THE NUMBER OF SDR'S IN CERTAIN REGULAR SYSTEMS

BY

DAVID A. KLARNER

STAN- CS- 73- 354 APRIL 1973

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY

The Number of SDR's in Certain Regular Systems

David A. Klarner Stanford University

Abstract

Let $(a_1, \ldots, a_k) = \bar{a}$ denote a vector of numbers, and let $C(\bar{a}, n)$ denote the $n \times n$ cyclic matrix having $(a_1, \ldots, a_k, 0, \ldots, 0)$ as its first row. It is shown that the sequences $(\det C(\bar{a}, n): n = k, k+1, \ldots)$ and $(\operatorname{per} C(\bar{a}, n): n = k, k+1, \ldots)$ satisfy linear homogeneous difference equations with constant coefficients. The permanent, per C , of a matrix C is defined like the determanent except that one forgets about $(-1)^{\operatorname{sign} \pi}$ where π is a permutation.

This research was supported by the National Science Foundation under grant number GJ-36473X. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Introduction

While she was a student at Lowell High School, Beverly Ross [2] generalized an exercise given by Marshall Hall Jr. [1], and found an elegant solution. Hall's exercise was posed in the context of systems of distinct representatives, or SDR's for short. Let $\bar{A} = (A_1, \ldots, A_m)$ denote an m-tuple of sets, then an m-tuple (a_1, \ldots, a_m) with $a_1 \in A_1$ for $i = 1, \ldots, m$ is an SDR of \bar{A} if the elements a_1, \ldots, a_m are all distinct. Hall's exercise is the case m = 7 of the following problem posed and solved by Ross: Let $A_i = \{i, i+1, i+2\}$ denote a 3-set of consecutive residue classes modulo m for $i = 1, \ldots, m$. The number of SDR's of $(A_i: i = 1, \ldots, m)$ is $2 + L_m$ where L_m is the m-th term of the Lucas sequence $1, 3, 4, 7, 11, \ldots$ defined by $L_1 = 1$, $L_2 = 3$ and $L_n = L_{n-1} + L_{n-2}$ for $n = 3, 4, \ldots$. For example, it follows from this result that the solution to Hall's exercise is $2 + L_7 = 31$.

In this note we give a new proof of Ross' theorem, and indicate a generalization.

Ross' Theorem

We shall require a simple result which appears in Ryser [3]; namely, the number of SDR's of an m-tuple $\overline{B} = (B_1, \dots, B_m)$ of sets B_1, \dots, B_m is equal to the permanent of the incidence matrix of \overline{B} . Since this fact is an immediate consequence of definitions, we give them here. Let m and n denote natural numbers with m < n, and let B_1, \dots, B_m denote subsets of $\{1, \dots, n\}$. The <u>incidence matrix</u> [b(i, j)] of $\overline{B} = (B_1, \dots, B_m)$ is defined by

$$b(i,j) = \begin{cases} l , & \text{if } j \in B_i , \\ \\ 0 , & \text{if } j \notin B_i , \end{cases}$$

for i = 1, ..., m and j = 1, ..., n. The <u>permanent</u> of an $m \times n$ matrix [r(i,j)] is defined to be

$$per[r(i,j)] = \sum_{\pi} r(i,\pi l)r(2,\pi 2) \dots r(m,\pi m)$$

where the index of summation extends over all one-to-one mappings π sending $\{1,\ldots,m\}$ into $\{1,\ldots,n\}$.

The incidence matrix C_m of the m-tuple $\overline{A} = (A_1, \ldots, A_m)$ of sets A_1, \ldots, A_m considered by Ross is an $m \times m$ cyclic matrix having as its first row $(1, 1, 1, 0, \ldots, 0)$; that is, the first row has its first three components equal to 1 and the rest of its components equal to 0. For example, the incidence matrix for Hall's exercise is

$$C_{7} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Ross' Theorem is equivalent to showing that per C _ m = 2+L _ . To do this, we define three sequences of matrices:

$$D_{3} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}, D_{4} = \begin{vmatrix} -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{vmatrix}, D_{5} = \begin{vmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{vmatrix}, \ldots;$$

$$\mathbf{E}_{\mathbf{5}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} , \quad \mathbf{E}_{\mathbf{4}} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} , \quad \mathbf{E}_{\mathbf{5}} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \quad \mathbf{E}_{\mathbf{5}} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \quad \mathbf{E}_{\mathbf{5}} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \quad \mathbf{E}_{\mathbf{5}} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \quad \mathbf{E}_{\mathbf{5}} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} , \quad \mathbf{E}_{\mathbf{5}} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $\operatorname{per} \operatorname{C}_{\mathrm{m}} = \operatorname{C}_{\mathrm{m}}$, $\operatorname{per} \operatorname{D}_{\mathrm{m}} = \operatorname{d}_{\mathrm{m}}$, $\operatorname{per} \operatorname{E}_{\mathrm{m}} = \operatorname{e}_{\mathrm{m}}$, and $\operatorname{per} \operatorname{E}_{\mathrm{m}} = \operatorname{f}_{\mathrm{m}}$. We use the following properties of the permanent function. First, the permanent of a O-1 matrix is equal to the sum of the permanents of the minors of the l's in a row or in a column of the matrix. Second, the permanent of a matrix is unchanged by permuting the rows or by permuting the columns of the matrix. Third, the permanent of a matrix having a row or column of O's is equal to 0. Fourth, the permanent of a square matrix is equal to the permanent of the transpose of the matrix. Expanding per C_m in terms of the minors of the l's in the first row of C_m, we find

(1)
$$c_m = 2d_{ml} + e_{ml}$$
 (m = 4,5,...)

Expanding per $\rm D_m$ in terms of the minors of the l's in the first column of $\rm D_m$, we find

(2) $d_m = e_{m-1} + f_{m-1}$ (m = 4,5,...).

It is easy to show that

(3)
$$e_m = e_{m-1} + e_{m-2}$$
 $(m = \frac{1}{4}, 5, ...),$

(4)
$$f_m = f_{m \perp} = \dots = f_{3} = 1$$
.

Using the system (1) - (4) it is easy to show by induction that $e_m = F_{m+1}$, where F_m denotes the m-th term of the Fibonacci sequence (1,1,2,3,...), $d_m = 1+F_m$, and $c_m = 2+2F_m + F_m = 2+F_m + F_m = 2+L_m$ for m = 3, 4, ...

A Generalization

Let $\bar{a} = (a_1, \dots, a_k)$ denote a k-tuple of numbers and let T denote a k x (k-1) matrix having all of its entries in the set $\{0, a_1, \dots, a_k\}$. For each n > k define an n x n matrix C(T,n) as follows:

The first k-l columns of C(T,n have the upper triangular half T_1 of T in the upper right corner, and the lower triangular half T_2 of T in the lower left corner. All other entries in the first k-l columns of C(T,n) are 0. The remaining n-k+l columns of C(T,n) consist of n-k+l cyclic shifts of the column $(a_k, \ldots, a_2, a_3, 0, \ldots, 0)$.

Given a $k_{X}(k-1)$ matrix T having all of its entries in $\{0,a_{1},\ldots, | j_{k}\rangle\}$ and having (t_{1},\ldots,t_{k-1}) as its top row, we expand per C(T,n) by the minors of elements in the top row of C(T,n). It turns out that these minors always have the form C(T_i,n-1) where T.₁ is a $k_{X}(k-1)$ matrix having all its entries in $\{0,a_{1},\ldots, \bullet,\ldots, T$ having all their entries in $\{0,a_{1},\ldots,a_{k}\}$ such that

(1) per
$$C(T,n) = \sum_{i=1}^{k} t_i$$
 per $C(T_i,n-1)$

where $t_{\nu_{\Lambda}} = a_{\Lambda}$. (If we are dealing with determanents, $(-1)^{i}$ must be put into the summand.)

We have an equation like (1) for each matrix T ; hence, we have a finite system of equations if we let T range over all possible $k \ge (k-1)$ matrices with their entries in $\{0,a_1, \bullet, \bullet, \bullet, \bullet\}$. The existence of this system of difference equations implies the existence of a difference equation satisfied by the sequence (per C(T,n): n = k,k+1,...) for each fixed matrix T . (This is also true for the sequence (det C(T,n): n = k,k+1,...).) A consequence of the foregoing is ths result proved by Ross, but evidently much more is true.

Let r_1, \ldots, r_n denote natural numbers with $1 = r_1 < \ldots < r_n = k$, and for each natural number $m_> k$ define the collection $\bar{A}_m = \{A_1, \ldots, A_m\}$ of sets A_n of residue classes modulo m where

$$A_{i} = \{r_{1}+i, \dots, r_{n}+i\}$$

Let a(m) denote the number of SDR's of \overline{A}_m , then the sequence (a(m): m = k, k+1, ...) satisfies a linear homogeneous difference equation

with constant coefficients. The proof of this fact follows the proof of Ross' Theorem given in the preceding section.

Note that our existence theorem has a constructive proof, but we do not have an explicit expression for a difference equation satisfied by the sequence (per Q(T,n): n = k,k+1,...). This gives rise to a host of interesting research problems. For example, give a difference equation satisfied by the sequence (per C (k,n): n = k,k+1,...) where C(k,n) is the cyclic $n \times n$ matrix having as its first row (1,...,1,0,...,0) consisting of k l's followed by n-k O's.

References

- [1] Marshall Hall, Jr., Combinatorial Theory, Blaisdell Publishing Company, Waltham, Mass., 1967. (Problem 1, page 53.)
- [2] Beverly Ross, "A Lucas Number Counting Problem," Fibonacci Quarterly, Vol. 10 (1972), pages 325-328.
- [3] Herbert J. Ryser, "Combinatorial Mathematics," Number 14 of the Carus Mathematical Monographs, John Wiley, 1963.