-i+ (i-1) [1og2(n-i+2)1 mat ches.  They create a knockout tournament
of n-i+2 players and then successively elimnate i-1 who are "too

good" to be the i-th best (using replacement selection).

No consistent notation has developed in the literature for the

"i-th best". W shall use the follow ng two operators:
ies = (read "i-th of s")the i-th smallest elenment of S,
def
for 1 <i<)|s| . Notethat the magnitude of i 6 S
increases as i increases. W shall often denote

ies by i & when S is understood.
Xps = (read "x's rank in g8") the rank of x in S, so that

def
Xp SO S=x.

The m ni mum wor st-case (mninmax) cost, that is, the number of binary

conmparisons required, to select i6 w|| be denoted by f(i,n) , where

1IS| =n. W also introduce the notation:

f( La(n-1) | +1,n)

n ? = - J

F(a) = 1lim sup
def n - =

to measure the relative difficulty of conputing percentile |evels.

In Section 2 we prove our main result, that f(i,n) = @(n), by

analysis of the basic selection algorithm PICK



In Section 3 PICK is "tuned-up" to provide our tightest results:

max  F(a) < 5-&50% (h
Osafl
and
Fla) < 1+L4.43050/p+10.861 Mog,(B/x)la , for o <a<p, (2)
where g = .2036887. |In Section 4 we derive the |ower bound:
F(a) > l+min(a,1-q) , for o <a<l. (3)

There is no evidence to suggest that any of the inequalities (1) -(3)
is the best possible. 1In fact, the authors conjecture that they can be

i mproved consi derably.

2. The New Sel ection Al gorithm PICK

In this section we present the basic algorithmand prove that
f(i,n) = o(n) . W assune that it is desired to select ie6s , where
|Si =n .

Pl CK operates by successively discarding (that is, remving fromS)
subsets of S whose elenents are known to be too large or too small to
be ie , until only ie remains. Each subset discarded will
contain at |east one-quarter of the remaining elements. PICK is quite
simlar to the algorithm FIND (Hoare [5]), except that the el enment m
about which to partition S is chosen nore carefully.

PICK wi || be described in terns of three auxiliary functions
b(i,n) , c(i,n) , and d(i,n) , which will be chosen later. W will

omt argunent lists for these functions in general, as no confusion can



arise. Since we are interested in the asynptotic properties of PICK

we will also omt details to be given in Section 3 regarding the case

when n nod ¢ £ 0 .

PICK: (Selects ies , where |[s| =n and 1 <i <n)

1 (Sel ect an el ement meS ):
(a) Arrange S into n/c colums of length ¢ , and sort each
col um.

(b) Select m=beT, where T = the set of n/c elenents
def

which are the d-th snmallest elenent fromeach colum. |se

PICK recursively if nfc >1 .

2. (Conpute mpS): Conpare m to every other element x in S

for which it is not yet known whether m< x or m> x .

3. (Discard or halt):
If mps =i , halt (since m=ies ), otherwse
if mps >i , discard D= {x|x >m} and set ne-n-\p,
otherwi se discard D = (x |x <m} and set ne-n-Q,
ie-i-1p].

Return to step 1.
This conpl etes the description of PICK W are now ready to prove:
Theorem 1. f(i,n) = ®(n) .

Proof : W show that a reasonable choice of functions b(i,n) , c(i,n),
and d(i,n) result in a linear time selection algorithm |et h(c)
denote the cost of sorting ¢ nunbers using Ford and Johnson's al gorithm

[2]. Tt isknown[3] t hat:



h(c) = T [log,(33/%)] . (1)

1<i<e

A

The cost of step I(a) is n-h(c)/c , nmking obvious the fact that c(i,n)
nmust be bounded above 'by a constant in order for PICK to run in linear
tine.

Letting P(n) denote the maxi mum cost of PICK for any i , we can
bound the cost of step |(b) by P(n/c) . After step 1, the partial

order determined for S may be represented as in Figure 1:

A G
m « T = (d-th snall est
el ement from
L B each col um)
N (. /]
N
b-1 colums with nfc -b colums wth
d-th smal | est <m d-th snallest >m
Figure 1

Here we have the n/c colums of length ¢ portrayed with their

largest elenents on top. Since the recursive call to PICK in step I(b)
determ nes which elements of T are <m, and which are > m, we
separate the colums as in Figure 1. Every elenment in box Gis clearly
greater than m, while every element in box L is less. Therefore only
those elenents in quadrants A and B need to be conpared to min

step 2.
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It is easy to show that no elenents are ever incorrectly discarded

in step 3: if mpS >i, M jstoolarge, so that mand all |arger

el ements may be discarded, and symmetrically for the case mpg < i
Note that at least all of Gor all of L will be discarded. | is now

obvi ous that

‘h
P(n) < Lc‘(ﬂ" P(n/c) +n+ P(n -min(|L|, |G])) - (5)
To mnimze P(n) we choose ¢ =21, d =11, and b = n/2c = n/42

(so that m is the median of T | and T is the set of colum nedians).
This inplies

P(n) < égig + P(n/21) +n+ P(31n/Lk2) | (6)

since h(21) =-66 . This inplies by mathematical induction that

8 .
P(n) < 2 Sn = 19.6 n . (7)

The basis for the induction is that, since h(n) <19 n for n < 107,

any small case can be handled by sorting. PICK runs in linear time because
a significant fraction of Sis discarded on each pass, at a cost pro-
portional to the nunber of elements discarded on each step. Note, however

that we nust have ¢ >5 for PICK to run in linear tine. QED

3. | nprovenents to Pl CK

The main result that f(i,n) = 6¢(n), has now been proved. W thank
the referee for his comment: "™me authors have a right to optinmize (if they
don't, someone else will)." This section contains a detailed analysis of
our inproved versions of PICK

Ve describe two modifications to PICK  prck1, which yields our best
overal | bound for F(e) , and picke, which is nore efficient than PICKl
for i inthe ranges i <gn or i > (1-g)n for B = .203688" . The
description and analysis of Pickl is relatively detailed and lengthy .. e
do not expect the average reader to wade through it! The optinized al gorithm

is full of red tape, and could not in practice be inplenented efficie

7
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but in principle for any particular n could be expanded into a decision
tree without red-tape conputation. The basic differences between Pl CK
and PICKL Will be listed shortly. W assume (by argunents of symmetry)

that i < Tn/21 throughout this section.

Theorem 2. F(Q) 5;5.&505 , for 0 <a<1.

Proof : By anal ysis of PICKl, which differs fromPICK in the follow ng

respects:

(i) The el ements of S are sorted into colums only once, after
whi ch those col ums broken by the discard operation are restored
to full length by a (new) merge step at the end of each pass.

(i) The partitioning step is nodified so that the nunber of conparisons
used is a linear function of the nunber of elements eventually
di scar ded.

(iii) The discard operation breaks no nore than half the col ums on
each pass, allowing the other nodifications to work well

(iv) The sorting step inplicit in the recursive call to select mis
partially replaced by a merge step for the second and subsequent
iterations, since (iii) inplies that 2/3 of the set T operated

on at pass j were also in the recursive call at pass j-I

The term"k-colum” will be used to denote a sorted col um of
length k . The optinal value of the function c , 15, wll be used
explicitly throughout for clarity. The algorithmis presented as three
separate procedures, each of which selects ies fromS , given that
the partial order already determned for Sis one of three types.
Procedure PICK1 is the outernmost procedure, which assunes that no

information i s known about the elenents of S .
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Procedure PICK1: (Selects i6s from S , where |S| =n and 1 <i < [n/J).

1. If n<bis, sort S, print ie, and halt.
2. Sort Sinto |n/15) 15-columns and possibly one (n nbd 15)-column.

3. Use procedure PICKla to select is6.

Procedure PICKla: (Same as PICKl, except that S is already sorted into

15-columns) .

L. If n<4 , sort 8, print ies, and halt.
2. Sort the set T of colum nedians into 15-columns and possibly
one (Mm/151 nod 15) -col um.

3. Use procedure PICKlb to select ieg .

Procedure PICKib: (Sane as PICKla, except that T is al so already Sorted

into 15-columns).
1. Use procedure PICKla to select m, the nedian of T .
2. Partition A U B of Figure 1 about mas follows, stopping
as soon as it becones clear that mpS<i or mp8 >1i :
(i) Insert minto each 7-column of B , using binary
insertion (3 conparisons/colum).
(ii) Insert minto each 7-colum of A, using a linear
search technique beginning near each 15-column nedi an.
3. If mpS=i,print m (=168 ), and halt, otherwise
if mps >i, discard ¢ U{x|xeB and x >m} , otherw se
discard L U {x | xeA and x <m} and decrease i by the
nunber of elenents discarded.
4. Restore S to a set of 15-columns by the follow ng merge
operations. Here |X| will denote the nunber of elenents
inaset X. Let U be the set of colums of lengths < 15

(in fact, each colum of U has length <7 ). Let Yc U



be the set of shortest colums of U, such that
|y} =|u]/15, and let v be the set of all 7-columns in

UY. ©OplitU-(vuUY) into tw subsets X and W such

that W contains w columns, W's colums are not shorter

than X's , and |w|+ |x| = 7w . Then

(i) Extend every colum in Wto length 7 by using binary
insertion to place each element of X into a colum of W.

(ii) Now every colum in UY s a 7-colum. Merge them
pairwise to form lk-columns.

(iii) Use binary insertion to place each elenent of Y into
a lli-column. Now S has been restored to a set of
15-columns.

5. Restore the set T of colum nedians to 15-columns as foll ows.
Let Z ¢ T be those colum nedians which were colum nedi ans
instep 1. The elenents of Z are already sorted into col ums
of size 8 or greater, since step 3 of the recursive call at
step 1 discarded z in strings of those sizes.

(1) Merge the colums of Z together to form 15-columns and

some |eft-overs, treating each colum size separately:

8-columns: Merge these pairwise to form 15-columns
with one element left over. Wite this as
2(8): 8+7, 1 leftover.

g-colums:  5(9): 9+6, 9+6, 9+3+3, no | eftovers.

| o-colums:  3(10): 10+5, 10+5, no | eftovers.

Il-colums: Set aside 1/45 of the Il-colums and
break theminto |-colums, then do
L(11)+1(1): 11+k, 11+, 11+3+1, no | eftovers.

12-columns and larger: set aside sone elenents for

binary insertion into the remaining colums



Sort the leftovers into 15-columns.

(ii) Sort T-Z into 15-columns.

Now T has been restored to a set of 15-columns.

6. Decrease n by the nunber of elements discarded in step 5.

If n <45, sort S,

return to step 1.

print ies and halt, otherw se

This conpletes the description of the algorithm To analyze PICKI, we

introduce the follow ng notation:

Pl(n), Pla(n), Plb(n)

ga,gb

fa, Ib

WX,y

def

def

def

the maxi mum costs, respectively, of
procedures PICK1, PICKla, and Pl CKl b.
t he nunmber of conparisons made in step
PICKIb (2ii).

t he nunber of elements fromA y B
discarded in step PICKIb (3).

the nunber of elements fromA, B
found in step PICKIb (2) to be >m.
the nunmber of elenents fromA, B
found in step PICKIb (2) to be <m.
the nunber of colums in sets W, X,

in PICKIb (4).

Since h(15) =42, we have imediately:

k2 n

Pl(n) < 15 + Pla(n) = 2.8n + Pla(n) (8)
4o n .
Pla(n) < Zz5- + Plb(n) = .186n+ Pib(n) . (9)

11
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The follow ng | emma denonstrates the tradeoff created in step PICKLb(2)

between v and d :
Lemma 1. v < d+n/30 .

Pr oof : There are two cases to consider, since either L or Gis
discarded in step PICK1b(3).

Case 1 (L is discarded): There can clearly be at nost one

conparison for every colum in A, plus one for each element of A

di scar ded.

Case 2 (G is discarded): Thus |L|+fa+2b = i+1 < [n/27+1 <

|lL] + |B| _< |L] +eb+4b. Thus gb > 2a, but za > v-n/30 as

in case 1, yielding the [emma since d=gb here.
QED.

The following lemma allows the costs of step PICKIb(4) to be bounded:
Lema2: |x| < éa/7. (11)

Proof: W have d > 7(w+x+y) - [W| - |x| - |Y|, and 7w- |w| = |x|,
yielding d >7x+7y-|Y| > 7x, but éx > |x|, so-that a >7|x|/6 .

QED.

Step PICK1b(5i) takes, in the worst case, 21/20 conparisons/ el enent
to merge and sort Z into 15-columns (detailed analysis omtted -- this
happens when z contains only 8-columns). Since |z| = n/30 , this step
takes at nost 7 n/200 conparisons. W may now wite the follow ng

recurrence for Plb(n) :

12



Plb(n) <Pla(ln/151) + 3(n/30) + (d+ n/301,+ 36d/7), t
™~ Rl . .. v
step 1 step 2 step 2ii step 4i

13(7n/3%0 -4d)/15 + \h(?n/BO -d)/lg + Tn/200 +

"

V ..
step 4ii step hiii step 5i

32(7n/30 -d)/225 + Plb(1lln/15 -d)
. J

step 5ii subsequen\t, iterations
Sinplifying vyields
5n . 13197 n + 3546 d
Plb(n) < (n+ 54 T 27000~ 1575 ) (12)
The right-hand side of (12) is maximumat d = 0 , so that
13197 n _ &
Plb(n) < —2—7—8-(? = 2.4438 n (13)
Pla(n) < 2.6305 n , (14)
and
Pl(n) < 5.4305 n (15)
Since
h h(k
max -icg)- = 55 < 5.43 n , (16)

l<c<hs
the basis for the induction yielding (12) is justified, thus also taking
care of steps PICK1(1), PICKla(l), and PICKIb( 6), and yielding our theorem

QED.

Wi le PICk1 provides a good uniform bound on F(a) better results
can be achieved for values of a near 0 or 1 . W now present the

al gorithm Picke, which yields the follow ng result.

13
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Theorem 3. Fla) < 1+ 44305 oc/5+lo.86i l’logg(s/aﬂoz, for o <a <p . (17)
where B = .20568é .

Pr oof : By anal ysis of PIcke, which is essentially the same as Pl CK
with the functions wb(i,n) , c(i,n) , and d(i,n) chosen to be i |,
2, and 1 , respectively, and with the partitioning step elim nated.

In detail:

Procedure PICK2: (Selects ies, where |8 =n, and i <pgn)
1. Conpare the elements of S pairwise to form|n/2 pairs and
possibly one left-over.
2. If i <B Ln/2) use procedure PICK2, otherwi se use PICKl, to

select mas the i-th smallest element of the set T of

lesser elenents of each pair. See Figure 2.

one |eft-over

s

;}_{g:\ylw

i-1 pairs pairs with smaller element > m
with smaller

element < m

Figure 2

Discard all elenments known to be > m, that is, those elenents

\N

in the circle G of Figure 2.

4, Use procedure PICK1 to select jigs from S .

1k



This conmpletes the description of procedure PICK2. Note that this
reduces to a sinple knockout tournanent when i =1t Using P2(i,n)

to denote the maxi num nunber of conparisons used by PICK2 to sel ect

ie, we may derive:

P2(1,n) <{n/2]+min(PL( Ln/2)),P2(i, |n/2)))+PL(2 i) ~ (18)
step 1 step 2 step b
For particular values of i and n , procedure PICK2 is called
t = rloge(sn/i)‘l times in succession during the recursive calls at
step 2, before procedure PICKL is called. Thus
P2(i,n) < D /2% + P2y e PI(20) (19)
0<j<t
This directly inplies our theorem The proper value for B , 203688 ,

is the |argest value such that P2([gnl,n) < Pl(n) .
Q-E.D.

The results of this section are sumarized in Figure 3, where
our bounds for F(a) are plotted against @ . |t is not unreasonable
to conjecture that the true curve for F(a) i S unimodal and peaks at
a = 1/2 . The relative conplexity of the algorithmPICKl |eads the

authors to conjecture that our upper bound can be significantly inproved.

k. A Lower Bound

In this section a | ower bound for F(a) is derived through the use
of an "adversary" approach (this technique is called the construction of

an "oracle" by Knuth. See for exanple [7], Section 5.3.2.) The selection

15



Bounds on F(a)
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process may be fornulated as a gane between the selection al gorithm
(player A) , who is trying to find ies with as few conparisons as
possi bl e, and his adversary (player B), who is trying to force player A
to make as many conparisons as possible. The players take alternate
turns: each play by A consists of posing a "conparison question", such
as "Is x <y ?" (for any x,yes ), to which player B on his turn nust
respond with either "ves" or "No". Player B's responses may be conpletely

arbitrary, as long as he does not contradict his previous responses to

A's questions. Wen A has extracted enough information fromB to determ ne

168, the gane IS over.

The advantage of this approach is that a non-trivial |ower bound for
the length of this game can be found, independent of A's strategy, sinply
by supplying a sufficiently clever strategy for B. The length of this
gane is of course here the usual mnimx cost, that is,

f(i,n) = mn max c(A,B) , (20)
def A B

where c(A,B) is the length of the game between particular A and B
strategi es.

Player B in this gane of course plays the role of the "data".
A strategy for player Bis in effect a rule for calculating a particularly
bad (that is, costly) set of data for A's strategy, since an actual set
of numbers can always be constructed that are consistent with B's replies.
A good strategy for player B is thus a procedure for "bugging" any given
pl ayer A strategy.

We will now describe the particular player B strategy which yields
our |ower bound. As the game progresses there will of course be many

el ements x such that player A has determ ned enough about x to know

17



that x #i6e, that is either x <ie or x >ie . Player B wll
initially consider all elements xeS to be nenbers of the set uy , neaning
that player B (and thus player A as well) is uncertain as to whether
x<ie, x =10 , or x >1i06. After a while, though, player A wll

be able to force the issue regarding particular elements, that is, force
player B to decide the status of a particular element xeu . If B
decides that x >1ie , he will remve x fromU and place it in set G.
Simlarly if he decides that x <ie , he will remove x from U and
place it inset L. Both Gand L are initially enpty. The el enent
that turns out to be i will thus be one (any one) of the elenents still
inU, sothat as long as |u| > 1 the game nust continue. Qur player B
strategy thus attenpts to keep U as large as possible for as long as
possi bl e.

The gane nust actually consist of two phases as far as B's strategy
is concerned. As long as |L| < i-1 and |a] < n-i , player B has
conplete freedom to put an elenent xeU into either L or G. After one
of L or Gfills up, however, B is quite restricted and nust play
differently, since he is not allowed to mke |L |>i or |d> n-i+l .

At that tine, however, the game "degenerates” in the sense that player A
has nerely to find the mninum (or maxi mun) element of U .

During the first phase, player B will never renove nore than one
element x fromU on a single turn. This will not cause any conplications
as long as x is a maximal (or minimal) elenment of U and player B puts
X into set G (set L ). Each element placed in set G (set L) is
assuned to be less than (respectively, greater than) all previous el ements
placed in that set, as well as greater than (respectively, |ess than) any

elements still remaining in U and L (respectively, U and G ). This

18



rule conpletely defines B's responses except when player A wishes to
conpare two elements x,yeU . |n addition, player B will only remove
an el enment from U when A nakes.such a request.

Player B will always restrict nenbership in U so that every
menber xey IS either a maximal or minimal elenent of U (or both) with
respect to the partial order already fixed on S by B's previous responses.

In fact, B will maintain the even stronger condition that for each el ement

T et —— — ——————

or y <x . The partial order for S assumed by B may thus always be

di agr ammed:

set G

:} set U

set L

Set U therefore contains only three "element-states", and we define
o(x) tobe-1, 0, or 1 respectively according to whether x is the
| esser element of a pair, an isolated elenment, or the greater elenent of
a pair. B's strategy for a conparison between two el enents x,yeU is

now easy to state (we assune without |oss of generality that a(x) < o(y) ):

19
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(i) respond " x is less than y ", and
(ii) if a(x) =oa(y) = 0 do nothing, otherw se
if o(x) = -1 remove x fromU and place it in L,
otherwise remve y fromU and place it in set G.
Essentially B's strategy creates a new pair in v if a(x) = a(y) =0,
ot herwi se one elenent is renoved fromU and the nunber of pairs in U
decreases by one. Let
c = the nunmber of conparisons nmade so far, and
p = the nunber of pairs currently in U.
It is sinple to verify that B's strategy maintains the condition
c-p+2luyl = 2n (21)
as long as the game is still in the first phase (this is clearly true
atthestart when ¢ =p=o0 and |U| =n ). A the end of phase one,
either L or Gis full, so that
U] < n-min(i-1, n-i) . (22)
Furthernore, it nust take player A at least |y|-1-p conparisons to
finish the ganme during the second phase, since he nust at |east do the
work of finding the smallest (or largest) elenent of U, which requires
|u|-1 conparisons, of which p have already been made. The tota
number of conparisons nade is thus at |east
f(i,n) > c+ |U] -1-p > n+min(i-1,n-i) -1, for 1<i<n (23)
from (21) and (22). Taking the limt as n - » , keeping
i= La(n-1)] +1, we get
Fla) > l+min(a, 1-Q) . (24)

This bound is also plotted in Figure 3.

20



«______M

5.  summary
The nost inportant result of this paper is that selection can be

performed in linear tine, in the-worst case. No nore than 5.h50§ n

conparisons are required to select the i-th smallest of n nunbers,
for any i , 1<4i<n . This bound can be inproved when i is
near the ends of its range.
A general lower bound is also derived which shows, in particular,
that at least 3n/2 - 2 conparisons are required to conpute medians.
The authors believe that the constants of proportionality in both

the upper and |ower bounds can be considerably inproved.
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1. [ ntroduction

In this paper we present new bounds (upper and |ower) on the expected

time required for selection. The selection problemcan be succinctly

stated as follows: given a set X of n distinct nunbers and an
integer i , 1<i <n , deternmine the i-th smallest elenent of X
with as few conparisons as possible. The i-th snallest elenment, denoted
by 16X , is that elenent which is larger than exactly i-I other
elements, so that 16X is the smallest, and neXx the |argest

elenent in X .

Let f(i,n) denote the expected nunber of conparisons required to
select ieX . Since a selection algorithmnust deternine, for every
teX, t AieX , whether t <iex or 16X <t , we have as a trivial
| ower bound

f(i,n) > n-1 for 1<i<n . (1)

The best previously published selection algorithmis FIND, by
C. A R Hoare [I]. knuth [2] has deternined the average nunber of

conparisons used by FIND, thus proving that

£(i,n) < 2((n+1)E - (m#3-1)H 4, - (3+2)H, +n+3) , (2)
wher e

H = 2 j'l . 3

n 17 <m (3)

This yields as special cases

f(1,n) < 2n+o(n) , (%)
and

£(I'n/27,n) < 2n(1+ In(2))+o(n) <3.39n +o(n) . (5)



No bounds better than (1) or (2) have previously been published.
In Section 2 we present our new selection algorithm SELECT, and

derive by an analysis of its -efficiency the upper bound

£(i,n) < n+min(i,n-1) +om?> mY>@) (6)
A smal| nodification to SELECT is then made, yielding the slightly
I mproved bound

f(i,n) < n+min(i,n-i) +@(nl/2) . (7)
An inplenentation of SELECT is given in Section 3 with timng results

for both SELECT and FIND.
The authors believe that SELECT is asynptotically optimal in the

sense that the function

(L %(n-1) |+1,n) , O0<ac<l (8)

F(a) = 1limsup . <a<

def n-o
is bounded below by the anal ogue of the right-hand side of (7), so that
F(@) > l+min(a,1-2) , for O<a<1l . (9)

A lower bound just a little better than 1+.75 min(a,1-0) i s derived

in Section 4, within 9% of our conjecture and the performance of SELECT.
In what follows t pX wll denote the rank of an element tex ,

so that (tpx)ex =t .E() will denote the expected value of its

argunent, and P() will denote the probability of an event.

2. The Al gorithm SELECT

The algorithm SELECT utilizes sampling. A small random sanple S
of size s =s(n) is drawmn fromX . Two elements, u and v ,

(u < v), are selected fromS , using SELECT recursively, such that



the interval [u,v]is quite small, yet is expected to contain ieXx .
Selecting u and v partitions S into those elenents |ess than u
(set A), those elenents between u and v (set B), and those elenents
greater than v (set C). The partitioning of X into these three sets

is then conpleted by comparing each element x in X-Sto u and v .

If 1 <Tn/21 , x is conpared to v first, and then to u only
if x<v . If i >T0n/27 , the order of the conparisons is reversed.
Wth probability approaching 1 (as n - =), iex will liein set B

and the algorithmis applied recursively to select i1ox from B.
(O herwi se SELECT is applied to A or C as appropriate.)
If s(n) , u, and v can be chosen so that s(n) = o(n) ,
E(|B]) = o(n) , and P(10X£B) = o(n"l) , then the total work expected
IS
&{s(n)) to select u and v fromsS ,

+ (n-s(n))(I+(mn(i,n-i)+o(n))/n) to conpare each elenment in X-S
to u, v,

+ o(|B]) to select 16X fromB ,
+ o(1) to select i9X fromA or C.
= n+mn(i,n-i)+o(n) conparisons total.

This can in fact be done; the low order termis @(n2/3 gnl/B(n)) ‘
Figure 1 shows a geonetric anal ogy of the procedure SELECT.

It is not hard to show (see [3]) that for any teSs we have

Bt 00 = -G, ) (10)
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oft px) = o (8 28)(E 2t 052 1) (ar1) (aes). o
(s+1)“(s+2)
< lj +1) (n-s) 1 n
= D2 P < 3 7_;—

V¢ wish to choose u and v so that E(upX) <i < E(vpX),
E(|B]) = E(vpX) -E(upx) is o(n) , and P(i < upXori>vpx) _
o(n'l) . To do this we choose ups and vp8 g that

E(u pX)+ 2do(upX)s i = E(v pX) -2 do(v pX) , (12)
where d = d(n) is a slowy growi ng unbounded function of n . 1n

fact, since

® -d_‘2
2-£ erf(x)ax < —3 , for some constant ¢ , (13)

we will choose d =+in(n) . This ensures that P(i <upX Of i > vpX)

= O(H'l) . The above equations nean that

( / n+l)(n s))(s+1 o is A/

upsS =
n+l -~ n
and
(14)
vpS = ,\/ n+1 n-s S+l i-s
n+1 S 5t dss

Let g(i,n) denote the expected nunber of conparisons nade by
SELECT. It will be shown inductively that
8(1,m) = n+min(i,n-1)+o(m?’ mY3m) . (15)
The above is true for all n less than sone fixed N, so the basis for
induction is clearly satisfied. e proceed with the inductive step by

determning the cost of SEzecT as a function of s(n) and n , and

then optimzing the choice of s(n) .

6



The cost of selecting u and v can be estimated as foll ows.
First we apply SELECT recursively to Sto select u, then we extract
v fromthose elenents of S -which are greater than u . (Note that
sel ecting u nmeans deternining which elenents of S are greater than

u as well.) These two operations cost

glupS,s)+g(vpS-upS+1,s -ups)
<2s+vpS-ups+os? m3(s))
< 2s+2a/s+ (s> 2 (s)) (16)

conpari sons.

The cost of comparing each element in X-S to u and v is easy
to conpute. There are n-s(n) elements to conpare, and the probability
that two conparisons will be made for an element is just
mn(u pS,s+1-upS)/(s+l) , so that the total is

(n-s(n)) (1 +m n(i, n-i)/n+ds /2y (17)

The cost of finishing up, if iex falls in B, is at nost

g( |Bl/2, |B]) . But
E(|B]) . (vpS-ups)n/s= pans /2 (18)
so that

g(|B|/2,iB]) = Bdns"l/2+o{(dns‘l/e)g/5(gn(dns-l/2))1/5). (19)

On the other hand, if iex falls in A or C, the expected

cost of finishing up is at nost ?n/2 , and the probability that

ieXeA oOr ieXeC is, from(13), less than ¢/(dn) , so that the

total work expected in this case is |ess than 3c¢/(2d) , which goes to

Zero as n -« .



,- S
The total expected cost of SELECT is thus
g(in) < 2s+2d/s+ 0(82/3 tnl/B(s))
+ (n-s)(1+mn(i, n-i)/n+ds Y2
N +2ans Y2, 3e/(24d)
< n+min(i,n-i) + s+d/s -min(i,n-i)s/n
C +3an 5724 3e/(24) + (s> 1nl/35) (20)
The principal increasing and decreasing terns in s in this
expression are s and 3dn s'l/2 . Choosing s(n) to make them
g equal will approximately MNimze g(i,n) . Thus we choose
: 2
[L s(n) ~n /3 znl/5(n) (21)
whi ch, together with (20), yields (15), which was to be proved. This
. conpletes the analysis of SELFCT.
V¢ now introduce a small nodification to SELECT in order to reduce
) the second-order termto the promised @(nl/g) Let S;¢8,c. .. c S
. be a nested series of random sanples from X of sizes 815805 -+»8, =1 .

For each sanple S.

, let u, and v.. be chosen from S. as in
J J J J

(14) so that

(n+1) (n-s,) s,+1

ujij= i-d\/——sj—n._sl_). (_nal__l_
( 1+d«/ n+l)(n- ) (s +l)

n+l

Thus it is very likely, for any j , that 51ﬁ.pX<i<VpX.

and (22)

Furthermore, as | approaches k (i.e., as s; gets | arge), u. and
J

Vj surround ieXx ever nore closely. |n fact, u, = ieXx =vk . The



___ 

cost of finding ;
uj and VJ directly from sj is of course

prohibitive for large values of s,

o

However, since

B(u, ;p8.) = ( S 5t
s ) o= (u. . .
=173 3-1°5;-1) s 1 S NP ()
And similarly E(v,
J1pS;) >v.pS. e can use
dJ J J Uj_| and Vj—l to

bound the search for u. and v _ _
3 i See Figure 2 for a graphica

representation of the . .¢ioq sEECT.
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The nodified algorithmruns as follows. Draw a random sanpl e 5,

1 and vy using this algorithm

recursively (and the ranks given in (22)). Determne the sets Ay B,

and C, , a partition of 82 , by conparing each elenent in 8,-8, 10O
u, and v, (using the same order of camparison Strategy as the original

SELECT). Next, deternine u

of size slfromX, and select u

o and Vs by applying this algorithm

recursively to B2 (in the nost likely case; else Ag or C2 ).
Extend the partition of S, determ ned by u, and v, into a

artition :
to U, and v, with the same conparison strategy. Continue in this

fashi on un‘til a partition A, B

B3 s 03 of s, by conparing each el enent of S5-32

e Ck of the set Sk =X has been

created. Then use the algorithmrecursively once nore to extract ieXx

from B, (or Ay or C ., if necessary).

This "boot strapping” algorithm has the advantage that the expense
of conputing a good bounding interval [uj,vj] for iex is reduced

by first conputing at a fraction of the cost the less tight bounding

1/2

i nterval [ ;5. Ve keep d(n) = tn7“(n) as before, to ensure

-1’ J*l]
that the probability that iex is not in [uj,vj] is of order o(n'l).

The probability that ' i i
p ility ug or v, is not in the interval [uj-l’vj _11
is also negligible, since
( |
o(w_, pS,) < —=— 2k
1 p8) S = (2)
Jj-1
and
d-(s.~\/;)
E(uJ.ij—uJ._lij) = — (25)

SJ. -1

10
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To conpute the cost of the algorithm we assume inductively, as
before, that

1/2)

g(j,m) = m+min(j,m-3) + m

2

for m<n, 1<j<m. (26)

The expected size of BJ. is easily estimted:
S,
By = (o095 5p0y ) (2 ) @

< 2 .

< dSJ/’\"Sj-l
The cost of selecting Ups Vs e eesly 15V, o fromthe sets B, K| @%"
is just

2 . pB,,|B. . U, -
2 <san B PPy 1B ey 0By 0By 4 4 [y -u, 0)))
< 2 (udsj/«/sjafzd«/%) , (28)

T 2<ji<k-1

whereas the cost of selecting Uy and vy from Sl is less than

s, +2 d/?l : (29)

whil e the cost of selecting w :szigx from Bk is at most

Bdn/«/s—k: : (30)
The cost of partitioning 82'81’33'82""’81;‘5};-1 about uy and vy
u, and Vo oy and Vi 1S J ust
V\
2 (s;=s. )(1+min(i,n-i)/n+dAs. ) - 31
2<j<x I 97t G ALY o

Addi ng these all together, we have



g(i,n) < n+min(i,n-i)+ 2
Y estk(lSdsj/ﬁ;—fdﬁJT)

+ sl(‘l~min(i,n—i)/n) + d‘/gi - an/. k-1 - (32)

This sum can be approximately mninmzed if we |et :
"’Sk i ncrease

. . .2 .
geonetrically with ratio r~, so that SJ _ r23-2

g(i,n) < n+min(i,n- 1)+(r+ @) . |‘>a‘@

< n+min(i,n-i) + ‘/_ + ~) ( ) 2
n+m n( i,n- 1)+/n(r | ) (__+ _) (33)

This i's approximately nininized when s, _ m/2 . and =b 32

IN

yi el ding

g(i,n) < n+min(i,n-1) +omY?) (34)

which was to be shown.

3.  Inplementation and Timng Results

In this section we present an ALGOL inplenentation of SELECT
(a revised formof the sinpler version given in Section 2), and give
timng results that denonstrate that our theoretical results yield

fruit in practice

W assune that it is desired to have the same input-output

relationships as FIND . That is, we are given an array segment
X[L:R] and an integer K such that L < K <R ; we wish to rearrange

the values in X[L:r] so that X[K] contains the (K-I+1)-th small est



e ———

val ue, L<I< Kinplies X[1] <X[K], and K <I <R implies
X[1] > X[K] . An inplementation of the conplicated version of SELECT
given in Section 2 will not be given, since no advantage is obtained
over the sinpler version except for unrealistically large values of n .

The innernost |oop of the algorithmis obviously the partitioning
operation. Any reduction in the conmplexity of partitioning will show
up as a significant increase in the efficiency of the whole algorithm
The basic algorithm however, requires partitioning X about both u
and v sinultaneously into the three sets A, B, and C, an inherently
inefficient operation. On the other hand, partitioning X conpletely
about one of u, v before beginning the partition about the other can
be done very fast. W therefore use an inproved version of Hoare's
PARTI TION algorithm [1] to do the basic partitioning, A further (mnor)
difference is that after partitioning has been conpl eted about one
el ement another sanple is drawn to determne the next el enent about
which to partition. This pernits a very conpact control structure at
little extra cost.

A listing of the procedure as witten in ALGOL 60 i s given on page 27.
The element T about which to partition is first determned. It
was found experimentally that sanpling was worthwhile only for val ues
of N (the size of input set) greater than 600 . This is due to the
expense of conputing square-roots, logarithns, etc., which cost nore
than they are worth for small Nt |[f sanpling is performed, the
recursive call to SELECT |eaves the desired elenent T in X[K]; if
sanpling is not done, the algorithmpartitions about whatever was
in X[kl initially (this'is good if X was already sorted). The

partitioning phase is initialized to obviate subscript range checking.
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Note that there is really no good way to avoid re-partitioning the
sanple or at |east noving nost of it later, but having it |ocated
around X[x] probably m ninizes the nunber of exchanges necessary.
Since one of L , R change each iteration, the nunber of elenents
remai ning al ways decreases by at |east one, thus ensuring termnation
Timng results were then obtained for FmD (exactly as published)
and SELECT (as given on page 27). The testing was done in SAIL (an
AIGOL dialect) on the PDP-10 at Stanford's Artificial Intelligence
Laboratory. These results are given in the description of the
al gorithmon page 27.
SELECT clearly outperforms FIND. This results froma slightly
faster partitioning schenme conbined with a large reduction in the

partitioning required due to the effective use of sanpling.

14



4, Lower Bounds for F(a)

In this section we present new | ower bounds for the expected nunber
of conparisons required for selection. Al though we believe SELECT to be
(first-order) asynptotically optimal, we have been unable to derive a
| ower bound for F(x) equal to the upper bound of 1+min(a,1-) produced
by our analysis of SELECT. The bounds derived here are within 94 of that
value, for all a , though, and the strength of these results relative
to the weakness of our nethods |ends support to our conjecture.

W will define a sequence Fj(oz) , for 0 <j <, of lower bounds
for F(a) such that Fj(oz) <—F;j+1(a) , for all j >0 and o,
0<a< lﬁ. The functions Fo(oc) , Fl(oz) , Fo(@) s and FB(oz) have
been computed -- the function Fj(oc) thus being our best |ower bound
for F(a) . These bounds have been plotted against « in Figure 3. The
val ue of FB(CX) at @ =.51is 1.375 , which tapers off as a approaches
O or 1, essentially becomng identical with 1+min(q,1-x) near the

extrenes.

W first prove a basic result.

Theorem 1. Any selection algorithmthat has determned i6X to be
some elenent yeX nmust also have deternmined, for any xeX, x £y,

whether x <y or y <x .

Proof.  Assume that there exists an x inconparable with y in the
partial order determined by the algorithm Then there exists a linear
ordering of X, consistent with the partial order determned, in which
X and y are adjacent (since any elenment required to lie between x
and y would inply a relationship between x and y in the partial

order). But then x and y may be interchanged in the |inear order

15
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without contradicting the partial order -- gdemonstrating an uncertainty

of at least one in ypX, so that y is not necessarily ieXx .
QED

The followi ng definition provides the basis for the |ower bound

conput ati ons.

Definition 1. The %ey conparison for af# el ement xex , ieX s

defined to be the first conparison x:y such that

y =16X or x<y<ieX Oor 18X <y<x. (35)

Note that determ ning which conparison is the key conparison for
x can in general only be done after all. the conparisons have been made
and 16X has been selected. Each element x , x #i6X , must have
a key conparison, otherwise x would be incomparable with iex ,

a contradiction by Theorem 1. This proves

Lemma 1. A selection algorithmnust nake exactly n-1 key conparisons

to select 16X , where |x| =n .
W now define two nore essential concepts.

Definition 2. A fragnment of a partial ordering (X, <) is a maxinal

connected component Of the partial ordering, that is, a maxinmal subset
S ¢ X such that the Hasse diagramof " < " restricted to Sis a

connected graph.

Any partial ordering can be uniquely described up to isonorphism as
the union of distinct fragments. A selection algorithmthus begins with
a partial ordering consisting of n fragnents of size 1. To illustrate,

let # be the set of all fragments having at nost k el enents:

16
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Definition 5. A Joining comparison IS any conparison between el ements

belonging to distinct fragments.

Note that each joining conparison reduces the total number of

fragments by one, inplying the follow ng.

Lemma 2. A selection algorithm nmust nake exactly n-1 joining

conparisons to select iex , where |X| =n .

Proof. As long as nore than one fragment exists, there nust be some
el ement inconparable with ieX , since elenments in distinct fragments
are inconparable. The lemma then follows from Theorem 1.

Qur lower bounds will be derived fromthe conflicting requirenents
of lenmmas 1 and 2 -- a selection algorithmcan not in general have all
of its joining comparisons be key comparisons, or vice versa. |p fact,

the authors nake the fol |l owing conjecture:

Conj ect ure. Asynptotically (as n - « ), the average probability that

a joining comparison Will turn out to be a key comparison i S at nost

max(Q, 1-q) . (36)

W nust use the asynptotic average probability, since near the end

of an algorithm the probability of a particular joining comparison being

17
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a key comparison may easily exceed (36).This happens because near
the end there are often elements with a significant probability of
actually being i6X , and a conparison with one of these elenents
can have a sonewhat |arger probability of turning out to be key. As

an exanple, consider the conparison of a previously unconpared el enent

X with an elenent y which is known to be the i-th smallest of the

remaining n-1 elenents. Then

P(x:y is key) Ply =i6X <x)+P(x =i6X < vy)

(n-i+l)/n , (37)

which, for a <1/2 ,is alittle larger than max(q,1-a) = l-a =
(n-i+l)/(n+1) .

Unfortunately, we could not find a proof of our conjecture, which
woul d inmply the optimality of Select for all values of o . Qur
results stemtherefore froman analysis of only those joining conparisons
in which at |east one of the fragments being joined is small. e are
left with just a small finite nunber of cases (i.e., possible types of
joining conparisons) to consider, since we will not distinguish between
the various kinds of large fragnents that mght participate in a
joining conparison. W want to estimate, for each type of joining
conparison, the probability that it will turn out to be a key conparison.
These probabilities will then be used in an interesting way to derive
| ower bound for F(a)

As noted above, the probability that a joining conparison will turn
out to be a key conparison is certainly affected by the probability that
one of the elenents being conpared is actually iex . The follow ng

argunment shows that we may treat this latter probability as being

18



negligible, for large n. Gven some e, O0<e<1l, it is easyto
see that there exists an integer m such that the maximum probability

that any element =xeX is actually i6X is at nost e if the |argest

fragnment has size at nost n-mi. For if X is inconparable with melenents

from other fragnents, then it has a chance of being ieX of at nost
P(x = 16X) < (2nmo:(l-oz))_l/2 (38)

which is less thane for m> (2 na(l-oz)az)'l . So except for a
finite nunber of comparisons near the end, the probability that any
elenent is iexXis at nost e. As n -« , these |atter conparisons
forma negligible proportion of the total nunmber of conparisons nade, and
their effect on the probability that an average joining comparison Wil
be a key conparison beconmes insignificant. W will therefore assume
fromnow on that the probability that either elenent being conmpared is
ieX is zero.

To derive Fk(a) we need to compute the probability that each
joining conparison in which the smaller fragment has at nost k el enents
will turn out to be a key comparison. These comparisons can be divided
into two types: those for which both fragnments belong to % , and
those for which only one fragment has k or fewer elenents. The first
case is somewhat simpler to handle so we shall treat it first, by neans
of an exanpl e.

Consi der the conparison of the snmaller of a pair of elements x <z,

to an isolated elenment vy :

Y% : (39)
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As a result of this conparison,we will end up with either

Z v Z
or X . (ko)
X y
The probabilities of these two outcomes are not equal -- the first

occurs with probability 2/3 while the second occurs with probability
1/3 . This happens because the first outcone is consistent with the
two pernmutations x <y <z and x <z <y , whereas the second
outcone is only consistent with 'y <x <z . Since each pernmutation
consistent with the input fragments is equally likely, the probability
of each outcome is proportionalto the nunber of permutations consistent
with that outcone.

W nust now consi der each permutation consistent with the input
fragments separately, since to determne whether x:y is a key conpari-
son requires knowing the relative order of X , y ,i6X , and all
el ements previously conpared to either x or y . Let us consider
the permutation x <y <z first, consistent with the first outcone.
Wth respect to iex , these three el enents nay be in one of four
positions. That is, ieX may be greater than fromzero to three of
these three elements. In only two of these cases will x:y turn out

to be a key conparison:

(i) ieXx <x<y<z - - thiswll be a key conparison for y ,
(ii) x<ieX<y<z -- this will not be a key conparison,
(iii) x<y<ieéx <z - - this wll be a key conparison for x,
(iv) x<y<z<ioX -- this will not be a key conpari son,

since x has already been conpared

to z
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The probability of each of these four cases occurring, given that

x <y <z, follows the binomal distribution with p = a, so that

5

case (i) occurs with probability (1-<x)” and case (iii) occurs wth

probability 3a°(

1-<@) . The analysis of all three pernutations consis-
tent with (39) can be represented graphically, using horizontal |ines

to indicate the relative positions of i6X that make x:y a key

conpari son:
Z v Z
y z x (k1)

X X Yy

The total probability that x:y turns out to be a key conparison
is thus the average probability that x:y is a key conparison in each

of these three cases. This is just (finally!)

&

P(x:y is key) = (l-ay +2a°(1-a) + 5 (42)

Whenever both fragnents are snall, the probability of a conparison
joining themturning out to be key can be conputed in the above fashion
This conpl etes our description of the analysis of a conparison joining
two small fragnents.

Wien an element x belonging to a small fragment is conpared to an
element y froman arbitrary fragment having nmore than k el enents,
the analysis can not be done in the above fashion since we essentially
know nothing about y ; its probability distribution and probability
of already having had a key conparison nust renmain totally unspecified.

It is still possible, however, to derive an upper bound on the probability
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that the conparison x:y wll turn out to be a key comparison, since
if x and y fall on different sides of i6X the conparison can

not be a key conparison. It is thus easy to see that

P(x:y is key) < max(P(x < 16X),P(x > i6X)) . (43)

For exanple, to compare X of the fragnent:

X
V

against an arbitrary y , the case analysis can be represented graphically
as before, using a horizontal line to indicate the relative position of

ieX making a key conparison possi bl e:

X X
_—G X G or X o (45)

for x <ieX for x >16X

W have then directly from (43) and (45)
P(x:y is Key) < max(a’+ 30°(1-0)/2,(1-0) +3a(1<)® + 30°(1-0)/2) . (46)

This kind of analysis is sinple to carry out for an x belonging to
any snmall fragment, so that we now have ways of computing (an upper
bound for) the probability that any conparison joining a small fragment
to another fragment will turn out to be a key conparison.

Ve will now describe how specific results such as (46) and (42)
above can be conbined to derive Fk(oc) . We wll assign a weight to a

partial ordering which is a | ower bound on the expected number of non-key
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joining conparisons yet to be made in selecting ieX . The total
number of comparisons made on the average is thus bounded bel ow by

n-1 (for the joining conparisons) + the weight of the partial ordering
(to ensure that n-1 key conparisons are made as well). The weight of
a partial ordering is defined to be the sumof the weights of its
constituent fragments. The weight of a fragment will be conputed from
the specific probability results already cal culated by means of a

| inear programmng technique.

Wiat we want is to ensure that the expected weight of a partial
ordering does not decrease as a result of a joining conparison by nore
than the--probability that that joining conmparison was non-key. This
guarantees that the weight of the initial partial ordering is a valid
| ower bound for the expected nunber of non-key joining camparisons made.
Since we only have data for those fragments with k or fewer elenents,
only those fragments will be assigned positive weights -- all larger
fragments will have weight zero. (In particular, the weight of the
final partial ordering, in which ieX has been determ ned, nust be
zero.)

Let us consider the conputation of FQ(O.') as an exanple. Let L
be the weight of the fragnment e and | et W, be the weight of 1 :

The weight of the initial partial ordering is therefore just nw Ve

1

want to maxinmze w, Subject to the constraints inposed by our previous

1
conput ati ons about specific kinds of conparisons. For exanple, a
comparison between two isolated elenents is non-key with probability

ea(l-a) , yielding the inequality:

2w, -w, < 20(1-0) . (¥7)
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Conparing an isolated el ement against an arbitrary element froma

fragnment with nmore than two el ements yields the inequality

w, < min(o,1-@) . (48)

A conputer programwas witten to generate all the relevant
inequalities like (47) and (48) for a given k . Note that when two
fragnents are being joined such that two different outcomes are
possible, both in F the probability of each outcome nust be
consi dered when conputing the expected weight of the resultant fragnent
after the conparison has been nade. The linear programmng al gorithm
MNT of Salazar and Sen [4] was used to determine the maximum weight w

1

possible for the isolated element. The val ue 1+wy i's then our
| ower bound for F(a) .

When k= 1 the solution takes a particularly sinple form
Fla) > F (o) = 20(1-0) . (49)

The functions Feaw and F5«w are too conplicated to give here, but
are as plotted in Figure 3. For the case of conputing nedians they
reduce to

(%) - #n (50)

and

Fs(3) = Tgn o, (51)

which is within 9% of the best possible value of 1.5 n .

Thi s completes the description of our |ower bound derivations. The
results show that SELECT is at |east near-optimal, and we suspect that
a nore powerful conbinatorial analysis would denonstrate optinality.

The weakness in our nethod lies in the restricted nature of the
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inequalities derivable for the case of a comparison between a snall
fragment and an arbitrary fragment belonging to a large fragnent. In
any case these |ower bounds &re the first non-trivial |ower bounds

published for this problem
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The Algorithm SELECT - for finding the i-th smal [est of n elenents

by Robert w. Floyd and Ronald L. Rivest
Stanford Conputer Science Department
Stanford University
Stanford, california 9305

Keywords:  sel ection, nedians, quantiles
CR Categories: 5.%0, 5.39
DESCRI PTION: SELECT will rearrange the values of an array segnent

XL:R so that X[K] (for sonme given K; L <x<R)wll contain

the (k-1+1)-th smallest value, L <1t <xwll inply x[1] <X[X],
and X <IT < Rwll inply X[T] > x(k] . Wile SELECT is thus functionally
1

equivalent to Hoare's algorithm FyND* it is significantly faster on the

average due to the effective use of sanpling to deternine the elenent T
about which to partition X . The average time over 25 trials required
by SELECT and FIND to determne the median of n elements was found

experimentally to be:

n 500 1000 5000 10000
SELECT 89 . 141 ps. 493 ns. 877 ns.
FI ND 104 . 197 ms. 1029 ns. 1964 ns.
The arbitrary constants 600 , .5, and -5 appearing in the algorithm

mnimze execution time on the particular nmachine used. SELECT has been
- shown to run in time asynptotically proportional-to Ntmn(l,N1)
where N = L-r+1 and | = K-I+1 . A lower bound on the running tine
within 94 of this value has also been proved. 2
REFERENCES:
[1] Hoare, C. A R "Algorithm 63 (PARTITION)" and "Al gorithm 65 (r1iD)",

CACM 4 (July 1961), 321.
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ATGORITHM :

procedure SELECT(X,L,R,K); val ue L,R,K; array X

begin integer N,1,J,8,SD,LL,RR,T; real Z;

while R > L do begin
if RL > 600 then begin
comment Use SELECT recursively on a sanple of size Sto get an
estimate for the (K-L+l)-th smallest elenment into X[X], biased

slightly so that the (k-1+1)-th elenment is expected to lie in

the smaller set after partitioning;

N : = R-I+1;
| = K-I+1;
Z = In(N);

S := .5% exp(2¥7/3);
SD := .5 % sqrt(z*s*(N-8)/N) * sien(T1-N/2);
LL : = max(L,K-I*S/N+8SD);
RR : = min(R, K+ (N-T)*S/N+SD) ;
SELECT(X,LL,RR, K)
end;
T := X[K];
coment The following code partitions X[L:R about T. i is sinilar
to PARTITION but will run faster on most machi nes since subscript

range checking on | and J has been elimnated.;
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exchange(X[L];X[K])5

if X[R]> T then exchange(x[Rr],x[1])

.
e 5

while 1 < J do begiy

exchange(X[1],X[J]);

I := I+l
J =1J-1;
while x[1] <m do | := I+1;
while X[g]>Tdo J :=J-I;

end;

if X[L] = T then exchange(X[L],X[J])

el se begin J .- J+1; exchange(X[J],X[R]) end;

coment  Now adjust L, R gq they surround the subset containing
the (K-I+1) -ty smallest el enent;
if J <Kiz g+l
if K< Jthen R:= J-1:
[ )

end

end SELECT
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