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MLISP2

SECTION 1

Introduction

MLISPZ is a high-level, LISP-based programming language recently
developed at the Stanford Artificial Intelligence Project. The
t anguage has been operational for: two years, and the deve | cpmental
phase of it has been completed. This is a final report on the

| anguage.

MLISP2 is specially tailored for writing translators for other
| anguages. To this end, two powerful control structures have been
added to an ordinary LISP base: pattern matching and backtracking.
This report serves the dual purpose of explaining our particular
version and use of these control structures, as wel |l as serving gas a

users’ manual for anyone wanting to write MLISPZ programs,

Actually, MLISP2 is a transitional language. Laurence Tesler
and the authors are presently implementing a language called LISP70
which wil I include and (for most applications) supersede MLISP2,
MLISP and LISP. Therefore, perhaps it is worthwhile to briefly
justify the current report, Many of the concepts developed in MLISPZ
are being wused in LISP70, though some of them are undergoing

extensive revisions. But more i mpor tant!ly, MLISPZ is an extremely
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effective transiator writing sys ten. it clearly isolates sonme
general principles that may profitably be incorporated in other

systems. This report concentrates on the nature of these principles,

howthey are implemented, and how they are most ef fect ively used,

Since this report emphasizes the research aspects of MLISPZ, the
users' manualaspectnecessarilyiscsomenwhatinconp |l ete. This report
is not a complete description of the MLISPZ language. Rather it is a
supplement to the MLISP users’ manua | [8], and it only discusses in

depth the differences {mainlyadditions) between MLISP2 and MLISP.

Hi_story

MLISP2 is the latest in a continuing development o flist-
process i ng programming languages. The progression, based on
capabil i ties, is:

LISP =~ MLISP - HMLISPZ -~ (LISP70),
Wwhere LISP70 has not been completed at the timeof thiswriting.
MLISP  [2,8]i¢ a programminglanguage based on L | SP (43 . MLISP

programs are translated to LISP and then executed or compi led to LAP,

The advantaye of MLISP over LISP is primarily notational: the MLISP
no tat i oh makesiteasier towrite andunderstand LISP programs. In
auiditioOn, certain | ist-processing deficiencies in LISP are remedied

{see the MLISP manual). MNLISP2 is an extension of MLISP, originally

created for the followingreasons:
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1. To make the syntax of MLISP more easily modifiable.

2. To provide a vehicle for easily implementing compilers for other
| anguages.

3. To add backtracking as a control structure, making MLISP a more

useful language for heuristic problems.

The MLISPZ and MLISP languages are separate and have separate
capabilities. Since MLISP is simply a more convenient notation for
LISP, it is suitable for exactly the same tasks as LISP. MLISPZ
preserves the list-processing capabilities of LISP, but it has a
substantial 'y modified and augmented environment tailored for
ef fecient backtracking and pattern matching, This extra overhead i s

unnecessary for simple list-processing tasks.

MLISPZ is mostly upwardly compatible with MLISP; MLISPZ
differences are mainly in the form of additions to MLISP. We

classify the differences between MLISP2 and MLISP as either “major”

or “minor.” The major changes modify the control structure or
execution environment of MLISP: they substantially alter its
capabi | i ties, For examp | e, the SELECT expression (backtracking) and
the LET expression f(extensibility) are major changes, The minor

changes are modifications to MLISP, hopefully in the form of
improvements, which do not substantially alter its capabilities but
which make i t more convenient to use. For examp | e, the DOT notation

and the RECOMPILE expression are minor changes.
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The main product i ons needad to understand the ML | SPZ 1 anguage

are PROGRAM, EXPRESS ION, PRIMARY, GSIMPEX and BASIC. The main
pr oduc t i on needed to understand the extensibility mechanism in the
language is LET. The main production needed to understand the

backtrackingfacility is SELECT.
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SECTION 2

Backtracking

MLISPZ makes heavy use of backtracking [3,7]. The pattern
matcher (section 7) uses backtracking in its parsing algorithm. The
SELECT express i on (sect ion 81 provides a means for the user to
incorporate back tracking into his algorithms. Therefore, it s
necessary to describe exactly what backtracking means in the MLISPZ

| anguage.

A s was pointed out inl7],there is no universal agreement on
the mean ing of back track i ng. Every implementationhas produced a
slightly different interpretation, Our view most closely follows
Floyd’'s theoretical system [3] in its goals, though not in its
implementatiOn. Typical ly in heuristic programs there are points
where several alternative strategies might be tried, with no certain
knou ledge of which one will be successful, In this situation the
programmer wants to be able to try one out; but if it is
unsuccessful; he wants to be able to pretend he had never tried it,
select another alternative, and try that out. In this way he will
either find a successful strategy or run out of alternatives. This
i s.-data backtracking, the restoration of changes to variables,

Bobrow points out [l] that i t is alsosometimes useful to have
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control and data backtracki ng separate lyprogranmabl e, though MLISP2

does Not implement this.

Mode

The state of a cOniputatiOn at any point is cOmpletely

represented by a “state yector" consisting of the values of all

variables in the program, plus system variables [|ike the program
counter, 1/0 pointers, etc. Every time a computation is begun with
the same state vector, the results are identical. A “decision point”

is a Point in the computation at wuhich a copy of the state vector is
saved (i nmemory or on secondary storage). InMLISPZ not the entire
state vector is saved, just the “incremental state vector” - - those
values that have changed since the vector was last saved, The
process of restoring a copy of the state vector, thus wiping out al |
changes to variables since the copy was made, is called

“backtrack i ng“, The conplete state of a computation is restored to

its value at the decision point, just as if nothing had been executed
beyond that point. The oniy exception is that the program counter
may be changed. so that execution picks up at a different place in

the code.

The ML 15P2progranner may cause back track i ng by invoking the

intrinsic function FATLURE(). Executing FAILUREwWi | i cause the state
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vector to be restored to the value it had whenthe Jast decision
point was encountered. There is no failing to labels, as in some
systems. Rather “fai lure” inMLISP2 means (loosely): “All | know is
that | do not have the values [ need to be successful. Therefore,
back up to the last guy who had a choice to make, and let him choose
some other alternative.” This is entirely consistent with our state
view of backtracking. FAILURE asserts that a state which cannot
succeed has been reached. Unlike Floyd’'s system, there is no SUCCESS

function in ML]SP2; success is the absence of failure.

There are two final elaborations that have to be made. We
stated above that wupon failure the state vector is restored to the
value it had whenthe last decision point was encountered. This is
not entirely true. Itis possible to change the saved copy of the
state vector, thus changing the values that will be restored when a
fai lure occurs. Inthiswuay, an unsuccessful alternative may pass
back to the decision point information that may be useful in trying
other alternatives. The MLISP2 notation for this is

<variable> {<context>}l+ <value>

A small integer called a “context number” is associated with each

decision point. If no decision points have been set, the context
number i s zero. Every timea decision point is set, the context
number is incremented by one. Every t i me a decision point is

deleted, the context number is decremented by one. The intrinsic
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function CONTEXT {} returns the context number current ly in effect,

the “current context”. Thus contexts may be manipulated by

functions, For examp | e,
X {CONTEXT () -1} « 28

sets the value of Xto 280 and also sets the value X had in the last
copy of thestate vector to 28. Therefore, as soon as a fai lure
occurs, the wvaluethatwill be restored to X wWwill be 20. Setting
variables in context actually sets the variableto the value in all
contexts from the current one back to the specified one, This value
willherestored to the variable whenaver a failure occurs, unless
the current context fal Is beiow the specified context, Therefore,

setting a variable in context zero is a global set, since the current

context can never become less that zero,

The other elaboration concerns implementatiOn. Much of the
discussion above is concept ual in nature and is not to be confused
with the wayMLISP2 implements it. The MLISP2Z implementation is
discussed in detaili n{7]. One point that should be brought out
here is that the amOunt Of space required to store backtrack i ng
con tex t & may become gquite large if many decision points are set. To
manage this, an intrinsic function FLUSH{]is included in MLISP2t o
f tush old contexts out of the system, Uhenever the program reaches a
point atwhichit is certain itwil | not have to backtrack, it should
execute FLUSH. (This function should be used carefully, though, as

it is possible to delete information that should have been saved.)
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SECTION 3
Suntax conventions inthis report

The following are meta-linguistic symbols used in this report to

present the syntax of MLISP2.

SYMBOLS
<>

[1x%

(]

[ BN

| I

MEAN | NG

Standard BNF symbo | s.

LITERAL. Any symbol preceeded by a quote mark or any
identifier standing alone is a literal, i.e. stands
for i tself.

Examples of | i terals: IF THEN ELSE ‘10 '('")

NONTERMINAL. Any element enclosed in angled brackets
is a nonterminal, or in some cases a description in
English.

Examp | es:  <PROGRAM> <EXPRESSION> <PRIMARY>

REPEAT. Elements enclosed in square brackets fol lowed
by a (Kleene) star may occur repeated ly.
Example: "[Alx" means “repeat A zero or more times”

OPTIONAL. Elements enclosed in square brackets with
no star or vertical bars are optional,
Exanple: "[A]l" means “optional ly A”

ALTERNATIVES. Elements sepatated by vertical bars
inside of square brackets are alternatives, one of
which must be present.

Example: "[AlB |C]l" means "A or B or C"

REPEAT OF ALTERNATIVES. This should be clear.
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Syntax conventions in this report 1@

REPEAT WITH SEPARATORS. Ifthe repetition brackets
[I% contain a slash "/", then the elements before the
stash are repetition elements and the elements after
the slash arc; separators for them, At most one slash
Wil l occur.

Example: “I[A/’,}x" means “repeat zero or more A’s
separated by commas”
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CTION 4

<PROGRAM?, <EXPRESSION>

<PROGRAM> ii= [<EXPRESSION> ';lx _EQOF_
<EXPRESSION> t1=  [<PREFIX>]x <PRIMARY>

[<INFIX>[<PREFIX>]% <PRIMARY>]*
<PREFIX> 1= <any id or delimiter declared a prefix> [’g]
<INFIX> i:= <anyid, or any delimiter declared an infix> [’e]
<1D> i1=  <agny identifier not marked as a LITERAL>
Suntax

An MLISPZ PROGRAM is a sequence of expressions, each followed by
a semi co lon, ending with the | i teral _EOF_ (signifying end of fjje).
An EXPRESSION is zero or more prefix operators, fol lowed by a
PRIMARY, followed any number of times by a triple composed of an
infix operator, zero or more prefix operators, and another PRIMARY,
Prefix operators must be defined to be a prefix (seethe DEFINE

expressioni, but any two-argument function may be used as an infix.

Prefix and infix operators may be fol iouwed by the vector operator "e"

(see the discussion of vectors in the MLISP manual). aAn 10 is any
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identifier uhich does not have the property LITERAL; identifiers yet
marked as LITERALs whenthey are used without a quote mark ' in

syntax patterns (section 7},

This is not the same as MLISP's definition of a PROGRAM, so this

in itself is one of the minor changes to MLISP. In MLISP, a program

BEGIN [<REXPRESSION> ";lx END ',
In MLISPZ2 the enclosing BEGIN-END has been eliminated, and the period

at the end has been replaced with the literal _EQF_.

Execut ion

When a program is parsed, each expression is translated and
immediately evaluated. The value of the expression (if it is non-
NIL) isprinted O0n the te | etype. ThusMLISPZ is a incremental,
comp i | e-and-execute type of translator, suitable for interactive
programming in a t i me-shared environment. In fact one may regard
MLISPZ as an elaborate terminal command| anguage wh i ch  will accept
MLISPZ expressions one at a time from a teletype and execute them “on
the spot,"” printing out each result. Atrivial application of this
capabi li ty might be to use MLISPZ as an adding machine: type "3+2;"
and itwil | immediately print "5". _EOF_ may be typed at any time,
terminating the session. Incremental translation/execution is an

important capabil i ty in any time-sharing language.
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In addition to being incremental, MLISP2 is also an extensible
| anguage. EXPRESSION makes use of an extensible production PRIMARY;
at any time the programmer may enrich the MLISPZ | anguage by making
extensions to PRIMARY. Section 7 explains this in detai f.ln
add i tion, PRIMARY or any other production in MLISPZ may pe replaced
entirely, including PROGRAM itself. Replacing PROGRAM produces a
completely neu language. In this way translators have already been
produced for Engl ish, French, Logic [5], ALGOL, MLISPZ jtself and
others, some of them by programmers wi th no experience in translator
writing, None of the MLISP? users have expressed much difficulty
ui th their translators: in every case they were able to devote the
bulk of their time to semantic applications {e.g. theorem proving

strategies) rather than to the mechanics of the translation process.

Conments

1. One of the main reasons MLISPZ is successful as a translator
writi ng tool is that it is an incremental extensible language, It

fulfills Bobrow's recommendation [11: "Reading a particular

statement should be able to change the grammar at_that time, for

1

some def i ned scope. {his emphasis) The translators written in
MLISPZ have al | developed in this way, by adding a few productions
at a time to the | anguage. These can often be debugged

independently. [MLISP2Z provides a rich environment for debugging
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rJ

{c.f. RECOMPILE expression), In thisway,MLISPZ enables the
translator wur i ter to easily subdivide the task of producing a
translator, Fur thermore, he always nas something working, making
progress easier to measure, When the set of productions i s
complete, PROGRAM is redefined, producing the new translator. The
advantages of incremental programming are obvious to anyone who
has had to write an "all or nothing” program, a large body of code

which al | had to be correct before anything would run.

MLISPZ is a successful extensible language because its syntax is
siniple and concise. Given the above definitions of PROGRAM and
EXPRESSION, a programmer has | ittletrouble comprehending the
effects of an extension to PRIMARY. UWhile extensible languages
have been around for several year s f(and there s now a
proliferation), all too frequently the extension mechan i sm has
been couched in confusing notation and/or semantics, mak i ng them
not at all “self evident.” Self evident programming, the goal of
COBOL and a host of successors, remains elusive, and MLISPZ does
not attain it. Butit hasbesnthe guiding principle in the

design or MLISP2, Above allelse, we have tried to make MLISP2

easy to use.
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SECTION 5

<PRIMARY>

<PRIMARY> ::= <any MLISP expression>

| <an expression which is an “major” change to MLISP>
| <an expression which i s an “minor” change to MLISP>

Suntax

The production PRIMARY is an extensible production (section 7),

and it is the principle means of extending the MLISP2 language.

(BASIC is the other main extensible production.) |n fact, we

developed the MLISPZ language by first defining PRIMARY to be the

same as in MLISP, and then extending it from time to time as we

thought up new features we would like to have! The MLISP2 user may

do the same thing: if he comes up with a useful language feature, he

may add it at any time to PRIMARY or BASIC. The next few sections

discuss the extensions the authors have made.

The ma jor changes

<LET>
<SELECT>

The minor changes:

<SIMPEX>
<RECOMPILE>
<CASE>
<DEFINE>
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<SIMPEX>, <BAS]C»

<PRIMARY> :i1=  <SIMPEX>
<SIMPEX> :1= <BASIC> [<QUALIFIER>) %
<BASIC»> 1= <ID>
[OCTAL]  <NUMBER>
<STRING>

|
|

| '’ &-EXPRESSION>

| "< <ARGUMENTS> ’>
| '( <EXPRESSION> ')

<QUALIFIER> it= '( <ARGUMENTS> ')
1 [ <ARGUMENTS> |
| <00T>
| (' { <EXPRESSION> '}]1 '« <EXPRESSION>

<ARGUMENTS> ti=  [<EXPRESSION> /', 1%

Suntax

One of the alternatives of PRIMARY is SIMPEX, A SIMPEX (simple

expression)is a bpasic expression, followed by zero  of more

qualifiers,

A BASIC expression is one of the following:

a. an ID {any identifier which is not a LITERAL)
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. & numbel {rea |l or integer) opt.ionally preceeded by the | i teral
OCTAL

c. a str ingl{asequence o fcharaclers enclosed in double quotes ")
id. a quote mark ' fo |l lowediby a LISP s-expression
e. arguments enclosed in broken brackets <>

f. an express i on enc | asedin parentheses ()

A QUALIFIER is one of the following:
a. arguments enclosed in parentheses 0
b, argumentsenclosedinsquare brackets]]
c.a DOT expression
d. an ass ignment arrou fol lowed by an expression, optionally

preceeded by an expression enclosed in braces {}.

ARGCUMENTS are zero or more expressions separated by commas",".

SIMFEX

SIMPEX is a generalization of a production {alsg called SIMPEX)
intheMLISPtrans lator. The main difference is that in the MLISP2
versiOn any number of qualifiers mayappear after a basic expression,
vhereas in MLISP only a fixed number are al towed. Multiple
qualifiers is just one of those constructions we thought it would be

nice to have, so we added i t one day.

Thus in MLISPZ
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FN(A,B,C) (X,Y,2)
is allowed, while in MLISP it uould have to be wrjtten
LAMBOA(FN1); FNL(X,Y,Z); (FN(A,B,C})
The association of qualifiers is to the left: e.g.
<basic> <qualifierl><qualifier2><qualifier3>
translates to
(((<basic> <qualifierl>) <qualifier2>) <qualifier3>)
or to be more concrete,
FN(A,B,C) (X,Y,Z) (1,2,3)
translates to

(((FN A B C) X YZ) 123},

The other changes to SIMPEX are additions to the definition of
QUALIFIER. InMLISPZthe DOT expression (see the next section) is

al lowed to be a qualifier, but not in MLISP. Also the brace notation

i

{} on the left of the assignment operator "«" is allowed, and means

the assignment is to take effect in a certain backtracking context
2)

{section 2). However, one restriction is that the vector operator

®" is not allowed to be used with the assignment operator "«", to

simpt ify backtracking.

BASIC is the other main extensible production in MLISP2, besides



Section & <SIMPEX>, <BASIC> 19

PRIMARY. Intuitively, a basic expression is a "small unit” such as a
single identifier or number, a ‘“kernel" used to bui | d | arger
express i ons. It is not as useful as PRIMARY because fewer
constructions intuitively seem primitive enough to be BASICs. But to

demonstrate the type of extension it is reasonable to make, suppose

you wanted to add complex numbers to the system, in the form

#<real part>,cimaginarypart>l

43,21
Then you cu | d type
LET COMPLEX (x,REAL, %, IMAGINARY,*) BASIC =
{ "# [NUMBER] ’ , [NUMBER] | }
MEAN
<whatever translation is desired>.

{This i s a example of a LET expression, explained in section 7.)

Everything else in SIMPEX and BASIC is the same as in MLISP.
PROGRAM, EXPRESSION, PRIMARY, SIMPEX and BASIC form the heart of the
MLISPZ language. Understand them and you w il l have a good idea of

what a | ega |l MLISPZ program looks like, as wel | as how to change that

clef init ion.
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BECTION
<D0T>
<QUALIFIER> t:=  <DOT>
<DOT> t:= ', [<IDENTIFIER> | <BASIC>]
Suntax

One of the alternatives of QUALIFIER is the DOT expression. A
DOT expression is a period ".", followed by either an identifier or a
basic expression. In the first case, the identifier is quoted by
MLISPZ,uhile in the second case the value of the basic expression is

used unquoted.

This is a notation for handling property lists. Ordinari ly it
means GET, but on the left side of an assignment operator "&" jt
means PUTPROP. (Thevalue of the assignment operator is always the

value of the right hand side.) While the dot notation is a seemingly
trivial change, our experience has shown that it is capable of

striking clarifications in a program.
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Examples

A.B trane | ates to {GETA (QUOTE B))

A.B~ C {PUTPROP AC (QUOTE B))
A.'B GET A {QUCTEBI)

A."’Be« C (PUTPROP A C (QUOTE B})
A. (B) (GET A B)

A. (B}« C (PUTPROP A C B)

A (B+C) « D (PUTPROP AD (PLUS B C))

Be careful about the association of qual ifiers!

AFNIX, Y, Zi translates to ((GET a (QUOTE FN)) x v 2)
A (FN(X,Y,Z)) (GET A (FNXY Z})
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<PRIMARY>

<LET>

<LET VARIABLES> ::

<LET VARIABLE>

<PATTERN>

<PATTERN ITEM>

<LITERAL>

<TOKEN>

<NONTERMINAL>

<INLINE EXPR>

<META>

{}

(2]
D)

SECTION 7
<LET>
<LET>
LET <IDENTIFIER> '{ <LET VARIABLES> ')
[<IDENTIFIER>] '="{ <PATTERN> '3

MEAN  <EXPRESSION>
<LET VAR ABLE> ', <LET VARIABLE>]x
<ID> | "%

[<PATTERN | TEM>1x%

I"'] ['#] [ <LITERAL>
I <NONTERMINAL>
| <INLINE EXPR>
| <META> 1

<IDENTIFIER>|'"’ <TOKEN>

<IDENTIFIER> | <NUMBER> | <STRING> | <DELIMITER>
<« <IDENTIFIER> ">

[ <EXPRESSION> ‘|

[<REP>| <O P T>[<ALT>]

[{}] 01 <Anywhere braces {} may be used in
patterns, parentheses ()} may be used instead>
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Suntax

A LET expression is theliteral LET, followedby an identifier
unich sthe name of the production being defined, followed by a list
of LET variables enclosed in parentheses, optional ly fol fowed by a
secOnd identifier which represents the name of a production to which
this production willbe added as an alternative, followedby an equal
sign"=", followed by a syntax pattern enclosed in braces {},
fol lowed by the Iitera! MEAN, and final iy fol lowed by an expression
which represents the sem3ntics towuwe evaluated if the syntax is
successfullymatched, A LET VARIABLE is either an ID or an aster i sk

b3

A PATTERN i s zero or moretriples, each composed of an optional

ap I
. l

exc | mat i on point followed by an optional sharp sign"#",

fOllouwed by one of

a. A literal: an identiiier, oracluotemark followed by any token
(identifier, number, string or deliiiiiter), luentifiers not
preceededby the quote wark are markeduwiththe property LITERAL
(and become essential ly reserved uords).

b. A nonterminal:a n identifier enclosed in broken brackets <>,
representingacall on another production,

c. An inli he express i on: anyilL I SP2 express i oh encl osed in square

brackets [i.0ne special convention: if the expression is just a
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Section 7 <LET> 24

single identifier, e.g. {FO0l, then it is taken as the name of a
function of no arguments, FOOO, rather than as a variable, Thus
[FO0land [FOO()] are equivalent,

d. Ameta expression: REP, OPT or ALT.

Capabilities of the LET expression

The LET expression is composed of a syntactic pattern matcher
and a semantic expression evaluator, |t may be used to extend the
| anguage, to define entirely new languages, or as a 1 imi ted pattern
matcher, This is the core of the MLISPZ extensibi 1 i ty mechanism.
The recognition algorithm is top down, depth first, and uses
backtracking. The top-level production is PROGRAM. The pattern
matcher is powerful enough to handle any context free or sensit i ve
grammar. However, it is only capable of dealing with |inear input,
such as tokens from a fi le or from a linear t st it is not capable
of handling structured input. It is designed primarily as a

translator writing tool.

The LET expression, like all MLISP2 expressions, s fully
incremental; at any time the user may type a LET expression gn line
and have it take effect immediately. The advantages of this for
debugging a translator should be obvious: j f the programmer discovers

a bug in a production, he can type in a corrected version and try it
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out r i ght away. Fur thermore, if he desires to have a new language
construct ion in a program, the user simply includes the relevant
productions at the head of his program, and the MLISP2 language will

extend itself gas his program ispbeing translated.

In order to extend the definition of some production P,

1. P must already exist and must be an extensible production. An
extensible production is any production whose syntax contains the
meta expression ALT (section 7.4). "ALT" means that the syntax of
the production consists a set of alternatives. This set may be
extended at any t i me.

2. The production being added to the definition of P must contain the
name of P in the identifier slot betueen the LET variables and the
equal sign: e.g.

LET FOO (X} P =
adds FOO to the definition of P. A production may only be added
as an alternative to one production: e.g. FOO cannot now be added
to another product i on" s definition, However, an extensible
production P may have any number of alternatives added to its
definit ion.

Using ALT in an increniental manner is one of the most powerful

capabi lities of any extensible | anguage. It makes MLISP2’s

extensibility very flexible.
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Semantics

When a production is defined using LET, two functions are
declared: one for the syntax and one for the semantics, The name of
the syntax function is the production name with a sharp sign "#"
appended on the end. The name of the semantics function is the name
of the product ion. For examnple, if the production is

LET FOO(X,%,Y) =.{A6C} MEAN PRINT <X, Y>
then the tuo functions are named FO0# and FOO, The definition of the
semantics function FOO s

(LAMBDA(XY) (PRINT (LIST X ¥)))
Note that the LANMBDA variables are the non-* LET variables. When
<FO0>i scalledi n a pattern, acall to the syntax routine FQO# i s
compi led, The syntax routine always cails the semantics routine FOQ
as part of its definition. In addition, either of the two functions
may be called Iike any other function: e.g. FOO#()o rFOO(args).
Thus the pattern matcher may be invoked from within an ordinary

function.

An impOrtant point hare is that wany extensible languages
interpret their patterns, MLISPZ ccupiles its syntax into machine
code, result ing in greater speed and code densi ty. There arecertain
technical difficulties with compiling a general, incremental syntax
processor. We hope to discuss our treatment of these problems in a

later paper.
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Execution

)

LET express i ons are executed i n three stages:

Match the syntax pattern against the input.

Bind the LET variables to the values of the pattern items.

. Evaluatethesemantics expression. This becomes the value of the

product i on.

I Nn more cietai I,

The matching of a syntax pattern proceeds as follows:

a.

b.

C.

A vbatternis matched fromieftto right,

Each i tem in a pattern interacts in a specified way with the
input. This is explained in the following sections for each
type of patternitem. Genera ||y pattern i tems make some checks
on the content of the inputand cause the input pointer to be
advanced.

Each itemin a pattern returns a value.

After the pat tern has been completely matched, the LET variables

are bound on a one-to-one positionalbasis to the pattern values,

Wi

a.

th two except ions:

LET variablesuhich are asterisks "x" serve only as positional
place-holders and do not receive values. (Thus they are not
real ly variables at all.) If all of the LET variables are

asterisks, then all of the pattern values are thrown away.
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b. I f there are more pattern values than LET variables, the |ast

non-x variable is bound to a list of the remaining values.

3. After the entire pattern has been successfully matched against the
input and the LET variables have @il been bound, the semantics of
the product ion are evaluated. The semantics consist of the
expression after the MEAN, together with the non-* | ET variables.
It is exactly equivalent to

{{LAMBDA <variables> <expression>) <pattern values>)
The value of this expression becomes the value of the production

and i s returned to uhomevercal led i t.

Examples of variable binding

(8 LET IF (x,El,x,E2,E3) =
{ IF  <EXPRESSION> THEN <EXPRESS | ON>
{OPT ELSE <EXPRESSION>) }
MEAN NIL:

this -throw awaythe | F
-~ bincls El to the value of the first <EXPRESSION>
~throusauay the THEN
- binds £2 to the value of the second <EXPRESSION>

- binds E3 to the value of the OPT.

{(b) L E T PROGRAN (x) =
I {REP O M {<EXPRESSION> ' : 1} _EOF_ }
MEAN NIL:

this -throuws auay al | the values of the pattern items.
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(c) LET FOO(X,Y,Z) =
{A B C D E F G
MEAN NIL;

this - binds X to A

- binds Y to B
-hinds Z to (C D E F G .

Example of LET semantics

(d)LETF O O (X,x,Y,x,7) =
iA B C D E F G -
MEAN PRINT (X CONS Y CONS Z);

this -printsandhas as its value the list (AC E F G). o

- T h e semantics functionis
(LAMBDA (XY Z) (PRINT (CONS X (CONS Y Z}))).

The best examples of LET expressions, and indeed of al | MLISPZ
expressions, are provided by the productions in theMLISP2 .

translator, which are i ncluded n the appendix.
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SECTION 7
Suntax description language

There are four types of constructions which can be used in
syntax patterns: literals, nonterniinals, inline expressions andmeta
express i ons. In addition, each of these constructions may be
preceeded by either/both/none of an exclamation point "!” and a sharp
sign"#". The meaning of each of these in a syntax pattern and the

values they return will now be described in detai!.

Our approach to a syntax description | anguage is someuhat
different than other approaches, a necessary consequence of our
desire to make | anyuages incremental ly extensible. Rather than
working with traditionalBNF terms and analyzing grammars forma | | y
(e.g. as precedence, operator precedence, LR(k), etc. grammars), we
have isolated a small set of primitives powerful enough to specify
any context free or sensitivegrammar and still maintain a good
degree of efficiency. We obtain this flexibility by a pattern
matching approach to language transiationThe extremely useful control
structure of backtracking is used to resolve ambiguities: if one
syntax pattern Wil | not match the input, the system is capable of
backing up and trying others, until either one finally succeeds or no

pat terns areleft (indicating a real syntax error). MWhile it s
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theoretically possible for this to require a time proportional to the
length of the input cubed, in practice the types of grammars one
muri tes for programming languages are almost always handled in linear
time. In fact, even our grammar for English, a highly ambiguous

| anguage, produced a | inear parser.

We believe that the primitives presented here: REP, OPT andALT,

together with 1 iterals.ngnterminals and .nl ine express i ons, are
primitives that shoul dpe includec Ji_n any syntaxc r i ption

| anguage.
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The exclamation point feature "!" in patterns is a way of
automatically generating error messages, An exclamation point in a
pattern item signifies “it had better be there!“; otherwise there is
an error. Forexample, in the pattern

IF <EXPRESSION> ! THEN
theli feral THEN had bet ter occur in the input after the expression,
or the error message “MISSING THEN” wi | | be printed. The exclamation
point is actually a macro that expands to an ALT (section 7.4); e.qg.

I THEN
expands to

{ALT THE N |[[ERROR{"MISSING THEN")J}.
This expansion should be remembered when dealing with the value of a
pattern i tem with an exclamation point in front of it. The value of
the pattern item THEN is just THEN; the value of !ITHENis (1 THEN),

or an error.

4

The sharp sign feature "#" in patterns is a way of controlling
the scanning of the input. It real ly has a meaning only with
| i terals. [f it is present, then after the | i teral is matched, the
scanner uwil | not advance over it. Ordinarily, after a literal in a
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pattern is matched by a token in the input, the scanner advances to
the next token automat ically, The "#" feature is is useful if, for
some reason, it is desired to temporarily discontinue scanning, For
example, MLISPZ does not want to advance over the _EQOF_ at the end of .
the program because there is nothing there to scan, so the pattern is
written #_EOF_. Similady, MLISP2 wants to pause in scanning when it -
sees the | iteral OCTAL ipreceeding an octal number) in order to
change the radix from 10 (decimal) to &{octal) before scanning the

number, so the octal pattern is written #OCTAL <OCTAL-NUMBER>.

LITERAL

Literals are constants in the syntax description language. If
the next item in the pattern is a literal, then the next token in the

input must be thatliteral, or the pattern fai Is. .

VALUE = the literal.

MONTERM I NAL

Nonterminals are the subroutine mechanism in the syntax
description language. If the next i tem in the pattern is a
nonterminal <cail on another production, then that producti on i s

evaluated as a subroutine.

VALUE = the value of the called production.
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INLINE EXPRESSION

inl ine”,

Aninline expression is a piece of code evaluated
during matching of a pat tern. |If the next item in the pattern s an
infine expression, then that expression is immediately evaluated.
This is an unusualand powerful feature in a pattern matcher, It
provides a means for making a syntax context sensitive and ga|so for

increasing the its efficiency by waking run-time tests,

To i llustrate these capabil i ties, suppose a global variable FLAG
existsin a program and a production P uses this variable o govern

its execution:

'FOO OR FAILUREO1 ...
‘BAZ OR FAILUREO3 . . .

LET P (X) ={{ALT [FLAG
| [FLAG
‘ ‘.

'} MEAN <whatever>

Then the matching of P is context sensitive. |f the value of FLAG is
FQQ, then the first alternative uill be tried. Otherwise FAILURE is
executed, which causes processing to pass to the second alternative.

Similarty, if the value of FLAG is BAZ, then the second al ternative

yi | 1 be tried. Othernise processing skips to the third alternative,
and so on.

This il lustrates the power of inline expressions in a syntax
description language. [t also i | lustrates how they can be used to

increase the efficiency of pattern matching. Suppose the programmer
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knous that i fFLAG has certain values, the input can never match
certain patterns. Then making tests like the ones in the examp | e
above insure that these patternswili never be tried. The patterns

would have eventual ly fai led anyway;the inline expressions just
cause them to fai | at the earliest possible moment, with a minimum of

vork being clone.

VALUE = the value of the expression.

META EXPRESSIONS

Three meta expressions -- REP (repeat), OPT (optional) and ALT
Cal ternatives) -- are included in MMLISPZto make it easier to
speci fy syntax. These construct i ons reduce the number of productions
required and make them clearer and moreconc i se. Itis surprising
howu much more pouerful the syntax description language becomes With
the inclusion of these three expressions. They make the | anguage far
more descriptive of the kinds of configurations to be expected in the

input.

By way of contrast, in the Backus-Naur form (BNF)}if one wi shes
to express the fact thatsomeitem Imay occur repeatedly, he must

Write

P oee= | <P>
P ::= <empty>

uhile in MLISP2 o n e wouldurite
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{REP 0 M {IH!
In the firstcasethe repetition is implicit, leaving the user to

figure out exactly what the product ions will handle; in the second

case the repetition is explicit. The same is true for OPT and ALT.
Cons i der

P ::= IF <E> THEN <E>»

P :1:= IF <E> THEN <E> ELSE <E>

versus

IF <E> THEN <E>{D>PT ELSE <E>}
In the first case it requires a production-by-production analysis to
discover that the ELSE clause of the IF expression may be |eft off:
in the second case it is explicitly stated. This distinction becomes
important when t he number and complexity of productions are | arge.
Expl ici t specification is very important in any “descriptive”

| anguage.

VALUE = the value of the meta expression.
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SECTION 7.2
<REP>
<META> t:1=  <REP>
<REP> :t= 't REP <INTEGER> [<INTEGER> | M [’ %]
{ <PATTERN> '}  [<SEPARATORS>1 ' }

<SEPARATORS> t 1= <PATTERN>
Suntax

A REP is the | i teral REP, followed by two integers (the second
in teger may be the | teralM), optionally followed by an asterisk
“x", followed by a syntax pattern enclosed in braces f{},and

optional Iy followed by any number of separators. This whole thing is

enclosed in braces {}.

Semantics

The REP expression causes a pattern to be matched repetedly.
The number of times the pattern s matched depends on two things: (1)
how many times the pat tern occurs in the input, and (2) the values of
the “repet i t ion control numbers” uhi ch come after the word REP. The

<number>s must be non-negative integers. The first number s the
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minimum number of times that the pattern must occur in the input; the
secOnd is the maximum number of tinies that it may occur.
Alternatively, the letter "M" may be substituted for the maximum and
means “more”: if 1 is wused, the pattern may be repeated any number of
t i nies greater than or equal to the minimum number. For example, {REP

IM. ..l mneand “repeatlormore times,

If the minimumnumber of repetitions of the pattern does not

occur, the entire REP fails. REP aluways tries to match the max i mum
number of repe titions possibie. In some cases too many repet i tions
may be matched, causing a later pattern to fail. In this case the

tokens from one <cycle of the pattern are returned to the input,
Pattern matching then proceeds uith the new, shorter, REP list
(unless the number of repetitions fal Is below the minimum). More
than one repetiti on may have to be given back before later patterns
al | succeed. If youuantto supress this step-by-step backup,
include the asterisk "x" in your REP, The aster i sk means “ei ther use
all the REP cycles you got or give them ALL back!” Any fai lure into
the REP after using this feature uwill cause al! tokens matched by all
cycles of the REP to be returned to the input. The number of
repetition5 immedi ate | yheconeszero. If the minimum for the REP uas
greater than zero, the entire REP then faiis. Otherwise the value of
the REP becomes NIL. This is useful when you are certain there is no

ambiguity betueen the REP pattern and later patterns, so that no REP
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cycles will have to be given back. The advantage of using the
asterisk is thatREPsare more efficient, since not as much
L backtracking information has to be saved.
Separators may occur between repetitions of the REP pattern
L Any pattern i tem or items may be used as separators. The value of a
¢ REP is a |list of the values of the REP patterns: the values of the
N separators are discarded.
- Eva | uation
|' Evaluation of REPs proceeds as follows:
[ 1. When a REP is encountered, one of two things happens.
L a. | f the REP uses the asterisk "x" feature,  then a single
L decision point (section 2)is created for the entire Rgp. The

first time this decision point is failed to, it deletes jtself.
Subsequent fai lures wWill fail t owhatever decision point
preceeded the REP.

b. If the REP does not use the asterisk feature, then 4 decision
point is created for each cycle which the REP makes, Eacho f
these decision points behaves likel.a above, i.e. the first
time it is failed to it deletes itself. The di fference is that
there are many 0f these decision points, one for each cycle

through the REP. Therefore, each REP cycle can be backed up
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over one at a time, unereas wi th the asterisk feature ALL of
the REP cycles are backed up over at once.
Then the REP pat tern is matched against the input.
The maxi mum REF number i s now checked (unless i t i s M} to see if
the REP pattern has been matched the maximum number of times
al loued. If so, the REP exits returning a list of the pat tern
va | ues matched.
If there are separators, they are matched against the input and

their values throunaway., Then step Z is executed again,

Finally, either the maximum numiber of cycles is reached, or the
REP pattern or separators no longer match the input. Then the
minimum REP number i s checked. If the REP has not executed the
minimum number of cycles, then the entire REP fai Is. Ifthe

minimumnas been reached, the REP exits returning a list of the

pattern values matched.



Section 7.2 <REP>

Exampies

{a) {REP 1 3 {A B}

input: ABABABAB

value: {((A B) (A B) (A B))

lefft in input: A B

input: ACB

value: REP fai Is because minimum (1) was not achieved

{b) {REP B M {<IDENTIFIER>t 7,!

input: As
value: ((A))
left in input:

input: A B, C; D, E, F
value: {{A) (B} (C))
left in input: ;0, E, F

input: {

value: NIL

left in input: {

41
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SECTION 7.3
<OPT>
<META> t1= <OPT>
<OPT> ti= '{ OPT <PATTERN> '}
Suntax

An OPT is the literal OPT followed by a syntax pattern, al |

enclosed in braces {}.

The OPT expression is just an abbreviation for (and a slightly
more effecient implementation of) the special REP case {REP 0 1.,,.1},
i.e. “repeat zero or one time.” This s one of the most frequent

REP cases.

Evaluation

Evaluation of OPTs proceeds as follows:
1. When an OPT is encountered, it creates a decision point, This
decision point may be fai led to only once. The first time it is
fai led to, it deletes itself so that subsequent failures uil | fai |

to the previous decision point.
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2. The OPT pattern

happen:

a. The match

is successful,

is matched against

<OPT> 43

the input. Two things might

in wWhich case the OPT returns a list

of the pattern values (leaving the decision point intact).

b. The match is unsuccessful, i.e. one of the pattern i tems fai Is,

in which case

NIL.

3. If a later failure occurs, and if the OPT decision point

intact,

theniasin2.b above) the OPT deletes its

and returns NIL,

Exanmnnles

{a) {OPT A B!

input:
value:

left in input:

input:
value:

left in input:

o=
vs)
w o

>z>
O—0
w

the OPT deletes

its decision point and returns

is still

decision point

(b){OPT <IDENTIFIER> '{ <IDENTIFIER> ’)}

input:
value:

left in input:

input:
value:

left in input:

CAR(A).B
(CAR/7C A 7))
.B

CAR(1).B
NIL
CAR{1).B
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BEETION
<ALT>
<META> 1= <ALT»>
<ALT> HEE ' ALT [<PATTERN> /' 1x}
Suntax

An ALT is the literal ALT, fol lowed by zero or more syntax

notn

patterns separated by vertical bars "|", al I enclosed in braces {}.

Senian t i cs

ALT is the most interesting meta expression of MLISP2's pattern
matching system. It specifies that the input may be matched by any
of a set of alternatives. The powerful aspect of ALTs is that the
set of alternatives may be <dynamicall y extended at execution time.
If the alternative being augmented is part of the MLISP2 translator
for example, then the effect is to extend the MLISPZ language. To
i llustrate this idea, consider the following pair of productions from
the MLISP2 translator,

LET PRIMARY (X)=

{ {ALTE 1
MEAN X {21
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LET BEGIN {x,VARS,EXS, ) PRIMARY =
{ BEGIN <DECLARATIONS> <EXPRESSIONS> IENO }
MEAN
'PROG CONS VARS CONS EXS;

The first production defines a PRIMARY in MLISP2. |t says that
initial fyaPRIMARY is an ALTwith no alternatives, While this may
seem use | ess, it serves the important function of providing a (null)
set to which other productions may be added. For examp | e, the second
product ion cdef ines a BEGIN-END block. It further indicates that it

is to be added to the set of alternatives in the production PRIMARY,

i.e. BEGIN is now to be considered as an example of a legal PRIMARY.

So what ? So now instead of having to define all of the
alternatives in a =static definition, the various parts of the
production may be defined individual ly and dynamically! Productions
which add themse Ives to other productions may be included in any
prOgram. | f you want some |anguage feature for your particular
program, you need only include a set of language extensions at the
beginning of it. Immediately you have a new language with a tai ior-

made feature!

One wOrd Of caution: the syntax of MLISP2 is not context
sensit ive: additions to it should be unambiguous with the productions
a | ready there. In fact, they should probably be unambiguous in the
first symbol: don’'t start any of your product ions with any of the

words that starts an MLISP2 production, such as
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BEGIN, IF, FOR, WHILE, UNTIL, DO, COLLECT, SELECT, . . .
This restriction growsout of our desire to provide good error
messages. If we start a production, such as BEGIN, and we get +to a
point in it uhere we expect a literal to appear in the input, and the
literal i sn’ t there, then we stop immediately and print an error
message. The alternative is to back up out of the production, see if
any other production can handle the input, and if not give an error
message | i ke “SYNTAX ERROR” or some such nonsense. Since the MLISP2
| anguage i sunampiguous, we can give much better error messages than

that. Most PRIMARYs in MLISPZ begin with a unique LITERAL,

As mentioned above, only a productions containing an ALT is an
extensible production. If the production contains more than one ALT,
then there is an ambiguity as to which ALT is to be extended. To
resolve this ambiguity, the fol lowing rule applies:

a. The outermost ALT lexical ly is the only one that may be extended,
b. If severalALTs are at the same lexical level, then the last one

lexically is the only one that may be extended.

Evaluation

Evaluation of ALTsproceeds as follows:
1. When an ALT is encountered, it creates a decision point. Italso

creates the equivalent of a local ouwn variable; this variable is
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5.

initialized to zero and represents the number of the alternative
currentty being tried.

To try the next alternative, the alt number is incremented by one,
and then the pattern for that alternative is matched against the
input.

f the pattern is successfully matched, the ALT exits returning a
list of the pattern values with the alt number added to the front.
| f the pattern fails, the next step is executed.

lfthere are more alternatives to e tried, step 2 is executed
again. If there are nomoreal ternzt i ves, the decision point is
deleted, and the whole ALT fails.

If a subsequent fai lure returns into the ALT, step 4 is executed,
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Examples

(a) {ALT A | Bi

input: ABC
value: {1 A)
left in input: B C

input: BC
value: {2 B)
left in input: C

‘input: C
value: Fai Is

{(b){ALTA',B| <IDENTIFIER>"{ <IDENTIFIER>"}|CAR!

input: A B, C
va | ue (1 A /,B)
left in  input: , C
input: CAR(A) .B
value: (2 CAR /(A/))
leftin input:.B

input: CAR().B
va | ue (3 CAR)
leftininput: 0.8
input: A B C
value: Fai Is

48
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SECTION 8
<SECT>

<PRIMARY> t:= <SELECT>

<SELECT> ti=  SELECT [<EXPRESSION>]

FROM [<ID>":]<EXPRESS] ON>
[SUCCESSOR <EXPRESSION>)
CUNLESS <EXPRESSION>]
[FINALLY <EXPRESSION>]

sun fax

A SELECT expression s the literal SELECT, optionally followed
by an expression, fol lowed by the | iteralFROM, optionally fol lowed

by an ID and a colon, followed by an expression, optionally followed

by any or al | of the | iteral SUCCESSOR and an expression, the | i teral

UNLESS and an expression, and the literal FINALLY and an expression,

Four of the five expressions in the SELECT expression are
optional. If they are omitted, defaults are supplied. The default
for the first expression is CAR, for the second COR, for the third
NULL, and for the fourth FAILURE. Thus

SELECT FROM ' (ABC)
SELECT CAR(L) FROM L:’ (ABC) SUCCESSOR CDR(L)
UNLESS NULL(L) FINALLY FAILUREO

are exactly equivalent,
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Semantics

The following explanation of SELECTs is largely reproduced from

a paper by the aut hors titled "Backtrackingi n MLISP2"[7].

Themeta expressions REP, OPT and ALT use backtracking in the
MLISPZ syntax description language. The SELECT expression s the
means fOr incorporating back tracking into ordinary functions. The
logical form of the SELECT expressionis

SELECT <value function> FROM <formal variable>:<domain>
SUCCESSOR<«wccessor function>
UNLESS <terminationcondition>
FINALLY <termination function>
This is a generalization of Floyd’s CHOICE function (3], though the

two are functional Iy equivalent. Houever, the SELECT expression is a

littiemoreversatileandeasyto use.

The four "functions” in SELECT are actually expressions which
serve as the bodies of LAMBOA expressions having the fornial variable
as its LAMBDA variable:

{(LAMBUA (<forma | var i ab i e>) <expression>)
The functions are defined as:
<value function> Do<domains » <va | ue>
<successor function> c<domain>» <domain>
<termination condition> : <domain>=-Tor NIL

<termination function> : <domain> »<value>
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Eva luation

The evaluation of a SELECT expression proceeds as follows:

1. Evaluate the domain expression to get an initial domain,

2. Set up a decision point,

3. Apply the termination condition to the domain, |If the value is
TRUE {(non-NIL}, delete the decision point and apply the
termination function to the domin. Exit with this value asthe
value of the SELECT. (The termination function may call FAILURE).
I f the value of the termination condition is FALSE (NIL}, proceed

to the next step.

£~

Apply the value function to the domain, and exit with this value
as the value of the SELECT.

5. If a fai lure returns to the SELECT (the only way a SELECT may be
reentered), apply the successor function to the domain to yijeld a
new clOmain.

6. Go to step 3.

Floyd’'s CHOICE function is uri tten:
EXPR CHOICE {N):
SELECT | FROMI:1 SUCCESSOR [+1
UNLESS | GREATERP N FINALLY FAILUREO;
CHOICE(18) gives ten choices. The initial domain is just the integer

1 {one). The value function is the identity function (LAMBDA {1}]).

The successor function isadditi on by one (LAMBDA (I} (PLUS I1}),
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The term i na t ion condi tion i s a check if the maximum has been exceeded
(LAMBDA (1) (GREATERP | N) ). The termination function propagates the
failure (LAMBDA (1) (FAILURE)).

Examples

(a) SELECT FROM '{ABC)

This is the most primitive version of the SELECT expression. It gets
and returns elements one at a time froni a | ist. Every ti me it is
fai led to, i t returns the next element in the | ist. If the list _

hecOmes ex ti austeci, the fai lure propagates to the preceeding decision

point.

{h) SELECT CAR(L) FROM L: "{ABC) SUCCESSOR COR(L)
UNLESS NULL(L) FINALLY FAILURE 0

Thi s i s exact |y the same as f(al.

{c) SELECT FROM 'f{A B [) FINALLY NiL
This is the same as {alexcept that if the | ist becomes exhausted,

this wi | | return NIL instead of fai |ing.
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<RECUMPILE>
<PRIMARY> ::= <RECOMPILE>
<recompile> it= RECOMPILE <IDENTIFIER> I', <IDENTIFIER>]x
IN <file> [l<ppn>] [TO <file>]
<file> i:=  <file_spec> . <file_spec>]
<p@Bn> = [ <file_spec> ', <iile_spec> ']
<file_spec> = [<identifierr | <integers>}

Suntax

A RECOMPILE expression is the literal RECOMPILE, followed by one
or more identifiers representiny the names of functions or
product ions to be translated, followed by the literal IN and an input
file name, optional ly followed by the Ii teral TO and and output fi le
name. The input f i | e name may include a project-programmer area, but
the outputfile namemay not. The outputmaynotgo to another
project-programmer area to prevent the user from accidentally

c | obber i ng someone e | se’s diskarea,
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Semantics

The RECOMPILE expression is an extremely useful feature of
MLISPZ. It enables selected functions in a file to be quickly
translated, The functionsmay either be defined in core at once,
replacing any definitions that existed, or their translations may be
printed onto an output file. In either case, translation ceases as
soon as ail the functions in the list have all been translated,

without going all the way to the =nd of the fi le.

This feature substantially decreases debugging time by speeding
up the test/correct/recompile/testloop. With the RECOMPILE feature,
you can edit your file, change the function or functions containing
the bug, and then recompi | e on | y those functions -- a much shorter
task usually than recompi | i ng your en t i re program. RECOMPILE wi I
find and translate any function or production beginning with LET,
EXPR, FEXPR, LEXPR or NACRQO. It skips down to a specified function
at scanner speed, tr-ans lates the function, and then either exits or

ski ps on to the next function.

Examples

{(a) RECOMPILE FNLIN IFILE;
(b) RECOMPILE FNL,FN2Z,FN3 IN IFILE.EXT:

(c) RECOMPILE FN1,FN2,FN3 IN IFILE.M2(1,F00) TO OFILE.LSP;
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<CASE>
<PRIMARY> 1= <CASE>
<CASE> : 1= CASE <EXPRESSION> OF

BEGIN [<EXPRESSION> ';1x END
sYNtax

The CASE expression is the |i teral CASE, followed by an

express i on uh ch must evaluate to a posit ive integer (the case

index), fol lowed by the literals OF and BEGIN, fol lowed by zero or
more expressions each with a semicolon, followed by the | i teral END.

The semicolon after the last expression is optional.

Semantics

Including this expression in MLISP2 remedies an obvious omission
of MLISP; every good language should have a case expressi on. The
MLISP2 version is pretty standard, The expression after the CASE
computes an i nteyer index, and then the corresponding expression
after the BEGIN (counting from cne) is evaluated and returned &asthe

value of the case expression. Using an index greater than the number
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of express i ons wil | result in a run-time error. Using an index less
that or equal to zero uill execute the first case expression (i.e. as
if “CASE 1 OF . . ." had been typed).

Examples

{a) X« CASE 1 OF BEGIN ‘A; ‘B; ‘C END;

X gets. the value A.

(b) CASE IF N=| THEN 2 ELSE 3 OF
BEGIN PRINT “CASE 1"; PRINT “CASE 2”; PRINT “CASE 3";END;

This will print either “CASE 2" or “CASE 3" and return the string

printed as its value. Case 1 wili never be evaluated,
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SECTION 11
<DEFINE>
<PRIMARY> :1= <DEFINE>
<DEFINE> =

::= DEFINE [<DEFINE CLAUSE> /", 1x%

<DEFINE CLAUSE> ::= «<I 0> PREFIX [<TOKN>) [<NUMBER>]
| <ID> <NUMBER> <NUMBER>
| <[D> <TOKN> [<NUMBER> <NUMBER>]

<TOKN> i:= <anyid or any delimiter except or >

Suntax

A DEFINE expression is the literal DEFINE folloued by zero or

more define clauses separated by commas, A DEFINE CLAUSE is either

a. An id, fOlloued bythe literal PREFIX , optionaliy fol lowed by a

tokn and/or a number.

b. An id, folloued by two nunbers.

c. An id, followed by a tokn, optionallyfoll owed by two numbers,

A TOKNis any i d or any de fim i ter except comma “," or semi co | on ";",
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Semantics

MLISPZ"s DEFINE express ion is pretty much | ike MLISP's, al though
it i sslightiy | ess genera l. In MLISP one could define any symbol to
be anyOther =symbol; inMLISPZ onlyIBsmay be given alternate
clef ini tions. For example, in MLISP

DEFINE ; =
is lecjal andmeans "translate all future occurrences of "s"to ";"in
the program.” InMLISP2the first symbol must be an ID. Examp |l e:
DEFINE APFEND e

translates all future occurrences o f @"t o APPEND. The DEFINE

express i onwill be expl ained by exampl es,

(1) DEFINE NOT PREFIX -1888

This defines ROT to be a prefix {(scesectionBl);it defines the

symbol "="t obe an azbbreviation for it; and i t def i nes its binding

nower t 0 be 1308, Anytine "-" occure hereafter, it will e
translatedt o NOT. LikeNMLiosP MNLISPZuses binding pouersto
implement its operator precedcnce  hi erarchy. Binding power s are

explained in the MLISPmanuallBl. 0Onlyright binding powers have to
be defined for prefix operators. Most prefixes have a binding power
of 1888; this is higher than the uinding powero f any infix.

HOwever, one di fference betueenMLISPZ a n d MLISPis that inM_IGF?2



—

rv

—— I_ r——

Section 11 <DEFINE> 59

some prefixes (GO, RETURN, and all the print functions -- PRINT,
PRINTSTR, PRINTTY, PRINl, PRINC, TY0) have a binding power of zero,
This means, effectively, that they take a whole expression gas their
argument, rather than just a primary. Examples:

PRINT CAR A CONS COR B

RETURN A+BxC/D-E
are translated to

(PRINT (CONS (CAR A) (CDR B)))

(RETURN (D] FFERENCE (PLUS A (QUOTIENT (TIMES B CID}IE})

The advantages of defining a function to be a prefix are thatit
may be usecl without parentheses around its argument, and it may be

used with the vector operator "e", For example, since CAR s a

prefix, CAR L, CAR(L},CARe L and CARe(L) are alilegal.

{2) DEFINE CONS 458 480

This defines the left and right binding powers of CONS to be 450
and 400 respectively. MLISPZ uses the same precedence system as
MLISP. The binding powers of any operator can be found in the MLISP
manual, or by exam i ning the proper ty | ist for the indicators &LEFT
and &RIGHT. Then if youwuant to give your operator a higher
precedence, simply define itwith higher binding powers. Operators

Fiithno &LEFT or &RIGHT properties use the values under the atonm
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DEFAULT.

arguments

<DEFINE>

Parentheses may be used to alter

i n any des i red order.

68

the precedence by grouping
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(3) DEFINE APPEND & 450 400

This is just like example (2) above, except that it also defines
“@" to be an abbreviation for APPEND, Actually it defines "e" to be
an infix wuhose translation is APPEND, Any id may be used as an infix
without defining it as such: however, delimiters must be expl ici tly

defined., MLISP2's pre-defined delimi ter infixes are (in their proper

hi erarchy):

x / (TIMES, QUOTIENT)

+ - (PLUS, DIFFERENCE)

@ (APPEND, PRELIST,SUFLIST)

= % < 2 ¢ (EQUAL, NEQUAL, LEQUAL, GEQUAL, MEMBER)
& A (AND)

| v (OR)

The complete operator precedence hierarchy is in the MLISP manual,
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<IDENTIFIER>

<LETTER>

<ID>

<NUMBER>

<INTEGER>

<DIGIT>

<REAL>

<EXPONENT>

<STRING>

<COMMENT>

<NULL>

<DELIMITER>

L}
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SECTION 12

Primitive productiaons

<LETTER> [<LETTER>]| <DIGIT>]*
[AlBl...|Zlalbl...|z|<underbar>|? <any characters]
<any identifier-not marked as a LITERAL>
[<INTEGER>| <REAL> ]

<DIGI T> [<DIGI T>1x

(8111213]415/6]7]8]9]

<INTEGER>"’. <] NTEGER> [<EXPONENT>]
<INTEGER> <EXPONENT>

El+{-]1 <INTEGER>

Wl )
[<any character except % or">]x%""

"% <any characters except %>'%
COMMENT  <any characters except ; or
unpaired Yor %>’

[<blank>|<tab>| <carriage return>|<line feeds>
| <vertical tab> | <formf e e d > | <altmode>)

<any character except letters, digits, nulls or %>
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These lowest level productions are virtually identical to
MLISP's definitions (with one exception), and they are repeated here
mere |y for the sake of reference. The one exception is that the
special characters colon":"and exclamation point"/" are legal
letters in MLISP but not in MLISP2, The only special character that
is considereda letter inMLISPZ i s underbar “_", However, any

special character may be included in identifiers by preceeding them

with the "literally" character: a question mark "?".

IDENTIFIER, NUMBER, STRING and DELIMITER are pretty standard.
But remember that an ordinary variable or function name must be an
ID; that is, it must be an IDENTIFIER which is not marked with the

property LITERAL.
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SECTION 13

Runtime functions

In addition to allthe MLISPruntime functions availableto the

user, MLISPZ adds several functions for dealing with input and for

backtracking.

This function starts th e MLISP2Z parser. It jpitializes all
necessary internal structure and then calls <PROGRAM>. This causes

the current definition 0fPROGRAM to be executed as explained in

section 7. There are several alternatives to the arguments to PARSE:

(PARSE )

This sets the input to the teletype. MLiSP?2 express i ons may now
be typed and evaluated on line. Typing _EOF_ will exit gracefully

from this mode.

(PARSE SOURCE-FILE)

This sets the input to the specified file, MLISP2 expressions

willnow be accepted and evaluated from this file, The file should
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endw i th _EOF_. The source iilemnay have an extension, in whichcase
it should be in the form{nane.ext). Otherwise the filename
shOuld be an atom. If the filename isNIL, then input will be
accepted from the teletype, just asin (PARSE), The source f i lemay
be preceeded by a project/programmerspecificat ion, which should be
in the form (projprog). This is the same convention as for the LISP
1.8 INPUT function. Exanples:

(PARSE F0O0)

(PARSE(FOO,M2))

(PARSE (1 DAV) FCO
(PARSE (1DAV)(FO0.M2))

{(PARSE SOURCE-FILE DEST_FILE)

This sets the input to tiie scurce fi le, and alsosets up g
destination fileonto uhich the translation of the source fileuwill
be printed. Again the input fiiemay have an extension and wmay be
preceeded by a project/programmer specification. | f the source file
isNIL, input willbe accepted from the te letype. The destination
filenamemust be an atom; the transliation is printed onto <name>.LSP

Againeach top- | avel expression in tneprogramis eva | uated as it
i strans | ated., Exampies:

(PARSE FOO EAZ)
(PARSE (10AY)(FOO.112) BAZ)
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(PARSE SOURCE-FILE DEST_FILE NIL)

This is the same as the above case, except that evaluation of
the translated expressions is inhibited. In this mode MLISP2 acts
like a compil erconipil er, translating and printing out the
translation without altering itself. This should be used whenever it
is desired to print out a complete translator. Exampl es:

(PARSE FOO BAZ NIL)
(PARSE (1DAV)(F00.M2) BAZ NIL)

{ PARSE SOURCE-F | LE PEST-FILET)

This is the same as (PARSE SOURCE-FILE DEST_FILE}.
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Ilnput functions

There are five predicates for checking the type of the next
token in the input. These return T if the next token is of the
specified type, NIL otherwise. The input is not changed,

EXPR ISIDENTIFIERQ)
EXPR ISSTRING ()
EXPR | SNUMBER ()

EXPR ISDELIMITERO
EXPR ISSEXPRESSION()

There are five corresponding functions for fetching the next
token in the input, after first checking its type. These return the
token i f i t is of the specified type, otherwise they execute FAILURE
{). The input pointer is advanced over the token.

EXPR IDENTIFIERO
EXPR STRINGO
EXPR NUMBER ()

EXPR DELIMITERO
EXPR SEXPRESSION ()

There are also several functions for manipulating the next token

without regard to its type.

EXPR TOKEN ()

This returns a dotted pair in the form (next-token . type). The

token type is asmall integer betiieend and 4:
8 - identifier type
% - string type
Z = number type
3 - del imi ter type
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4 -sexpressiontype

The inputpointer is advanced over the token.

EXPR PEEK ()

This is the same as TOKEN except that it does not change the

input. It just peeks ahead at the next token,

EXPR NEXT (ATOM!

This is a predicate. Its value is T if the next token jpn the
input is EQ to its argument, otherwise NIL. The input is not

changed.

EXPR PROPERTY (INDICATOR)

This checks if the next token in the input has a property under

the specified indicator. If so, it returns the property, otherwise

NIL. This first checks to make sure the next token is not a number,
. . -
since GET of a number causes an error in LISP 1.56. The input is not

changed.
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Backtracking functions

EXPR FAILURE O

Thi s causes backtracking, as described section 2.

EXPR FLUSHO

This f ushes old contexts out of the system, as described in

section 3. Its value is NIL,

EXPR CONTEXT O

This returns the current backtracking context (a smal |integer).
This is useful in conjunction with the function beiow for

manipulating contexts.

EXPR SET-CONTEXT (ATOM, PROPERTY, i NOI LATOR, CONTEXT)

Thisfunctionmaybe used to change the property | i st of an ataonm
in agiven backtracking context, | f the indicator s VALUE, then the
ef fect is to assign the property-iist variable a valtie in the
specified context. Actually, tne property is changed in all contexts
from the current one back to the specified one. That is to say, i f a

failure occurs, the property change will not be undone wuntil the
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fai lure happens in an earlier context than the specifiedone.
Setting the propertyin context zero willinsure that f4i |ure never

undoes the change. The value ot SET-CONTEXT is the value of the

second argument.
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Qther routines

EXPR ERROR (STRING)

This is the standard MLISPZ error handler. It prints out the
error message whichis its argument on the teletype, then enters the
incore editor. The incore editor, which prints instructions when
cal led, gives the user a chance to correct the input and resume
translating, without having to begin aliover again. After the input
has been corrected, ERROR calls <PROGRAM> again. (This is not the

ideal solution, but it permits recovery from some types of errors.)

EXPR FATAL-ERROR (STRING)

This is for non-recoverable errors. After printing the error

message on the teletype, this returns to the top level of LISP.

EXPR WARNING (STRING, X)

This is just for warning the user about various <conditions. It
prints on the teletype first the string, then the second argument,

then returns the second argument as its value,
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EXPR PRINTTY(X)

This prints i ts argument onto the teletype, no matter what
output file is currently selected. Itdoes not change the selected

output f i le. [ts value is the value of its argument.

FEXPR LAPIN(L)

This justcallsEVAL{'DOSKIN CONS L), Lfter first setting the
input radix to 8 {(octal).  since the radix for numbers in MLISP2 is
10 (decimal) but LAP files {(andsomelLISPfiles)are in octal, s
is often useful. After doing the DSKIN, the input radix is reset to

its old value.
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MLISP incompatibilities

Thinags that worked in MLISP thatuit | not work in MLISP2

The changes that MLISPZ makes to the syntax of MLISP are
primari ly in the form of additions. ?n  genera |, any legal MLISP
EXPRESSION will be accepted by MLiISP2. However, there are afew
MLISP syntactic constructions uhichuil | not be accepted by MLISP2.

These have all been mentionecdsaoove, but are summarized here,

1. A PROGRAM in MLISP is surrounded by a BEGIN-END pair and
terminated wi th a period. InMLISP2 there is no enclosing BEGIN-

END pa i, and _EQOF_ terminates the program.

2. MLISP2’s DEFINE expression is slightly less general thanMLISP’s.

3. Exclamation point"!"and colon":"are not legal letters in
MLISP2. though they are in MLISP, However they may still be
included in ident'i fiers,. as may any special character, by
preceed i ng them withthe "literally" character: a question mark
e,

4. The vector operator"e" miy not be wused with the assignment

operator "«" inMLISPZ,



S



MLISPZ

75
SECTION 15
Appendix
% kxkxkxkxkksk Conplete definition of MLISPZ i n MLISPZ sxoxsxksknsnk %
LEJ PROGRAM (%} =
{{REP 8 M x {<EXECUTED_EXPRESSION>
MEAN NIL: (FLUSHI}} '®_EOF_ 3

LET EXECUTED-EXPRESSION (EX, %) =

{ <EXPRESSION> l#';}

MEAN

IF NULL EX THEN NIL

ELSE BEGIN
IF 2IDEFINE THEN TERFRI PRINT EVAL EX;
IF ?!PRINT THEN PUTOUT (EX, TI;
END:

LET EXPRESSION (P,EX,L) =
{ <PREFIXES> <PRIMARY>

{REP O M x {<INFIX> <PREFIXES> <PRIMARY> }}
}

MEAN
IF P | L THEN HIER{(P CONS EX CONS L, 8) [2] ELSE EX;

LET PRIMARY (X) =
{ {ALT} |
MEAN X123:

LET SIMPEX (B,L)PRIMARY =
{ <BASIC> {REP 8 M x {<QUALIFIER>}}}
MEAN
IF NULL L THEN B
ELSE FOR NEW I IN L DO B « CASE CAR(] « I [1]) OF
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BEGIN
B CONS | ({3];
<'"?&INDEX, 6, 'LIST CONS | [3]>;

<'GET, B, CASE | {3,1]0F

BEGIN <'QUOTE, |1(3,21>;11(3,21; END>;

IF ATOM B THEN

TSETQ(B,1{4), IF 1121 THEN 1 (2,2] ELSE NIL)

ELSE IF | [2) THEN
IF BIl] EQ 'GET THEN
<'SET-CONTEXT, BI[2]),11[4]1,B(37,
102,2]1>

ELSE <'SET_CONTEXT,B, 1041, '"(QUOTE VALUE),

1{2,21>
ELSE IF BI[1]1 EQ 'GET THEN <'PUT, BI2],1{4],BI[31>
ELSE IF BI1IEQ'?&INDEX THEN
<'PROGZ, <'?&REPLACE, B(2],BI(3],

<'SET0,Be« GENSYMO, I{4]>5>,

B>
ELSE <'STORE, B, [4]>;
END:
LET BASIC (x) =
{ {ALT [ID]
| [NUMBER]
[STRING]

I
|  #'' [SEXPRESSION]
. '< <ARGUMENTS> !'>
| ' <EXPRESSION> !")
| #OCTAL [BEGIN NEW [BASE;IBASE«8;SCANNER () ;
RETURN NUMBERO; END]
31
MEAN
IF X{1JEQ 3 THEN <’QUOTE, X[2]>
ELSE IF X {1] EQ 4 THEN <'QUOTE, X[3]>
ELSE IF X[1]1 EQ 5 THEN ‘LIST CONS X (3]
ELSE IF X[1] EQ 6 THEN XI[3]
ELSE IF. X[1] EQ 7 THEN Xt31
ELSE X (2]

LET QUALIFIER (Q) =
H{ALT' { <ARGUMENTS> !}



— 77—

r—r“-

Section 15 Appendix 77

| 'l <ARGUMENTS> !"]
| ', {ALT [IDENTIFIER] | <BASIC>}
- [ {OPT '{ <EXPRESSION> 1] } "«  <EXPRESSION>
MEAN Q;

LET LET (k. ?!PROD, %, PARAM, %, ALT, %, %, SYNTAX, %, 5 PRIMARY =
ULET  LIDENTIFIER]  1°( <PARAMETERGS | NTHCS)
{OPT [IDENTIFIER]) 1'= <LBR> <PATTERN> <RBR>
} I "MEAN <EXPRESSION>'
MEAN
BEGIN NEW ARGS, NARGS, PUSHLIST, LAM, ?!PRQD_ZX{
?!CO0E, ?!FC, ?!LAST,LOC, CONLISJ), GEN. REMOB;
% Make a name for the syntax routine and check'it %
?!PROD?# « SYNAM(?!PROD, ?!PROD.?!PROD?4) :
IF 2 {PROD?4. SUBR THEN NARNING ("PRODUCTION REDEFINED", ?!PROD)
ELSE CHECKDEF (?!PROD) ;
IF 21PROD MEMQ ?!PRODUCTIONS THEN
WARNING ("PRODUCTION MULTIPLY-DEFINED" ?!PROD)
ELSE ?!PRODUCTIONS i@} « ?IPROO CONS ?!PRODUCTIONS;
% Find the number of non-* arguments to semantics routine %
NARGS «3;
FOR NEW P INPARAM DO
IFPI1,1) EQ 1 THEN
BEGIN
ARGS « (IF PI[1,2]1 THEN SPECIALDEC(PI[1,3])
ELSE F[1,31}CONS ARGS;
NARGS «NARGS+1;
PUSHLIST « "PUSH CONS PUSHLIST;
END
ELSE PUSHLIST « NIL CONS PUSHLIST;
% Syntax %
LAFST (? ! PROD?4) ;
EPAT(SYNTAX, NARGS, LENGTH(PARAM), REVERSE (PUSHLIST),
NARGS NEQ 9);
EM1 T(<’JCALL, NARGS, <'E,?PROD>>};
LAPFN (?!PROD?H) ;s
?!PROD.CODE i)« ?!COOE:
IF ALT THEN ADALT(?!PR0OD,?!PROD?#, ALT «ALTI[1],
SYNAM(ALT, ALT.?!PROD?#));
% Semantics %
LAM « <"LAMBDA, REVERSE (ARGS)., SEMANTICS>;
IF ?!DEFINE THEN ?!PROD.EXPR {8} « LAM;
IF 2!PRINT THEN PUTOUT (<’DEFPROP, ?!PROD, LAM, spypp. 15,
PRINTTY ?!PROD; ’ '
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END;

LET PATTERN (L} =

{ (REP i M % |
{OPT " 11
{OPT "4t
{ALT [IDENTIFIER]
| ' [TOKEN]
| ‘'< [IDENTIFIERI I'>
| 'l <EXPRESSION> ]
| <LBR> <META> <RBR>
PhYol
MEAN L:
LETMETA(X) =

[{ALT "R EP [NUMBER] {ALT ([NUMBER} | "MP  {OPT "xi
<LBR> <PATTERN> <RBR> {OPT <PATTERN>!

|  'OPT <PATTERN>
|  C'ALT {REP 0 M % (<PATTERN>} |}

LET BEGIN (%, YARS,EXS, *) PRIMARY =
{ BEGIN <DECLARATIONS> <EXPRESSIONS> !END
MEAN
'PROG CONS VARS CONS EXS;

{ IF <EXPRESSION> ! THEN {REP 1 M % {<EXPRESSION>} ALSO!}

{OPTE L S E{REP 1 I x {<EXPRESSION>} ALSO}}

MEAN
'‘COND CONS (EI CONS MAPCAR{’CAR,E2})

CONS (IF -E3 THEN NIL
ELSE IF -CDR(E3 «E3(2])& -ATOM E3(1,1]

&E3(1,1,11 EQ 'COND THEN COAAR E3
ELSE <'T CONS MAPCAR('CAR,E3)>);
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LET FOR (L,D,EX,BE} PRIMARY =
{ {REP 1 M x
{ FOR {0OPT NEWt I [ID)
{ALT "IN <EXPRESSION>
| '"ON <EXPRESSION>
| e <EXPRESSI0ON> ITO <EXPRESSION>
{OPT BY <EXPRESSION>1
bl

' {ALT DO|COLLECT|"; UIDI} <EXPRESSION>

{OPT  {ALT WHILEJUNTIL}  <EXPRESSION>)
}

MEAN
<"?&FOR, <"QUOTE, MAPCAR(FUNCTION(LAMBDA (I): <
IF I [2] THEN "NEW ELSE "OLD, "
13,21,
(1 « 1 [4)) 121,
iIF 1 [11 EQ 3 THEN
<"?&RANGE, 1 (3], 1151,
IF 1 (6] THEN 1 [6,2) ELSE 1>
ELSE I (3]}>), Lb,
<"QUOTE, CASE DI[2.1] OF"
BEGIN "PROG2; "APPEND; D(2,3]; END>,
<"QUOTE, EX>,
<'QUGTE, IF BE THEN
IF BE{1,1] EQ 1 THEN <'NOT, BE (21>
ELSE BE (2]
ELSE NIL>>;

LET WHILE (W,BE,D,EX) PRIMARY =
{ {ALT WHILE|UNTIL} <EXPRESSION>
! {ALT DO|COLLECT} <EXPRESSION>

MEAN
<" 78WHILE,
<"QUOTE, IF 0I[2,11 EQ ! THEN ’'PROG2 ELSE "APPEND>,
1

<"QUOTE, IF ¥[1) EQ 1 THEN BE ELSE <*NOT, BE>>,
<"QUOTE, Ex»»:

LET DO (D,EX,W,BE) PRIMARY =
{ {ALT DO|COLLECT} <EXPRESSION>
! {ALT WHILEJUNTILt  <EXPRESSION>

MEAN
<'?800, <"QUOTE, IF O(1] EQ 1 THEN "PROG2 ELSE "APPEND>,

739
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<"QUOTE, EX>,
<"QUOTE, IF WI[2,1} EC 1 THEN <'NOT, BE> ELSE BE>>;

LET FNDEF (TYP,NAME,LAM} PRIMARY =
{ [FUNCTION_TYPE) [ID] <LAMBDA-BODY> }
MEAN
BEGIN
CHECKDEF (NAME) ;
IFTYP EQ "LEXPR THEN
IF LENGTH(LAM[2] ) EQ 1 THEN
LAM « <"LAMBDA, LAMI[Z,11, LAMI[3]>
ALSO TYP - "EXPR
ELSE ERROR ("LEXPRS MUST TAKE ONE FORMAL ARGUMENT™);
IF 2IDEFINE THEN NAME. (TYP) {3} « LAM;
IF 2'PRINT THEN PUTOUT (<’ DEFPROP, NAME, LAM, TYP>, T);
PRINTTY NAME;
END:

LET LAMBDA (x,LAM,ARGS) PRIMARY =
{ LAMBDA <LAMBDA-BODY> {0PT '; ' ( <ARGUMENTS> !’') }}
MEAN
IF ARGS THEN LAM CONS ARGS (3] ELSE LAM:

LET CASE (x,EX,%,x,EXS,x) PRIMARY =
{ CASE <EXPRESS ION> IOF 1IBEGIN <EXPRESSIONS> TEND }
MEAN
BEGIN NEW LABELS, L, LAB:
FOR NEW E IN EXS DO
PROGZ ( LABELS « (LAB ~ GENSYM({)}) CONS LABELS,
L « <"RETURN, E> CONS LAB CONS L};
RETURN "PROG CONS NIL
CONS <'GO, <“?&INDEX, <"QUOTE, REVERSE LABELS>,
<"LIST, EX>>>
CONS REVERSE (L} ;
END:

LET INLINE (x,L) PRIMARY =
{ #INLINE ([SEXPR_LIST] I
MEAN
BEGIN NEW GEN, CDNLIST, LOC, REMDB, FN;
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LET SELEC

s

CHECKDEF (FN « LI[1,21);
IF ?IDEFINE THEN
BEGIN
GEN « GENSYMO; CONLIST « <NIL>: LOC « BPORG;
FOR NEW 1IN CDR L DO
IF ATOM | THEN | &DEFSYM(I,LOC)
ELSE DEPOSIT(LOC,GWD (1)) ALSO UPLOCO;
DEFSYM(GEN, LOC):
FOR NEW | IN CORCONLIST DO
PROG2 (DEPOSIT(LOC, GWD(I)), UPLOC());
FN. (L{1,311{@} « NUMVAL (BPORG);
BPORG « LOC;
END:
IF 2IPRINT THEN
OQUTC(T,NIL) ALSO BASE4 ALSO TERPRI MAPC(’PRINT,L)
ALSO BASE40 ALSO OUTC(NIL,NIL);

PRINTTY FN;
END:
T (x, VALFN, x,DOMAIN, SUCFN, TCOND, TERFN) PRIMARY =
{SELECT{0OPT<EXPRESSION>t
FROM {ALT[ID]’: <EXPRESSION> |<EXPRESSION>}
{OPT SUCCESSOR <EAFRESSION>}
{OPT UNLESS <EXPRESSION>}

{OPT FINALLY <EXPRESSION>}

MEAN

BEGIN NEW VAR:

CASE DOMAINILIOF
BEGIN
PROG2 (VAR « <DOMAINIZ]>,DOMAIN «DOMAINI(4])
IF VALFN | SUCFN | TCOND | TERFN THEN

ERRCR ("VARIABLE NEEDED IN SELECT EXPRESSION")

ELSE VAR «<INTERNGENSYM{)> ALSO DOMAIN ~DOMAINI[Z2];
END;

RETURN <'?8SLCT, DOMAIN,
IF VALFN THEN <'FUNCTION, <'LAMBDA, VAR, VALFNI[1]l>>
ELSE '(QUOTE CAR),
IF SUCFN THEN <'FUNCTION, <'LAMBDA, VAR, SUCFNI[2]>>
ELSE '(QUOTE COR),
IF TCOND THEN <'FUNCTION, <'LAMBDA, VAR,TCONDI[2]>>
ELSE '(QUOTE NULL),
IF TERFN THEN <'FUNCTION, <'LAMBDA, VAR, TERFNI[2]1>>
ELSE ' (QUOTE FAILURE) >;

END;
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LET RECOMPILE (%,FNS, %, |[FILE,PPN,OFILE) PRIMARY =
{ RECOMPILE (REP 1 M {[IDENTIFIERI}*,}
"IN <FILE> {OPT * [ [TOKEN) ', [TOKEN) 1’71 }
{OPT 'TO <FILE> !
}
MEAN
BEGIN NEW NFNS, N, ?!PRODUCTIONS, 21PRINT, ?!DEFINE;
IF OFILE THEN
IF -='PPRINT.SUBRTHEN
ERR PRINTSTR TERPRI
"USE MLISP2.PRI FOR PRINTING"
ELSE QUTFILE (’DSK?:,
IF ATOM OFILE « OFILE([2]} THEN OFILE
ELSE CAR OFILE,
IF ATOM OFILE THEN NIL ELSE CDR OFILE)
ALSO ?'PRINT « T ALSO ?!DEFINE« NIL
ELSE ?!PRINT « NIL ALSO ?!DEFINE« T:

FNS « MAPCAR('CAR, FNS); % List of fns to reconipile%

NFNS «LENGTH{FNS}; %“# of fns to reconipi le%

N -« 0 %4 of fns conipi led so far %

EVAL <'INPUT, IF PPN THEN <PPN[2,11, PPN[4,1)> ELSE 'DSK?:,
[FILE>;

INC(T, NIL);

UNTIL N EQ NFNS DO

BEGIN NEW XI, X2, TX1,TXZ;

IF ((TX1«SCAN()YEQ?!IDTYPE
& (Xi « INTERN SCNVAL) MEMQ

'(LET EXPR FEXPR LEXPR MACRO)

& (TX2 ~ SCAN()) EQ ?2IIDTYPE
& (X2 « INTERN SCNVAL } MEMQ FNS)

[ (X1 E Q '"INLINE
& (X2 « SREAD ()21 MEMQ FNS
§&§ TX2 « ?!SEXPTYPE)

|{X1 EQ 'SPECIAL
& (TX2 ~ SCAN{)) EQ 2! IDTYPE
6 x2 « INTERN SCNVAL) THEN
BEGIN
% s ettoken stack to contain only Xl and X2 %
SET-TOKENS (X1,TX1, X2, TX2);
%Pares an <EXPRESSION> %
EXPRESSICM?H( J
TF NEXT {* 73 THEN FLUSHQO
ELSE ERROR"| LLEGAL EXPRESSION RECOMPILED");
IF XI NEG'SPECIAL THEN N «N+1;
END

ELSE SKIP-TO-SEMI (NiL);
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END;
INCINIL, T);

TERPR] TERPRI IF ?!PRINT THEN FINISH-PRINTINGO:

END;

LET DEFINE (x,L) PRIMARY =

{ OEFINE {REP 1 M %!
EIDENTIFIERI
{ALT '"PREF I X {OPTITOK]}
| [INUMBER] 1 [NUMBERI]
[ [TOK]{OPT [NUMBER]
R U
MEAN

FORNEW I IN L DO
CASE i [2,110F
BEGIN

BEGIN

I [11.?28PREFIX {0}

I ill. 28RIGHT {3}
IF 1 (2,4]

IF 1({2,3) THEN

I 12,3,1

END;
BEGIN

{OPT [NUMBERI}
I [INUMBER] }

[l s

-
THEN 1 (2,4,1] ELSE 1000;

C78PREFIX{BY« | (11

I [1).?28LEFT (Bt « 112,2];

I [1].?8RIGHT {8} «
END:

BEGIN

1{2,3,2];

[
I (2,20 78INFIX{BY « 1111,

IF 112,31 THEN

I [11.728LEFT {8} « 1 (2,3,1]
ALSO 1 [1].?&RIGHT {8} « | [2,3,2,2];

END;

END;

LET COMMENT (%) PRIMARY =
{ COMMENT [SKIP-TO-SEMI (7)1}
MEAN NIL:
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LET SPECIALS (%,L) PRIMARY =
{ SPECIAL <IDLIST> 1
MEAN
MAPC (" SPECTALDEC, L);

LET LAMBDA-BODY {x,VARS,PVARS, %, x,EX)=
J1" (<VARIABLES> {OPT’:<VARIABLES>}!’)I’; <EXPRESSION>}
MEAN
<"LAMBDA. VARS,
IF PVARS THEN <'PROG,PVARSI[2], <'RETURN, EX>>
ELSE EX>;

LET DECLARATIONS (L) =
f{REP 0 Mx{{ALT NEW | SPECIALL  <IDLIST> 1’y 1} 1}
MEAN
FOR NEW I IN L COLLECT
IF101,1) EQ 1 THEN | [2]
ELSEMAPC('SPECIALDEC, 112]1);

LET EXPRESSIONS (L) =
{ {REP O M x {<EXPRESSION>!’;  [FLUSHI} }
MEAN
MAPCAR ("CAR, L),

L E TIDLIST(L) =
{ {REP 8 M x {[10)} ",1 1}
MEAN
MAPCAR (" CAR, L):

LET VARIABLES {L)=
I{REP O M % {{OPT SPECIAL) (IDl} ’,} }
MEAN
MAPCAR (FUNCTION {LAMBDA (X);
IF CAR X THEN SPECIALDEC(XI[2])Y ELSE X[2]},L);
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LET

LET

LET

LET

LET

LET

(0.]
(¢2]

PARAMETERS (L) =
{ {REP 1 M x {({ALT {OPT SPECIAL] [ID) | 'x}} *,1 }
MEAN L

ARGUMENTS (L) =
{ 1REP 8 M x {<EXPRESSIOUN>! bl
MEAN
MAPCAR('CAR., L};

PREFIXES (L)} =
{ {fREP g M { [PREFIX] ({OPT 'e}@ 11 1
MEAN
REVERSE (L)

INFIX (L) = |
{ LINFIX1] 1OPT ol }
MEAN L;

FILE (NAM, EXT =
{ [TOKENI] OPT . [TOKENI} '}
MEAN
IF EXT THENW NAMIL] CONS EXTI[Z,11 ELSE NAMI1];

LBR (%} =
{{ALT 0 T 0 % ( may pbe used instead of “{" %
MEAN NIL;

RBR (x) =
{HLALT 8 ] ) 1 % "}" may be used instead of "}" %
MEAN NIL:
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« 11, 18, 59, 73

_EOF_ 11, 12, B4, 65,
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B o ] [nle] ~ e
. “6! S 0L, o0

x 23, 26, 27, 28, 37, 38 39

20
3, 73
2 63, 73
ALTerddk 253,337 225 35 333,445 45 46 47, 50

, 3 . 38,

backEtFacking cont3xt4. 5. g 7, 3, 18, 2

Backtracking functionsgg

BASIC 4,

69
15, 16, 18, 19

b i nding power 58, 59

CASE 55,
context
CONTEXT
context

56
8, 18,69, 78
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number 7, 8
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context sensitive 34, 45
curren t context §&

debugging 13, 24, 54

decision point §,7, 39, 42, 43, 46, 47, 51
DEFINE 11, 57, 58, 73

DELIMITER 63, &7

0oT 3, 17, 18, 28

ERROR 71

EXPR 54

EXPRESSION 4, 11, 13, 19, 73
extensibility 3, 4, 24,2

extensible language 13, 14, 25 25
extens 1 b I e produc t ion 13, 15, 18, 25, 46

FallURE 7, 8, 38, 39, 42, 43, 47, 51, 52’ 63 70

FATAL-ERROR, 71 34, 49, 51, 52, 67, B9

FEXPR 54
FLUSH &, 63

GET 28

ID 11, 16, 23, 58, 63
IDENTIFIER 63, 67

incore editor 71
incremental 12, 13, 14, 324,
i ncrementa | state vector- 8§
infix 11, 58, bl
inlineexpression 23, 30, 31, 34, 35
ISDELIMITER 67

ISIDENTIFIER 67

I SNUMBER 67

JSSEXPRESSION 67

ISSTRING 67

- i End
25, 28

LAPIN 72

legal letter 3
LET 3, 4, 23, 24, 26, 27 29, 54
LET variables 23, 26, 27: 23
LEXPR 54
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LISP 2

LISP70 1, 2

list-processing 2, 3

LITERAL 12, 16, 23, 33, 46, 63

1 37, 38, 40

MACHO 54

ma j or changes 3, 15

MEAN 23, I8

meta expression 24. 25, 30, 35, 44,
minor changes 3, 12,15

MLIisP 2, 3, 19, 73

50

MLISPZ 1, 2, 3, 4, 12, 13, 15, 44, 45,

NEXT 68
nonterminal 23, 30, 31, 33
NUMBER 63, 67

operator precedence hierarchy 58, 61
OPT 24, 31, 35, 36, 42, 43, 50

PARSE 64, 65, 66

PATTERN 2%

pattern matcher 5, 24, 26, 34
pattern matching 1, 3, 30, 34, 44
PEEK 68

prefix 11, 58, 53

PREFIX 57

PRINMARY 4, 11, 13, 15, 16, 19, 45, 46

PRINTTY 72
production 4, 13, 14, 23, 24, 25, 26,

PROPERTY 68
PUTFROP 20

QUALIFIER 17, 18, 20

RECOMPILE 3, 14, 53, 54

REP 24, 31, 35, 37, 38, 39, 40, 42,
repetition control numbers 37
runtime functions GB&

33,
PROGRAM 4, 11, 12, 13, 14, 19, 24, 64, 73
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SELECT 3, 4, 5, 49, 50, 51
semantics 23, 26, 27, 28, 29
separators 37, 39, 40
SET-CONTEXT 69, 70
SEXPRESSION 67

SIMPEX 4, 16, 17, 18, 19
state of a conmputation 6
state vector 6, 7

STRING 63, 67

SUCCESS 7

syntax 23, 25, 26, 27, 30, 35, 37, 42, 44
33, 34, 35, 50

syntax description language 30, 31,

TOKEN 67, 68
token type 67
translator writing 2, 13, 24

vector operator 11, 18, 59, 73
vectors 11

WARNING 71
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