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Abstract

Let (al,...,ak) = a denote a vector of numbers, and let C(i,n)

denote the nxn cyclic matrix having (al,...,ak,O,...,O) as its

first row. It is shown that the sequences (det C(&,n): n =k,k+l,...)

and (per C(a,n): n = k,k+l,...) satisfy linear homogeneous difference

equations with constant coefficients. The permanent, per C , of a

matrix C is defined like the determanent except that one forgets

about ( -1)
sign fl where n is a permutation.
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Introduction

While she was a student at Lowell High School, Beverly Ross [2]

generalized an exercise given by Marshall Hall Jr. [l], and found an

elegant solution. Hall's exercise was posed in the context of systems

of distinct representatives, or SDR's for short. Let x = (Al, . . ..A.)

denote an m-tuple of sets, then an m-tuple (al,...,am) with a.eA.
1 1

for i = l,...,m is an SDR of x if the elements al,...,am are all

distinct. Hall's exercise is the case m = 7 of the following problem

posed and solved by Ross: Let Ai = {i,i+l,i+2) denote a 3-set of

consecutive residue classes modulo m for i = l,...,m . The number

of SDR's of (Ai: i = l,...,m) is 2+Lm where Lm is the m-th term

of the Lucas sequence l&+,7,11,... defined by Ll = 1 , L2 = 3

and L
n = Ln-l+Ln-2 for n = 3,4,. . . . For example, it follows

from this result that the solution to Hall's exercise is 2+
L7

= 31 .

In this note we give a new proof of ROSS' theorem, and indicate

a generalization.

ROSS' Theorem

We shall require a simple result which appears in Ryser [3]; namely,

the number of SDR's of an m-tuple g = (Bl,...,Bm) of sets Bl,...,Bm

is equal to the permanent of the incidence matrix of 5 . Since this 1
!

fact is an immediate consequence of definitions, we give them here. ,

Let m and n denote natural numbers with m < n , and let Bl,...,B- m

denote subsets of (l,...,n] . The incidence matrix [b(i,j)] of

iii = (Bl,.o., Bm) is defined by



for i = l,...,m and j = l,...,n . The permanent of an mxn matrix

[GJ)l is defined to be

per[r(bj) 1 = C r(i,ltl)r(2,7@  . . . r(m,mn)
n

where the index of summation extends over all one-to-one mappings JI

sending [l,...,m) into {l,...,n) .

The incidence matrix Cm of the m-tuple x = (Al,...,Am)  of sets

Al, --,A, considered by Ross is an mxm cyclic matrix having as its

first row (l,l,l,O,...,O) ; that is, the first row has its first three

components equal to 1 and the rest of its components equal to 0 .

For example, the incidence matrix for Hall's exercise is

5 =

1 1 1 0 0 0 0

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 0 1 1 1

1 0 0 0 0 1 1

1 1 0 0 0 0 1

.

ROSS' Theorem is equivalent to showing that per Cm = 2+Lm . To

do this, we define three sequences of matrices:

D3 =

w m

1 1 1

0 1 1

1 0 1
m m1 Y D4=

- 1 1 1 0

0 1 1 1

0  0 1 1

1 0  0 1 I f D5 = s

1 1 1 0  0

0 1 1 1 0

0  0 1 1 1

0  0  0 1 1

1 0  0  0 1. I
.Y l =* Y
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F3 =

1 1 1

0 1 1

0  0 1

I
I

Y E4 =

9 F4 =

w

1 1 0  0

1 1 1 0

0 1 1 1

0  0 1 1

.
1 1 1 0

0 1 1 1

0  0 1 1

0 0 01

I
I

Y E5 =

J F5 =

Let per Cm = cm , per D = dm , per Em = em , andm per F = f .m m

11100-

0 1 1 1 0

0  0 1 1 1

0  0  0 1 1

~00001

We use the following properties of the permanent function. First, the

permanent of a O-l matrix is equal to the sum of the permanents of the

minors of the l's in a row or in a column of the matrix. Second, the

permanent of a matrix is unchanged by permuting the rows or by permuting

the columns of the matrix. Third, the permanent of a matrix having a

row or column of O's is equal to 0 . Fourth, the permanent of a

square matrix is equal to the permanent of the transpose of the matrix.

Expanding per Cm in terms of the minors of the l's in the first row

of Cm , we find

(1) C
m = 2dm l+em 1 (m = 4,5,...) .

Expanding per Dm in terms of the minors of the l's in the first

column of D
m ' we find

(2) (m = 4,5,...) .



It is easy to show that

(4)

e = e +e
m m-l m-2

fm = fm 1 - . . . = f3 = 1 .

(m = 4,5, -4 J

Using the system (1) - (4) it is easy to show by induction that

em = Fm+l , where Fm denotes the m-th term of the Fibonacci sequence

(1,1,2,3,...)  , dm = l+Fm , and cm = 2+2Fm l+Fm = 2+Fm l+Fm+l = 2+Lm

for m = 3,4,.*. .

A Generalization

Let 2 = (al,...,ak) denote a k-tuple of numbers and let T denote

a Iix (k-l) matrix having all of its entries in the set (O,al,. . .,ak) .

For each n > k-

C (T,d =

define an n xn matrix C(T,n) as follows:

Tlh ak
.
.. ak

al .

0

I
&l .

.
. .

"1

The first k-l colts of C(T,n have the upper triangular half Tl

of T in the upper right corner, and the lower triangular half T2 of T

in the lower left corner. All other entries in the first k-l columns

of C(T,n) are 0 . The remaining n-k+1 columns of C(T,n) consist

of n-k+1 cyclic shifts of the column (ak""'a2'a1,0,"" 0) l



Given a kx(k-1) matrix T having all of its entries in

(0 ,a1� l l l ,�k) and having (tl,...,tk 1) as its top row, we expand

per C(T,n) by the minors of elements in the top row of C(T,n) . It turns

out that these minors always have the form C(Ti,n-1) where T. is a
1

k x (k-1) matrix having all its entries in (0,a
1� l l l ��k3 l

Thus, there

exist k x (k-1) matrices T ,...,T having all their entries in

{O,al, . . ..ak) such that

(1) per C(T,n) = x ti per C(Ti,n-1)
i=l

where t, = a, . (If we are dealing with determanents, ( 1)
i- must11 LL

be put into the summand.)

We have an equation like (1) for each matrix T ; hence, we have a

finite system of equations if we let T range over all possible

kx (k-1) matrices with their entries in {�,al� l -�ak] l
The existence

of this system of difference equations implies the existence

equation satisfied by the sequence (per C(T,n): n = k,k+l,

each fixed matrix T . (This is also true for the sequence

of a difference

..) for.

(det C(T,n): n = k,k+l,...) .) A consequence of the foregoing is ths

result proved by Ross, but evidently much more is true.

Let rl,...,rn denote natural numbers with 1 = rl < . . . < rn = k ,

and for each natural number m > k define the collection Km = {Al,...,Am)-

of sets A. of residue classes modulo m where
1

Ai = {rl+i,...,rn+i] .

Let a(m) denote the number of SDR's of xrn , then the sequence

(a(m) : m = k,k+l,...) satisfies a linear homogeneous difference equation



with constant coefficients. The proof of this fact follows the procji‘

of Ross' Theorem given in the preceding section.

Note that our existence theorem has a constructive proof, but we

do not have an explicit expression for a difference equation satisfied

by the sequence (per C(T,n): n = k,k+l,..) . This gives rise to a host

of interesting research problems. For example, give a difference

equation satisfied by the sequence (per C (k,n): n = k,k+l,...) where

C(k,n) is the cyclic nxn matrix having as its first row

(1 > l
..,l,O,.. .,O) consisting of k l's followed by n-k O's .
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