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Qpen, Cosed, and M xed Networks of Queues
with Different COasses of Custoners

Richard R Mintz
University of California at Los Angeles
los Angeles, California
Forest Baskett

Stanford University
Stanford, California

ABSTRACT

We derive the joint equilibrium distribution of queue sizes in a
network of queues containing N service centers and R classes of custoners.
The equilibrium state probabilities have the general form

P(S) = cd(S) fl(xl)fg(xe)...fN(xN)
where S is the state of the system X.. is the configuration of custoners at

the ith service center, d(S) is a function of the state of the nodel, fI IS

a function that depends on the type of the ith service center, and cis a

normal i zing constant. W consider four types of service centers to nodel central

processors, data channels, termnals, and routing delays. The queueing disci-

plines associated with these service centers include first-cone-first-served,

processor sharing, no queueing, and |ast-come-first-served. Each custoner
belongs to a single class of customers while awaiting or receiving service

at a service center but may change classes and service centers according to
fixed probabilities at the conpletion of a service request. For open networks
we consider state dependent arrival processes. Cosed networks are those wth
no arrivals. A network may be closed with respect to some classes of

customers and open with respect to other classes of custoners. At three of



the four types of service centers, the service times of custoners are
governed by probability distributions having rational Laplace transforns,
different classes of customers having different distributions. At first-
come-first-served type service centers the service time distribution mnust
be identical and exponential for all classes of customers. Many of the
network results of Jackson on arrival and service rate dependencies, of
Posner and Bernholtz on different classes of customers, and of Chandy on
different types of service centers are conbined and extended in this paper.
The results become special cases of the nodel presented here. An exanple
shows how different classes of customers can affect nodels of conputer
syst ens.

Finally, we show that an equival ent nodel enconpassing all of the
results involves only classes of customers with identical exponentially
distributed service times. Al of the other structure of the first node
can be absorbed into the fixed probabilities governing the change of class

and change of service center of each class of custoners.
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| ntroduction

Net wor ks of queues are inportant nodels of nultiprogrammed and time-
shared conputer systems. Work on this application in the last severa
years has produced a variety of nodels neant to capture inportant aspects
of conputer systens. The results of this paper unify and extend a number
of those separate results in a single nodel. The principal contribution of

the paper is to conbine recent results on networks of queues of severa

different service disciplines and a broad class of service tine distributions

with earlier results on networks of queues containing different classes of
custoners. W derive the equilibrium state probabilities for the genera
model . The technique of analysis uses Wittle' s concept of independent

bal ance [16,17]. From the conplete equilibrium distribution of states of
the nodel, we derive several l|ess conplex descriptions of the steady state
performance of the nodel. In the case of certain open networks, we obtain
some particularly simple fornulas giving the marginal distribution of cus-
tomers at a service center of the network.

The model is notivated by the conception of a conputer system as a
network of processors (CPUs, |/0O processors, ternminals) and a collection of
custoners (jobs, tasks). The processors are grouped in equival ence classes
called service centers and the customers may enter the system from the
outside, pass from service center to service center conpeting for the
processing resources of a service center with the other customers at that
center, and eventually leave the system Different service centers may
have different scheduling capabilities and different processing resources.
Different customers may have different routes through the network and nake
different demands at a given service center. Customers may change from one

class to another when changing service centers. Such a nodel can represent



several levels of detail in the operation of conputer systens, from the
job submissions or user |ogons, through the requests of jobs for

individual 1/0O transfers or conputing bursts, to the requests of processors
for cycles of a shared nenory. W present one exanple at the niddle |eve
of detail.

Several special cases of the nodel we consider have been studied in
the literature. A good survey of the analysis of queueing networks in
general and queueing nodels of conputer systems in particular is given by
Buzen [3]. Jackson [11] and Gordon and Newel | [107] devel op the equilibrium
distribution of states of a class of general networks. In particular,
CGordon and Newel | make clear the product form of the solution of the
bal ance equations describing the steady state of the mobdel. Qur solution
has this product form In these mbdel s the service centers can be
connected in any arbitrary fashion. A customer |eaving a service center
sinmply chooses the next service center according to a fixed set of branching
probabilities for the center being left. Jackson's nodel also allows for
the arrival and departure of custoners from outside the system  These
networks suffer fromtwo principal limtations as nodels of conputer
syst ems: (1) all the custoners are identical; they all follow the sane
rules of behavior, and (2) all the service tine distributions are exponential.
These limtations have been attacked by a nunber of authors. W summarize
their results in the remainder of this introduction. The body of the paper
presents the general model for which the nodels discussed bel ow are specia

cases.
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Ferdi nand [9] analyzed a particular system which allowed different
cl asses of custoners. The system was a cyclic nodel with two service
centers. The nodel is frequently called the finite source nodel or the
machi ne repairnman nodel. One service center consists of a sufficient
nunber of servers so that no queueing occurs. The other service center is
a single server. There is a fixed nunber of custoners, each of which is
characterized by its own pair of exponentially distributed service tines,
one for each service center. The single server is characterized by
processor sharing scheduling in which all waiting customers are processing
simul taneously, but at a rate reduced by a factor of I/n if n customers are
requiring service. Hs solution for the equilibrium distribution of states
has the product form H's nodel is a special case of our nodel having two
service centers, one of a processor sharing type and one of a no queueing
type and exponentially distributed service times for the different classes
of custoners.

Posner and Bernholtz [1L] consider the nore general network nodel of
Cordon and Newell in which each customer has its own set of branching
probabilities, its own set of exponentially distributed service tines, and
its own generally distributed travel time to a particular service center
for each service center in the network. \Wen different custoners have
different service time distributions at a service center with queueing,
processor sharing scheduling is used at that service center. Their node
is a special case of our nodel in that only FCFS and processor sharing
types of centers are allowed, the network is closed, and only exponentially
distributed service times for the different classes of custoners are allowed.

Processor sharing scheduling has been investigated in mbdels of

computer systens as the limt of overhead free round-robin scheduling.
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The mathematical form of the equations solved by Ferdinand and by Posner

and Bernholtz is the form obtained for processor sharing scheduling although
neither of the papers clearly identifies the type of processor scheduling
being used. Sakata, Noguchi, and G zum [15] discovered that when

processor sharing scheduling was applied to the classical infinite source
queuei ng model (denoted M GI1), the equilibrium distribution of queue sizes
for the mbdel was the same as that for a similar nodel with exponentially
distributed service tines (denoted w/M/1) with the sanme nean as the origina
general distribution. Their nodel is not a special case of the model studied
here but can be obtained fromit by a limting argunent. Baskett [1] derived

a simlar result for a finite source nmodel in which the service tine

distributions at both service centers have rational Laplace transforns and Baskett

and Pal aci os [2] extended that result to another network nodel which Buzen [3]
has studied and called the central server model. The equilibrium solutions
have the product form The nodels include FCFS, processor sharing, and no

queuei ng types of service centers and service time distributions with rationa

transforms but only linmted closed structure and only a single class of customers.

Wiittle [16,17] showed that the bal ance equations describing inter-
connected birth and death processes could be replaced by sets of "independent”
bal ance equations and that solutions for these independent sets are solutions
for the original equations. Chandy [4,5] showed that this technique could be
applied to nore complex nodels and with it he easily extended and generalized
earlier results on nodels with rational service tines. Chandy calls these
i ndependent sets of equations the equations of |ocal balance and we follow
his ternminology, The equations of |ocal balance can be witten down directly
for such nodels and they are nuch easier to manipulate and to solve for those

nmodel s to which they apply. Using this technique, Chandy greatly extended
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the range of networks for which product form solutions can be found. In the
termnol ogy of this paper, Chandy devel oped the solution for networks in
which the service center is of FCFS, processor sharing, or LCFS type and

in which all customers are the same. The results in this paper generalize
his results to include service centers of no queueing type and different
classes of customers. Palacios [13] i ndependently devel oped sol utions for

a particular network with "types" of customers. Chandy, Keller, and Browne
6] then extended the concept of customer "type" and added the concept of
custoner "mode" for general networks. These concepts can be shown to be

equivalent to our classes of custoners where custoners may change classes.

The next section describes the nodel and the four types of service
centers. Then we discuss distributions with rational Laplace transforns.
Next is the notation used to indicate the state of the nodel, a discussion
of local balance, and the derivation of the relative frequency with which
each class of custonmers visits each service center. W then give the
functional form of the equilibrium state probabilities for the nmodel. This
gives a steady state description of the nodel in nore detail than we
normal |y need. The next section devel ops equilibrium probabilities for
conposite states of the nodel. For open nodels, we obtain a closed form
expression for the normalizing constant in the solution and sone especially
simple fornulas for the marginal distribution of custoners at each service
center. \We present nunerical results froma closed model with two classes
of customers to indicate the significance of different classes of custoners.
Finally we present an equivalent nodel in which all classes of custoners
have the sane service tine distribution at each service center and all these

distributions are exponential




The Mbde

The class of systenms under consideration contain an arbitrary but
finite nunber N, of service centers. There is an arbitrary but finite
nunber R, of different classes of custonmers. Custoners travel through the
network and change class according to transition probabilities. Thus a
custonmer of class r which conpletes service at service center i will next
require service at center j in class s with a certain probability denoted
Pi,r;j,s' Both open and closed networks will be treated. The transition
matrix P = [pi’r;j’sj defines a Markov chain where the states are |abeled
by the pairs (i,r). This Markov chain is assumed to be deconposable into

irreduci bl e ergodic subchains. Let E ,E oE be the sets of states in

22
each of these subchains. Let n, be the nunber of custoners of class r at

service center i. Let Zi (n, r) = M(E,). Then in a closed system
(ir)eg, *? J
J
M(Ej) = const ant 1<j<m

In an open system custoners may arrive to the network from an externa
source. Two general types of state dependent arrival processes are
consi der ed. In the first case the total arrival rate to the network is
Poisson with nmean rate dependent on the total nunmber of customers in the
network. Thus for a state S of the nodel let MS) be the total nunber of
customers in the network and A(M(S)) be the instantaneous nmean arriva
rate. An arrival enters service station i in class r with a fixed
probability (not state dependent) given by 4,

In the second type of arrival process there are m Poisson arriva
streams corresponding to the m subchains defined above. The instantaneous
mean arrival rate for the jth streamis assunmed to be a function of M(Ej),

xj(M(Ej)). An arrival in the jth stream has probability a4, of entering



service station i in class r and 4, = Oif (i,r) # Eg' In an open network,
a customer of type r which completes service at center i nay |eave the

system This occurs with probability

1<j<N
1<s<R

A service center will be referred to as type 1, 2, 3or 4 according to

which condition it satisfies.

Condition 1. There is a single server at a service center, the
service discipline is FCFS, all customers have the sane service
time distribution at this service center, and the service tine
distribution is a negative exponential with paraneter u(n), a
function of the instantaneous queue size, n, at the server.

Condition 2: There is a single server at a service center, the
service discipline is processor sharing (i.e. when there are n
custonmers in the service center each is receiving service at a
rate of |/n sec./sec.), and each class of custoner nmay have a
distinct service time distribution. The service time
distributions have rational Laplace Transforns.

Condition 3. The nunber of servers in the service center is greater
than or equal to the maxi mum nunber of customers that can be
queued at this center in a feasible state and each class of
customer may have a distinct service time distribution. The
service time distributions have rational Laplace Transforns.

Condition 4: There is a single server at a service station, the
queueing discipline is preenptive-resume LCFS, and each class of
customer may have a distinct service tine distribution. The

service time distributions have rational Laplace Transforns.

_7_



A type one service center with nore than one server is equivalent to a type
one service center with one server and suitably chosen service rates
depending on the nunmber of custoners at the server. W denote the service
rate at service center i as “i(j) when the center is type one and |

custonmers are awaiting or receiving service at that center.
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Representation of Service Time Distributions

with Rational Laplace Transforns

The requirenent that a service time distribution have a rationa
Laplace Transformis not very restrictive. Exponential, hyperexponentia
and hypoexponential distributions all have rational Laplace Transforns.
Cox [12] has shown that any such distribution can be represented by a
network of exponential stages of the formillustrated in Fig. 1. For

conveni ence, we have elimnated the case in which there is a non-zero

probability of a zero length service tine.

Fig. 1

In this figure, b, is the probability that the customer |eaves after

the i I

stage and a, (=1—bi) is the probability that the customer goes to
the next stage. Gven that a custoner reaches the ith stage the service
time in this stage has a negative exponential distribution with nean VT
Since the service tine distribution for a stage is exponential, when
describing the state of the network of service stations it is not necessary

to know the exact ampunt of service a customer has received at a service

center; the stage of service is sufficient.



The States of the Mde

The state of the nodel is represented by a vector (xl,xg,...,xN) wher e
Xy represents the conditions prevailing at service center i. The inter-
pretation of X, depends on the type of service center i.

If service center i is of type 1 then

% = KXo e z@'Xini)

wher e n, is the nunber of custonmers at center i and ga.(l <j sny,

. .. th . .
1< x R is the class of custonmer who is j in FCFS order. The first
custonmer is served while the remainder are waiting for service

If service center i is of type 2 or 3 then

v

x; = (VipsVipreeesVyp)

1
where v, is a vector (m, ,m m ). The ptn conponent of v. . is the
ir 1r’ " 2r’ """y, r’° ir

. o . th .
number of customers of class r in center i and in the £  stage of service
U, is the nunber of stages for a class r custoner at service center i

|f service center i is of type 4 then

x; = ((rl,ml),(re,mE),...,(rni,mni))
wher e ny is the nunber of customers at center i and (?I’Wr) is apair
describing the jth customer in LCFS order. rs is the class of this
custoner and mJ is the stage of service this customer is in.

For any network of reasonable size, the expression for a state of the
network is long and tedious to wite. Witing expressions for the balance
equations to find the equilibrium state probabilities is an arduous task.

Even to check that a given solution is correct is time consum ng
The solution for the class of networks described here was arrived at by

using the technique of local balance. This technique is briefly described

helow.
- 10 -
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A solution for the equilibrium state probabilities must satisfy the

bal ance equations for the system That is

vV states, S. Z P(s,)[rate of flow froms, to S.] =
' 1 J i
all states
Sj P(Si)[rate of flow out of s,]

In [4], Chandy terns these the global balance equations. He defines
anot her type of balance equation which he calls the local balance equations.
Informally, a local balance equation equates the rate of flow into a state
by a customer entering a stage of service to the flow out of that state
due to a customer leaving that stage of service. V& associate a customer
with a stage of service in the following ways. |f the customer is in
service at a service center, then he is in one of the stages of his service
time distribution at that service center. If the custoner is queued at a
service center, then he is in the stage of his service time distribution he
will enter when next given service. For FCFS this will be stage 1 and for
LCFS this will be the stage the custoner was in when |ast preenpted.

The local balance equations are sufficient conditions for gl obal
bal ance, but they are not necessary. Local balance requires that each term
on the right-hand side of a global balance equation be equal to 4 particular
subset of terns on the |left-hand side of that global balance equation.

To illustrate the concept of |ocal balance we consider the relatively
sinmple network nodel in Fig. 2.

This is a closed network with two classes of custoners (which we refer

to as class 1 and class 2). There are N, class 1 custoners and N, class 2

2

customers in the networks. Al service tinmes are exponentially distributed

and —— (i = 1,2, r = 1,2) is the nean service tinme for a class r custoner
ir

at service center i.

- 11 -
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service
p Po1:1,1 P
2,2;1,2 r 1,2;2,2
P1,1;2,1
H11 | Type 3
servi ce
H12
P11;1,1
Fig. 2
In this example =P =p =1, p +
n P pl,m,,2 2 pqrp - 121,10 T 7 P11,

P1,152,1 = 1

Let n, be the nunber of class r custoners at service center i.

J

convenience we wite the global and local balance equations only for
states in which n,  >0,1 = 1,2, r = 1,2.

G obal Bal ance Equation

21

n__+1
P(n, -1,n,,,0,.+1,n )| ————=\p
11 127721 22 n21+n22+1 21

+

P(ny 41,005,000 =1,055) (n3+1) pyy Pygop g

P(nll’n12’n21’n22) B33 M1 Pr,101,1

+

P I P

22

n,+1
P(n, ,n .~l,n__,n_ _+1){——————}pu
11’712 21’22 n21+n22+1 22

+
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nll’nl2’n21’n2é>[nll Hiq

Local Bal ance Equati ons:

) . ( ( ngl’!l

1.1 P(n. _-1.n n _+1.n Me———m—

B 11 7212’21t e H
22 \n21+n22+1 21

- P -
(Ryyomypsngsnps) Byg by P1,151,1 = PORypsfyoefopsiooing g gy

_|.
n22 1

1.2 P/ -1 —_ =
/ o8y ’nzl’“22+1)<;21+n22+1>“22 P(n11’n12’n21’“22)“12 Hio

2.1} P(n 1+1,N 1

1 1227217 Lo o) (ny Ly P1,1;2,1 7

n
P(nll’n12’n21’n22)(___gl_;§“91
Moy op/ =

n
L , o2
\2.2) P(nyysnypt1,my),n,0-1) (0 41 )0y, = P‘nll’n12’n21'n22><;21+nzé>“22

Since all the service time distributions in this exanple are

exponential the current stage of service of a custoner is uniquely defined

by the custoner's class and the current service center. |[ocal bal ance
equation (i.r) for i =1,2, r =1,2 equates the rate of flow out of state
(nll’n12’n21’n22) due to a class r custoner |eaving service center i wth

the rate of flow into state due to a class r custoner

(Ny30 ypstprnzp)
entering service center i

As in this example it is generally true that each global balance
equation is the sum of a subset of the local balance equations. Thus a
solution for the local balance equations is automatically a solution to the

gl obal bal ance equati ons. In nmany cases the |ocal balance equations are

inconsistent and therefore have no solution. For exanple if there is FCFS

- 13 -



scheduling at a service center and different classes of custonmer have
different service time distributions the |ocal balance equations are
i nconsi stent.

The value of the local balance concept is that (1) it leads to a
sinpler and more organi zed search for solutions for equilibrium state
probabilities and (2) it works for a large nunber of cases (in fact for
virtually all of the closed form solutions known for general classes of
networks of queues--although not nmany interesting cases have known sol utions).

Before presenting the solution to the class of networks described, we
define a set of terms that appear in the solution.

For a customer of class r, et {eir, 1<i <N beasolutionto the

following set of equations.

ﬁ; e +d

P £ . . = e_
1§SN ir 1,r;J,s Js Js

The val ue of djs is determined by the arrival process of custoners of class

s to service center j. If there are no such arrivals from outside the
system then d, = 0. If there are such arrivals then d. =gq. . In a
Js js js

cl osed systemthere are no arrivals to any center and all the d.JS are zero.
In this case Ch is the relative frequency of visits to service center i by
custoners of class r.

Note that a system nay be "open' w.th respect to sonme classes of
customers and "closed' with respect to other classes of customers. Qur
solution applies to this class of system

One further definition is required. [f at the ith service center the

oth class of custonmers has a service time distribution that is represented

as a network of stages then this is represented as illustrated in Figure 3.

- 1 -
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Liru,
. 1T

Fig. 3

The first subscript on a, b and y denotes the service center. The

second subscript denotes the class of customer and the third subscript

denotes the stage

Let ir& - 1ir)

=
[eb]

Theor em
Gven a network of service stations which is open, closed or nmxed in
whi ch each service center is of type 1, 2, 3 or 4. Then the equilibrium

state probabilities are given by
P(s = Xl’x2""’xN> = Cd(S) fl(xl)fQ(XE)"'fN(XN>

where C is a normalizing constant chosen to make the equilibrium state
probabilities sumto 1, d(S) is a function of the total number of customers
in system and each £ is a function that depends on the type of service
center i.

If service center i is of type 1 then
]

n,
i
1
f,/x~): H [ — €,
iti 521 uiiji 1Xi"]

J
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If service center i is of type 2 then

1

R ir o A mir/ﬂ
fi(x.) =n,! H H [L”i/] 1

1 1 oro1 g1 Mipf, mik/ﬂl
If service center i is of type 3 then
u.
R ir m
e. A, irf
£ (x) = 1 |l [_lr__lr_*l] _L
r=1 =1 Hipf, irl’
If service center i is of type 4 then
03
f.(x,) = H l:e. A, E ].
ivi . ir, "dir. mp,
j=1 J ] 1rjmj

If the arrivals to the system depend on the total nunber of custoners in
the system MS), and the arrivals are of class r and for center
according to fixed probabilities P, t hen

M S) -1
a(s) = ]| A(1)

i=0

If we have the second type of state dependent arrival process then

m M(Ej)—l
d(s) = I] II Kj(i)
j=1 i=0

If the network is closed then d(S) = 1.
The theoremis proved by checking that the |ocal balance equations are
satisfied. In every case for which these results apply the local bal ance

equations reduce to the defining equations for the {eir}.

- 16 -



Sinmplification of Results

The solution presented for the equilibrium state probabilities deals
with system states that are nore detailed than is usually required. The
more detailed states are necessary to derive the equilibrium state
probabilities. Now we define the system state as the nunber of each class
of custoner in each service center. More formally state S of the system

is given by (yl,yg,...,yN) where y; = (nil,nig,...,niR) and nir is the

nunber of customers of class r in service center i. Let n, be the total
Es
, . 1 .
nunber of customers at service center i and |et ™ be the nean service
ir
time of a class r custoner at service center i. Then the equilibrium

state probabilities are given by

P(S = (y15¥p50-05¥y)) = CA(S) &,(v;)e,(v,)e - y(yy)

wher e
if service center i is of type 1 then
R n n,
[ 1 ir 1
g (y;) = 1. II - Le, ] If N6
iti 1 el ﬁiW ir 3=1 “i J
if service center i is of type 2 or 4 then
R N
1 |”Zir ir
O pEN L
S Toopar M My
if service center i is of type 3 then
R
_TII 1 re' ir n'lr
gi<yl) _.lli .1 v T
r=1 II" L HI“.E

In each case the expression for gi(yi) is derived by summi ng fi(xi)
over all x, with N sD55s.-05Nj fixed.  That this is the correct

definition of the g5 follows from the product form of the solution given

17 -



in the theorem If the mean service rate at centers of type 2, 3, 0r 4is

the same for each class of jobs but depends on the nunber of custoners at

R
n.
the center, then the factor II(u ) s replaced by the product of the
r=1 ir
1 : , .
RED] in gi\yi) as for type one centers. If the service rates are not the

i
same for each class of customers but depend on the number of custoners at a

center, then it should be possible to develop the proper form of the
solution using the equivalent network presented in the |ast section of the

paper .

A further sinplification is possible if the network is open and
the arrival process does not depend on the state of the nodel, The
fol | owi ng paragraph and section develop this sinplification,

If a state of the systemis to be sinply the total nunber of customers
in each service station, i.e. S = (ny,n,,. ..,nNL Then P(S) = Cd(9) hl(nl)

h2(n2)...hN(nN). Let R, = (r: class r customers may require service

center i).
If service station i is of type 1 then
n ni
i 1
h, (n,) = ( ES e, > * II e
1t rERi 1 j=1 lJ'f J
If service station i is of type 2 or L then
e, n,
h (n;) = (}: _1.E> *
rér, Mir
1
If service station i is of type 3 then
e, n
hl(nl) _ n1'< EE 1r> i
i r(—.Ri Mir
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The evaluation of the normalizing constant requires summing the given
expression for the equilibrium state probabilities over all feasible states.
In the next section we show a closed formsolution for C for an open network

in which pi(m) =y for all mif service center i is of type one.

Open Systens

For open systems it is possible to obtain a closed form solution for
the normalization constant when the arrival process is of the first type
and A(M(S)) = A = constant. Since the systemis open any nunber of

custoners is feasible at a service center.

Therefore
(=] o [=] N n
¢t :E TE. e EE ( Hat h, (ny >
n1=O n 12=0 nN.—.O i=1
® n < n > n
-1 1 2 N
or C = ( \ LA hl(nl))(nz_g hg(n2)>.. .<n4")\ hN(nN)>

170 o= N

Al so,

if service center i is
type 1 and ”i(ni) = by

g
=2
—~
o]
g
I
N
’ﬁl
i
>
I o
[
p-‘
1
[

e. \-1
25%._i£> if service center i is
type 2 or L

Il
TN
[
1
H
M
=
e
e
.1

= @ if service center i is
type 3
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Mareinal Distribution at a Service center iN an Open Svstem

Let P, in_;
i‘i

be the equilibriwa probability that there are n, custoners

at service center i.

N [+~
n, <,
P in )} = CA * hi(ni) H <>‘/\ J h.{n.))
j:l n =C J J /
i#i

Using the expression for C, we reduce this to

)
P(n) = i\ hi(ni/
1 1 _—
N
- A" h, (m)
m=O +
N Cir
Let o, = — if service center i is type 1
réR, Hy
Y\ eir . . oo
p.o= A —— if service center i is type 2, 3 o0or &
* rér, "ir
%y
Then Pi(ni) = (1 - pi)pi if service center i is type 1, 2 or 4
.
1
—Pi Pi . . o
= e — if service center i is type 3
i

These results provide a convenient way of examining the equilibrium
distribution at a service center. For type 1, 2 or 4 service stations the
marginal distribution is the same as the distribution of the nunber of
custoners ia an M/M/1 queue with a suitably chosen utilization, p,. For
the equilibrium solution to exist each p, is required to be less than 1.

The marginal distribution for a type 3 service center is the same as
the equilibrium distribution for the nunber of customers for an M/G/® system

W th p; = % This certainly appears to be reasonable since for an open



r—

r

I

system there nmust be an infinite nunber of servers at center i if it is to
be of type 3.

This type of service station may be used in a nodel to represent a
delay as customers travel between two other service centers. Posner and
Bernhol tz [14] use a different approach to represent nore general delays in

a less general network.
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Exanpl e

In this section we give a sinple exanple that illustrates sone of the

results of the paper. Consider the system shown in Figure k.

SERVICE CENTER

o Prasn T30 )

P1’2;5'2 = 0-0
, | Prras=3
P1,2;42-00
?‘ FCFS

«| P1131=3 4
P1,2;32-00
Pisoq = 0.

< 11521 = 00
P12;22=10

1 PROCESSOR
SHARING

Figure 4. Example Network Model.

This is a closed system with two classes of customers. geryice centers
2,3, 4 and 5 are type 1 centers and service center 1 is type 2. This is a
model of a nultiprogrammed conputer system in which service center 1
represents the CPU and the other service centers represent |/0O devices.

Figure 5(a) gives the utilizations of the service centers with a varying
nunber of class 1 custonmers and with one class 2 customer in the system In
Figure 5(b) the utilizations of the service centers are given for the sane

network of service centers but with the two classes of custonmers replaced

- 20 _
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by one class of "equivalent? custoners. The paraneters for these

"equivalent" customers are calculated by first solving for the equilibrium

state probabilities of the two custoner class nodel. From these one can
solve for

T o= rate at which class 1 custoners |eave service center 1.

r, = rate at which class 2 custoners |eave service center 1.

Now the equival ent customers have paraneters given by

1 1 1, To 1
1 <
Hy Tt My TP PHpo
r r

1 2 .
[ S + —— . i=2 24'
Py, T T, P1,154,1 L, P1,2;4,2 »35%55

’

The rationale for these definitions is quite sinple. [ f measurenents
were taken on the system without distinguishing between classes of custoners
these woul d be the parameters neasured.

Figure 6shows the results of Fig. 5 graphically. The service center
utilizations for the model with different custoners are indicated by a line
through the values with the service center nunber above the line. For the
model with "equivalent" customers, the service center nunber is prined and
below the line. The utilizations predicted by the nodel with equival ent
custonmers are always smaller than those of the mpdel with distinct custoners.
In fact the utilization of service center one (the CPU) goes down initially
as the nunber of "equivalent" customers increases fromone to two and the
difference for this server is substantial (between 4.5 and 9percent). The
structure of the nodel with different custoners is such that the class 2
custonmer never has to queue for any I1/0O server. In the nodel with
equi val ent custoners, all custoners suffer queueing delays at 1/0O servers

for two or nmore customners.
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Figure 6(a) and (b). Utilization of Service Centers versus Number of
Customers for Different Customers and
Equivalent Customers.



The custoner class change concept can also be used to capture some
conpl ex structural properties of the system being nodel ed. For exanple,
in one of More's [12] nodel s of a tinesharing system one drum service
time is used in the nodel to represent two drum service tinmes in the
system  One of the service tines is incurred by the transfer of a job
fromtermnal wprocessing to CPU and file processing and the other
corresponds to the reverse transfer, A nore accurate representation of
contention on a swapping drum can be obtained by using two classes for
jobs. One class would nmodel termnal /0O processing and the other would
model CPU and file processing. A job would change class after drum

processing.
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Properties of Network Mdels that Satisfy Local Balance

This section is directed to those readers interested in the theoretica
foundations of the analysis of networks of queues rather than those
interested in the application of the results.

All of the network nodels that we have treated in this paper can be
shown to be equivalent to nodels in which all classes of customers have the
same exponential service time distribution at a given service center. Thus
an exponential service time distribution with nean L may be associ ated
with the ith service center and all classes of custo;ers have this service
time distribution at the ith service center. This fact suggests the
conjecture that a necessary condition for |ocal balance to be satisfied for
a given nodel is that there exist an equivalent nodel in which different
classes of custoners may have different transition probabilities but al
classes of custoners have the sane exponential service tine distribution at
a given service center

The transformation of a given nodel to an equival ent nodel of the form
described is acconplished in two steps. First we show that the effect of a
customer noving from one stage to another in the stages representation of a
general service time distribution can be represented by introducing new
custoner classes. Thus we mbdel a transition from one stage to the next as
a transition to a new custoner class and to the same service center. After
this transfornmation of the original nodel we have a nodel in which al
service times are exponentially distributed but different classes of
customers may have different nmean service times at a given service center.
The second step is to show that by appropriately nodifying transition

probabilities we may further transform the nodel into an equival ent node
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in which all classes of customers have the same nean service time at a given
service center.

The nethod of making these transformations to the nodel is straight-
forward and will be illustrated by exanple rather than a formal description
of the general case.

Consider a general service tine distribution represented by a network
of stages as in Figure 1. Let this represent the service tine distribution
for a cus.comer in class r in service center i. W introduce n new custoner

cl asses denoted by r ces T whi ch correspond to the stages in this

1200

network and del ete customer class r.

The service tine of a class rp custoner will be exponential with mean —

-u—l (1 <P <n), The transition probabilities for a class ) custoner are
£ _
defined as:

p. . =% D, .
1,7p33,8 L “i,r;i,s

. . = l1<4<n
|3'1,1‘ ;1,1‘/&4_1 % t -

To take care of the transitions into class r in the original nodel we
require that all transitions into state r be redefined as transitions into

state r These transition probabilities are defined as: —

1|

Jy,S;1,r J,8;1,r 4, J,S

1
Wth this transformation of the nodel a custoner will have the sane
distribution of total tinme at a service center and will have the sane

transition probabilities from service center to service center.
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After performing this transformation for each custoner class with a

general service tinme distribution we have a nodel in which all service

time distributions are exponential. Suppose that is the nean service
i,r
time of a class r customer at service center i. Let
Hy = max [¥’ t}

W redefine the mean service time for each class of customers at service
center i to be -i. Now we redefine the transition probabilities out of
service center i}

Yor

B

Let pr=1—

Then define

Rl
It

i,r;i,r = Pr 7t (1—pr) P.

PN ] i,r;i,r

Q
I

<1_pr>pi;r;j55

The effect of these new transition probabilities is to cause a class r

custonmer to be fed back (or to revisit) service center i a random nunber of

times. Each tine the class r custonmer enters service center i his service

time is exponentially distributed with nean —1. The nunber of visits the

i
class r custoner nekes to service center i (between transitions in the
1

original nodel) is geonetrically distributed with mean o It is easily
I
shown that the total service tine of the class r custoner at service center
i is exponentially distributed with nmean ( 1 ) L1 [8]. Therefore
1_pr My My o

we have not changed the total service tine distribution for this custoner
at service center i
After conpleting these transformations throughout the nodel we have an

equi val ent nodel with the desired characteristics.
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The transformations that we have made to the original npdel preserved
the original distributions of service tine that a custoner requires at a
service center. However a customer does not spend that time on the server
in one contiguous interval. W required a customer to make extra
transitions in which he |eaves and reenters the service center. It is
clear that with type 2, 3 or 4 service centers this does not affect a
customers service. For type 1 service centers the transforned nodel woul d
not be equivalent to the original nodel since a customer who |eaves the
service center and reenters will now be at the end of the queue. O course
we have from the beginning required that at type 1 service centers al
custoners have the same exponential service time distribution so that such

a service center does not require any nodification.




Concl usi ons

We have derived the equilibriumdistribution of states of a node
containing four different types of service centers and R different classes
of custoners. Fromthis steady state distribution one can conpute the
moments of the queue sizes for different classes of customers at different
service centers, the utilizations of the service centers, the "cycle tine"
or response time for different classes of custoners, the "throughput" of
different classes of customers, and other neasures of system performnce.

These results unify and extend a number of separate results on
networks of queues. The general model can have four types of service
centers. Three of those types allow different service tine distributions
with rational Laplace transforns for different classes of customers. The
model allows different classes of custoners to have different arrival rates
and different routing probabilities. For open networks sone very sinple
formulas give the marginal distribution of customers at the service centers
of the network.

The analysis is notivated by the desire to model conputer systens.
Type one service centers (FCFS scheduling) seem appropriate nodels of
secondary storage input/output devices. Type two service centers (processor
sharing scheduling) can be an appropriate nodel for central processing units.
Type three service centers (no queueing) are appropriate models for
terminals and for routing delays in the network. Allowing different classes
of customers should answer one of the principal objections to queueing
model s as nodel s of conputer systens. The exanple given indicates how
significant different classes of customers can be in the utilization levels

predi cted by nodel analysis.
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There are many additional conplications yet to be analyzed but the
general nodel presented here represents a substantial increase in the

ability to build and solve analytical nodels of conplex conputer systens.
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