
ANALGORITHM FORTHECONSTRUCTIONOF
THEGRAPHS OFORGANICMOLECULES

bY

HAROLD BROWN
LARRYMASINTER

STAN-CS-73-361
May 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

r

c

L-

i

L

L
L

An algorithm for the construction of the graphs of organic molecules

By Harold Brown and Larry Masinter

ABSTRACT:

A description and a formal proof of an efficient computer implemented

algorithm for the construction of graphs is presented. This algorithm,

which is part of a program for the automated analysis of organic com-

pounds, constructs all of the non-isomorphic,connected multi-graphs

based on a given degree sequence of nodes and which arise from a rel-

atively small "catalog" of certain canonical graphs. For the graphs

of the more common organic molecules, a catalog of most of the canonical

graphs is known, and the algorithm can produce all of the distinct

valence isomers of these organic molecules.

This work was supported in part by ARPA Contract SD-183 and NSF Grant GP-16793

CL

1

I
i

An Algorithm for the Construction of the Graphs of Organic Molecules

By Harold Brown and Larry Masinter

T. Introduct ion. The WUXI prob I em in analytica organ i (* chemist, ry

is to determine the molecular structure of‘ an unknown organic compound.

The heuristic DENDWL prograzn for explaining empirical data [1,2:] is a

machine implemented program which applies artificial intelligence

techniques to this problem of molecular structure determination. The

primary input to this program is the mass spectrum of the unknown

compound. Secondary inputs, if available, include the nuclear magnetic

resonance spectrum and the elementary formula of the compound. The output

of the program is a list consisting of one or more molecular graphs, each

of which represents a heuristically plausible explanation of the given

input. These graphs are rank ordered with respect to their relative

plausibility scores. Central to this DENDRAL program are algorithms which

generate all of the distinct valence isomers of a given set of atoms. It

is these algorithms that we will describe in this paper.

In graph theoretical terms, the problem that we consider is the

following: Given a degree sequence of nodes which corresponds to the

valences of the atoms of a given organic compound, algorithmically construct

a representative set of the distinct isomorphism classes of the connected,

loop-free multi-graphs based on that degree sequence. (For brevity, SU;: h
graphs will be referred to as elf-graphs.) Moreover, for pragmatic

reasons, the algorithm should:

a> Be machine implementable in a reasonably efficient manner.

b) Be able to accept as additional input certain constraints

arising from the chemical heuristics of the situation.

For example, generate only those graphs which contain a certain

substructure.

2

4 Generate no isomorphic graphs in the intermediate stages of the

algorithm.

This last restriction is necessary because of the time and the storage

limitations when using a machine.

In section II of the paper we define the concept of a superatom, and

we briefly describe the subalgorithms used by the main algorithm. In

section III, first a conceptual description and then a formal description

of the main algorithm is given. Section IV contains the graph theoretical

results on which the main algorithm is based, and in section V a formal

proof of the completeness and the correctness of the main algorithm is

nresented.

II. Terminology and Subalgorithms. The concept of a superatom is used

throughout the paper. A superatom is a collection of atoms bonded

together into a cyclic structure which possesse:; at least one unassigned

valence, i.e., at least one free v=tlence. Graph theoretically, a

superatom is a connected, -Loop-free multi-graph with no isthmu:;(_:;, i-c.,

with no edge whose deletion disconnects the graph, and with at least one

unassigned valence. If a superatom A has k free valences, then in forming

molecular structures which include A, A behaves almost like aY1 atom of

valence k. The difference in forming structures including A and in forming

structures including an atom of valence k is the following: The k free

valences on an atom of valence k are, as edge endpoints in a1 graph,

indistinguishable, i.e., barring optical. isomePism, the free valences on

i
c

I
i

I L-

~ ;
iL

3

the atom implicitly admit as symmetry group the group Sk, the full

permutation group on k objects. Rowever, the k free valences on the

superatom A usually are distinguishable from a symmetry view-point, and

the free valences on A will, in general, admit only a subgroup, of S
k'

For example, the superatom in Figure 1 has three free valences, but the

group of symmetries of these free valences is only {(1' z z), 3
(: ; 1>3 l

Thus, associated with each superatom with k free valences is a subgroup

of s
k'

namely, the group of symmetries on its free valences.

By the term tree we will always mean a graph whose nodes can

represent either atoms or superatoms and whose edges are all isthmuses.

Also, throughout the paper, a collection of atoms given by their

valences, i.e., a degree sequence, will be represented as an integral

n-vector V = (a
lPa2

,...,an), where ai is the number of atoms of

valence i in the collection.

For a degree sequence V = (al,a2,...,an), the unsaturation of V,

U(V), is defined as U(V) = l/2(2 + E (i-2)ai). If there exists at
1

least one elf-graph based on V, i.e., a elf-graph with ai nodes of

valence i, then U(V) is precisely the minimal number of edges of any

elf-graph based V which must be deleted in order to make the graph

into a tree of atoms.

The description of the main algorithm makes use of the following

subalgorithms:

a) A tree generator subalgorithm, TG. TG accepts as input

a list of valences corresponding to atoms and superatoms, each

superatom with its associated free valence group, and outputs all

non-isomorphic trees based on these atoms and superatoms. Such a

tree generator algorithm is described in [3].

b) A labeler subalgorithm, LAB. LAB accepts as input an ordered list

of m distinct symbols, a group H of permutations on these symbols,

and a list of m not necessarily distinct labels. It outputs all

non-equivalent, with respect to H, labelings of the given symbols

with the given labels subject to a set, possibly empty, of constraints

of the form that certain types of symbols must be labeled with certain

types of labels. Such a labeling algorithm is described in [4].'

c) A "catalog", CAT, containing certain connected, loop-free, isthmus-

free multi-graphs, for brevity, clfif-graphs, underlying, in a sense

to be made explicit later, the graphs of organic molecules. A list

of these underlying graphs is known for most of the common organic

molecules, and consists of a relatively small number of graphs.

III. Main Algorithm. We give now a .brief conceptual description of the main

algorithm. The input to the algorithm is a degree sequence, i.e., an integral

n-vector V.

1. Determine all distinct allowable partitions of V into atoms and

superatom sets with assigned free valences. These partitions

are based on the unsaturation of V.

2. For each superatom set, determine all the distinct allowable

‘)

allocations of the free valences to the atoms of the set.

3. For each such free valence allocation, determine recursively the

allowable sets of atoms remaining after the deletion of the

bivalent atoms and the "pru.ningti of any resulting loops. This

recursion is done until: a) the remaining bivalent atoms in any

clfif-graph based on the set must all be on edges, or b) one of

two special cases is encountered,

4. For each such set of atoms, if condition (a) terminates the recursion,

"look up" in the "catalog" all the clfif-graphs based on the non-

bivalent atoms in the set and for each such graph label the edges

with the bivalent atoms. If condition (b) terminates the recursion,

directly 'write down" the allowable graphs.

5. For each such graph, recursively label the atoms with loops and the

loops and edges with bivalent atoms.

6. For each graph so obtained, label the atoms with the free valences.

7. For each set of atoms and superatoms obtained as above, use the tree

generator to construct all the non-isomorphic elf-graphs based on

these atoms and superatoms.

The following formal description of the main algorithm is presented a::

a sequence of subalgorithms:

Definitions. Given V = (a
1
,a a L2'*"' n

define:

n
a) U(V) = (2 + Z(i-2)ai)/2.

1
n

b) TD(V) = xia..
l1

6

n
c) N(V) = c a..

1 l

d) P(V) = al.

e) M(V) = max{ 12 i 2 n 1 ai # 0).

Note that U(V) = (2 + TD(V) - 2N(V))/2.

A.

.

Superatom Partitioner (SAP).

Input: V = (al,a2,...,an).

1. (Test) If U(V) is a non-negative integer and

2M(V) LTD(V), continue; else STOP.

2. If U(V) = 0, go to TG.

3. Do 12 for each non-trivial summand v of V such that

P(V) = 0

4. Do 11

5. Do

of

and N(V) 2 2.

for 1 Zk 5 LN(V)/21.

10 for each distinct k-term ordered partition

U(V), say U(V) = u1 + u2 + . . . + uk where

6.

7.

8.

9. Put { v; (V,, FVl), (V,, FVk)) on the list

GLSA(V).

1LUl LU2 2 . . . Luk.

Do 9 for each distinct set { (Vi,ui) 1 12 i L k)
k

where C Vi = Vand1 N(V) L. 2, 1Li 2 k.

Compute FVi = 2(U(Vi) - ui), 1Li 2 k*

If FVi < IIBX (1, 2M(Vi) - TD(Vi) } for any

1Li Lk, go to 6.

10. Continue.

11. Continue.

12. Continue.

13. If P(V) = 0, put I v; (V, 0) 1 on the list GLSA(V).

L--

c-

L-

7

u. 1‘ree Valence Partitioncr (FVP).

(Vi = (0,v2,...,vn), FVi) w h e r e N(Vi) 22,Input:

2(U(Vi) - ui> = FV., 1 u. 1- > 1, and

FVi LmaxI 1, 2M(Vi) - TD(Vi)).

1. Determine all sets of non-negative integers

t f.
It I 5

= max{O, j + (FVi - TD(Vi))/2) Lt 2 j-2,

j =2 s*'*¶ n } satisfying:

j-2
i) C f.

s
= vj, j = 2,...n.

t=c.
3

n j-2
ii) C C tf.

j=2 t=c. It
= FVi.

I

(Note that f20 = v2>.

2. For each such set, form

L
L

L

c’-

i-

i

L-

W = WJ i, FVi, {fjt}) = (0,~ ,..*,w). where
2 the l&t

w= cS
s<h<n

fh(h-s), and put W o&LFV(Vi, pi).

co Loop-Bivalent Partitioner (LBP).

(UPis applied recursively until either ml(W) = m,(W) = 0

~m,(W> < m,WH.

(0,w2,~*~,Input: W = wn) where N(W) 2 2, U(W) is a

1.

2.

3.

positive integer, and 2M(W) < TD(W).
n -

Compute m,(W) = mini w2, c L(j-2)/2Jw.) and
j=4 I

mo(W> = max{ 0, w2 + (2M(W) - To(W))/:!).

If m,(W) > ml(W), go to Special Case.

If m,(W) = m,(W) = 0, go to Catolog.

a

4. Do 9 for p = mO(W),...,ml(W).

5. Determine all sets of non-negative integers

i Pjt I 3 < j < n, 0 < t < L(j-2)/2_1) satisfying:

i>
LtjT2)/YJ - -

c =W 3tjL.n.
t=O 'jt j'

(Note that p30 = w3).

n L< j-2)/2J
ii) C c tP* = p.

j=3 t=O It

6. DO 8 for each such set {Pjt).

7. Form Y = Y(W, P, {Pjt)) = (0, Y~,=**,Y,’ Where

n

Y, = cm=s Pm,(m-s)/2 l

(Note that p20 = 0).

by 2

8.
th list

If 2M(Y) 2 TD(Y), put Y on GLQ(W,p).9

9. Continue.

D. Special Case (SC).

(Here ml(W) < m,(w)>.

1. If y(W) = 0, put the graph consisting of the ring

with N(W) bivalent nodes and its associated node
the list

symmetry group onvGLGPH(W) and go to Loop Labeler;

else go to 2.

2. If m,(W) = s > 0, put the graph consisting of one

node of degree 2(s+l) with s+l loops attached and
the list

its associated edge-loop symmetry group on%LGPH(W)

and go to Bivalent Labeler.

9

E. Catalog (CAT).

Input: Y = (O+,...,yJ where m,(Y) = m,(Y) = 0.

1. If y2 # 0, "look-up"
clfif-

all non-isomorphic v* trivalent

graphs G with y3 nodes and their associated edge

symmetry groups, EGRP(G); else go to 6.

2. Do 4 for each such graph 17.

3. Determine all distinct ordered partitions of y2

into TD(G)/2 non-negative integral terms.

4. For

use

all

each such partition, say b
1

+ . . . + b
TD(G)/2 = '2'

the general labeling subalgorithm to determine

distinct, with respect to EGRP(G), labelings

of the edges of G with the labels b
1 '""bTD(G)/2'

replace the label bi on the labeled graphs by

bi bivalent nodes, and place the resultant graphs
the list

and their node symmetry groups on%LGPH(Y).

5. Go to Loop-Bivalent Labeler.
clfif-

6. If y2 = 0, "look-up" all non-isomorphic v graphs

based on Y, and put these graphs and their associated
the list

node symmetry groups, on GLGPH(Y).

7. Go to Loop-Bivalent Labeler.

F. Loop-Bivalent Labeler (LBL).

(LBL is applied recursively to each graph G on GLGPH(Y)

up the path of vectors from which G arose until reaching

the W = W(Vi, FVi, f.
It

) on GLFV(Vi, "i> heading the path).

10

i

. j

i-

c-

Loop Labeler (LL).

Input: A elf-graph G , its node group NGRP(C) and the

vector Y = Y(W,p,Ipjt}) on GLL(W,p) from which

G arose.

1. Compute q, = C p. , t = O,...,L(n-2)/2].
jn3 It

2. Determine all kstinct, with respect to NGRP(G),

labelings of the nodes of G with qt-t's subject to

the constraint that p.
It

-t's must go on nodes of

valence j-2t.

3. For each such labeling, replace the label t by t loops.

Bivalent Labeler (BL).

Input: A connected graph H with p loops, the edge-loop

group of H, ELGRP(H), and w,, the number of bivalent
L

nodes in the vector W from which H arose.

1. Compute h = p t number of (non-loop) edges in H.

2. Do 4 for each ordered partition of w2 into h

non-negative terms, say w
2

= bl + . . . + bh,

bl < . . . < b,- - n, such that at least p of the bits

are non-zero.

3. Determine all distinct, with respect to ELGRP(H),

labelings of the edges ahd loops of H with the

labels { bi 1 1 - _< i < h) subject to the constraint

that each loop gets a positive label.

i
4. For each such labeling, replace the label bi by

bi bivalent nodes, 1 < i < h, and place the- -
the list

resultant graph and its node group onVGLGPH(W).

-

L-

L

c-

11

G. Free Valence Labeler (FVL).

Input: A graph G , its node group NGRP(G), and the vector

w = W(Vi,FVi,{fjt}) from which G arose.

1. Compute ft = C f. , t = O,...,n + (FVi-TD(Vi))/2.
jn2 It=

2. Determine all distinct, with respect to NGRP(G),

labelings of the nodes of G with ft-t's subject to

the constraint that f.
It

-t's must go on nodes of

valence j-t.

3. For each such labeling, replace each label t by t

free valences and put the resultant graph and its
the list

free valence symmetry ~POUP o~~LGPH(Vi,FVi)B

H. Input for Tree Generator.
the list

For { v: (Vl, FV,), . . . , (V,, FVk)) oxLSA(V),

input to TG:

a) V-V. (The atoms).

b) A k-tuple of graphs (Gl, Gk) and their

associated free valence groups where G. is on the list
1

GLGPH(Vi, FVi), 1 pi < k. (The superatoms).

IV. Theoretical Results. We now present the graph-theoretical results on

which the main algorithm is based. Even though some of these results are

known, we give proofs for the sake of clarity and completeness. Throughout

this section, V = (a
1
,... ,a,) denotes an integral n-vector.

Lemma 1. If there is at least one elf-graph G based on V = (a , , . . . , a 1,n
then U(V) is a non-negative integer.

Proof. A spanning tree of G has N(V

Hence U(V) = TD(V)/2 - (N(V)-1) is a

V)/2 edges.-1 edges, and G has TD

non-negative integer.

12

Lemma 2. If 2M(V: I TD(V) and U(V) is a non-negative integer, then there

is at least one elf-graph based on V.

Proof. Let m = M(V), the maximum valence of V. Given non-negative integers,

b
2� l **'

b
m'

bm # 0, let bl = L(b2,..., bm) be the least non-negative integer

such that there is at least one elf-graph based on B = (b
1'

b b >.2"**' m
Since

m
for sufficiently large bl, e.g., bl =zib -

2 i
2(c bi-l), such a graph exists,

2
L(b2,-., bm) is well-defined.

Assume bl = L(b2,..., bm> > 2, and let c be a elf-graph based

on B. If there where two distinct nodes Nl and N2 of G both of

which had adjacent nodes of valence 1, we could delete these valence

1 nodes and add the edge (Nl,N2) to G obtaining a elf-graph with

a lesser number of nodes of valence 1. Thus all valence 1 nodeof

G must be adjacent to the same node, say N. If there was a node

h‘l adjacent to N and a node N2 # N adjacent to Nl, we could delete

the edge (Nl,N2) and two of the valence 1 nodes and add the edges

(Nl,N) and (N,N2) obtaining a elf-graph with a lesser number of

L
c

I
i

Ic-

1 .
I L

i

valence 1 nodes. (See Figure 2). Thus all nodes adjacent to N are

adjacent only to N, and since G is connected, all nodes must be

adjacent to N. (See Figure 3). Hence, N must be the unique node of
m-l

valence m, i.e., b
m

= 1, and bl = m - C ibi.
i=2

Now assume the lemma is false, i.e., 2m 2TD(V), U(V)

is-a non-negative integer and there is no elf-graph based on V = (a,,' an).
m-l

Then al < L(a2,...,am). If L(a2,..., am) 12,then a
1
<m - C iai,

i=2

and TD(V) < 2m, a contradiction. If L(a2,...,am) = 0, then al < 0,

a contradiction. If L(a2,...,am) = 1, then al = 0. Since a

c
i

c-

c
-

-
c

L-

c-

L-

-

i

-

c

c-

l

L L-

L /
i

13

m
elf-graph based on (l,a2,...,am) does exist, by Lemma 1,c = 1 + C (i-2)a.

i=2
1

.
1s even. Hence U(V) = (c+1)/2 is not integral, a contradiction.

Theorem 1. There exists at least one elf-graph based on V if and

only if 2M(V) 2 TD(V) and U(V) is a non-negative integer.

Proof. The sufficiency is just Lemma 2. For the necessity, let

m = M(V). By Lemma 1, U(V) is a non-negative integer. Assume that

2m > TD(V). Then m > al + 2a2 + . . . + (m-l)a, 1. Hence a = 1
m - l

m

andm> C iai. This contradicts the loop-free assumption.
i.4

Corollary 1. V determines a loop-free tree if and only if U(V) = 0.

Moreover, in this case every graph based on V is a loop-free tree.

Theorem 2. There isa clfif-graph based on V if and only if U(V)

is a positive integer and ZM(V) ITD(V).

Proof. If there is a clfif-graph based on V, then by Theorem 1

and Corollary 1, U(V) is a positive integer and 2M(V) LTD(V).

Conversely, by Theorem 1 there exist elf-graphs based on V.

Assume that every such graph has at least one isthmus. Let G be

a graph based on V with a minimal number of isthmuses, i.e., a

"least criminal." We will show that G can be modified to a elf-graph

based on V with a lesser number of isthmuses, a contradiction to

our assumption.

Let the edge (A,B) be an isthmus of G, and let X and Y be the

connected components of G\(A,B). Since U(V) > 0, not both X and Y

are trees. Say X is not a tree and A is in X. Let C be an elementary

circuit in X, and let C be a node on C of minimal path length from

A,where we consider here a multiple edge as a circuit. (Note that

14

L-

i
t

e
L

L

Q

!-

c-

i --

I-.

c L

L

c
L

we may have A = C). By the choice of C, there is a path

from A to C which is edge-disjoint from C. Let D be a node on C

adjacent to C. (See Figure 4).

Case 1. Y is a tree.

Since G' is loop-free, there must be a valence 1 node N in Y. Say

N is attached to the node E of Y. Then, delete (C,D), add (D,E),

and move N from E to C. (See Figure 5).

Case 2. Y is not a tree.
/

Let E be a elementary circuit in Y, E a node of E of minimal path

length from B and F a node of E adjacent to E. Then, delete (C,D)

and (EJ), and add (D,F) and (C,E). (See Figure 6).

In both cases, the resulting graph is a elf-graph based on

V and has at least one less isthmus than G. Hence our assumption

was false, and there is at least one clfif-graph based on V.

Lemma 3. Let T and FVi, i = 1, k, be as in Superatom Partitioner.
k

Then C FVi = 2(k - U(V-v)).
i=l

Lemma 4. In a loop-free graph based on V, there are TD(V)/2 - al

edges between non-univalent nodes.

Theorem 3. Let V = (0,a 2 ,...,an), N(V) ' 2, U(V) a positive-

integer, and 2M(V) I_TD(V). Let m,(V)
n

= max (0, (a2 + (2M(V)-TD(V))/2))

and ml(V) = min{ a2, c
i=4

L(i-2)/2Ja i I* Then, m,(v) (m,(V)

except in precisely the following two cases:

4 ml(v) = 0 and m,(V) = 2.

b) ml(V) = s > 0 and m,(V) = s + 1.

iioreover 9 case (a) holds if and only if a. = 0, j > 3, and case (b)
3

holds if and only if a
2(s+l) = 1 and a. =

3
0, j 2 3, j # 2(s+l).

15

c

L-

IL

s,

L’

Proof. Let m,(V) > ml(V). If ml(V) = a2, then 2M(V) - TD(V) > 0,
n

a contradiction. Hence ml(V) = C L(i-2)/2Jai. Assume ml(v) = 0.
i=4

Then a.
3

= 0, j > 3. By Theorem 1, a elf-graph based on V exists.

Hence a3 is even. From 0 < m,(V) = (2M(V) - 3a3)/2, it follows

that a3 = 0 and m,(V) = 2. The converse is immediate. Assume that

m,(V) = s > 0. Then, a2 + (2M(V) - TD(V))/2 > s > 0, and

M(V) > 2s + 3a 3
+...t (M(V)-1)aM(V)-1 2 2s. Hence aM(v) = 1.

M(V)
Also, s = ml(V) = C Lti-2)/2Jai implies that 2s 2 M(V) - 3.

i=4
Thus, 2s + 3 1 M(V) > 2s. This implies that ai = 0, 3 ti < M(V).

Since a elf-graph based on V exists, M(V) must be even. Thus

M(V) = 2(s +l>. A direct computation gives that m,(V) = s + 1.

The converse follows directly from 2M(V) LTD(V).

Lemma 5. Let V, m,(V), and ml(V) be as in Theorem 3. Assume that

-
n,(v) = m,(v) = 0 and a2 # 0. Then a3 # 0 and is even 'and a. = 01

for i > 3.
n

Proof. a2 # 0 implies that ml(V) = C l<i-2)/2la. = 0. Thus a. = 0,
i=4

1 1

L_
c

i > 3. Now m,(V) = 0 implies that 2M(V) - 3a3 5 0. Hence a3 # 0.

Since a elf-graph based on V exists, a3 must be even.

V. Proof of Main Algorithm.

A. Every elf-graph based on V occurs. Let G be a elf-graph based

on V. We will show that the algorithm produces a graph isomorphic

L to G.

cL

Since G exists,.by Theorem 1, U(V) is a non-negative integer

and 2?;(V) (TD(V). If u(v) = 0, the tree generator produces a

L
graph isomorphic to G. Assume U(V) > 0. Let B be the set of

isthmuses in G, and let G
1'

. . . . Gk be those connected components

1C

of C\U llaving at least two nodes. Since U(V) > 0, G is not a tree
. .

and k 2 1. Also, no Gi has univalent nodes. Let vi = (0, a$.*., a:),

1
where a.

3
is the number of valence j nodes of G., and let FVi be the

1

number of elements of B connected to G in G, lLi.lk. Set
k i

v= c v..
i=l 1 Note that k, Vi, FVi and v depend only on the isomorphism

class of G. Now P(;s-) = 0 and N(V) 2 2. Thus v is an allowable

summand of of V in SAP. Also, N(Vi) 2 2, 1 ti >k, and 12 k 2 LN(v)/2j.

set ui =. (2U(Vi) - FVi)/2. Let pi be the graph obtained from Gi

by replacing in G each of the FVi connected components of G/B

connected to G.
1
by a univalent node. Then zi is a elf-graph which

is not a tree. Let?" be the n-vector associated with 2i. Then

ii Vi) = u., and u.P 1 1 is a positive integer. Moreover, by Lemma 3,

k
i: .d. = u(v).

; -
Since ei is a elf-graph, by Theorem 1,

A- l 1

= 2m(Vi) 2 TD(Ti) = TD(Vi) t FVi. Thus FVi ~ 2M(Vi) - TD(Vi),

and, after suitable reindexing, v;1 (V
the list

y F�☺& l ..> (v,, Fvk))

is onlGLSA(V).

For a fixed i, 1 (i L, k, let fjt be the number of valence

j nodes of ei with t univalent nodes attached, 2 2 j Ln,OLtLj.

Since

rjt =

edges

in $
i

nodes

i f.
3t

*
A
Gi is a elf-graph and has isthmuses only to univalent nodes,

0 for t > j-2. Also, by Lemma 4, ei has (TD(V) - FVi)/2

between non-uivalent nodes. Hence, any node of valence j

has at least c. = max
3

(0, j t'(FVi - TD(Vi))/2 } univalent

attached, i.e., f.
It

= 0 for t < c.. The set
3

I 2 zj In, c. tt < j-2 } satisfies the conditions
1 -

of FVP.
the list

&rice, W(Vi, FVi, if.
It

)> is &%LFV(Vi, PVi) and depends only on

the isomorphism class of G.. .
1

17

univalent Ilodes and t:lcir connecting edges. Then

W = W(Vi, FVi, {fjt} > = (0, w
2
,..., w > is the n-vector associated

n
r-2

with GC,
1 and 'zi is a cifif-graph. Assume that m,(W) (ml(W) where

mO and m
1 are as in LP. By Theorem 3, Ti is not one of the special

case graphs,
d

and hence deleting the bivalent nodes of Gi leaves

a connected, isthmus-fret graph 3. with at least two nodes and say
i

ti loops. Since Ei is isthmus-free, each node of pi must have at

least two non-loop edges attached. Hence
n

t i < min{ w- 2' i=4L
c l(i-2)/2Jw.) = ml(W).

1
Let GT be the graph

obtained from -di by deleting the ti loops.
:':

Gi is a clfif-graph.

Let Y be the n-vector associated with 4. Then M(W) LM(Y) + 2ti.

tience, by Theorem 1, 2M(W) - 4ti 2 2X(Y) < TD(Y) = TD(W) - 2~- 2
- ?t.,

1

and w2 + (2X".(W) - TD(W))/2 < t.. be the- 1 Thus ti ,m,(W). Let p.3-t
number of valence j nodes of pi with t loops, 4 Lj Ln,
0 tt 2 kj-2)/g . Then {p jt' satisfies the conditions of LP and

Y is precisely the n-vector Y(W, ti, (pjtI).
;':

tJ.e ist
Since Gi is a elf-graph,

2X(Y) LTD(Y> and Y is onGLLB(W, ti). Moreover, Y depends only on$

the isoxorphism class of 5.
1

Xecursive application of the above process yields a sequence

A
of graphs G.10 = ri, Gil = $, Gi2, 9:. . . . G.

1s.' and associated n-vectors
1

Y; = W(vi, FVi, {fjt}), Yi
1 = y(W;ti, 'Pjt'), Y:' . . . , Yi , where

i. .
Y3 is on GLL(Y? _3-l' pj_,) for some allowable pj-l and either

. .
> = m& >

i i
= 0, or (ii) mo(Yi

i
) > m,(Yi >.

i
Moreover, Yi

depends only on the isomorphism class of G"
i,j-1' Assume (i) holds

I. .

18

L

c
L

~ -

L

c

-

-

c
L

-

L_
L

c-

LL

for Y = Yi
i
= (0,y2,...,yn). Now by Lemma 5, Y has only bivalent

and trivalent nodes or no bivalent nodes. In the first case deleting

the bivslent nodes

In the second case
;'; 1

case, a graph G.
1s.

1

2':

of Gis leaves a proper clfif, trivalent graph.

;'; i
G. is a graph with no bivalent nodes. In either
1s.1

i'C

isomorphic to Gis is produced by CAT. If (ii)
.'. i

holds, by Theorem 3, Gis
i
is either the ring with y2 bivalent nodes

;':
or G is.

with its bivalent nodes deleted is a single node of valence
1

SC '

2mO(Y) with m,(Y) loops attached, and a graph G;, isomorphic to
f;: 1 ;‘; ?

G
is

is produced by BL.
i.

Hence we have that a graph Gis isomorphic
. i

to G;'
is.

and the vector Y1
1 ;';

si-1
are produced in the algorithm as input

to LLBL. Since Gis -1 induces in the obvious manner a loop and/or
.

bivalent node

to one of the

1 ;'; I .
labeling of Gis arising fror;l Yt

it

i-l' Gisi-l
is isomorphic

. .
graphs producedlby LLBL with input (Gii , Y1 >.

2 s,-1
.

Recursively applying LLBL up the sequence {Yt), we obtain i graph

c' isomorphic to Gii with associated n-vector W. = W(Vi, FV., {f.1 1 1-t:
})

in the output, i = 1, k. With the input (Gi, Wi), FVL produces

a graph Gi isomorphic to Gi. Hence, (v-v, G;, . . . , Gi) is among

the inputs to TG arising from V, and with this input TG produces

a graph isomorphic toG.

B. The algorithm produces no redundances. Let G and Hbetwo graphs

produced by the algorithm with input V. We will show that G and H

are not isomorphic, i.e.) G YH.

Assume G g H .
.

TG 1s &redundant. Hence if G

and H arise from the input to TG, (V-v, Gl, C,) and

(V-V’, iii, Hk,), respectively, where the Gi and H. are superatoms
3

with attached free valences, we must have that VI = v, k = k', and

13

‘6-e

c

L

C

L --

tne H.
3
can be so indexed such that H. ZG

3 Y
lzjf_k. Hence, Hi

and G i both must have the same free valence FVi, and G and 11 must

arise from the same SAP of V, say { v; (Tl, FV,), (Tk, YV,)).

Now since the labeler is irredundant, so is FVL. Hence from H. gGi,
1

it follows that the graphs gi and iii defined as in (A) must be iso-
rJ

morphic. Also, zi and i?i must arise from the same FVP of (Ti, FVi),

say W. = W(T
1 i' Fvi, Cfjt}), 12 i 5 k- Since BL is irredundant,

it follows that the graphs c
i and zi defined as in (A) must be

isomorphic. Similarly, since LL is irredundant, the graphs GF
;';

and ff i must be isomorphic.
:': ;';

Moreover, Gi and Hi must arise from the

same LP of W., say Y. = Y(W1 1 i, pi, (Pjt)), 1 < i < k. Applying the- -

above argument recur sively to G
;': ,';
i and H i, we ha.ve that the CAT

"look-up" (or SC determination) graphs, say Gi and Hi, respectively,

must be isomorphic and that the sequence of loop partitions leading

from Yi to the partitions determining Gf and Hi must be identical.

Now G! 'Z
1 Hi if and only if Gi and 2/f are equal. Thus Gi = E,

i<i<k.- -

hence we have that if G g iI, they arise from the identical

sequence of vector inputs to the various labelers and TG, and that

--I
% ="'i, _1 < i 2 k. Since for a given input, the labelers produce

only non-isomorphic graphs, we must have, successively, that

;'; ;':
G.; = Hi, Gi = ?!Ji, Gi = H., and Gi = Wi, 1 Li 2 k.

1 Hence if G ?I!,

they both arise from ti;e same input to TG. 5ut for a given input,

TG produces only non-isomorphic graphs, a contradiction,

20

C. Ttle partit ioners produce onlv allowable nartitions of V. We

I -

CL
,
iL

‘L-

,-

will now show that every sequence of partitions of V produced by

the algorithm yields at least one elf-graph based on V.
the list

Let Y = Y(W, p, lpjtl) be a member ofk'GLL(W, p). By direct

computation, U(Y) = U(W) - p. Also, p 2 F (i-2)wi/2 < U(W).
i=4

T!lus U(Y) is a positive integer. By construction, 2M(Y) ITD(Y).

Sbce m,(w) 2 m,(W), it follows from Theorem 3 that N(Y) 2 2.

&XC by Theorem 2, there is a clfif-graph based on Y. In the

case m,W < m,W, T'neorem 3 assures 'us that a clfif-graph based

on W exists. Thus LP produces only allowable output.
the list

Let W = W(Vi, FVi, {fjt)) be a member ofiLVF(V., FV.). By
1 1

direct computation, U(W) = U(Vi) - FVi/2 = ui, a positive integer.

Also, TD(W) = TD(V) - FVi. Now M(W) = maxi j-t 1 3 2 j Ln,

c. 2-t ij-2, f
3

and j-t 2 (TD(Vi) - FVi)/2. Hence,

2M(W) 2 TD(V,) - FV, = TD(W). By Theorem 2 there is a clfif-graph
A A

based on W, and FVP produces only allowable output.

Let (v; (Vl, FVl>, (V,, f'Vk)} be a member
the list
ofycLSA(V),

say v.1 = (0, a:, l e.9 aI:,. 1 Li 2 k= Let Hi = (FVi,
i

.
a2� l -p a:).

Now 2U(Hi) = 2U(Vi) - FVi = 2ui, and U(Hi) is a positive integer.

Also, P(Hi) = FVi 2 1, and TD(Hi) = TD(Vi) + FVi 2 2M(Vi) = 2M(Hi).

Thus, by Theorem 2, there is a clfif-graph based on Hi, 1 L i 2 k.

Hence, at least one set,G
1'

. . . , Gk.'of superatoms based on the

given partition of V exists. If o*1s the n-vector corresponding

to v - y and the free valences of the Gi, then a direct computation

c--

21

using Lemma 3 gives that U(V) = 0. By Corollary 1, a loop-free

tree based on V - v and the Gi exists. Thus the sequence of psrtions

of V does yield at least one elf-graph based on V.

VI. Acknowledgements. The DENDRAL concept and its applications to

organic chemistry were originally conceived by Professor Joshua

Lederberg. The authors thank Professor Lederberg for his guidence

and his critical suggestions which have made this work possible.

Computer Science Department

Stanford University

Stanford, California 94305

,

i

1. E. A. Feigenbaum, 8. G. Buchanan and J. Lederberg, On generality

and problem solving: A case study using the DENDRAL program, in:

Machine Intelligence 6 (Edinberg University Press,'Edinberg, 1971)

165-190.

2. B. G. Buchanan, G. L. Sutherland and E. A. Feigenbaum, A program

for generating explanatory hypotheses in organic chemistry, in:

Machine Intelligence 4 (Edinberg University Press, Edinberg,

1969) 209-254.

3. J. Lederburg, et. al., A tree generation algorithm, To appear.

4. i!. Brown, L. Hjelmeland and L. Masinter, Constructive graph

labeling using double cosets, To appear, Discrete Math.

i..
G

i

-

(.

L

-

FOOTNOTES.

1. I!ore formally, if X is an m-element set and H is a group of

permutations on X, then a labeling of X with nl labels a
nl+n2f".+nk = m, 1'

n2 labels a2, . . . , nk labels ak,ms a mapping 9: X + Ial,a2,meo,akI

such that \$-'(ai)I =n i. Two such mappings JI, and JI, are

equivalent with respect to H if there is aq(H such that IJJ~=$~TI.

-IL

Figure 1.

P

Figure 2.

,*

:/
,/� l *

N� _-LcziY\ ,
,-

\

.
l

,

P

Figure 3.

Figure 6. _/

