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ABSTRACT:
A description and a formal proof of an efficient conputer inplenented

algorithm for the construction of graphs is presented. This g gori t hm

¢ which is part of a program for the automated analysis of organic com
pounds, constructs all of the non-isonorphic,connected nulti-graphs
based on a given degree sequence of nodes and which arise froma rel-

- atively small ‘"catolog" of certain canonical graphs. For the graphs

L of the more common organic nolecules, 3 catolog of npst of the canonical
graphs is known, and the algorithm can produce all of the distinct

L val ence isoners of these organic ol ecul es.
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An Al gorithmfor the Construction of the Graphs of O ganic Ml ecul es

By Harold Brown and Larry Masinter

T. TIntroduct ioOn.  The usual prob | emin analytical organ i ¢ chemst, ry

is to determine the nolecular structure of an unknown organic conpound.
The heuristic DENDRAL program for explaining enpirical data [1,2]is a
machi ne i npl enent ed program which applies artificial intelligence
techniques to this problem of nolecular structure determnation. Tpe
primary input to this programis the nmass spectrum of the unknown
conpound.  Secondary inputs, if available, jinclude the nuclear nagnetic
resonance spectrum and the elementary fornula of the conpound.  The output
of the programis a list consisting of one or nore nol ecul ar graphs, each
of which represents a heuristically plausible explanation of the given
input. These graphs are rank ordered with respect to their relative
plausibility scores. Central to this DENDRAL program are al gorithns which
generate all of the distinct valence isoners of a given set of atonms. It
is these algorithns that we will describe in this paper.

In graph theoretical terms, the problem that we consider is the
following: Gven a degree sequence of nodes which corresponds to the
val ences of the atoms of a given organic conmpound, algorithmcally construct
a representative set of the distinct isonmorphismclasses of the connected,
| oop-free nulti-graphs based on that degree sequence.  (For brevity, such
graphs will be referred to as elf-graphs.) Moreover, for pragmatic
reasons, the algorithm shoul d:

a) Be machine inplementable in a reasonably efficient manner.

b) Be able to accept as additional input certain constraints

arising from the chemcal heuristics of the situation.
For exanmple, generate only those graphs which contain a certain

substructure.
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c) Generate no isonorphic graphs in the intermediate stages of the

al gorithm

This last restriction is necessary because of the tine and the storage
limtations when using a machine

In section Il of the paper we define the concept of a superatom and
we briefly describe the subalgorithms used by the main algorithm In
section Ill, first a conceptual description and then a formal description
of the main algorithmis given. Section IV contains the graph theoretical
results on which the main algorithmis based, and in section V a fornal
proof of the conpl eteness and the correctness of the main algorithmis

nresent ed.

I'l. Terminology and Subalgorithms. The concept of a superatomis used

throughout the paper. A superatomis a collection of atons bonded

together into a cyclic structure which possesses at | east one unassigned
valence, i.e., at |east one free valence. Gaph theoretically, a
superatom is a connected, loop-free nulti-graph with no isthmuscs, i.e.,
with no edge whose del etion disconnects the graph, and with at |east one
unassi gned val ence. If a superatom A has k free val ences, then in fornming
mol ecul ar structures which include A A behaves al nost |ike an atom of
valence k. The difference in formng structures including A and in formng
structures including an atom of valence k is the following: The k free

val ences on an atom of valence k are, as edge endpoints in a graph

i ndi stinguishable, i.e., barring optical. isomerism, the free val ences on
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the atominplicitly admit as symmetry group the group Sk, the full
permutation group on k objects. However, the k free val ences on the
superatom A usually are distinguishable froma symetry view point, and
the free valences on A will, in general, admt only a subgroup of Sk.
For exanple, the superatomin Figure 1 has three free val ences, but the
group of symetries of these free valences is only {( i g g), (é g i)}
Thus, associated with each superatomwith k free valences is a subgroup
of Sk, namel y, the group of symetries on its free val ences.

By the termtree we will always mean a graph whose nodes can
represent either atons or superatons and whose edges are all isthmuses.
Al'so, throughout the paper, a collection of atons given by their
val ences, i.e., a degree sequence, wll be represented as an integral
n-vector V = (al,ag,...,an), wher e a; is the nunber of atons of
valence i in the collection.
al,a2,...,an), t he unsaturation of V,
n

UV), is defined as UV) =1/2(2 + £ (i—2)ai). If there exists at
hl

For a degree sequence V = (
| east one el f-graph based on V, i.ef, a elf-graph with &, nodes of
valence i, then UWV) is precisely the mniml nunber of edges of any
el f-graph based V which nust be deleted in order to make the graph
into a tree of atons.

The description of the main al gorithm nakes use of the follow ng
subal gorit his:

a) A tree generator subalgorithm TG TG accepts as input
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a list of valences corresponding to atons and superatons, each

&“ superatomwith its associated free val ence group, and outputs all
‘ non-i sonorphic trees based on these atoms and superatoms. Such a
- tree generator algorithmis described in [3].

= b) A | abel er subalgorithm LAB. LAB accepts as input an ordered |ist

of mdistinct synbols, a group H of pernutations on these synbols,
= and a list of mnot necessarily distinct labels. It outputs all

C non-equivalent, with respect to H labelings of the given synbols
a with the given | abels subject to a set, possibly enpty, of constraints
L of the formthat certain types of synbols nust be labeled with certain

t. types of labels. Such a labeling algorithmis described in [h].1
— c) A "catolog", CAT, containing certain connected, |oop-free, isthmus-

1 free nmulti-graphs, for brevity, clfif-graphs, underlying, in a sense

‘:_ to be nmade explicit later, the graphs of organic nolecules. A |ist
{ of these underlying graphs is known for nmost of the commobn organic

mol ecul es, and consists of a relatively small nunber of graphs.

;’"— [11.  Main Algorithm W give now a brief conceptual description of the main
algorithm The input to the algorithmis a degree sequence, i.e., an integral
- n-vector V.

L’_ 1. Determne all distinct allowable partitions of V into atons and
| superatom sets with assigned free valences. These partitions
- are based on the unsaturation of V.

‘» 2. For each superatom set, determine all the distinct allowable



al l ocations of the free valences to the atoms of the set.

3. For each such free valence allocation, determne recursively the
al | owabl e sets of atons remmining after the deletion of the
bi val ent atons and the "pruning" of any resulting loops. This
recursion is done until: a) the remaining bivalent atons in any
clfif-graph based on the set nmust all be on edges, or b) one of
two special cases is encountered,

L. For each such set of atoms, if condition (a) termnates the recursion,
"l ook up" in the "catolog" all the clfif-graphs based on the non-
bivalent atons in the set and for each such graph | abel the edges
with the bivalent atoms. If condition (b) termnates the recursion,
directly '"wite down" the allowable graphs.

5. For each such graph, recursively |abel the atoms with | oops and the
| oops and edges with bival ent atons.

6. For each graph so obtained, label the atoms with the free val ences.
7. For each set of atoms and superatoms obtai ned as above, use the tree
generator to construct all the non-isonorphic elf-graphs based on

these atoms and superat ons.

The following formal description of the main algorithmis presented as

a sequence of subal gorithns:

Definitions. Gven V = (a ..,an), def i ne:

1'72*"
n

a) WVv) = (2 + Z(i-—2)ai)/2‘
1
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c) N(V) =T a..
by

) P(V)

e) MV) =
Note that UV) =

1

al .

max{ 1 < i _<_n[ai¢0}.

(2 + TD(V) - 2N(V))/2.

A Superatom Partitioner (SAP).

1.

10.
11.

12.
13.

nput :

vV = (al,a2,...,an).

(Test) If WV) is a non-negative integer and

2M(V) < TD(V), continue; else STCP.

| f
Do

Uv) = 0, goto TG

12 for each non-trivial summand V of V such that

P(V) = 0 and N(V) > 2.

Do 11 for 1 <k < [_N(V)/2_].

Do 10 for each distinct k-term ordered partition

of UV), say U(V)=ul+u2+. .o +ukv\here
lSu Su, S Sy
Do g for each distinct set { (v.,u)|1<i <k}
k

where 1V, = V and N(V,) 22 124Xk

Conput e Fvi = 2(U(Vi) - ui), 1 <i=xk.
If Fv, <max {1, 24(V) - TD(V,) } for any

1<iZfk, Qo to 6.

Put { V5 (v, EV)), . o (Vs V) } on the 1list
GLSA(V).
Conti nue.
Conti nue.
Conti nue.

| f

P(V) =0, put {v; (V, 0) } on the list GLSA(V).



— B. Free Val ence Partitioner (FVP).

N -
wputs  (o,v v ), EV.) where NV, 22,

g
2(0(V,) = u.) =F., 1 u1->1 and
1 1

EV, > max{ 1, 24(V,) - TD(V,) }.

‘ 1. Determine all sets of non-negative integers
— { f.jt ey max{0, j + (FV, - T(V.))/2} <t < -2,
j = 2,...,n } satisfying:
¢ j-2
z foop TVis | =2,
i) T V:1 j 2 n
- 3
nj-2
i) I I tf.._ =FV
- j=2 t=c._ It
J
(Not e that f0® v2).
2. For each such set, form
C
o W= W(V., FV., {£._}) =(0,Wss..,w ). Where
oot 2 he \{linst
z f , and put WonXGLEV(V,, FV.).
L s s<h<n h(h-s) i i
hZ_Ch“‘S
€
— C. Loop-Bivalent Partitioner (LBP).
(LBPis applied recursively until either ml(W) = mo(w) =0
S or m (W) < m (W),
_ (Impnét,:..w= W) where NW > 2, YW is a
positive integer, and 2M(W) < TD(W.
n
- 1. Conpute m (W) = min{ w2,ji:4L(j—2)/2_le} and
_ mo(w) = max{ 0, W, + (2M(W) - TD(W))/2 }.
2. 1f m(W >m (W), go to Special Case.
8
- 3. If mO(W) = ml(W) =0, go to Catolog.
¢

r



' 4. Do 9 for p = my(W),...,m (W).
L
_ 5. Determine all sets of non-negative integers
{ Psjg | 350 smQc<t < 1(5-2)/2) } satisfying:
- L(3-2)/2]
1) z .. =W, 3<ij<n.
C 1 R <js<n
- (Note that p, = w,).
- n [ 3-2)/2)
- ii) 2 L tps. =P
j=3  t=0 9

6. Do8 for each such set {pjt}.
L 7 FormY = Y(w, p, {pjt}) = (0,y2,...,yn) where
_ n

Y :mzs Pm.(m-x)/2 . (Note that p,, = 0).

" by 2
- t:%i{el i st

8. If 2M(Y) < TD(Y), put Y OARYGLIB(w,p).
.
_ 9. Cont i nue.

D. Special Case (SC).

o (Here m (W) < m (W)).

1. If ml(W) = 0, put the graph consisting of the ring

with N(W bivalent nodes and its associated node
the |ist

.- symmetry group onYGLGPH(W) and go to Loop Label er;
_ else go to 2.
B 2. If ml(W) = s >0, put the graph consisting of one
< node of degree 2(s+l) with s+l [ oops attached and

the |ist
its associated edge-loop symmetry group onYGLGPH(W)

and go to Bivalent Labeler.



E. Catolog (CaT).

Input: Y = (0,y,,...,y_) where m (Y) = my(¥) = 0.

. o clfif-
L If yQ#O, "l ook-up" all non-isonorphi CC\/l trival ent

7.

graphs G with Y, nodes and their associated edge
symetry groups, EGRP(G); else go to 6.
Do 4 for each such graph G.
Determine all distinct ordered partitions of v,
into TD(G)/2 non-negative integral terns.
For each such partition, say b1 +..0 4 bTD(G)/2 _ Yo
use the general |abeling subalgorithmto determne
all distinct, with respect to EGRP(G), | abelings
of the edges of Gwith the [abels bl"'

P16y /2°
repl ace the |abel b, on the |abel ed graphs by

b, bival ent nodes, and place the resultant graphs

the |ist
and their node symetry groups onYGLGPH(Y).

Go to Loop-Bival ent Labeler.

clfif-
If y, =0, "look-up" all non-isonorphic v graphs

based on Y, and put these graphs and their associated

the |ist
node symetry groups, on GLGPH(Y).

Go to Loop-Bival ent Labeler.

Loop- Bi val ent Label er (LBL).

(LBL is applied recursively to each graph G on GLGPH(Y)

up the path of vectors from which G arose until reaching

the W= WV, v, f.

Tt ) on GLFV(Vi, Fvi) headi ng the path).
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Loop Labeler (LL).

Input: Aelf-graph G, its node group NGRP(G) and the
vector Y = Y(W,p,{pjt}) on GLL(W,p) from which
G arose.

. Conpute q, =€3.]t’ t = 0,...,[(n-2)/2].
2. Determne al Ijlc—l‘ijstinct, with respect to NGRP(G,

| abelings of the nodes of G with q.-t's subject to

the constraint that p.jt-t's must go on nodes of

val ence j-2t.
3. For each such labeling, replace the label t by t |oops.

Bi val ent Label er (BL).

Input: A connected graph Hwth p |oops, the edge-I|oop
group of H, ELGRP(H), and W, t he nunber of bival ent
nodes in the vector Wfrom which # arose.

1. Conpute h = p + nunber of (non-loop) edges in H.

2. Do 4 for each ordered partition of w, into h

2
non-negative terns, say Wy =b +. . . +b,
bl <. . . £ b, such that at least p of the b.'s
are non-zero.
3. Determne all distinct, with respect to ELGRP(H),

| abelings of the edges ahd |oops of Hwth the

<h} subject to the constraint

| abel s { b, | 1<
that each loop gets a positive |abel.

4, For each such |abeling, replace the |abel bi by
b, bival ent nodes, 1 <i <h, and place the

, the list
resul tant graph and its node group onYGLGPH(W).
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G Free Valence Labeler (FVL).

Input: A graph G, its node group NGRP(G), and the vector
w = w(vi,n;i,{fjt}) from which G arose.

1. Conpute £, :jEQf - t =0,...,n + (FVi-TD(Vi))/2.

2. Determine all distinct, with respect to NGRP(G),
| abel i ngs of the nodes of Gwth £f-t's subject to
the constraint that f.]t-t's must go on nodes of
val ence j-t.

3. For each such |abeling, replace each label t by t
free valences and put the resultant graph and its
free val ence symetry grouptgg\éigft)ﬁ(Vi’FVi).

H 1Input for Tree Generator.

B the |ist
For {V: (v, FV)), . . ., (V, FV,) } enVGLSA(V),
input to TG
a) V-V. (The atons).
b) A k-tuple of graphs (Gl, Coe Gk) and their

associ ated free val ence groups where Gl is on the list

GLGPH(V., FV.), 1 < i < k. (The superatons).

V. Theoretical Results. W now present the graph-theoretical results on
which the main algorithmis based. Even though some of these results are
known, we give proofs for the sake of clarity and conpl et eness. Thr oughout
this section, V = (al,...,an) denotes an integral n-vector.

Lemma 1. If there is at least one elf-graph g based on V= (a,,..., a),

4

then U(V) is a non-negative integer.

Proof. A spanning tree of G has W(V)-1 edges, and ¢ has TD(V)/2 edges.

Hence U(V) = TD(V)/2 - (N(V)-1) is a non-negative integer.
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Lemma 2. If 2M(V, < TD(V) and UV) is a non-negative integer, then there

is at least one elf-graph based on V.

Proof. Let m= MV), the maxinum valence of V. Gven non-negative integers,

b o b s b #0, let bl =L(b,,...,b ) be the | east non-negative integer

20 m m 2 m

such that there is at |east one elf-graph based on B = (bl'bg""’b ). Since
m m

for sufficiently large bl’ e.g., bl =g ib, - 2(Z b,-1), such a graph exists,
2 2 1

L(bg,...,bm) is well-defined

Assume bl = L(b2,...,bm) >2, and let G be a elf-graph based
on B. If there where two distinct nodes N and N, of G both of
whi ch had adjacent nodes of valence 1, we could delete these val ence
1 nodes and add the edge (Nl,N2) to G obtaining a elf-graph with
a lesser number of nodes of valence 1. Thus all valence 1 nodesof
G must be adjacent to the same node, say N. If there was a node

Ny adjacent to N and a node N, # N adj acent to N.,, we could delete

l,
the edge (Nl,N2) and two of the valence 1 nodes and add the edges
(Nl’N) and (N,N2) obtaining a elf-graph with a | esser nunmber of

val ence 1 nodes. (See Figure 2). Thus all nodes adjacent to N are

adj acent only to N, and since G is connected, all nodes must be

adjacent to N (See Figure 3). Hence, N nust be the unique node of

m |
valence m i.e., bm= 1, and b, = m.—_z ib,.
1=2
Now assume the |emma is false, i.e., 2m < TD(V), UV)

is-a non-negative integer and there is no elf-graph based on V = (a,, . ...’

m |
Then a < L(a2,...,am). | L{az,...,am) > 2, then a, <m - 152 iag,
and Tb(V) < 2m, a contradiction. If L(a2,...,am) = 0, then a, < 0,
a contradiction. |If L(a2,...,am) =1, then al = 0. Since a
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m

el f-graph based on (l,a2,...,am) does exist, by Lemma l,c =1 + L (i-2)a.1

i=2
is even. Hence UV) = (c+l)/2 is not integral, a contradiction.
Theorem 1. There exists at |least one elf-graph based on V if and
only if 2M(v) < TD(V) and UV) is a non-negative integer.

Proof. The sufficiency is just Lemma 2. For the necessity, |et

m=MV). By Lenma 1, UV) is a non-negative integer. Assume that

2m > TD(;)-'I Then m > a) +2a,+ . . .4 (m-l)am 1" Hence g = 1
and m > I iai. This contradicts the |oop-free assunption.
i=1

Corollary 1. 'V determnes a loop-free tree if and only if UV) = 0.
Moreover, in this case every graph based on Vis a loop-free tree.
Theorem 2. There is-a clfif-graph based on V if and only if UV)
is a positive integer and 2M(V) < TD(V).

Proof. If there is a clfif-graph based on V, then by Theorem 1

and Corollary 1, YV) is a positive integer and 2M(V) £ TD(V).

Conversely, by Theorem 1 there exist elf-graphs based on V.
Assume that every such graph has at |east one isthmus. Let G be
a graph based on V with a miniml nunber of isthmuses, i.e., a
"least crimnal." W will show that G can be nodified to a elf-graph
based on V with a |esser number of isthrmuses, a contradiction to
our assunption.

Let the edge (A B) be an isthmus of G and let x and Y be the
connect ed conmponents of 6\(A,B). Since YV) >0, not both X and Y
are trees. Say Xis not atree and Ais in X. Let C be an elenentary
circuit in X, and let C be a node on ¢ of minimal path |ength from

A,where We consider here a multiple edge as a circuit. (Note that
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we may have A = C). By the choice of C there is a path
fromAto C which is edge-disjoint from¢. Let D be a node on C
adjacent to C.  (See Figure u).
Case 1. Yis a tree.
Since ¢ is loop-free, there nust be a valence 1 node Nin Y. Say
Nis attached to the node E of Y. Then, delete (C D), add (D E),
and nove NfromE to C  (See Figure 5).
Case 2. Y is not a tree.
Let & be a elementary circuit inY, E a node of £ of mnimal path
length fromB and F a node of E adjacent to E. Then, delete (C,D)
and (E,r), and add (D,F) and (C,E). (See Figure 6).

In both cases, the resulting graph is a elf-graph based on
V and has at l|east one less isthnus than G Hence our assunption

was false, and there is at |east one clfif-graph based on V.

Lemm 3. Let V and Fvi,i =1, . . . .k, beas in Superatom Partitioner.

Then T FV. = 2(k - U(V-V)).
. 1
i=1

Lenma 4. In a | oop-free graph based on V, there are TD(V)/2 - a

1
edges between non-unival ent nodes.

Theorem 3. et V = (O’aZ""'an)’ N(V) > 2, UV) a positive

integer, and 2M(V) < TD(V). Let mo(V) = max {0, (32 + (2M(V)-TD(V))/2))

n
and m, (V) = min{ az,iiq [(i-2)/2]a; }. Then, m (V) < m (V)
except in precisely the follow ng two cases:

a) ml(V) = 0 and mo(V) = 2.

b) m, (V) =s >0 and my(V) = s + 1
iioreover , case (a) holds if and only if 8 = 0, j >3, and case (b)

holds if and only if a2(s+1) = 1 and a.3 =0, ] >3, ] #2(stl).
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Proof. Let mO(V) >m(V). If mM(V) = a,s then 2M(v) - TD(V) > O,
n

a contradiction. Hence m(V) = I [(i-2)/2]a,. Assume m(v) = 0.
i=4

Then a.3 =0, j »3. By Theorem 1, a elf-graph based on V exists.
Hence 3, is even. FromO < mo(V) = (2M(V) - 3a3)/2, it foll ows
that a3 = 0 and mO(V) = 2. The converse is imediate. Assunme that

ml(V) = s > 0. Then, a, + (2M(Vv) - TD(V))/2 > s > 0, and

MV) > 2s + 3a3 +o..t (IV(\/)-l)ab,[(V)_l > 2s. Hence Ay = 1.
M(V)

Also, s =m(V) =1 ]_(i-:?)/Z‘_]ai inplies that 2s > MV) - 3.
i=y

Thus, 2s + 3 > MV) > 2s. This inplies that a, = 0, 3 <i<MV.
Since a elf-graph based on V exists, MV) nust be even. Thus
MV) = 2(s +1). A direct conputation gives that mo(v) =s + 1,
Tne converse follows directly from 2M(V) < TD(V).

Lemma 5. Let V, mo(V), and ml(v) be as in Theorem 3. Assune that

mO(V) = m, (V) = 0 and a, # 0. Then a, # 0 and is even 'and ay = 0

1
for i > 3.

n
Proof. a, # 0 inplies that m (V) =2 [(i-2)/2]ay= 0. Thus a. = 0,
i=y

1=
i >3. Nowm(V) =0 inplies that 2M(V)-3a310. Hence a3¢0.

Since a elf-graph based on V exists, a, nust be even.

3
V. Proof of Main A gorithm

A Every elf-graph based on V occurs. Let G be a elf-graph based

on V. W will show that the algorithm produces a graph isomorphic
to G

Since G exists,.by Theorem 1, UYV) is a non-negative integer
and 2w(v) < (V). If u(v) = 0, the tree generator produces a
graph i sonorphic to G Assune UV) > 0. Let B be the set of

i sthnuses in ¢, and | et Gl‘ Gk be those connected conponents
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of G\Bhavingat | east two nodes. Since WV) >0, Gis not a tree
aud k 2 1. Also, N0 G, has univalent nodes. Let v, = (O, a5, ees a ),

where a.; s the number of valence j nodes of G1 and | et v, be the

number of elements of B connected to G, inG,1<i<k. Set
X

V=t V.p MNote that k, v, Fv, and V depend only on the isonorphism
i=1

class of G Now P(V) = 0 and N(V) > 2. Thus V is an allowabl e

sumand of of Vin SAP.  Also, N(V,) > 2, 1 i<k, and 1<k < [N(V)/2).

set u, = (2U(Vi) - FVv.)/2. Let '5\1 be the graph obtained from Gi
by replacing in ¢ each of the EV, connect ed conponents of G/B
connected to G; by a unival ent node. Then /c\l Is a elf-graph which
is not a tree. Let Qi be the n-vector associated with f:\l Then
U(\/\i) T u., and u.. Is a positive integer. Mbreover, by Lenma 3,

k

AN

Louy o= u(v). Since G, is a elf-graph, by Theorem 1,

Al

e S Oy _
24(V,) = 2m(V.) < TD(V,) = TD(V,) t EV.. Thus FV, 2 2M(Vv,) - TD(V,),

and, after suitable reindexing,{ Vi (V., FV.), o wws (V,, FV, )}
: 1 1 k k
the Iist
is oniGLSA(V).
For a fixed i, 1 <i <k, let fjt be the nunber of valence
j nodes of /G\ with t univalent nodes attached, 2 <j <n, 0 <t <j.

Since /c;\l is a elf-graph and has isthnuses only to unival ent nodes,

T 0 for t >j-2. Also, by Lenmm 4, /G\l has (TD(Vi) - Fvi)/2

edges between non-uival ent nodes. Hence, any node of val ence j

in /G\I has at | east cj =mx{ 0, j + '(Fvi - TD(Vi))/Q } uni val ent

nodes - attached, i.e., 1‘.3‘C =0 for t < c.J. The set
{f.. ] 2<j<n,c., <t<j-2} satisfies the conditions of Fvp.
jt -7 - 1- .
the list

Hence, (V. ., {=. is on/Gl ., FV.) an nds only on
W(v,, EV., { ]t}) i's on’GLEV(V,, Fv;) a d depe y

t he i sonorphi smcl ass of Gl.
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atd

Let Gi be the graph obtaincd from ?/\1 by deleting the FVi
univalent nodes and their connccting edges.  Then
W= WV, FV., {fjt} ) = (0, Wy suves Wﬁ Is the n-vector associated
Wi th ,51 and 51 is acifif-graph. Assume that m (W <m (W) where
my and m are as in LP. By Theorem3, T is not one of the special
case graphs, and hence deleting the bivalent nodes of AGZ | eaves
a connected, isthnus-fret graph Ei with at |east two nodes and say
t | oops.  Since Ei Is isthnus-free, each node of Ei must have at
| east two non-loop edges attached. Hence
r>;l_$i~2)/2_|w,.1} = m(W). Let Gl be the graph

27 .
i=4 . _
obtained from G, by deleting the t. I oops. G, is a clfif-graph.

ti _<_min{ w

Let Y be the n-vector associated with Gl Then MW < M(Y) + 2t .

Hence, by Theorem 1, 2M(W) - b, < 2M(Y) < T(Y) = TD(W) - 2w, - 2t

ard w, + (24(W) - TD(W))/2 <_t..  Thus t, 2 m(W). Let Pt be the

1,

nunber of valence j nodes of G, with t loops, 4 <3j <n,

0 <t < [(§-2)/2] . Then {p.*} satisfies the conditions of LP and
Y is precisely the n-vector Y(W, tos {p }). Si nce G;:is a el f-graph,
28(Y) < TD(Y) and Y is on\‘ﬁxl,_.B(W tg ). Moreover, Y depends only on

t he isoxorphism class of GI'

Recursive application of the above process yields a sequence

ofs

b ~ e b3 P D
of graphs GiO = Gi’ Gil = Gi’ Gi2, cees Gls.l' and associ ated n-vectors
1

vt o= w(v., EV., {£. i ' i 1

0 Ve, BV, {fjt}), Y] = YW, t., {pjt} s Yo, o Ysi . Where

Y;f is on GLL(Y _) for sone allowable Piy and either

. i i

(1) mO(YSi) = m (Y i) = 0, or (ii) mO(YSi) > ml(Ysi ). Moreover, Y§

depends only on the isomorphism class of G": ._y+ Assune (i) hol ds
1,3~
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for Y = Y; = (0,,5+++»y,). Now by Lemma 5, Y has only bival ent
|
and trivalent nodes or no bivalent nodes. In the first case deleting

the bivalent nodes of Gl.:s.leaves a proper clfif, trivalent graph.
% I .
In the second case Gls is a graph with no bivalent nodes. In either
i

case, a graph Gls' i sonmorphic to G:;S is produced by CAT. If (ii)
1 i

hol ds, by Theorem 3, Gls is either the ring with Y, bi val ent nodes
|

or G._ with its bivalent nodes deleted is a single node of valence

is.
1 %!
2m (Y) with m(Y) loops attached, and a graph ¢  isonorphic to
, 1

YR

GTS is produced by BL. Hence we have that a graph G:;s I somor phi ¢
i, ‘ i
to Gis and the vector Y; ., are produced in the algorithm as input
Y i
to LLBL. Since ¢, _, induces in the obvious manner a |oop and/or
i

I's isonorphic

. 3 & .. 1 %
bival ent node |abeling of G, arising froa Ysi—l’ Gis. .1

&

to one of the graphs producedlby LLBL with input (G‘is.’ Y:.~l)'
Recursively applying LLBL up the sequence {Y‘;}, we ob:tLain; graph

Gi' i sonorphic to Gy wi th associ ated n-vector Vil = WV, FV.l, {f.Jt} )
inthe output, i =1, .... k. Wth the input (Gi’ wi)’ FVL produces
a graph G; isonorphic to G;. Hence, (V-V, Gy» -1 Gy) is anmong
the inputs to TG arising fromV, and with this input TG produces

a graph isomorphic toG.

B.  The al gorithm produces no redundances. Let G and Hbetwo graphs

produced by the algorithmwth input V. W will show that G and #

are not isonorphic, i.eq G ¥ H.

Assune G = # . TG 1s irredundant. Hence if G
and # arise fromthe input to TG (V-v, @, . . . . G,K) and
(Vv-V"', His vens H ,), respectively, where the Gi and H.3 are super at ons

kl
with attached free val ences, we nust have that V' = ¥V, k = k', and
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the Hj can be so indexed such that Hj 6., 1< 9< k. Hence, H.
] - b 1

and G, both nust have the same free valence FVes and G and # must

arise fromthe same SAP of V, say { V; (T, FV)), o o (T, EV) }.

~

Now since the |abeler is irredundant, so is FVL. Hence from 1{ Gi’
it follows that the graphs Ei and 'I'ii defined as in (A nust be iso-
norphic. Al so, '5; and ?fi must arise fromthe same FVP of (Ti’ Fvi),
say V\{ = W(Ti’ V., {fjt}), 1< i< k. Since BL is irredundant,

it follows that the graphs G, and #, defined as in (A) nust be
isonorphic. Simlarly, since LL is irredundant, the graphs Gl

and H? must be isonorphic.  Mreover, G;: and Hi* nmust arise fromthe
sane LP of VY say \g = Y(wi, P> {pjt}), 1 <i <k. Applying the
above argument recur sively to GT and H’;, We have that the CAT
"l'ook-up" (or SC deternination) graphs, say G'i and H, respectively,
must be isonmorphic and that the sequence of |oop partitions |eading

from Y. to the partitions determning G and Hi must be identical.

Now @ = g!if and only if ¢! and #! are equal. Thus G! = H!,
1 1 1 1 1

A

|

< 1<k

tence We have that if G = #, they arise from the identical
sequence of vector inputs to the various |abelers and TG and that
;= Hi’ 1 <i <k. Since for a given input, the |abelers produce
only non-isonorphic graphs, we nust have, successively, that
G‘ = Hl Z;‘i =H., G = Hoyand G, =4, 1 <1< K Henceif G=w,

they both arise from tre sane input to TG 3yt for a given input,

TG produces only non-isonorphic graphs, a contradiction,
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C. The partit ioners produce onlv allowable partitions of V. W

wiil now show that every sequence of partitions of V produced by

the algorithmyields at |east one eIf-graphh t|>ased on V.
the I1st

Let Y = ¥(W, p, {p, . }) be a nmenber ofYGLL(W, p). By direct

n
conputation, UY) = UW -p. Aso, p < I(i-2)w./2 < UW.
i=y -

Taus YY) is a positive integer. By construction, 2M(Y) < TD(Y).
Since ml(W) > mO(W), it follows from Theorem 3 that NY) > 2.
rence by Theorem 2, there is a clfif-graph based on Y. In the

case rrl(W) < mO(W), Theorem 3 assures 'us that a clfif-graph based

on Wexists. Thus LP produces only allowable output.

the |ist

Let W= W(V,, FV,, {fjt}) be a menber ofYGLVF(V,., Fv). By

direct conputation, UW = U(Vi) - FV./2 = u;, a positive integer.
Al'so, TD(W) = TD(V.) - FV,. Now MW = max{ j-t | 3 <j <n,

¢, Tt<i-2 f'jt #01}, and j-t < (TD(V,) - FV,)/2. Hence,

2M(W) < 'I‘D(Vi) - FV,‘L = TD(W). By Theorem 2 there is a clfif-graph
based on W and FVP produces only allowabl e output.

the |ist

Let {V; (v, FV (v, FV)} be a menber ofYGLSA(V),

Do
|

. _ i . 1 . N - ‘ 1
say V; (0, a,, «€.9 an), 1 < i < k. Let H, (FVi, 3,5 o o an).
Now 2U(H,) = 2U(V,) - FV. = 2u., and U(H,) is a positive integer.
1 1 pS 1 1
= > = =

Also, P(H;) = FV, 2 1, and TD(Hi) TD(Vi) + FV. > 2M(Vi) 2M(Hi).
Thus, by Theorem 2, there is a clfif-graph based on s 1<i <k
Hence, at |east one set,Gl. Gk"Of superatons based on the
given partition of V exists. |If ¥ is the n-vector cor respondi ng

tov -V and the free valences of the Gi' then a direct conputation
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using Lemma 3 gives that u(v) = 0. By Corollary 1, a loop-free

tree based ON V- ¥ and the G, exists. Thus the sequence of psrtions

of V does yield at |east one elf-graph based on V.
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FOOTNOTES.

’

More formally, if X is an melenment set and His a group of

pernutations on X, then a labeling of X with n, |abels a,,
_ 1 1
nl+n2+...+n = U]
n, label's a,, ..., n, labels’a vis a ﬁappl ng v: X » {a;,a,,..

such that iw'l(ai)l =n.. Two such meppings v, and ¥, are

.,ak}

equi valent with respect to Hif there is anne¢ H such that yy=y;n.
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