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RANDOM ARRI VALS AND MIPT DI SK SCHEDULI NG DI SCI PLI NES

ABSTRACT

This article investigates the application of minimal-total-
processing-time (MTPT) scheduling disciplines to rotating storage units
when random arrival of requests is allowed. Fixed-head drum and moving-
head disk storage units are considered and particular enphasis is placed
on the relative nerits of the MIPT scheduling discipline with respect to
the shortest-latency-time-first (SLTF) scheduling discipline. The data
presented are the results of sinulation studies. Situations are
di scovered in which the MIPT discipline is superior to the SLTF
discipline, and situations are also discovered in which the opposite is
true.

An inplenentation of the MIPT scheduling algorithmis presented and
the conputational requirenents of the algorithm are discussed, It is
shown that the sorting procedure is the nost time consuning phase of the

al gorithm
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1. | ntroduction

This article looks at the practical inmplications of the drum
schedul ing discipline introduced in Fuller [1971]. The scope of this paper
will include the classes of rotating storage devices shown in Fig. 1.1.

Let the device in Fig. 1.,1(a) be called a fixed-head file drum or just

fixed-head drum the essential characteristics of a fixed-head drumis

that there is a read-wite head for every track of the drums surface
and consequently there is no need to nove the heads anong several tracks.
Furthermore, the drumin Fig. 1.1(a) allows information to be stored in
blocks, or records, of arbitrary length and arbitrary starting addresses
on the surface of the drum  Physical inplenentations of a fixed-head
file drumnay differ substantially fromFig. 1.1(a); for instance, a
di sk, rather than a drum nay be used as the recording surface, or the
device may not rotate physically at all, but be a shift register that
circulates its information electronically.

The other type of rotating storage unit that will be studied here

is the nmoving-head file disk, or sinply noving-head disk, the only

difference between a noving-head disk and a fixed-head drumis that a
particular read-wite head of a noving-head disk is shared anbng severa
tracks, and the tine associated with repositioning the read-wite head
over a new track cannot be ignored. A set of tracks accessible at a
given position of the read-wite armis called a cylinder. Figure 1,1(b)
shows the moving-head disk implemented as a noving-head drum but this is
just to sinplify the drawing and reenphasize that 'fixed-head drumi and
'moving-head disk' are generic terms and are not nmeant to indicate a

specific physical inplementation.
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The analysis and scheduling of rotating storage units in conputer
systens has received considerable attention in the past several years
[cf. Denning, 1967; Coffman, 1969; Abate et al., 1968; Abate and Dubner,
1969; Teorey and Pinkerton, 1972; Seaman et al., 1966; Frank, 1969]. In
these papers, first-in-first-out (FIFO and shortest-latency-tine-first
(SLTF) are the only two scheduling disciplines discussed for fixed-head
drunms or intra-cylinder scheduling in noving-head disks; in [Fuller, 1971]
however, a new scheduling discipline is introduced for devices with
rotational delays, or latency. This new discipline finds schedules for
sets of 1/0O requests that mnimze the total processing time for the
sets of 1/0 requests. Moreover, if we let N be the nunber of 1/0
requests to be serviced, the original article presents a minimal-total-
processing-time (MIPT)* scheduling algorithm that has a conputational
complexity on the order of NlogN, the sane conplexity as an SLTF
schedul ing al gorithm

Several other articles have been witten since the MIPT scheduling
discipline was originally presented, and they devel op upper bounds and
asynptotic expressions for differences between the SLTF and MIPT
schedul ing disciplines [Stone and Fuller, 1971; Fuller, 1972F]. Like the
original paper, however, these articles address the conbinatorial, or

static, problem of scheduling a set of |/0 requests; new requests are

* The algorithmwas called an optiml drum scheduling algorithmin the
original article, but this article refers to the algorithmas the
mni mal -total - processing-time (MIPT) drum scheduling algorithm This
name is more mmenonic and recogni zes that other drum scheduling

algorithns may be optimal for other optimality criteria.



not allowed to arrive during the processing of the original set of 1/0
requests.  Although the MIPT scheduling discipline can always process a
set of I/O requests in less tine than the SLTF scheduling discipline, or
any other discipline, we cannot extrapolate that the MIPT discipline
will be best in the nore conplex situation when I/0O requests are allowed
to arrive at randomintervals. On the other hand, even though the SLTF
discipline is never as much as a drum revolution slower than the MIPT

di sci pline when processing a set of I/0O requests [Stone and Fuller, 1971],
we are not guaranteed the SLTF discipline will take less than a drum
revolution longer to process a collection of /0O requests when random
arrivals are pernitted.

Unfortunately, the analysis of the MIPT scheduling discipline
presented in the previous articles does not generalize to MIPT scheduling
disciplines with random arrivals. Mreover, attenpts to apply techniques
of queueing theory to MIPT schedules has met with little success. For
these reasons, this article presents the enpirical results of a simulator,
witten to investigate the behavior of conputer systens with storage
units having rotational delays [Fuller, 19724].

Anot her inportant question not answered by the earlier papers is
what are the conputational requirements of the MTPT scheduling algorithn®
Al'though the MTPT scheduling algorithmis known to enjoy a conputationa
conpl exity on the order of NlogN, where N is the number of I/0O requests
to be schedul ed, nothing has been said about the actual amount of
conputation time required to conpute MIPT schedules. MIPT scheduling '
disciplines will be of little practical interest if it takes NlogN
seconds to conpute MIPT schedul es, when current rotating storage devices

have periods of revolution on the order of 10 to 100 milliseconds. No



obvi ous, unanbi guous neasure of conputation time exists, but this article
will present the conputation tine required for a specific inplenmentation
of the MIPT scheduling algorithm given in the Appendix, on a specific
machine, an 18v360/9 1.

The next section, Sec. 2, discusses the inplenmentation of the MIPT
scheduling algorithmthat will be used in this article and presents the
conputation time required by this algorithm and Sec. 3 introduces two
modi fications to the original MPT algorithm Section 4 shows the
results of using the SLTF and MrPr scheduling disciplines on fixed-head
drunms where a range of assunptions are made concerning the size and
distribution of 1/O records, Section 5 continues to present the results
of the simulation study but considers noving-head disks. W wll see
situations with fixed-head druns and noving-head disks, where the MTPT
disciplines offer an advantage over the SLTF discipline; and the
converse will also be seen to be true in other situations. The ultimate
decision as to whether or not to inplenent a MIPT discipline for use in
a conputer system will depend on the distribution of record sizes seen
by the storage units as well as the arrival rate of the |/O requests;
the discussion in the following sections will hopefully provide the

i nsight necessary to make this decision.

2. An | nplenentation of the Original MIPT Drum Scheduling Al gorithm

In this section we will try to add sone quantitative substance to
the significant, but qualitative, remark that the MIPT drum scheduling
al gorithm has an asynptotic growth rate of NlogN.

An informal, English, statement of the original MIPT scheduling

algorithmis included in the Appendix, along with a well-documented copy



of an inplementation of the MIPT scheduling algorithm called MIPTO
This inplementation of the Mrpr al gorithm has been done in conjunction
with a larger programming project, and as a result two inportant
constraints were accepted. First, MIPTO is witten to maximze clarity
and to facilitate debugging; the prinmary objective was not to wite the
scheduling procedure to mnimze storage space or execution tine.
Secondly, the algorithmis witten in FORTRAN because this is the
| anguage of the simulator with which it cooperates [Fuller, 19724]. A
glance at MIPTO and its supporting subroutines: FINDCY, MERGE, and
SORT, shows that a |anguage with a richer control structure, such as
ALGOL or PL/I, woul d have substantially sinplified the structure of the
procedur es.

The results of this section were found with the use of a program
measurenent facility, called PROGLOOK, developed by R Johnson and
T. Johnston [ 1971]. PROGLOOK periodically* interrupts the central
processor and saves the location of the instruction counter. The
hi stograns of this section are the results of sampling the program
counter as MrPTO is repetitively executed, and then the number of tines
the program counter is caught within a 32 byte interval is plotted as a
function of the interval's starting address.

Figure 2.1 is the result of PROGOXK monitoring MIPTO as it
schedul es N requests where N =2, 3,4, 6, 8, 10, 13, and 16. The
abscissa of all the histograns is main storage |ocations, in ascending

order and 32 bytes per line, and the ordinate is the relative fraction

* For all the results described here, PROGLOX interrupted MIPTO every

500 mi croseconds.



Legend for Conputation Tine H stograms of Figure 2.1
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Subroutine SORT: an inplenentation of Shellsort.
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of time MTPTO spends in an interval in order to schedule a set of N
requests. The scales of the histograms in Fig. 2.1 are selected so that
an interval whose conputation time grows in direct (linear) proportion
to Nwll remain a constant height in all the histograms. Figure 2.1
illustrates that only the sort procedure is growing at a rate
perceptively faster than linear; for Nin the range of 2 to 16 the rest
of MTIPTO experiences a linear, or less than linear, growh rate

The particular sorting algorithm used in MTPTO is Shellsort [Shell,
1959; Hi bbard, 1963] because, for nost nmachines, Shellsort is the fastest
of the commonly known sorting algorithns for small N [Hibbard, 1963].
If MIPTO is regularly applied to sets of records larger than 10, quick-
sort, or one of its derivatives [Hoare, 1961; van Emden, 1970 A,B ]may
provide faster sorting. \Wenever the algorithmis used for N nore than
three or four, Fig. 2.1 indicates that initially sorting the starting
and ending addresses of the I/0O requests is the nost tine consuming of
the el even mgj or steps in MIPTO.

The upper curve of Fig. 2.2 is the expected execution time of MIPTO

as a function of queue size. Note that it is well approximted by
100N + 50 m croseconds

for N<8. For N2 8 the sorting algorithm begins to exhibit its
greater than linear growth rate. The lower curve in Fig. 3.2 is the
expected execution tinme for MIPTO minus the time it spends sorting; it

can be approximated by
50N + 50 mi croseconds.

The curves of Fig. 2.2 suggest an inplementation of MTPTO ni ght

maintain a sorted list of the initial and final addresses of the |I/0O
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requests at all tines: techniques exist to add, or delete, I/O requests
fromthe list in Qlog N steps [Adel'son-Vel-skiy and Landis, 1962].
Then a schedule could be found nmore quickly after it is requested since
there woul d be no need to execute the costly sorting step.

Figure 2.2 can only be used as a rough guide to execution tines
since it is very sensitive to inplenentation. In particular, these
statistics were collected on an |IBM 360/91 and they nmust be appropriately
scaled for processors that are slower, or faster. The algorithmis
i mpl emented in FORTRAN and has been conpiled by the |BM FORTRAN H
conpiler* [IBM 1971A]. An exami nation of the machine instructions
produced by this conpiler indicates a factor of 2 or 4 could be gained
by a careful inplenentation in machine |anguage. Furthernore, the
starting and final values of the I/0O requests are represented as double
precision, floating point nunbers, and practical inplenmentations of
MTPTO would very likely limt the starting and ending addresses to a

smal | set of integers, 128 or 256 for exanple.

3. Two other MTPT scheduling al gorithns

The original MIPT drum scheduling algorithm whose inplementation
was just discussed in the previous section, is not the only MIPT
scheduling algorithm that may be of practical significance; for exanple
consider Fig. 3.1, Application of the MIPTO scheduling algorithm shows

the schedule it constructs is

4, 3, 5, 1, 2. (3.1)

* During conpilation, the maximum code optim zation was requested, i.e.

// EXEC FORTHCLG,PARM.FORT='0OPT=2"
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This is a MIPT schedule, but then so are the sequences

5, 3, l", 1, 2; (32)
L, 1, 3, 5, 2; and (3.3)
5, 1, 3, 4, 2. (3.4)

The only properties that can confidently be stated about all the wmrer
schedules is that they require the same amount of processing time to
service a particular set of I/0O requests, and the last record that they
process is the same

Two of the MIPT sequences for the exanple of Fig. 3.1 share a
di stinct advantage over the MIPT sequence constructed by MIPTO.  The
| ast two sequences process record 1 on the first revolution while the
sequence constructed by MIPTO, as well as the second sequence, overl ook
record 1 on the first revolution, even though they are latent at the
tinme, and process it on the second revolution. Any reasonable nmeasure
of drum performance will favor the last two MrPT sequences over the first
t wo.

Al though MIPTO is the only MrpT scheduling algorithm that has been
studied in detail and known to enjoy a conputational conplexity of
NlogN, t he above exanple indicates that other MIPT al gorithms may be of
interest. For this reason, two other MIPT scheduling algorithms have
been inplemented and are listed following the MTpTO algorithmin the
Appendi X,

The MTPT1 procedure corrects the deficit in the Mrpro procedure
just illustrated; MTPT1 uses MIPTO to find a MIPT sequence and then
traces through the schedule looking for records, like record 1 in our
exanple, that can be processed at an earlier revolution wthout

disturbing the processing of any of the other records. No claimis nade
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here that MTPT1 i s an NlogN process, it is used here to indicate how
much better inproved Mrpr al gorithms can be expected to be over MTPTO.
The third Mrer al gorithm studied here, MIer2, is what mght be
called the shortest-latency-time-first Mrpr scheduling algorithm Like
MIPT1 it used MIPTO to find a MIPT sequence for the |/ O requests
currently in need of service. Then, it sees if the first record in the
MIPT sequence is closest to the read-wite heads, if it is not it deletes
the record with the shortest potential latency from the set of requests,
applies the MTPrO algorithmto the remaining 1/0O requests and checks if
this new sequence is a MrPr sequence by conparing its processing time to
the processing time of the MTPTO sequence for the N requests. [f not,
it continues searching for the nearest record that starts a MTPT
sequence. As in the case for the MrpTl algorithm the MIPT2 al gorithm
is not an NlogN process, the purpose of discussing it here is to see how
the MIPT2 scheduling discipline conmpares with the other MIPT disciplines,
as well as the SLTF discipline. In the exanple of Fig. 3.1, sequence

(3.4) is the MIPT2 sequence and (3.3) is the MIPT1 sequence.

L, Random Arrivals and Fi xed-Head Druns

We will now conpare the performance of the MIPTO, MIPTI, MIPT2, and
SLTF scheduling disciplines when they are used on a fixed-head drum
(Fig. 1.1(a)) and I/Orequests are allowed to arrive at random points in
time. Before proceeding with the results, however, sone discussion is
needed to clarify the nodels of drum and record behavior that are used

in the sinulations.
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As successive |1/0 requests arrive for service, some assunptions
must be made about the location of the starting and endi ng addresses of
the new I/Orequest. In at |east one real conputer system it is
reasonable to nodel the starting addresses of successive I/0O requests as
i ndependent random variables uniformy distributed around the circum
ference of the drum and to nodel the length of the records as exponent-
ially distributed random variables with a nean of about one third of the
drums circunference [Fuller and Baskett, 1972].

The other assunption nade here is that the arrival of 1/0 requests
form a Poisson process. In other words, the inter-arrival time of
successive 1/0 requests are independent random variables with the density

function

F(t) = re Mt »>0and t > 0.

A nore realistic assunption might be to assume that the drumis part of
a conputer systemwth a finite degree of nultiprogramming on the order
of 4 to 10. So little is known about the relative merits of SLTF and
MIPT disciplines, however, it is prudent to keep the nodel as sinple as
possible until we have a basic understanding of these scheduling

di sci plines.

Several other nminor assunptions nust be made, and at each point an
attenpt was made to keep the nmodel as sinple as possible. The tine
required to conpute the scheduling sequence is assumed to be insignificant,
the endpoints are allowed to be real nunmbers in the interval [0,1), the
period of revolution of the drumw |l be assuned constant and equal to 7,
no distinction is made between reading and witing on the drum and no
attenpt is nade to nodel the time involved in electronically switching

the read-wite heads.
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A nunber of different neasures of drum performance are reasonable.
In this section, however, three measures will be used: expected waiting
time, the standard deviation of the waiting tine, and expected duration
of drum busy periods. /O waiting time will be defined here in the
common queueing theory sense; that is, the time fromthe arrival of an
/O request until that /0O request has completed service. Let a drum be
defined by busy when it is not idle, in other words the drumis busy
when it is latent as well as when it is actually transmtting data.

These three neasures of performance will be shown as a fraction of
p, where pis the ratio of the expected record transfer tinme to the
expected interarrival time. Use of the normalized variable p assists in
the comparison of simulations with records of different nean lengths and
al ways provides an asynptote at p = 1. In the figures in this section,
pis shown fromO to .75. The statistics of drum performance for
p > .75 blow up very fast, and noreover the expense required to run
simul ations of neaningful precision for large p outweighed the possible
insight that might be gained. (Cbserved p's for operational conputer
systems are commonly in the range of .1to .5 [cf. Bottonmly, 1970].

The precision of the sunmary statistics of the followi ng sinulations
is described in detail in [Fuller, 19724]. Al the points on the graphs in
this article represent the result of sinulation experinents that are run
until 100,000 1/0O requests have been serviced; this number of sinulated
events proved sufficient for the purposes of this article. The sanple
mean of the I/O waiting times, for exanple, are random variables with a

standard deviation less than .002 for p = .1 and slightly nore than .1

for p = ,75.
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The corresponding statistics for the expected duration of busy
intervals are

oS = .005 for p=.1,

T
I
(=
—_
o
=
O
I
n
AV

The variability of the simulation points is often hard to see, but plots
of the residuals at the bottom of the graphs often show the experinental
error.

All the graphs in this section are really two sets of curves.
First, they show the neasure of performance as a function of p for the
four scheduling disciplines studied: MTPTO, MTPT1, MTPT2, and SLTF;
and then on the same graph the difference between SLTF and each of the
three MIPT disciplines is shown. The residual curves nore clearly
dermonstrate the relative performance of the scheduling disciplines than
can be seen fromdirectly studying the original curves. Sone of the
curves, particularly the residual curves, do not go all the way to the
right hand side of the graph; this is sinply because it was felt that the
marginal gain in insight that might be obtained from the additiona
points did not justify the additional cost.

Figure 4.1 shows the mean I/O waiting times for a fixed-head drum
servicing record with lengths drawn from an exponential distribution

with a mean of 1/2, i.e. p =2and density function
(1) = pe ™t t > 0.

Figure 4.1 displays an unexpected result, the SLTF and MTPT2 curves
lie directly on top of each other to within the accuracy of the
simulation.  MTPTC and MTPT1 perform progressively poorer than MTPTZ2 and
SLTF as the arrival rate of 1/O requests is increased. MIPTO, MTPTI1,

and MTPT2 show increasingly smaller nean waiting times; this is
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consistent with the observation that MIPTO is an 'arbitrary' MIPT
schedul e while MIPT2, and to a |esser extent MIPTI, |ook at several MIPT
schedules in the process of deciding how to sequence the set of 1/0
requests. We will see in all the figures that follow in this section,
and the next, that MrprO, MIPTI, and MIPT2 consistently performin the
same order of performance shown in Fig. 4.1. The observation that

MIPTO and MIPTI are poorer scheduling disciplines than the SLTF
disciplines for heavily loaded drunms is not too surprising. It is very
rare for large pthat all the current requests will be processed before
any new request arrives. \Wen an additional request does arrive, a new
MIPT sequence nust be cal cul ated and the non-robust nature of the MTPTO
al gorithm suggests there will be little resenblance in the two sequences.

Figure 4.2 shows the standard deviation of the I/O waiting time for
a fixed-head drum and records with lengths exponentially distributed
withp=2 i.e. the sane situation as Fig. 4.1. As in Fig. 4.1, the

SLTF and MIPT2 sequences behave very simlarly except that the MIPT2
curve is below the SLTF by a snmall, but distinct, amount, indicating
that the MTPT2 discipline, while providing the same nean waiting tinme
exhibits a smaller variance, or standard deviation, than does the SLTF
di sci pline.

Figures 4.3 and 4.4 show the nmean waiting time for druns with
records having exponentially distributed records lengths with means of
1/3 and 1/6 respectively. These figures reinforce our genera
inmpressions fromFig. 4.1. The relatively poor performance of the MIPTO
and MTPTl di sciplines beconmes nore pronounced as the mean record size
decreases; this follows from the observation that the nunber of MIPT

sequences, for a given p, increases as pu increases. W can see this by
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applying Little's fornula, L =AW, or equivalently, L = pWu. Hence, the
mean queue depth for the corresponding p coordinate in Figs. 4.1 and k4.4
is three tines deeper in Fig. 4.4 than in Fig. 4.1

A disturbing aspect of Fig. L.4 is that the MIPT2 sequence is
slightly worse than the SLTF sequence, a change from the identical
performance indicated in Figs. 4.1 and 4.3. The difference is too |large
to be disnmissed as a result of experinental error in the simulation;
these two disciplines were sinulated a second tinme, with a different
random nunber sequence, and the same difference was observed. The
standard deviation of the I/O wait times whose nmeans are shown in Figs.
4.3 and 4.4 are essentially identical to Fig. 4.2 with the same trend
exhibited in the mean; the difference in the MTPTO and MTPT1 curves,
with respect to the SLTF and MIPT2 curves, becones increasingly
pronounced as the mean record size is decreased.

Figures 4.5-4.8 explore the relative nerits of the four scheduling
disciplines along another direction. Figures 4.5 and 4.6 show the
performance of a drumwith record lengths uniformy distributed from
zero to a full drumrevolution, and Figs. 4.7 and 4.8 show t he
performance of a drum with record exactly 1/2 of a drum revolution in
| ength. Figures 4.1, 4.5, and 4.7 show the mean I/O waiting time for
drums with records that all have a mean of 1/2, but have variances of
1/4, 1/12, and O respectively. This set of three curves clearly shows
that as the variance of the record sizes is decreased, the relative
performance of the MTPT sequences inproves with respect to the SLTF
di sci pline.

The standard deviation of the waiting times for uniformy

distributed record lengths, Fig. 4.6, and constant record I|engths,
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Fig. 4.7, show an even nore inpressive inprovement in the MIPT schedul es
as the variance of the record lengths are decreased. (Cearly the
advantage of MrPT disciplines is enhanced as the variation in the

l engths of records is decreased.

Figures 4.8 and 4.9 include another snooth curve as well as the
four curves already discussed. These curves show the nean and standard
deviation of a drum organized as a paging drum with 2 pages per track
There is no need to simulate a paging drum since Skinner [1967] and
Cof fman [ 1969] derived the exact fornula for the mean waiting tine and
Ful l er [1972C] derive@the standard deviation. The paging drum shows a
pronounced inmprovenent over any of the four scheduling disciplines
discussed in this article, and if a drumis only going to service fixed-
size records, Figs. 4.7 and 4.8 indicate the pronounced advantages in
organi zing the drum as a paging drum

Figures 4.9 and 4.10 illustrate another measure of drum performance,
the mean drum busy interval. Since a MPT scheduling discipline
mninmzes the total processing tinme of the outstanding 1/0O requests, it
m ght be suspected the MIPT disciplines will nininmize the drums busy
periods even when random arrivals are allowed. Figure 4.9 shows the
mean drum busy interval for a drum with exponentially distributed
records, p =2, The result is surprisingly close to what we night have
guessed from previous conbinatorial observations [Fuller, 19728]. W see
that the expected difference between the MrPr di scipline and the SLTF
when no random arrivals are allowed, approached the nean value of the
records' length, nodulo the drumcircunference, as N gets large. In
other words, for exponentially distributed records, with y =2 and the

drum circunference defined to be unity, the nmean record length, nodulo 1,

is .3435.
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For fixed-size records, the nean record length, nodulo a drum
revolution is still 1/2, Both Figs. 4.9 and 4.10 show that the best of
the MIPT disciplines, MPT2, and the SLTF discipline are approaching a

difference of the expected record size, nodulo the drums circunference.

5. Random Arrivals and Moving-Head Disks

A storage device even nore comon than a fixed-head drumis the
movi ng- head di sk, or drum schematically depicted in Fig. 1.1(b). For
the purposes of this article, the only difference between a noving-head
disk and a fixed-head drumis that a single read-wite head nmust be
shared anong several tracks, and the time required to physically nove
the head between tracks is on the same order of magnitude of a drum
revolution, and hence cannot be ignored even in a sinple nodel, as was
the anal ogous electronic head-switching time in the fixed-head drum

Before proceeding with the results of this section a few nore
coments nust be made on the simulations in order to conpletely specify
conditions leading to the results of this section. Some assunption nust
be nmade concerning the time to reposition the head over a new cylinder.
Let AC be the distance, in cylinders, that the head nmust travel, then
the follow ng expression roughly nodels the characteristics of the

| BM 3330 disk storage unit [IBM 1971B]:
seek time = 0.6 + .0065 AC . (5.1)

Qur unit of time in Eg. (5.1)is a disk (drum revolution, and in the
case of the I1BM 3330, the period of revolution is 1/60 of a second. The
relative performance of the four scheduling disciplines of this article

is insensitive to the exact.form of Eq. (5.1) and replacing Eq. (5.1) by
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seek time = 1 + .07 AC,

whi ch approxi mates the |BM 2314 [I BM 1965 ] does not change any of the
conclusions of this section.

A decision has to be made concerning the inter-cylinder scheduling
discipline. Athough an optimal disk scheduling discipline mght
integrate the intra-queue and inter-queue scheduling disciplines, in
this article they will be kept separate. The inter-queue scheduling
di scipline chosen for this study is called SCAN, [Denning, 1967] (al so
termed LOOK by Teorey and Pinkerton [1972]). SCAN works in the follow ng
way: When a cylinder that the read-wite heads are positioned over is
empty, and when there exists another cylinder that has a non-enpty queue,
the read-wite heads are set in notion toward the new cylinder. Shoul d
nore than one cylinder have a non-enpty queue of 1/0O requests the read-
wite heads go to the closest one in their preferred direction; the
preferred direction is sinmply the direction of the last head novenent.
This inter-cylinder discipline is called SCAN because the read-wite
heads appear to be scanning, or sweeping, the disk surface in alternate
directions.

SCAN gives slightly longer mean waiting times than the SSTF
(shortest-seek-tine-first) inter-cylinder scheduling discipline.
However, fromEq. (5.1) we see the bulk of the head nmovenent tinme is not
a function of distance, and SCAN has the attractive property that it
does not degenerate, as SSTF does, into a 'greedy' node that effectively
ignores part of the disk when the |load of requests becomes very heavy
[ Denni ng, 1967].

An |/0O request arriving at a moving-head disk has a third attribute,

in addition to its starting address and length, the cylinder from which
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it is requesting service. In the spirit of keeping this nodel as sinple
as possible, we will assume that the cylinder address for successive 1/0
records are independent and uniformy distributed across the total nunber
of cylinders. Wile no claimis nmade that this nodels reality, like the
Poi sson assunption it sinplifies the nodel considerably and allows us to
concentrate on the fundamental properties of the scheduling disciplines.
Furthermore, the results of this section are shown as a function of the
nunber of cylinders on the disk, where we let the nunmber of cylinders
range from 1 (a fixed-head disk) to 50, Conventional disk storage units
have from 200 to 400 cylinders per disk but for any given set of active
jobs, only a fraction of the cylinders will have active files

Therefore, the results of this section for disks with 5 and 10 cylinder
is likely to be a good indication of the performance of a much |arger
disk that has active files on 5 to 10 cylinders.

Finally, in all the situations studied here, the records are
assumed to be exponentially distributed with a mean of 1/2. This
assunption is both sinple and realistic and the observations of the
previous section for other distributions of record Iengths indicates the
sensitivity of this assunption.

Figure 5.1 is the mean |/ O weiting tine for the SLTF, MIPTO, MTPT1
and MIPT2 scheduling disciplines for the disk nodel just described; the
numbers of cylinders per disk include 1, 2, 5, 10, 25 and 50. Note the
abscissa is now | abel ed in arrivals per disk revolution (A) rather than
p, and the curves for one cylinder are just the curves of Fig. 4.1, and
are included here for conparative purposes. Figure 5.1 shows quite a
different result than seen for fixed-head druns of the [ast section. As

the nunmber of cylinders increases, the MrPT disciplines show nore and
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more of an advantage over the SLTF scheduling discipline and also the
difference between the Mrpr disciplines decreases as the nunber of
cylinders increases.

The reasons for the results seen in Fig. 5.1 are straightforward.
The waiting time on an /0O request is made up of three types of
intervals: the time to process the 1/0 requests on other cylinders, the
time to nmove between cylinders, and the tine to service the |/0O request
once the read-wite heads are positioned over the 1/0 request's own
cylinder. By their definition, MTPT disciplines minimze the tine to
process the set of 1/0 requests on a cylinder and hence mnimze one of
the three types of intervals in an I/O request's waiting tine. The
chance a new I/O request will arrive at a cylinder while the MIPT
schedule is being executed is mnimzed since a new request will only go
to the current cylinder with a probability of 1/(number of cylinders).
Al three MIPT disciplines process the 1/0 requests on a cylinder in the
same amount of tine, barring the arrival of a new request, and so the
difference in expected waiting tines between the three inplenmentations
can be expected to go to zero as the nunber of cylinders increases.

Figure 5.2 shows the difference between each of the MIPT disciplines
and the SLTF discipline; for clarity the residual curves for one
cylinder are not included in Fig. 5.2. Figure 5.3 shows the residuals
of Fig. 5.2 divided by the mean I/O waiting tinme for the SLTF discipline.
In other words, Fig. 5.3 is the fractional inprovenent that can be
expected by using the Mrer disciplines instead of the SLTF disciplines.
Normalizing the residuals in this way shows a phenomenon not obvious
fromthe first two figures; as the nunber of cylinders increases, the

fractional inprovement becormes relatively independent of the number of
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cylinders and is slightly more than 10 per cent for heavily | oaded
situations.

Figure 5.4 shows the standard deviation of the cases shown in Fig.
5.1. The remarks made concerning the mean I/O waiting time apply
unchanged to the standard deviation of the 1/O waiting times. The only
addi tional observation that can be made is that the coefficient of
variation, i.e. the standard deviation divided by the nean, is
decreasing as the nunber of cylinders increases, and this is independent
of the scheduling discipline used. This would be expected since the I/0
waiting time is made up of intervals of processing tine at other
cylinders that are independent, random variables, and from the property
that the nean and variance of a sum of independent random variables is
the sum of the individual means and variances, respectively, we know the
coefficient of variation of the waiting time should decrease as the

square root of the number of cylinders.

6. Concl usi ons

The graphs of Secs. 4 and 5 are the real conclusions of the
simul ation study reported on in this article.

The purpose of this article is to enpirically exam ne what
application MTPT disciplines will have in situations with random
arrivals. Section 3 shows that in situations where: (i) the
coefficient of variation of record sizes is less than one, (ii) it is
important to minimze the variance in waiting times, or (iii) it is
important to mininmze the mean duration of busy intervals; MPT

disciplines offer nodest gains. It is inportant, however, to inplenent
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as good a MTPT discipline as possible, and unfortunately only the MIPTO
al gorithm has been shown to enjoy an efficient conputation time, on the
order of 100N + 50 microseconds for the naive inplenentation presented
here. More work will be required in order to find efficient algorithns
for the MIpTl and MIPT2 scheduling disciplines.

Al'though the relative performance of the SLTF and MIPT scheduling
di sciplines have been considered here, little insight has been gained
into what the optimal drum scheduling algorithmis when random arrivals
are allowed, or even how close the disciplines studied in this article
are to an optimal scheduling discipline. An intriguing topic of further
research in this area will be to investigate optimal scheduling
disciplines for random arrivals, and even if algorithns to inplenent the
discipline are too conplex to allow practical application, they wll
still provide an excellent neasure of the sub-optinality of nore
practical scheduling disciplines.

The results of applying the MIpT discipline to a noving-head disk
i s encouraging. For heavy |oads inprovements of over 10 per cent are
consistently achieved and just as inportantly, it is relatively
uni nportant which of the MIPT disciplines is used. |n other words,
MTPTO, which has an efficient inplementation, offers very nearly as nuch
of an inprovement over SLTF as does MTPT1 and MIPT2 when 5 or nore
cylinders are actively in use.

In the course of this study, the performance of MTPT2 was traced
several times. It was observed that as the queue of outstanding requests
grew, the probability that the Mrer2 discipline could use the shortest-
latency record also grew. This observation |eads to the reasonable, but

as yet unproved, property of MIPT schedules that as the queue of 1/0
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requests grows, with probability approaching unity there exists a MTPT
sequence that begins with a SLTF sub-sequence. If this conjecture is
true, then an obvious inplementation feature of MIPT disciplines appears;
when the depth of the /0O queue exceeds some threshold, suspend the MIPT
algorithmin favor of a SLTF algorithmuntil the queue size drops bel ow

the threshol d.
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Appendi x
| MPLEMENTATI ON OF THE MTPT DRUM SCHEDULI NG ALGORI THM

This appendix lists the implementation, in FORTRAN IV, of the
MIPT drum schedul i ng al gorithm devel oped in Fuller [1971]. The
results discussed in this report are based upon the subroutines
listed here, and the formal paraneters of the subroutines are com
patible with the conventions of the sinmulator described in Fuller
[1972]. Three versions of the MTPT scheduling algorithm are
i ncl uded here: MIPTO, an inplenmentation of the original MTPT
al gorithm of Chapter 4; MTPT1l, an obvious nodification to MIPTQ
and MTPT2, a shortest-latency-time-first version of MIPTO. Both
MTPT1 and MIPT2 are described in detail in Chapter 6. Also in-
cluded in this appendix is a restatement, in English, of the

original MTPT drum scheduling algorithm
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1. A Statenment of the Oiginal MPT Drum Scheduling Al gorithm

Listed here is an informal, English statenent of the original
m ni mal -t ot al - processing-time (MIPT) drum scheduling algorithm devel oped

in Puller [1971].

The M ninmal -Total - Processing-Time Scheduling Al gorithm

1. Based on the unique val ue associated with each node, sort fo,fi,
and Sys 1<i <N into one circular list. If f, = s.Jfor any i
and j then T, nmust precede Js

2. Set the list pointer to an arbitrary element in the |ist.

3. Scan in the direction of nodes with increasing value for the next
(first) f in the list.

I Pl ace this t, on a pushdown st ack.

5. Move the pointer to the next elenment and if it is an t, 90 to Step L4,
el se continue on to Step 6. In the latter case, the element nust be
an s..

6. Pop the top t fromthe stack and nove the pointer to the next
elenment in the circular |ist.

7. If the circular list has been conpletely scanned go to Step 8, else
if the stack'is enpty go to Step 3, else go to Step 5.

8. Let the bottom fi on the pushdown stack be identified as f6'

Change the circular list to an ordinary list where the bottom

element is fé.

9. Mat ch f6 to s,, and starting fromthe top of the list match the kth

0

sy to the kth 1. (This constructs the pernutation ¢'.)

10. Determine the nenmbership of the cycles of ',



11.

12,

b7

Moving fromthe top to the bottom of the list, if adjacent arcs
define a zero cost interchange and if they are in disjoint cycles
perform the interchange. (This step transforms §'to wo.)

Moving fromthe bottomto the top of the list, performthe positive
cost, type 2a, interchange on the current arc if it is not in the
same cycle as the arc containing f&’ (The pernutation defined at

the end of this step is q’mpt' )
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2. I mpl ementation of the Original MTPT Al gorithm MTPTO

SUBROUTINE MTPTO0(QSIZE,QUEUE,START,FINISH, HDPOS,SDOREC,RESCHD)
INTEGER*2 QS1ZE,QUEUE(1),SDOREC
REAL*8 START(1),FINISH(1),HDPOS
LOG | CAL* 1 RESCHD

This subroutine is an implementation of the drum
scheduling algorithm described in ‘An Optimal Drum
Scheduling Algorithm’, (Fuller,1971). Th i s procedure
finds a schedule for the outstanding 1/0 requests
such that the total processing time is minimized.

The formal parameters have the following inter-
pretat ion:

QSIZE ::=the number of requests to be scheduled.
QUEUE ::=a vector of length QSIZE that contains
the integer identifiers of the 1/0O requests
to be scheduled. The current implementation

restricts the identifiers to be positive
integers less than1001.

START ::=START(i)is the starting address of /0
request i.

FINISH ::=FINISH(i) is the finishing address of
/O request i.

HDPOS ::=the present position of the read-write heads.
SDOREC :t= the identifier of the pseudo record.

RESCHD ::= a boolean variable to signal when rescheduling
is required.

QOO0 OOOOOOOOO0

INTEGER I ,J,N,COMPNS,QPLUS1,QMIN1,QMIN2, TEMP, K, L M
INTEGER FINDCY

INTEGER*2 STACK,FPOINT,SPOINT,DELTA,DELTAS
INTEGER*2 FNODES(1001),F(1001),SNODES(1001),5(1001)
REAL*8 PERIOD/1.00/

REAL*8 LATEND,LATSTR,SJ,FJ,ADJUST

C

COMMON /OPTIM/ PERM,CYCLE,LEVEL

INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)
c

RESCHD =.FALSE.

IF(QSIZE.LE.I) RETURN
(o
c Initialize data structures and constants
c

QPLUS1 = QSIZE + 1
QMIN1=QS|ZE~ 1
QMIN2 = QSIZE - 2
DO 100 I=1,QS1ZE
FNODES(1) = QUEUE(I)
SNODES(1) = QUEUE(I)
100 CONTINUE
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Enter current position of read-write heads.
FNODES(QPLUS1)= SDOREC
FINISH(SDOREC)= HDPOS

Sort list of F and S nodes.

CALL SORT(FNODES,FINISH,QPLUS1)
CALL SORT(SNODES,START,QSIZE)

Find F(DELTA),

STACK = 0
FPOINT = 1
SPOINT = 1
N = 2#QSIZE+ 1
DO 300 1I=1,N
IF(FINISH(FNODES(FPOINT)).LE.START(SNODES(SPOINT))) GO TO 310
IF(STACK.GT.0) STACK = STACK - 1
SPOINT = SPOINT + 1
IF(SPOINT.LE.QSIZE) GO TO 300
IF(STACK.GT.0) GO TO 335
DELTA = FPOINT
DELTAS = 1
GO TO 335
IF(STACK.GT.0) GO TO 330
DELTA = FPOINT
DELTAS =MOD(SPOINT-1,QSIZE)+ 1
STACK = STACK + 1
FPOINT = FPOINT + 1
IF(FPOINT.GT.QPLUS1) GO TO 335
CONTINUE

redefine S and F nodes relative to F(DELTA).

DO 3401=1,QSIZE

F(1) = FNODES(MOD(DELTA+1-2,QPLUS1)+1)

S(1+1) = SNODES(MOD(DELTAS+1-2,QS1ZE)+1)
CONTINUE
F(QPLUS1) = FNODES(MOD(DELTA+QPLUS1-2,QPLUS1)+1)
DELTA =]
ADJUST = PERIOD -FINISH(F(DELTA))

Construct the permutatlion Psi'.

PERM(F(1))= SOOREC
DO 400 1=2,QPLUS1

PERM(F(1))=S W
CONTINUE

Determine the membershfp of the cycles of Psi',

DO 500 I=1,QPLUS1

CYCLE(F(1)) = F(1)

CONTINUE
COMPNS =0
DO 501 K=1,QPLUS1

| = F(K)

IF(CYCLE(I).NE. 1) GO TO 501
COMPNS = COMPNS + 1
LEVEL(l) = 1
J= |
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502 J = PERM(J)
IF(J.EQ.1) GO TO 501
LEVEL(1) = 2
CYCLE(J) =1
GO TO 502
501 CONTINUE
IF(COMPNS.EQ.I) GO TO 800

Transform Psi’ to Psi(0).

OO0

‘DO 600 I=1,QMIN1
J = QPLUS1 - |
IF(DMOD(ADJUST+START(S(J)),PERIOD).LT.
1 DMOD(ADJUST+FINISH(F(J+1)),PERIOD) .OR.
2 (FINDCY(F(J)).EQ.FINDCY(F(J+1)))) GO TO 600
CALL MERGE(F(J),F(J+1))
COMPNS = COMPNS -1
IFWOMPNS.EQ.I) GO TO 800
600 CONTINUE

Transform Psi(0)to PhI(O);

OO0

DO 700 I=2,QPLUS1
IF(FINDCY(F(DELTA)).EQ.FINDCY(F(1))) GO TO 700
CALL MERGE(F(DELTA),F(1))
DELTA =|
COMPNS = COMPNS - 1
. IF(COMPNS.EQ.l) GO TO 800
700 CONT INUE

Construct schedule from Phi (0).

OO0

800 J = SDOREC
DO 810 I1-1,QSIZE
J = PERM(J)
QUEUE(I1) = ]
810 CONTINUE
RETURN
END

INTEGER FUNCTION FINDCY(NODE)
INTEGER*2 NODE
COMMON /OPTIM/ PERM,CYCLE,LEVEL
INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)

This is a function subroutine whose value is an
integer identifying the cycle of the permutation in
which NODE is a member. CYCLE is a tree structure
defining the cycles of the permutation.

OOOOOO0

FINDCY = NODE
10 IF(FINDCY.EQ.CYCLE(FINDCY)) RETURN
FINDCY = CYCLE(FINDCY)
GO TO 10
END



OOOOOOO0

OO0

OO0

OO

100

200

200
207
208
201
202

203
205

204

SUBROUTINE MERGE (NODE1,NODE2)
INTEGER*2 NODE1,NODE2

MERGE connects the tree representation of CYCLE1
and CYCLE2, The integer vectors CYCLE and LEVEL
define the membership of the cycles of the permutation.
MERGE also executes the interchange of the successors
of NODE1 and NODE2.

INTEGER*2 C1,C2, TEMP

INTEGER FINDCY

COMMON /OPTIM/ PERM,CYCLE,LEVEL

INTEGER*2 PERM(1001),CYCLE(1001),LEVEL(1001)
C | = FINDCY(NODE1)

C 2 =FINDCY(NODE2)

Merge the two cycle structures

IF(LEVEL(C1).GE.LEVEL(C2)) GO TO 100

CYCLE(Cl)=C 2

GO TO 200
IF(LEVEL(C1).EQ.LEVEL(C2)) LEVEL(C1) = LEVEL(C1) + 1
CYCLE(C2)=C |

Perform the Interchange on the permutation.

TEMP = PERM(NODE1)
PERM(NODE1) = PERM(NODE2)
PERM(NODE2)=TEMP

RETURN

END

SUBROUTINE SORT(NODES, VALUE,N)
INTEGER*2 NODES(1),N
REAL*8 VALUE(1)

Shellsort. For further discussion of Shellsort
seeShell(1959), Hibbard(1963), a n d Knuth(1971),

INTEGER=*4 |,J,D,Y
REAL+8 VALUEY
D -1
D=D+D
IF(D - N) 200,208,207
D =D/2
D-D-1
IF(D.LE.O0) RETURN
| = 1
J = |
Y = NODES(i1+D)
VALUEY = VALUE(NODES(1+D))
IF(VALUEY.LT.VALUE(NODES(J))) GO TO 204
NODES(J+D) = Y
| =1+ 1
IF(C1+D).LE.N) GO TO 202
D = (D-1)/2
GO TO 201
NODES(J+D) = NODES(J)
J =J-D
IF(J.GT.0) GO TO 203
GO TO 205
END
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3. An Cbvious Mdification to MIPTO MTPT1

SUBROUTINE MTPT1(QS!ZE,QUEUE,START,FINISH,HDPOS,SDOREC,RESCHD)
INTEGER*2 QSI1ZE,QUEUE(1),SDOREC
REAL#*8 START(1),FINISH(1),6HDPOS
LOGICAL*1 RESCHD

INTEGER 1,J,N,COMPNS,QPLUS1,QMIN1,QMIN2, TEMP,K,L,M
INTEGER FINDCY

INTEGER*2 STACK,FPOINT,SPOINT,DELTA,DELTAS
INTEGER*2 FNODES(1001),F(1001),SNODES(1001),5(1001)
REAL+8 PERIOD/1.00/

REAL*8 LATEND,LATSTR,SJ,FJ,ADJUST

CALL MTPTO0(QSIZE,QUEUE,START,FINISH,HDPOS, SDOREC,RESCHD)
QMIN2 = QSIZE - 2
IF(QMIN2.LE,2) RETURN
LATSTR = PERIOD ~- DMOD(HDPOS,PERIOD)
DO 900 I=1,QMIN2
J = [+ 1
LATEND = DMOD(LATSTR+START(QUEUE(1)),PERIOD)
DO 920 J=J,QMIN1
SJ = DMOD(LATSTR+START(QUEUE(J)),PERIOD)
IF(SJ.GT.LATEND) GO TO 920
FJ = DMOD(LATSTR+FINISH(QUEUE(J)),PERIOD)
IF((FJ.LT.SJ).OR.(FJ.GT.LATEND)) GO TO 920
TEMP = QUEUE(J)
K=4J - |
DO 930 L=1,K
M= J-L
QUEUE(M+1) = QUEUE(M)
930 CONTINUE
QUEUE(! ) = TEMP
LATEND= DMOD(LATSTR+START(TEMP), PERIOD)
920 CONT INUE
LATSTR = PERIOD - DMOD(FINISH(QUEUE(!)),PERIOD)
900 CONTINUE
RETURN
END




L.

200

100

101

The Shortest-Latency-Tine-First Mrpr Al gorithm MrPT2

SUBROUTINE MTPT2(QS,Q,START,FINISH,HD,SDOREC,RESCHD)
INTEGER*2 QS,Q(1),SDOREC
REAL*8 START(1),FINISH(1),HD
LOGICAL*1 RESCHD

INTEGER 1,J,K,REND,RBEGIN
INTEGER*2 QSM1

IF(QS.LE.I) RETURN

CALL MTPTO0(QS,Q,START,FINISH,HD,SDOREC, RESCHD)
IF(QS.LE.2) RETURN

RBEGIN = Q(1)

REND = Q(QS)

QSM1 = QS - 1

DO 100 1-LOS . .
CALL SLTF(QS,Q,START,FINISH,HD,SDOREC,RESCHD, |)
IF(Q(I).EQ.RBEGIN)RETURN
DO 200 J=2,QS
QT(J-1) = Q(J)
CALL MTPTO(QSM1,QT,FINISH(Q(1)))
RESCHD = ,TRUE.
IF(QT(QSM1).EQ.REND) RETURN
CONTINUE
WRITE(6,101) QS
FORMAT(10X, 'ERROR IN MTPT2; QS = ',I4,';")
CALL MTPTO(QS,Q,START,FINISH,HD,SDOREC,RESCHD)
RETURN
END
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