STAN-CS-73-350 SU-SEL-73-009

An Almost-Optimal Algorithm for the
Assembly Line Scheduling Problem

by

Marc T. Kaufman -
Januvary 1973

Technical Report No. 53

Reproduction in whole or in part
is permitted for any purposeo f
the United States Government.

This document has been approved for public
release and sale; its distribution is unlimited.

This work was supported in part by the

. National Science Foundation under
Grant GK 23315 and by the Joint
Services Electronic Programs U.S. Army,
U.S. Navy and U.S. Air Force under
Contract N-00014-67-A-0112-0044.

DIGITAL SYSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY - STANFORD, CALIFORNIA

STAN-CS-73-350

AN ALMOST- OPTI MAL ALGORI THM FOR THE
ASSEMBLY LI NE SCHEDULI NG PROCBLEM

by

Marc T. Kauf man

January 1973

Technical Report No. 53

Reproduction in whole or in part
is permitted for any purpose of
the United States Government.

This document has been approved for public

release and sale; its distribution is unlimited.

DI G TAL SYSTEMS LABORATORY
Department of Electrical Engineering Depart ment
Stanford University
Stanford, California

This work was supported in part by the National Science Foundation under

of Conputer

SEL 73-009

Sci ence

Grant K 23315 and by the Joint Services Electronic Programs U S. Arny,
U S Navy and U S. Air Force under contract N 00014-67-A-0112-0044.

AN ALMOST- CPTI MAL ALGCRI THM FOR THE
ASSEMBLY LI NE SCHEDULI NG PROBLEM

ABSTRACT

This paper considers a solution to the nultiprocessor scheduling
problem for the case where the ordering relation between tasks can be
represented as a tree. Assume that we have n identical processors, and
a number of tasks to perform Each task Ti requires an amount of tinme
by to conplete, 0 < ey < k, so that k is an upper bound on task |ength.
Tasks are indivisible, so that a processor once assigned must renmin
assigned until the task conpletes (no preenption). Then the "l ongest

path" scheduling nethod is alnost-optimal in the followi ng sense

L Let w be the total time required to process all of the
tasks by the "longest path" algorithm
Let w, be the minimal time in which all of the tasks can

be processed

- Let wp be the minimal time to process all of the tasks if

L) arbitrary preenption of processors is allowed.
Then: ¢$g w < wgﬁwp+k-Wn,\mem n is the nunber of

- processors available to any of the al gorithns.

| NDEX TERMS: Ml tiprocessing, Parallel Processing, Optina

Scheduling, Tree Gaphs, Assenbly line Problem

TABLE OF CONTENTS

Abst r act

Tabl e of Contents

List of Figures

I ntroduction

Task Labeling

Longest Path Scheduling -- The Discrete Case
Exanpl es

Extension to Noninteger Tasks

Comparison Wth Qher Results

Concl usi ons

Bi bl i ography

Page

12
14
15

17

18

T

AN r— r—-

LI ST OF FI GURES

1 Exanple of a Tree of Tasks

2 Rewriting Chains of Tasks

3 A system that

4 A system that

illustrates wo - W =

illustrates w _
p o

Page

12

12

-

. r"""“

1. | nt roducti on

The "assembly line" problemis well known in the area of multiprocessor
schedul i ng. In this problem we are given a set of tasks to be executed by
a systemwth n identical processors. Each task, T'l’ requires a fixed,
known tine u, to execute. Tasks are indivisible, so that at nost one
processor may be executing a given task at any time; and they are unin-
terruptible, so that a processor, once assigned a task, may not |eave it
until the task is conplete. The precedence ordering restrictions between
tasks may be represented by a tree (or forest of trees) graph. A task
may not be started until all of its predecessors have finished.

This paper exam nes the execution of such a set of tasks using the
"] ongest path" scheduling algorithm The longest path algorithm assigns
free processors at any tine to those available tasks which are furthest
fromthe root of the tree. Processors are never left idle if they can be
assigned. T.C. Hu investigated this algorithm for the case where all
tasks are the sane (unit) length [Hu 61]. He showed that the total exe-
cution time is mnimal. That is, given the same nunber of processors, no
ot her non-preenptive algorithm will conmplete the tasks in less total tine.

The results of this paper show that the |ongest path algorithm renains
"alnost” optimal when arbitrary times are allowed for each task. In par-
ticular, the follow ng relations hold:

Let w be the total tinme required to process all of the tasks by

the |l ongest path algorithm

Let w be the mininal tine in which all of the tasks can be

processed by any nonpreenptive algorithm

Let mp be the minimal time to process all of the tasks if arbitrary

preenption of processors is allowed.

Then: w <w <w<w+ k- kin
P o P

where recalling the definitions above, n is the nunber of processors
used by any of the algorithns and k is an upper bound on task |ength.

Section 2 of this paper gives a labeling procedure which allows one to
find the tasks which are furthest fromthe root at any tine. Section 3
devel ops the theorem for the case where all task times are integers. Section
4 provides exanpl es which show the inequalities to be tight. Section 5 ex-

tends the result to tasks with arbitrary execution times. Finally, Section

6 compares this result to other published results for related problens.

2. Task labeling

The following algorithmallows one to label the tasks in a tree
graph with their level, or distance to the root of the tree:
1. If task T, is a root node (has no successors), the |evel of
Ti is pi.
2. If Ti is a node whose successor, S, is at level £(s), the

level of T. is f(S) + u..
1 1

Note that higher levels are further from the root.

3. Longest Path Scheduling -- The Discrete Case

Let us consider the assenbly line problem for the case where the
task I engths (pi) are all integers. | f T, is any task,
wy € {1,2,3,...,kYonly. Gaphically, we can represent the tasks with

their precedence relations and execution tines as shown in Fig. 1.

oy

—

Fig.

1.

Exanpl e of a Tree of Tasks

direction
of
execution

W first consider an execution procedure which violates the unin-
terruptability condition and which allows tasks to be interrupted and
processors to be reassigned after each unit of time. For this reason, it
is nore convenient to represent a task of length mby a chain of mtasks
of length 1, as illustrated by Fig. 2. The "double bond" synbol is used
to indicate we cannot reassign a processor that is working on such a chain
when preenption is not allowed. Since all tasks in the rewitten graph
have p=1, we no longer need to state this explicitly. It is easy to see
that each chain-task corresponds to a particular multi-unit task in the
original graph. Aso, one can quickly verify that the level of the task-
head node (the node furthest fromthe root) of a chain-task is the sanme
as the level of the corresponding nmulti-unit task

Now consider the execution of a tree of tasks, T, by two |ongest path
algorithns, Gand H Al gorithm G corresponds to the case in which processor
preenption during a multi-unit task is not allowed:

AlgorithmG At any time, t, assign the n processors as follows:

(1) If a processor was assigned at time t-I to a task that is
connected to its successor by a double bond, assign the
processor to that successor (i.e. we are in a nulti-unit
task, so stay with that task).

(2) Oherwise assign the processor to (one of) the highest |eve
task in T that is ready to be executed. This task wll always

be a task-head.

Algorithm H is an optimal algorithm (one which gives a miniml tota

execution time) in which we pernit the reassignment of any or all processors

r I r r— r— r— r

r—

—

~head node

head node >chain—task

head node

chain-task

Fig. 2. Rewiting Chains of Tasks

at each unit of time, ignoring the uninterruptability condition. Since
all tasks in the rewitten graph are of unit length we may use Hu's
algorithm as it is known to be optimal. The G and H algorithns are
identical if there are no nulti-unit tasks.

Let uup be the time needed to execute the graph by algorithm H
Let mobe the tine needed to execute the graph in mininumtime, under
the restriction that multi-unit tasks not be interrupted. Let w be the
time needed to execute the graph by algorithm G which also may not in-

terrupt multi-unit tasks. Then:

wP S\(-DO (1)
wo < w (2)

Equation (1) follows from the fact that the possible sequences of task
assignments by any restricted algorithm are a subset of the possible
sequences available to the optimal unrestricted algorithm H Equation
(2) follows fromthe definition of an optimal algorithm since Gis also
restricted, and so its sequence of task assignnents is a possible choice
for the algorithm which found w -

As the tree is executed by either algorithm its depth (the maxi num
| evel of any nodes remaining in the tree) decreases with tinme. Note that
the depth cannot decrease faster than one level per unit of time, since it
takes (by definition) one time unit to execute a task at any level, and it
must be conpletely finished before its successor can start. W denote the
depth of the tree by dG(t) or dH(t), accordingly as the algorithm executing

the tree is Gor H The follow ng equations derive from the definitions:

r—— r-

—

dG(O) = dH(O) = mziixflevel of Ti]

dG(w) d (wp) =0

d(t) 2 d(t+1) = d(t)-1

We are interested in a particular tinme, t', in the execution by
algorithmG This is the earliest time at which the depth of the tree

decreases by one at each further step of execution. Specifically:

dG(t)~1 dG(t+1) for all t, t' <t < w,

But, d.(t'-1) = d (t").

Ve will reach t' no later than tine w-1, since the last unit of execution
time nust renove one level of the tree (the root |evel). On the other
hand t' may be zero, neaning that the depth of the tree decreases by one
every unit of time. If so, Gis optimal since no algorithmcan go faster,
Hence w:wp in this case.

For t'> 0, the following two |emas are needed.

Lemma 1: Algorithm G uses all n processors at each time unit upto t'

Proof :

1. Gassigns n processors at each time, until there are fewer
than n leaf nodes in the reduced tree. Because we are exe-
cuting a tree, the number of |eaf nodes at each step is non-
increasing with tine. Therefore the nunber of processors
assigned at each step is also nonincreasing with tine.

2. The highest level in the tree is the same at t'-1 and at t',
by the definition of t'. Call this level £. Hence there is
some node at |evel &hat was not assigned at t'-1, Rut this
node was available for assignment at t'-1 because £ is the
highest | evel in the reduced tree; and the node thercfore had
no unexecuted predecessors. Thus, there are not enough free
processors at time t' -1 to cover all of the unexecuted nodes
at level 4, so all n processors nust be assigned at time t'-1,

3. By (1), all n processors are assigned at all earlier tines

also. QED.

Corollary 1: At time t' (i.e. after t' units of tinme have elapsed),

al gori thm G has conpl eted execution of a total of wnt' unit tasks.

Pr oof : | medi at e.

’ Lemma 2: At tinme t', suppose algorithm G reduces the highest level in the
- tree to dG(t'). Then the lowest level at which algorithm G has

executed any unit tasks (nodes) is at or above dG(t')-(k—l).

Pr oof :

W show that, at t', G has not conpleted execution of any task-
head nodes at a level |ess than dG(t’). Then since no multi-unit
task is longer than k units, the |owest |evel unit-task in a task-
chain which has been executed can be no lower than |eve
dG(t ")-(k-1).

L Assume (by way of contradiction) that a task-head node of |eve
| ess than dG(t') was assigned at atime t <t'. Then there nust

have been, at this tinme t, fewer than n leaf nodes at levels at or
above dG(t'). Since nodes have at nost one successor, execution of

those nodes could not |eave nore than n |eaf nodes at or above |eve

. —

d.(t") at any time after time t. Since all of the |eaf nodes which

are at or above Ievel dG(t’) at time t are actually assigned to

processors at t, we can reduce the depth of the tree by one |eve

at each subsequent tine unit, down through |evel dG(t'). Then, by

the definition of t', we can renove one |evel at each subsequent

8 tine unit. Sot is an earlier tine for which algorithm G begins
removing one level of the tree at each time unit. Byt t' is the
earliest time for which this property holds (contradiction). So

there is no assignment to such a task-head at tinme t <t

10

Theorem: & < (DP + kK - rk/nh‘

Pr oof :

At t', G has executed nt' nodes (by Corollary 1).

The 'l owest |evel executed by Gat tine t'is at or above
| evel (1G(t')—(k—1) (by Lemma 2). Let £ be the lowest |evel au
whi ch any node has been executed by G Let q = dG(t')-{vrl. It
requires q more units of tine to conplete all unit tasks in the
tree that are at levels at or above level 4 (since we Wil com
plete one level per unit of time fromnow on), This means that
there are at least (nt'+g) unit tasks at or above level £, in
total. G then requires 4-1 nore units of tinme to conplete the
remai nder of the tree (i.e. all those nodes at levels less than 1),

Algorithm Il nust exccute_at |east (ut'+q) nodes to conplete
all nodes in the tree at or above level 2, after which it also
has £-1 nore levels to execute to conplete the tree. So:

for G w=1t"+q+ 41

1
for H: o > [w1 + A1
p —_ n

since it takes at |east |-n—tT+—q] units of time to finish

(ut' + g) nodes with n processors,

Then:

. '+ p
w - a)p < (t' + g -k ’pfl) -(I—n n—-~(l-l -+ frl)

<t' -t g-ftr g/
t' 4+ q -t - [yd
q - [a/y]

IN

IA

Now, since
- ry - + 1

g = dG(t y - £

0 > - 1 - -
and b dG(t) (k-1)
we have:

q < dG(t') - (dG(t')—(k-l)) + 1
SO g -k, and we can wite:

w<w + k- |X (3) D.
Then, conbining (1), (2) and (3):

wp su)o < W in+k— rk/ﬂ_.

(4)

11

12

4, Exampl es

The fol | owing;

inequalities is attainable,

Exanpl e _1:

= W= w
P

o}

constructions denpnstrate that each conbination of

thus Proving (4).to be a tight: bound.

Trivially, any- tree with unit tasks only, e.g. lO

Example 3: =

w=uw + Kk —[k/n_]
P

'oYoroproro)

Figure 3.

(n+1) tasks of length k,

Nno precedence constraints

A system that illustrates L= w = %4 k - rk/n_]

It takes 2k units of tinme to conplete these nt+1 tasks by algorithm G

1 can complct e themin [k(nt1)/n-l units of tine.

Example 31 o« =
- - - up

2k - rk(n».hl)/tﬂ = k- rk/l{]

P
Oy O =0 -t k - [_k/_r_x_

5

k

=]

Figure 4.

This area contaj us
k(n-1) unit tasks,
spread asevenly as
possi bl e over the

first n tasks.

k @e—'l‘ask A

(n+1) tasks

A system t hat

of length Kk

illustrates %,b:

@ = + k- rl{/tﬂ

@,

13

The optimal conpletion tinme for this systemis reached by starting
one processor on task A (of length k) and the other n-I processors

on the unit tasks. The optimal time is 2k. Algorithm G conpletes

all of the tasks above the length k tasks and then one of the length

. k tasks before it starts task A. AlgorithmGs tine is:
o + Lﬂn_l_il
[n
The difference between these two tinmes is:
LLI"J Lkgjk[z]
n n n
-

14

5. Extension to noninteger Tasks

This result can be extended to trees for which tasks take arbitrary
time, so long as the times are all mutually conmensurabl e.

Let e be the largest real nunber such that all task times are mul-
tiples of e. Mintz and Coffnan have shown [Mu70] that there is an
integer, s, such that if each task is split into chain-tasks, wth each
node of length e/ns, application of Hu's algorithmto the resulting graph
yields an execution time which is mniml anmong all algorithms, including
processor sharing and arbitrary preenption. Application of algorithmg,
of course, yields the same results as before because the chuin tasks
cannot be broken.

This extension is reducible to the integer case, where the basic

unit of tinme is e/ns rather than 1. So we can rewite (4) as:

1S

A
€
A
€
N

w_+ (e/ns) k_ L
D o P e/ns n(e/ns)

@ + k - (e/ns) [E.I
= e

£
A
e
in
e
IA

. .. ks . .
However, since e divides Kk, = is integral and

w <w < w<w+ k=~ (e/ns)(ks'e)

(VS| VS| VR UJP+ k - (k/. n). (5)

15

6. Conparison Wth Cther Results

Hu's algorithmis optinmal for trees with unit tasks only. Manacher
[Ma 67] and G aham [G 66, G 69, & 72] have investigated longest-
path scheduling for structures other than trees. Manacher, using sinu-
lation, observed that |ongest-path schedules tended to be close (within
15% to optimal in a small set of test cases. Gaham has shown in [Gr
66] that, for general directed acyclic graphs, the ratio between the
time required to execute the graph with a random list and the opti nal

tine is given by:
u)/u)o < 2 - 1/’n

He al so conjectured that this ratio can be inproved if a |longest-path

schedul e is used, to:
w/wo < 2 - 2/(n+1)

though this has not yet been proved.

In [& 69, G 72] Gaham presents bounds on execution tine for
systens in which the tasks are all independent (no precedence constraints).
He showed that the "decreasing list" schedule, which is equivalent to a

| ongest-path schedule in this case, satisfies:
w/wo <4/3 - 1/3n

Since this represents a line with a crossing at the origin, it is better
than the result of this paper for small val ues of w However, the sl ope
of this line is greater than unity while the slope of the inequality in
(5) is exactly unity. For w > 3k, (5) is a better bound

Again in [Gr 72] G aham noted (wi thout proof) that, for independent

t asks:

16

w/w <1+ np (6)
wher e;

B 2z max w(T)/T w(T)
T

In the terminology of this paper, max u(T)=k, the length of the |ongest

T
task, and:

Z u(T) < nw
T P

If we then approxi mate g by k/nw_, we can rewite (6) as:

pl

w/ s1+-k.
R ¢ an

However, dividing both sides of (5) by w gives us the slightly better

bound:

17

7. Concl usi ons
In this paper we have considered the "longest-path" scheduling

algorithm as an "alnost" optimal algorithm for the scheduling of trees.

An upper bound on the execution time for this algorithmis presented.

and shown to be better than previous upper bounds for related problens.

r— e= — [I~

18

Bl BLI OGRAPHY
[G 66] Gaham RL., "Bounds for Certain Miltiprocessing Anonalies,"”
Bell System Tech. J., Vol. 45, No. 9, Sept. 1966, pp. 1563-1581.
[Gr 69] , "Bounds on Miltiprocessing Timng Anonalies,"
SIAM J. Appl. Math, Vol. 17, No. 2, March 1969, pp. 416-429.
(Gr 72] , Bounds on Miltiprocessing Anomalies and Packing
Algorithms," Proceedings SICC, Vol. 40, 1972, pp. 205-217.
[Hu 61] Hu, T.C., "Parall el Sequencing and Assenbly Line Problens,"”
Operations Research, Vol. 9, No. 6, Nov. 1961, pp. 841-848.
[Ma 67] Manacher, G K., "Production and Stabilization of Real-Tine

Task Schedules,” J. ACM Vol. 14, No. 3, July 1967, pp. 439~

465.

[Mi 70] Mintz, RR, and E G Coffman, Jr., "Preenptive Scheduling

of Real -Time Tasks on Miltiprocessor Systems," J. ACM Vol.

17, No. 2, April 1970, pp. 324-338.

