THE NUMBER OF SDR' S IN CERTAI N REGULAR SYSTEMG

BY

DAVD A KLARNER

STAN CS- 73-354

APRI L 1973

COMPUTER SCI ENCE DEPARTMENT

School of Humanities and Sciences STANFORD UN VERSI TY

David A. Klarner

Stanford University

Abstract

Let $\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)=\overline{\mathrm{a}}$ denote a vector of numbers, and let $C(\bar{a}, n)$ denote the $n \times n$ cyclic matrix having ($a_{1}, \ldots, a_{k}, 0, \ldots, 0$) as its first row. It is shown that the sequences (det $C(\bar{a}, n): n=k, k+l, \ldots)$ and (per $C(\bar{a}, n): n=k, k+1, \ldots)$ satisfy linear homogeneous difference equations with constant coefficients. The permanent, per C, of a matrix C is defined like the determanent except that one forgets about $(-1)^{\operatorname{sign} \pi}$ where π is a permutation.

This research was supported by the National Science Foundation under grant number GJ-36473X. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Introduction

While she was a student at Lowell High School, Beverly Ross [2] generalized an exercise given by Marshall Hall Jr. [1], and found an elegant solution. Hall's exercise was posed in the context of systems of distinct representatives, or $S D R$'s for short. Let $\bar{A}=\left(A_{1}, ., ., A_{m}\right)$ denote an m-tuple of sets, then an m-tuple (a_{1}, \ldots, a_{m}) with $a_{1} \in A_{1}$ for $i=l, \ldots, m$ is an SDR of \bar{A} if the elements a_{1}, \ldots, a_{m} are all distinct. Hall's exercise is the case $m=7$ of the following problem posed and solved by Ross: Let $A_{i}=\{\mathbf{i}, \mathbf{i}+1, i+2\}$ denote a 3 -set of consecutive residue classes modulo m for $i=1, \ldots, m$. The number of SDR 's of $\left(A_{i}: i=1, \ldots, m\right)$ is $2+L_{m}$ where L_{m} is the m-th term of the Lucas sequence $1,3,4,7,11, \ldots$ defined by $L_{1}=1, L_{2}=3$ and $L_{n}=L_{n-1}+L_{n-2}$ for $n=3,4, \ldots$. . For example, it follows from this result that the solution to Hall's exercise is $2+I_{7}=31$.

In this note we give a new proof of Ross' theorem, and indicate a generalization.

Ross' Theorem

We shall require a simple result which appears in Ryser [3]; namely, the number of SDR's of an m-tuple $\bar{B}=\left(B_{1}, \ldots, B_{m}\right)$ of sets B_{1}, \ldots, B_{m} is equal to the permanent of the incidence matrix of \bar{B}. Since this fact is an immediate consequence of definitions, we give them here. Let m and n denote natural numbers with $m<n$, and let B_{1}, \ldots, B_{m} denote subsets of $\{1, \ldots, n\}$. The incidence matrix $[b(i, j)]$ of $\bar{B}=\left(B_{I}, \ldots, B_{m}\right)$ is defined by

$$
b(i, j)= \begin{cases}1, & \text { if } j \in B_{i}, \\ 0, & \text { if } j \notin B_{i}\end{cases}
$$

for $i=1, \ldots, m$ and $j=1, \ldots, n$. The permanent of $a n m \times n$ matrix $[r(i, j)]$ is defined to be

$$
\operatorname{per}\left[r(i, j) 1=\sum_{\pi} r(i, \pi l) r(2, \pi \mathbb{R}) \cdots r(m, \pi m)\right.
$$

where the index of summation extends over all one-to-one mappings π sending $\{1, \ldots, m\}$ into $\{1, \ldots, n\}$.

The incidence matrix C_{m} of the m-tuple $\bar{A}=\left(A_{1}, \ldots, A_{m}\right)$ of sets A_{1}, \ldots, A_{m} considered by Ross is an $m \times m$ cyclic matrix having as its first row ($1,1,1,0, \ldots, 0$) ; that is, the first row has its first three components equal to 1 and the rest of its components equal to 0 . For example, the incidence matrix for Hall's exercise is

$$
C_{7}=\left|\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right|
$$

Ross' Theorem is equivalent to showing that per $C_{m}=2+L_{m}$. To do this, we define three sequences of matrices:

$$
\left.\left.D_{3}=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right|, \quad D_{4}=\left\lvert\, \begin{array}{cccc}
-1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & & 0 & 1 \\
1 \\
1 & 0 & & 0
\end{array}\right.\right], D_{5}=\left\lvert\, \begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1
\end{array}\right.\right], \ldots ;
$$

$$
\left.\begin{array}{ll}
E_{3}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], E_{4}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right], E_{5}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right], \ldots ; \\
F_{3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], F_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right], F_{5}=\left[\begin{array}{lll}
1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] \\
0 & 0 \\
0 & 1
\end{array}\right] 1
$$

Let per $C_{m}=c_{m}$, per $D_{m}=d_{m}$, per $E_{m}=e_{m}$, and per $\underset{m}{F}=f_{m}$. We use the following properties of the permanent function. First, the permanent of a 0 -l matrix is equal to the sum of the permanents of the minors of the l's in a row or in a column of the matrix. Second, the permanent of a matrix is unchanged by permuting the rows or by permuting the columns of the matrix. Third, the permanent of a matrix having a row or column of 0^{\prime} s is equal to 0 . Fourth, the permanent of a square matrix is equal to the permanent of the transpose of the matrix. Expanding per C_{m} in terms of the minors of the l's in the first row of C_{m}, we find

$$
\begin{equation*}
c_{m}=2 d_{m I}+e_{m I} \quad(m=4,5, \ldots) \tag{1}
\end{equation*}
$$

Expanding per D_{m} in terms of the minors of the l^{\prime} s in the first column of D_{m}, we find

$$
\begin{equation*}
d_{m}=e_{m-1}+f_{m-1} \quad(m=4,5, \ldots) \tag{2}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
e_{m}=e_{m-1}+e_{m-2} \quad(m=4,5, \ldots) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
f_{m}=f_{m 1}=\cdot .=f_{3}=1 \tag{4}
\end{equation*}
$$

Using the system (1) - (4) it is easy to show by induction that $e_{m}=F_{m+1}$, where F_{m} denotes the m-th term of the Fibonacci sequence $(1,1,2,3, \ldots), d_{m}=I+F_{m}$, and $c_{m}=2+2 F_{m I}+F_{m}=2+F_{m I}+F_{m+1}=2+I_{m}$ for $m=3,4, \ldots$.

A Generalization

Let $\bar{a}=\left(a_{1}, \ldots, a_{k}\right)$ denote a k-tuple of numbers and let T denote a $k \times(k-1)$ matrix having all of its entries in the set $\left\{0, a_{1}, \ldots, a_{k}\right\}$. For each $n \geq k$ define an $n \times n$ matrix $C(T, n)$ as follows:

The first $k-1$ columns of $C\left(T, n\right.$ have the upper triangular half T_{l} of T in the upper right corner, and the lower triangular half T_{2} of T in the lower left corner. All other entries in the first $k-l$ columns of $C(T, n)$ are 0 . The remaining $n-k+l$ columns of $C(T, n)$ consist of $n-k+1$ cyclic shifts of the column ($\left.a_{k}, \ldots, a_{2}, a_{1}, 0, \ldots, 0\right)$

Given $a k x(k-l)$ matrix T having all of its entries in
 per $C(T, n)$ by the minors of elements in the top row of $C(T, n)$. It turns out that these minors always have the form $C\left(T_{i}, n-1\right)$ where T_{1} is a $\mathrm{k} x(\mathrm{k}-1)$ matrix having all its entries in $\left\{0, \mathrm{a}_{1}, \ldots \ldots\right.$... Thus, there exist $\mathrm{k} x(\mathrm{k}-1)$ matrices $\mathrm{T}, \ldots, \mathrm{T}$ having all their entries in $\left\{0, a_{l}, \ldots, a_{k}\right\}$ such that

$$
\begin{equation*}
\operatorname{per} C(T, n)=\sum_{i=1}^{k} t_{i} \operatorname{per} C\left(T_{i}, n-l\right) \tag{1}
\end{equation*}
$$

where $t_{l_{\Lambda}}=a_{\Lambda_{1}}$. (If we are dealing with determanents, (-1$)^{i}$ must be put into the summand.)

We have an equation like (1) for each matrix T; hence, we have a finite system of equations if we let T range over all possible $\mathrm{k} \times(\mathrm{k}-1)$ matrices with their entries in $\left\{0, \mathrm{a}_{1}, \quad \ldots\right.$. The existence of this system of difference equations implies the existence of a difference equation satisfied by the sequence (per $C(T, n): n=k, k+1, \ldots$) for each fixed matrix T. (This is also true for the sequence ($\operatorname{det} C(T, n): n=k, k+1, \ldots)$.$) A consequence of the foregoing is ths$ result proved by Ross, but evidently much more is true.

Let r_{1}, \ldots, r_{n} denote natural numbers with $1=r_{1}<\ldots .<r_{n}=k$, and for each natural number $m_{-}>k$ define the collection $\bar{A}_{m}=\left\{A_{1}, \ldots, A_{m}\right\}$ of sets A_{1}. of residue classes modulo m where

$$
A_{i}=\left\{r_{1}+i, \ldots, r_{n}+i\right\}
$$

Let $a(m)$ denote the number of $S D R^{\prime}$ s of \bar{A}_{m}, then the sequence $(a(m): m=k, k+1, \ldots)$ satisfies a linear homogeneous difference equation

```
with constant coefficients. The proof of this fact follows the prool'
of Ross' Theorem given in the preceding section.
Note that our existence theorem has a constructive proof, but we do not have an explicit expression for a difference equation satisfied by the sequence (per \(d(T, n): n=k, k+1, .\).\() . This gives rise to a host\) of interesting research problems. For example, give a difference equation satisfied by the sequence (per \(C(k, n): n=k, k+1, \ldots\) ) where \(C(k, n)\) is the cyclic \(n \times n\) matrix having as its first row
```


References

[1] Marshall Hall, Jr., Combinatorial Theory, Blaisdell Publishing Company, Waltham, Mass., 1967. (Problem 1, page 53.)
[2] Beverly Ross, "A Lucas Number Counting Problem," Fibonacci Quarterly, Vol. 10 (1972), pages 325-328.
[3] Herbert J. Ryser, "Combinatorial Mathematics," Number 14 of the Carus Mathematical Monographs, John Wiley, 1963.

