
STAN-CS-73-350 SU-SEL-73-009

An AImost-Optimal Algorithm for the

Assembly Line Scheduling Problem

bY /

Marc T. Kaufman -

January 1973

Technical Report NO. 53

Reproduction in whole or in part
is permitted for any purpose o f
the United States Government.

This document has been approved for public

release and saie; its distribution is unlimited.

This work was supported in part by the
. National Science Foundation under

Grant GK 23315 and by the Joint
Services Electronic Programs U.S. Army,
U.S. Navy and U.S. Air Force under
Contract N-00014-67-A-01 12-0044.

STAllFORD UIllUERSITV . STRHFORD,CALlFORIllR

STAN-CS-73-3?0 SEL 73-009

AN ALMOST-OPTIMAL ALGORITHM FOR THE

ASSEMBLY LINE SCHEDULING PROBLEM

bY

Marc T. Kaufman

January 1973

Technical Report No. 53

Reproduction in whole or in part
is permitted for any purpose of
the United States Government.

This document has been approved for public ’
release and sale; its distribution is unlimited.

/

L

DIGITAL SYSTEMS LABORATORY

Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

L

This work was supported in part by the National Science Foundation under
Grant GK 23315 and by the Joint Services Electronic Programs U.S. Army,
U.S. Navy and U.S. Air Force under contract N-00014-67-A-0112-0044.

i

1
1
L

L

-. . -
-

AN ALMOST-OPTIMAL ALGORITHM FOR THE

ASSEMBLY LINE SCHEDULING PROBLEM

ABSTRACT

This paper considers a solution to the multiprocessor scheduling

problem for the case where the ordering relation between tasks can be

represented as a tree. Assume that we have n identical processors, and

a number of tasks to perform. Each task T
i
requires an amount of time

pi to complete, 0 < CL.
1

i k, so that k is an upper bound on task length.

Tasks are indivisible, so that a processor once assigned must remain

assigned until the task completes (no preemption). Then the "longest

path" scheduling method is almost-optimal in the following sense:

Let w be the total time required to process all of the

tasks by the "longest path" algorithm.

Let w. be the minimal time in which all of the tasks can

be processed.

Let w-
P
be the minimal time to process all of the tasks if

arbitrary preemption of processors is allowed.

Then: w 2 w 5 w 5 W
P o P

+ k - k/n, where n is the number of

.processors available to any of the algorithms.

INDEX TERMS: Multiprocessing, Parallel Processing, Optimal

Scheduling, Tree Graphs, Assembly line Problem

ii

TABLE OF CONTENTS

Abstract

Table of Contents

List of Figures

Introduction

Task Labeling

Longest Path Scheduling -- The Discrete Case

Examples

Extension to Noninteger Tasks

Comparison With Other Results

Conclusions

Page

i

ii

iii

1

2

2

12

14

15

17

Bibliography 18

LIST OF FIGURES

1 Example of a Tree of Tasks

2 Rewriting Chains of Tasks

3 A system that illustrates w
0
=w=w i-k-

P r 1k/n

4 A system that illustrates w =Wp o, w = wp + k - k/n
r '1

iii

Page

3

5

12

12

Ii.
1
!

1

1

c

-

1.

1

Introduction

The "assembly line" problem is well known in the area of multiprocessor

L

L

L

L

t

i

1

L.

L

L

L

L

C

scheduling. In this problem, we are given a set of tasks to be executed by

a system with n identical processors. Each task, T.,
1

requires a fixed,

known time pi to execute. Tasks are indivisible, so that at most one

processor may be executing a given task at any time; and they are unin-

terruptible, so that a processor, once assigned a task, may not leave it

until the task is complete. The precedence ordering restrictions between

tasks may be represented by a tree (or forest of trees) graph. A task

may not be started until all of its predecessors have finished.

This paper examines the execution of such a set of tasks using the

"longest path" scheduling algorithm. The longest path algorithm assigns

free processors at any time to those available tasks which are furthest

from the root of the tree. Processors are never left idle if they can be

assigned. T.C. Hu investigated this algorithm for the case where all

tasks are the same (unit) length [Hu 611. He showed that the total exe-

cution time is minimal. That is, given the same number of processors, no

other non-preemptive algorithm will complete the tasks in less total time.

The results of this paper show that the longest path algorithm remains

"almost" optimal when arbitrary times are allowed for each task. In par-

ticular, the following relations hold:

Let UJ be the total time required to process all of the tasks by

the longest path algorithm.

Let UJ~ be the minimal time in which all of the tasks can be

processed by any nonpreemptive algorithm.

Let up be the minimal time to process all of the tasks if arbitrary

c- preemption of processors is allowed.

Then: w < w. I- w C= w + k - k/n
P P

where recalling the definitions above, n is the number of processors

used by any of the algorithms and k is an upper bound on task length.

Section 2 of this paper gives a labeling procedure which allows one to

find the tasks which are furthest from the root at any time. Section 3

develops the theorem for the case where all task times are integers. Section

4 provides examples which show the inequalities to be tight. Section 5 ex-

tends the result to tasks with arbitrary execution times. Finally, Section

6 compares this result to other published results for related problems.

2. Task labeling

The following algorithm allows one to label the tasks in a tree

graph with their level, or distance to the root of the tree:

1. If task Ti is a root node (has no successors), the level of

Ti is pi.

2. If T is a node whose successor, S, is at level e(S), the
i

level of Ti is l(S) + cLi.

Note that higher levels are further from the root.

3. Longest Path Scheduling -- The Discrete Case

Let us consider the assembly line problem for the case where the

task lengths (pi) are all integers. If Ti is any task,

'i
c (1,2,3,...,kl only. Graphically, we can represent the tasks with

their precedence relations and execution times as shown in Fig. 1.

’ I
r I

i

I

L

L
L
L
L

1 10Q

l WRoot

level

3

direction
of

execution

L
Fig. 1. Example of a Tree of Tasks

I. .
ij f

We first consider an execution procedure which violates the unin-

terruptability condition and which allows tasks to be interrupted and

processors to be reassigned after each unit of time. For this reason, it

is more convenient to represent a task of length m by a chain of m tasks

of length 1, as illustrated by Fig. 2. The "double bond" symbol is used

to indicate we cannot reassign a processor that is working on such a chain

when preemption is not allowed. Since all tasks in the rewritten graph

have p=l, we no longer need to state this explicitly. It is easy to see

that each chain-task corresponds to a particular multi-unit task in the- -

original graph. Also, one can quickly verify that the level of the task-

head node (the node furthest from the root) of a chain-task is the same

as the level of the corresponding multi-unit task.

Now consider the execution of a tree of tasks, T, by two longest path

algorithms, G and H. Algorithm G corresponds to the case in which processor

preemption during a multi-unit task is not allowed:

Algorithm G: At any time, t, assign the n processors as follows:

(1) If a processor was assigned at time t-l to a task that is

connected to its successor by a double bond, assign the

processor to that successor (i.e. we are in a multi-unit

task, so stay with that task).

(2) Otherwise assign the processor to (one of) the highest level

task in T that is ready to be executed. This task will always

be a task-head.

Algorithm H is an optimal algorithm (one which gives a minimal total

execution time) in which we permit the reassignment of any or all processors

5

i

L
L

i
t

L
L Fig. 2. Rewriting Chains of Tasks

i
i

k
I
i

L

L

6

at each unit of time, ignoring the uninterruptability condition. Since

all tasks in the rewritten graph are of unit length we may use Hu's

algorithm, as it is known to be optimal. The G and H algorithms are

identical if there are no multi-unit tasks.

Let wp be the time needed to execute the graph by algorithm H.

Let LL be the time needed to execute the graph in minimum time, under
0

the restriction that multi-unit tasks not be interrupted. Let u) be the

time needed to execute the graph by algorithm G, which also may not in-

terrupt multi-unit tasks. Then:

03 SW (1)
P =. 0

w <w
0

(2)

Equation (1) follows from the fact that the possible sequences of task

assignments by any restricted algorithm are a subset of the possible

sequences available to the optimal unrestricted algorithm, H. Equation

(2) follows from the definition of an optimal algorithm, since G is also

restricted, and so its sequence of task assignments is a possible choice

for the algorithm which found ulo.

As the tree is executed by either algorithm, its depth (the maximum

level of any nodes remaining in the tree) decreases with time. Note that

the depth cannot decrease faster than one level per unit of time, since it

takes (by definition) one time unit to execute a task at any level, and it

must be completely finished before its successor can start. We denote the

depth of the tree by dG(t) or dH(t), accordingly as the algorithm executing

the tree is G or H. The following equations derive from the definitions:

L

I
i

1I
L

iI
L

7

dG(0) = dH(0) = maxclevel of Ti]
i

dG@) = dH(ap) = 0

d(t) 2 d(t+l) 3 d(t)-1

We are interested in a particular time, t', in the execution by

algorithm G. This is the earliest time at which the depth of the tree

decreases by one at each further step of execution. Specifically:

dG(t)-1 = d$t+l) for all t, t' c t < cL.
J

But, dG(t ' -1) = dG(t').

We will reach t' no later than time iu-1, since the last unit of execution

time must remove one level of the tree (the root level). On the othe?

hand t' may be zero, meaning that the dept.h of the tree decreases by one

every unit of time. If so, G is optimal since no algorithm can go faster,

Hence wti in this case.
P

For t') 0, the following two lemmas are needed.

c

.

8

Lemma 1: Algorithm G uses all n processors at each time unit Ilp to t' .

Proof:

1 . G assigns n processors at each time, until. there are fewer

than n leaf nodes in the reduced tree. Because we are exc-

cuting a tree, the number of leaf nodes at each step is non-

increasing with time. Therefore the number of processors

assigned at each step is also nonincreasing with time.

2. The highest level in the tree is the same at t'-1 and at t',

by the definition of t'. Call this level &. Hence there is

some node at level &that was not assigned at t'-1. Rut this

node was available for assignment at t'-1 because $ is the

highest level in the reduced tree; and the node therefore had

no unexecuted predecessors. Thus, there are not enough free

processors at time t' -1 to cover all of the unexecuted nodes

at level &, so all n processors must be assigned at time t'-1,

3. By P>, all n processors are assigned at all earlier times

Corollary 1: At time t' (i.e. after t' units of time have elapsed),

algorithm G has completed execution of a total of nt ' unit tasks.

Proof: Immediate.

i

Lemma 2: At time t", suppose algorithm G reduces the highest level in the

tree to dG(t'). Then the lowest level at which algorithm G has

executed any unit tasks (nodes) is at or above dG(t')-(k-l).

Proof:

We show that, at t', G has not completed execution of any task-

head nodes at a level less than dG(t'). Then since no multi-unit

task is longer than k units, the lowest level unit-task in a task-

chain which has been executed can be no lower than level

dG(t')-(k-l).

L

L
1
t
I
L

Assume (by way of contradiction) that a task-head node of level

less than dG(t') was assigned at a time t < t'. Then there must

have been, at this time t, fewer than n leaf nodes at levels at or

above dC(t'). Since nodes have at most one successor, execution of

those nodes could not leave more than n leaf nodes at or above level

dG(t') at any time after time t. Since all of the leaf nodes which

are at or above level dG(t') at time t are actually assigned to

processors at t, we can reduce the depth of the tree by one level

at each subsequent time unit, down through level dG(t'). Then, by

the definition of t', we can remove one level at each subsequent

time unit. So t is an earlier time for which algorithm G begins

removing one level of the tree at each time unit. But t' is the

earliest time for which this property holds (contradiction). So

there is no assignment to such a task-head at time t C-C t'.

&ED.

10

Theorem: w<cu +k- r 1k/n
- P

Proof:

At t', G has executed nt' nodes (by Corollary 1).

The 'lowest level executed by G at time t' is at or above

level dG(t')-(k-l) .(by Lemma 2). Let & be the lowest level aL
--

which any node has been executed by G. Let q = dC(t')-X+1. It
1

requires q more units of time to complete all unit tasks in the

tree that are at levels at or above level ?, (since we will com-

-

plete one level per unit of time from now on), This means that
d

there are at least (nt'+q) unit tasks at or above level a, in
-_ -A

total. G then requires 4-l more units of time to complete the

remainder of the tree (i.e. all those nodes at levels less than $). d

Algorithm II must exccutc at least (nt'+q) nodes to complete- - - -

all nodes in the tree at or above level & after which it also
-.

has &-I more levels to execute to complete the tree. So:

for G: (JJ zz 1;' + q -I- 771

since it takes at least units of time to finish
-.

(nt t -t- q) nodes with n processors.

Then:

w- up '< (t' + y -I- 44)-
->

< t' -t q - [t' .1- q/n]-

<V-t-q-t,'- q/n- r 1
I-2 1

<'q - rq/l.;l-

11

Now, since

q = dG(t’) - & + 1

and 0,' 3 dG(t') - (k-l)

we have:

q 2 dG(tr) - (dG(t')-(k-l)) + 1

SO, q --> k, and we can write:

WSU.J (3) QED.
P

Then, combining Cl), (2) and (3):

LLlP 5ao
<w SW +k-

P r 1k/n . (4)

12

4. Ex;unPl es

The following; constructions demonstrate that each combination of

inequalities is attainable, thus Proving (lC).to be a tight: bound.

Example 1: iu = cDo = w- - - P

Trivially, any- tree with unit tasks only, e.g. 101

Ex,ample 3: il)- -- 0
=w=~~~ + k - [k/n]

k@ k@ k@...

v

k@ k@,

(n+l) tasks of length k, no Prcccdcncc constraints

Figure 3. A system that illustrates UJ = cu r: clj -t. k - r 1k/n
0 P

It takes 2k units of time to complete these n-t1 tasks by algorithm G,

II can com~1c~l C: them in [kc q+l j/n] units of time.

ExamPlc 3: &, =cU
0’

Lu fl cl.) -t k -- - - - - P 1) r 1kin
L

This area contnj ns
k(n-1) unit tasks,
spread as evenly as
possible over tlie
first n tasks.

+-Task A

(n+l) tasks of length k

Figure 4. A system that illustrates cu = wo,
P

13

The optimal completion time for this system is reached by starting

one processor on task A (of length k) and the other n-l processors

on the unit tasks. The optimal time is 2k. Algorithm G completes

all of the tasks above the length k tasks and then one of the length

k tasks before it starts task A . Algorithm G's time is:

.

The difference between these two times is:

L
L

14

5. Extension to ucminteger Tasks

This result can be extended to trees for which tasks take arbitraq

time, so long as the times are all mutually commensurable.

Let e be the largest real number such that all task times are mul-

tiples of e. Muntz and Coffman have shown [Mu 705 that there is an

integer, s, such that if each task is split into chain-tasks, with each

node of length e,'ns, application of Hu's algorithm to the resulting graph

yields an execution time which is minimal among all algorithms, including

processor sharing and arbitrary preemption. Application of algorithm G,

of course, yields the same results us before because the chain tasks

cannot be broken.

This extension is reducible to the integer case, where the basic

unit of time is e/ns rather than 1. So we can rewrite (4) as:

w <u,
P o

<UI<CL +k-(e,;'ns)
P

However, since e divides k, 5 is integral and
e

w su,
P o

~1 u, c w + k - (e,+'ns)(ks.'e)
P

UJ 5. & S W 5 w + k - (k, n).
P o P

(5)

15

6. Comparison With Other Results

Hu's algorithm is optimal for trees with unit tasks only. Manacher

[Ma 671 and Graham [Gr 66, Gr 69, Gr 72] h ave investigated longest-

path scheduling for structures other than trees. Manacher, using simu-

lation, observed that longest-path schedules tended to be close (within

15%) to optimal in a small set of test cases. Graham has shown in [Gr

i

66] that, for general directed acyclic graphs, the ratio between the

time required to execute the graph with a random list and the optimal

time is given by:

- w/w 5 2 - l/n
i 0

He also conjectured that this ratio can be improved if a longest-path

schedule is used, to:

w/w0 5 2 - 2j(n+l)

though this has not yet been proved.
L-

In [Gr 69, Gr 721 Graham presents bounds on execution time for

L systems in which the tasks are all independent (no precedence constraints).

He showed that the "decreasing list" schedule, which is equivalent to a

L -
longest-path schedule in this case, satisfies:

L w/w I4/3 - 1,/3n
0 '

Since this represents a line with a crossing at the origin, it is better

than the result of this paper for small values of u) .
0

However, the slope

of this line is greater than unity while the slope of the inequality in

iI

(5) is exactly unity. For w.) 3k, (5) is a better bound.

Again in [Gr 721 Graham noted (without proof) that, for independent

tasks:

16

d”, sl+n@ (6)

where:

B 2 max pAT)/C p,(T)
T

In the terminology of this paper, max p(T)=k, the length of the longest
T

task, and:

G p(T) 2 nw
T P

If we then approximate B by k/nWp, we can rewrite (6) as:

4 (JJo <1+
k

- . n
nw

P

However, dividing both sides of (5) by ho gives us the slightly better

bound:

-.

-

i

t
1
I
t -

!

17

7. Conclusions

In this paper we have considered the "longest-path" scheduling

algorithm as an "almost" optimal algorithm for the scheduling of trees.

An upper bound on the execution time for this algorithm is presented.

and shown to be better than previous upper bounds for related problems.

L

18

BIBLIOGRAPHY

[Gr 66] Graham, R.L., "Bounds for Certain Multiprocessing Anomalies,"

Bell System Tech. J., Vol. 45, No. 9, Sept. 1966, pp. 1563-1581.

[Gr 691 ? "Bounds on Multiprocessing Timing Anomalies,"

SIAM J. Appl. Math, Vol. 17, No. 2, March 1969, pp. 416-429.

[Gr 721 9 "Bounds on Multiprocessing Anomalies and Packing

Algorithms," Proceedings SJCC, Vol. 40, 1972, pp. 205-217.

[Hu 611 Hu, T.C., "Parallel Sequencing and Assembly Line Problems,"

Operations Research, Vol. 9, No. 6, Nov. 1961, pp. 841-848.

[Ma 671 Manacher, G.K., "Production and Stabilization of Real-Time

Task Schedules," J. ACM, Vol. 14, No. 3, July 1967, pp. 439-

465.

[Mu 701 Muntz, R.R., and E.G. Coffman, Jr., "Preemptive Scheduling

of Real-Time Tasks on Multiprocessor Systems," J. ACM, Vol.

17, No. 2, April 1970, pp. 324-338.

