A REVIEW OF “STRUCTURED PROGRAMMING”

by

Donald E. Knuth

STAN-CS-73-371
June 1973

COMPUTER SC | ENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

2y

—

A Review of "Structured Programming”

by

Donal d E. xnuth

Abstract

The recent book Structured Programmng by 0. J. Dahl,

E. W Djkstra, and C. A R Hoare promises to have a significant

i npact on conputer science. This report contains a detailed review
of the topics treated in that book, in the formof three informal
"open letters" to the three authors. It is hoped that circul ation

of these letters to a wi der audience at this time will help to pronmote

useful discussion of the inportant issues.

This research was supported in part by the National Science Foundation
under grant number GJ-36472X, |BM and Norges Al nenvitenskapelige
Forskningsr8d. Reproduction in whole or in part is permtted for any
purpose of the United States Covernnent.

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

«_ -Oi4PUTER SCIENCE DEPARTMENT Telephone:
LN 415-321-2300
Decenber 7, 1972
LN
- Prof. Dr. EE W Dijkstra
Mat hemat i cs Depart ment
Technol ogi cal University
_ Ei ndhoven, The Netherlands
- Dear Edsger:
- Ole-Johan Dahl has just given me a copy of the new book
Structured Programming, and | want to congratul ate you on an especially
fine job. It is delightful to see these inportant ideas in print at
“-— |l ast, and the book will no doubt prove to be extrenely influential.
Your unique style of witing holds the reader spellbound; it's the kind
of book you can't put down until you reach the end, and once you have
L read it your life is not the sane thereafter.
O course, | don't agree 100 percent with everything you said --
¢ this is inevitable whenever artistic or aesthetic judgmentsare
— involved -- so 1'd like to jot down some of ny current feelings on
these issues in hopes of further clarifying and perhaps strengthening
L the ideas. In other words, | am now witing a letter to nyself based
on your letters to yourself. And I hope you will have time to read
mne as | have read yours.
¢
o Here then are specific comments pronpted by your Notes on Structured
Programming, cross-referenced by the page number where they appear in the
book.
L The first time | felt like raising amild protest was on page 7,
'Y where | didn't realize that dd and r were intended to be integer
variables. (This is of course explained nicely on page 15, but |
— didn't know it at the time.) The program makes an instructive exanple
with respect to floating-point computations also. In the first place,

when floating-point operations are properly rounded, the program does
L in fact leave (1) invariant; but if truncation arithmetic (IBM's style)
(3 is used, it fails. For exanple, in decimal notation,if dd = 2 .0000001
and r = 2.0000000 , the programfirst sets dd := 1.0000000 . On nearly
L all conputers which do rounded arithnetic, your proof of the invariance
of (1) is apparently correct; nevertheless, after the programis repeated
100 times the result will be to set d to zero while r remains

[positive! The reason is the preposterous convention, alnost universal,

(. of replacing 'exponent underflow' by a zero result with no interruption
of the program Perhaps exanples like this will finally be able to

o convi nce hardware designers that it is absurd to destroy all the

L significant figures wi t hout warning.

Prof. Dr. E. W Dijkstra -2 - Decenber 7, 1972

However, you probably aren't interested in such things, so | shall
nove on. The "primes" programhas come out very nicely, since | |ast
sawit; I'mglad the rather uninformative digression about "throdd"
nunbers has been suppressed, and the instructive mult table is a wel cone
addition because it sheds light on redundant data structures where the
invariant need not conpletely characterize the redundancy. | only wish
to conment on two things regarding this program First, on page é%, wher e
you begin to assune that remminders cannot be computed conveniently, the
reader who has been following carefully will recall that an efficient and
el egant algorithm for conputing remainders has been presented on page 13
(the conputation on ¢ may be suppressed). So this is the obvious thing
to do in 2vk(k)a , and it is very instructive to observe that 1t 15
much worse than the mult table since the latter requires conparatively
little space. The noral of the story is clearly to avoid using cperations
blindly without considering the context, as you point out briefly later
in Section 11.

My second comment has to do with this question of context. O
course the nonenclature "2bk(4)da" is not pretty, but the real problem
as we get to the end of the primes programis conceptual, not notational
The steps of program construction have unfol ded very nicely and naturally
but at the end we can't really fold themtogether again -- we seemto be
al nost 1 ooking at the entire programas a whole, with it all in our head
at once. Thus when the reader gets to page 38, with the final 'patches'
on level 2v5(4) , it becones suddenly much harder to understand what is
goi ng on.

Perhaps it is inevitable that a programer nmust in fact have reached
a conception of the whole programat once (in an appropriately structured
form of course) by the tinme he has finished. But this seens to inply that
the difficulty of programmng increases greatly with the size of the
program while ideally we would like the level of difficulty to remain
workable. The same phenonenon occurs in the picture-draw ng program by
the time the reader/programer gets to the end of LINER at the bottom
of page 56, he needs to be flipping pages back and forth and essentially
keeping the status of the whole programin his head. The latter nmay al nost
be necessary; | have always had a feeling that a talent for progranm ng
consists largely of the ability to shift quickly from macroscopic to
m croscopic views of processes.

Sone evidence that you yourself are in fact keeping the entire
context of the programin mnd appears on the top of page 54, where you
say fifty blank lines would be outgut, while we are at this point only
| ooking at the '"build procedure which purports to be independent of
the output. | don't criticize you for this (although this particular
instance is unnecessary context); | merely want to illustrate what seens
to be a part of programming psychology. You say rightly on page 50t hat
we nust tie loose ends together again.

Prof. Dr. EE W Dijkstra -3 - Decenber 7, 1972

Herein lies the dilemm, and the conflict. A notation which
expresses the separation of tasks nicely eventually gets into difficulties
when there are many | oose threads running through a single pearl. Yet
the pearls are valuable as a neans of coordinating the individual design
deci si ons.

Perhaps the new display termnals will provide the answer, as a
notation for programs that will provide an appropriate reflection of the
structure as we mght have it in our mnds. You have perhaps had a
dream much like mine: Wuldn't it be nice to have a glorious system
of conplete maps of the world, whereby one could (by turning dials)
increase or decrease the scale at will? A simlar thing can be achieved
for prograns, rather easily, when we give the prograns a hierarchic
structure like those constructed step-wise. It is not hard to imagine
a conputing system which displays a programin such a way that, by
pressing an-appropriate button, one can replace the nane of a routine
by its expansion on the next l|evel, or conversely.

The i ndependent design decisions (i.e., the pearls) could be
identified in such a system by marginal classification codes, saying
which pearl each line belongs to. An exanple appears below. This seens
to me to be a reasonable way to bring the appropriate context into each
pearl, yet retaining the pearl's identity. (W need another word for
pearl, though; what should it be'?)

The vi ewpoi nt about a sequence of machines and operation codes,
whi ch you have nicely expressed in Section 13, has often proved useful
to nme also in a nore explicit formwhere the data itself gets transforned
into instructions for a pseudo machine. An exanple of this appears in
the appendix to ny paper on computer-drawn flow charts, Conm ACM 6 (1963),
555-563 . A two-pass algorithmis described, wherein the first pass
encodes the data into a pseudo machi ne | anguage and the second pass
executes that program If you have the time, | hope you can read this
ol d paper of nmine, even though | was of course nuch nore naive at the
time; it seens to ne that a nunber of inportant principles are involved,
and that a closer study of such an algorithmnmay l[ead to increased
under st andi ng of program construction (and proofs).

| amnot part of your audience who were "deeply troubled" by the
time the top of page 56 was reached. But | nust adnit to being deeply
troubled at the top of page 57, and not only by the fragnmentation
referred to above. Suddenly you had junped to a choice of data structure
very different fromwhat | had expected. Namely, why was the possibility
of representing the data as a list of 1000 pairs, sorted into |exicographic
order (decreasing y , then increasing x) never considered?

After thinking about this a little, I'm convinced that it is a
question of density. Consider the identical problem but with the
fx(i),fy(i) only to be printed for 0 <i < 10 instead of 1000 .

Prof. Dr. E W. Djkstra S Decenber 7, 1972

| believe you woul d have reached a different solution, and jt s
interesting (to ne) to locate the point where the solutions begin to
differ, and the reasons for the difference. |t seens that an
appropriate way to apply your principles would be to further expand
print, before going into a consideration of inage, possibly thus:

PRI NTER
begi n type loc;
print: iinitialize loc; repeat{advance t0 next position; printsynbol]
until final loc reached];
instr initialize loc (loc), advance to next position (image, loc),
] printsymbol (inmage, loec), final loc reached (loc)
en

This seens to be a useful, if not necessary, step in the development,
because it expresses what properties of image the print routine needs.

Now we are forced to think about the order in which the marks nust be
printed, and "such a question about order is usually very illuni nating"

as you say on page 7/5. Here is where we consider whether to go to
sonething like LINER or a data structure that woul d be nore appropriate
when the marks are very sparse. |f the printer has another operation

'new page' where there are 10 lines to a page, or if it has tabulator

stops at particular points of a line, etc., all can be deci ded when we face

‘advance to next position' since this is the prinmary place where we
consi der the nunber of operations required (and where we deci de what

"“next position” means). Perhaps the two instructions advance .. . and
printsynbol in the above ought to be one since they can't be meaningfully

used in another order

This seems to be further confirnation of your remarks on pages 62
and 63. Decisions about data representation should probably always be
deferred until the necessary uses of the data by the algorithmare

est abl i shed.

On pages 63-66 you discuss wirth's prcblem of the sequence without
repeating blocks. Here | was unable to answer the question "Wwhat shoul d
the programbe like if there is possibly no solution?" | see no good way
to do this without go to statenments; every way | think of would be better
with a go to. This is the difficulty | have in subscribing whol eheartedly

to your ideas and perhaps you can show me ny error in this exanple.

On the top of page 67, it seemed to me a better first sketch would be

irmteger s, t;
s:=1 (and further initialization);
repeat t :=s;
s, +="sum Of smallest unconsidered deconposition > t"
until s =1;

Prof. Dr. E. W Dijkstra -5 - Decenber 7, 1972

l{owever, both of these "first sketches" fail to indicate all the
thinking that goes on. | find it significant that the student spent
twenty mnutes getting sonewhat famliar with the problem and |
venture to say that this was not all wasted; one does not come to the
right first sketch until after several other hidden concepts have been

di scovered.
In fact, let's consider this problema little. It is desired to
find the first repeated el ement of the multiset {an+1_)n|0 <a <b}.
~ A general way to find duplicates is to sort; and especially since we are

looking for the first duplicate, this suggests generating the el ements
of the set in order. Now the obvious way to generate this set is by a
pair of nested |oops,

for a:=0 step 1 until « do
N for b :=a step 1 until « do .

but this doesn't lead to increasing order. Ve perhaps think of parallel
processes at this point, one for each value of a (since the values for
fixed a are increasing; this is the key fact which nust be discovered
samehow) . We inmmgine a collection of processes generating the val ues

.
process[0] : 0" +0", 0"+ 1", 0%+ 2", |
process{1] : 1"+ ln, 1%+ 2n, 1™+ Bn, .
process[2] 1 20+ 2%, 2y M 2"
\
and we nust merge the outputs of these processes into ascending order.
Ve see that at any given tine we need not consider process{k+l] until
process[k] has gotten its first value used. This sequence of observations
seems (to ne) to be what underlies the first sketch which magically
appears on page 67. But now the first sketch [ooks rather like this:
integer array sum,b[O : =»]; conment sum[a] is the next value to be
out put by process{a], and it corresponds
to a"+ b[a]n;
N initiate first process;
repeat find snallest sumanong the active processes;
- if it was the first value for that process then initiate the
next new process;
- advance the process which had snallest sum

until this sum equals the previously exam ned sum

| don't believe you get the stated first draft until you have nentally
drafted something equivalent to this. By the first declaration in this
program| do not nean to conmt nyself to any particular data structures.

Prof. Dr. E W Dijkstra -6 - Decenber 7, 1972

It is interesting to pursue this somewhat further, to the point
where we choose appropriate data structures. W soon reaI i ze that
the (sum,a,b) triples are essentially linked, not independently
sum{a],b[a] ; and the proper data structure is a priority gueue consisting
of these triples ranked on their sumfields. Now we [ook at Kmtk, vol ume 3
and see which of four or five known methods for priority queues is nost
appropriate in this instance (probably a sorted list, since the nunber of
processes stays snall).

The above programillustrates something else, which I think is
inportant. Wenever I'm trying towite a progran1mnthout go to statenents,
| waste an inordinate amount of tine in deciding what type of iterative
clause to use (while or repeat, etc.). The reason is that our notations

aren't really conplete. | knowin ny head what | want to do, but | have
to translate it painstakingly into a notation that often isn't well-suited
to the nental concept. | know | want to repeat something over and over,

and it's easy for me to give a step-by-step description; "first do a,
then g, then if y were done, otherwise do & and we're in the same
situation we started." MNow this is not suited to present

| anguages since | have to test y either first or last, witing

a; B; while non v do {8;a;B};

6'l;repeat 8;a3p until 7;

or

where | invent some trick inverse of 8 . (Wtness "k :=2+1 " on page 71.)
Surely you nust face the sane dilemm. What | really want to say is
sonething |ike:

loop {585 if 7 then exit; &} end | oop

Since this is a frequent mental construct, in nmy experience, | believe
it deserves a suitable syntax. Ctherwise we also find ourselves testing
the same condition twice as on page 71 (X = pnt tested three tines and
one of these is unnecessary).

On page 68 you invite the reader to try witing that silly program
himself. | know you haven't tine to grade all the readers' solutions
but here is nine anyway. (Unfortunately | did not tine nyself, | was
in bed with a pad of paper, and Jill sleeping beside ne, at about 1:00 a.m;
| expect | finished about 15 or 20 minutes later. About 2 mnutes were
wasted trying to think of a suitable iteration statement.)

Prof. Dr. E. W Dijkstra ‘7 Decenb 7
- cenber [/, 1972

A begin coment Dijkstrats 0dd inversion problem

A char Xx; comment thy .paracter nost recently input;
C integer k; char array word[1:20]; CONMMENt word[1:k] contains the

first k characters of the next word to be printed,

C
E integer n; the number of words printed so far;
o E n 1=0;
C k:=0;
A repeat x :=RNC;
A absorb x:
. B if X=sp Of x=pnt then
L B print a nonempty word:.
C begin if k >0 then
L C begin print word:
; 0> 0 then smo(ep),
If odd(n) then
~ E print word backvar ds:
F begin integer i; i :=k;
F repeat INC(word[i]);
::: i mnus 1;
nt ok
i end
E else print word forwards:
G begin integer i; i :=1;
((;; repeat PNC(word[i]);
i plus 1,
© until i >pk;—
¢ end;
E n t=ntl;
¢ k :=0;
c end
¢ end
B else add x to word:
D if k=20 then
D wor d tomng error:

:=x end;

(W)

el se begin k:=x+1; word[k]
A until X =pnt;

A PNC(x)

A end

Prof. Dr. EW Dijkstra -8 - Decenber 7, 1972

This program has been strung together fromthe individual pearls
AB,. . .,Gwhich are identified in the left margin. These letters
indicate the order in which the decisions were made. | never conpleted
the next step of the devel opnent, which woul d have been pearl H (for
the "word too long error"), since |I was hurrying and error recoverv
is usually not an easy thing. (Perhaps a good solution for that error
would be " word[l] :=word[20] :=asterisk ".) When | wote this program
| wasn't sure whether or not the first character was required to be a
letter, so | allowed for it to be a space

This programillustrates one thing I w sh you woul d adopt, nanely
always to give a suitable comment (an 'invariant' essentially) for each
declared variable. Progranmm ng | anguages ought to be defined so that
such conments are convenient if not mandatory (it's a bother to wite
the word comment, and a label isn't allowed or appropriate).

Conparing this programto the one devised by your class is
interesting, because it is so different. The stated reason for
rejecting ny formof the outernmost |[oop (bottom of page 68, "the
amount of output varies wildly"), is not really to the point; the reason
probably was either that (a) they wanted to get started with the neat
of the program without stalling around, or (b) it isn't clear what to
do with just one character, what does it nean to " absorb x "? The
latter problemdidn't affect nme since | have witten so many scanni ng
routines, but admttedly to a novice it will be unclear that a sinple
finite-state automaton for this input exists. If asked to say what |
mean by " absorb x " at level A, however, | would not be able to give
a precise definition, other than to say that the program should do what
it can to record the fact that it has just read x ; and if a word has
just been delimted, it should be output as soon as possible in order
to clear out the menmory. A precise definition of the absorbtion process
is being deferred, for later decisions.

The program found by your students is much nmore efficient than mne
if there are multiple spaces. It isn't easy to patch ny program for
this, and if | had noticed it | would have had to restructure my program
Curously ny main concern while witing that programwas not how to
pass over spaces quickly, it was when to print a space. | originally
had two Bool ean variables 'first' and 'even', which | later reduced to
the single variable n because odd(n) is a primtive in ALGOL W and
first = (n=0

Finally there is the 8 queens problem On page 76, the remark that
"the only sensible order . . . is the alphabetical order' bothered me a
little. For exanple, Golomb (who discusses precisely this problemin the
ACM Journal , 1965, pp. 516 ff.) suggests possibly choosing at each stage
the position of x[i] , where i is in the set of unspecified rows, and
where x[i] has the least remaining possibilities. (Thus, the position
of one queen night already be forced.) Also, Naur suggests starting in
the mddle since these moves block nore |ater moves

Prof. Dr. E. W Dijkstra -9 - Decenber 7, 1972

My main concern though was on page 77 where you give two reasons
why a programof the stated structure 1is less attractive. Your reasons
are not convincing, since they would apply with equal force to the
program on pages 63 -66!

This raises the further question, what would you do if you were
asked to produce only one solution (say the al phabetically first one),
as in the strings program Wuld you reject the recursive program
structure just to avoid a "go to" ¢

Wioops, I'm afraid | answered ny |ast question; | |ooked at Wirth's
procedure again, and found that he avoids go to by a rather conplicated
and forced method. Surely a "go to exit" once a solution has been found
is conceptually sinpler. Please, not all go to's are bad;, but it is okay
for you to adopt a radical stance on this question in order to heip sw ng
the prevailing balance of opinion the right way.

On page 80, your argument about 28 squares is overstated. Only the
squares in unexplored rows need to be updated, so the maxi num nunmber of

squares to update is 1k, 13, 12, 11, 9, 6, 3, O for i = 0,1,2,...,7;
nost of the time is spent for i >4 , so the average nunber of updates
is less than 10 . This is still-greater than 3, so the "col, up, down"

idea is definitely superior, but the nunber 28 is nuch too high.

Finally | suggest a slight inprovenent in the |abeling of the upward
di agonal's, 1interchanging wup([-i] wth up[i] so that the square [n,h]
is free if and only if collh] and up[h-n] and down[nth] . On many
conputers this can be tested rapidly for various h by "shift left h, extract”
assumng a 38-bit word. O course, as Golomb remarked, one can find all
solutions to the eight queens problemby hand in about an hour, pushing
pawns on a chesshoard, so there is no need to worry nuch about efficiency.
(After reading Golomb's article | took his suggestion and tried the
backtracking nethod by hand. As | recall, it took me two hours; | m ssed
5 of the solutions and found one non-solution by mstake. But it is
clear that the task requires fairly little conputation.)

Cordially,
pn (A E il
A*Mdz 4 %"""’(%M)
Donal d E. Knuth '
Pr of essor
cc: O-J. Dahl
R Floyd
T. Hoare
P. Naur
R Sites
K. Wrth
DEK/pw

STANFORD UNIVERSITY
STANFORD, CALI FORN 1A 94305

COMPUT ER SCIENCE DEPARTMENT Telephone:
415-321-2300

January 15, 1973

, Prof. C A R Hoare

~ Dept. of Conputer Science

The Queen's University of Belfast
Bel fast, Northern Ireland

Dear Tony:

¢ You should have recently received a copy of a longish letter |
wote to Dijkstra, about Structured Progranmmng. This is another one,

- inspired by your chapter. | hope that such discussions of these
fundanental issues will prove useful; at |east it's good therapy for

| me, since | like to get ny own feelings down on paper.

e On the whole, of course, | feel your chapter is magnificent. But

there are several points worth debating a little.

—

1. First, on page 86, lines 13+2, you say "the choice of representation
..t be made as part of the design of the program™ Wll, the

tendency for business data processing these days is to avoid nmaking
this decision, by striving for rather abstract prograns in which
the data representation is self-defining. In other words, large
data bases tend to have accunul ated over a period of years on
various equipment, and the desirable solution is to make each tape
(say) begin with a coded description of its own format; the prograns
shoul d dynam cal |y accormpdate each format. W may soneday therefore
see conputers which run abstract prograns. (The G20 and B6700
are already sonething like this.)

—

— r— r-

'g - 2. Your discussion of the concept of type seenms to omt the idea of

- subtypes (sonmething |ike SIMULA subclasses). For exanple, if

p and g are prime nunbers, they are also integers so they inherit
all the axions of integers. (| don't understand your remark about
"distinctions of an arbitrary kind" on page 91, |ine 26; furthernore,
mat hemat i ci ans nost frequently use the letters p and q ,
sometinmes ¢, for primes.)

This remnds ne of the very interesting |anguage AUTOMATH, invented
by Dijkstra's col | eague (and next-door neighbor) N G de Bruijn.
AUTOMATH iSs not a progranmng |anguage, it is a |language for
expressing proofs of mathematical theorems. The interesting thing
I's that AUTOMATH works entirely by type declarations, wthout any
need for traditional logic! | urge you to spend a couple of days

| ooking at AUTOVATH, since it is the epitome of the concept of

type.

L ————————————————

Prof. C A R Hoare -2 - January 15, 1973

Wen | |ast | ooked at AUTOMATH it did not contain the concept of
subtypes, and nmy inpression was that many proofs in AUTOMATH woul d
be shorter by an order of magnitude if subtypes were all owed;
however, it would conplicate the Tanguage (and the compiler/proof-
checker) to an indetermnate extent. Perhaps you and | can' look
into this further next year at Stanford.

3. On page 93, you state that "Arbitrary real numbers . . . can be
represented by . . . programstructures.” Of course you nean only
t he conputabl e real nunbers!

4. At the bottom of page 9%, and again on page 99, paragraph (%), you
make a statenent that sounds reasonable at first and which many
| anguage designers have been following . . . but on further exam nation
it appears to be wong. The statenment is, nmore or less, that sone
types ought to be unordered since their relative order is neaningless
to a progranmer.

| recently came upon an interesting exanple which seens to refute
this postulate, or at any rate there was no way in SIMULA that |
could wite an efficient program the |anguage forced ne to be
inefficient! Here was the application: | had a data type

type reflist = sparse powerset of ref(object)

and | wanted to represent it as a list of references. Gven two
such reflists , of sizes m and n, ny algorithm needed to test
whet her they had any common elenents. Coviously this would take
about mtn steps if | could keep the reflists ordered, but

SIMJLA allows only equal -unequal conparison of references. Therefore
| was forced to use an algorithmwhich required m steps!

Here is a case where the ordering of reference variables has no
semantic meaning, yet my program would work neaningfully (and nuch
faster) if |1 allowed the machine to order the reference variables
inany arbitrary but consistent way. Traditional garbage collection
and conpaction algorithns, at |east the in-core versions, preserve
this arbitrary relative order even when they reallocate nenory.

5. M inpression on page 100 is that you are hanging too much on the
concept of ordered type. By your definitions, an unordered type nust
have arbitrary sequencing while an ordered type nust have m n-to-nmax

sequencing. It seens better to me to separate the concepts of order
and sequencing, by having various sequencing operations; an ordered
type could still be scanned in arbitrary order in an abstract program

if the programrer says so, because he will prove the correctness for
an arbitrary order (and he will therefore know that he has additi onal
freedomin his later choice of concrete representations).

Prof. C. A R. Hoare -3 - January 15, 1973

6. On the top of page 103, the two procedures called "deal with single
character" cannot both be the sane, because "buffer" is the
character to be dealt with only in the second case. You night
change the first line to "else deal with single colon character".

7. Your programon page 107 allows the invalid date Feb 29, 1900.
(Perhaps you could sinmply restrict type year to 1901...1969.)
Incidentally, | wonder what EWD would do about the goto's in this
program?

8. Wen we get to "discrimnated unions" | begin to wonder about your
choice of notations, since you seemon the one hand to be trying to
mnimze the character set (the conma and sem colon and colon are
used in several different senses, and "in"is used for ¢, etc.),
while on the other hand you make use of A and v and even ~ ,
which are very rare in conputer hardware. The notation for
discrimnated union seems especially wong to me; that comma isn't
a weak enough delimter. Conventionally in English, comma is a
shorter break (i.e., stronger in precedence) than semcol on, and
semcolon is a shorter break than a colon. This order has already
been violated (inverting : and ;), but that isn't really bad;
the trouble is that the comma has already got a precedence stronger
than either of these and your |anguage shoul d be self-consistent.
For exanple, wouldn't it be natural for a programmer to abbreviate
your exanple on page 111 to

type patience card = (red, bl ue:cardface)

before realizing this nmeans sonething el se? | woul d recomend using
anot her synbol for discrimnated union, preferably the " |" from BNF.
Note that this would |ook especially nice in your parsing exanple.

9. On page 114, are those tag fields and compile-time case discrinnations
advi sabl e even when the program has been proved correct?

10 On page 116, lines 10 and 11, |'m amazed at your curiously restrictive
use of the word "table". What about a table of prine nunbers |ess
than 100 , etc.?

11 | was also surprised on page 123 that you didn't discuss the
simlarities and differences of
type T = powerset T'

and type T = array T' of Bool ean

12. Page 125, top, | find these notations unfortunate, especially x :-y
which conflicts with SIMULA conventions. By anal ogy, woul dn't
x :=y now have to nmean that x is replaced by x=y (say when
x and y are Boolean variables)? The colon is being overused
agai n.

1

— T

Prof. C. A. R Hoare - b= Janvary 15, 1973

13
14

15

16.

O course | nust think of a better alternative. Dijkstrats paper

used " i plus 1 " on pp. 5k-60, but i :=i+1 elsewhere. ALGOL 68

has i:+=1 . None of these really satisfies. Wat we seemto

need is sone "reflexive" synbol (like the German "sich" referring

to the subject). Denoting this unknown synbol by 2, we want to

have x O op y be equivalent to x .--x opy , for all variables x

and all operators op . Maybe J could be *= , read "sel f-replaced"?

Page 129, "if next.w > Wthen exit primefinder": Yes, yes, bravo!

Page 132. Actually cars are verboten as exanples ever since LISP
was invented.

Page 146, bottom | don't understand what you nean, "the axiom Of
exclusion". Is it von Neumann's "axiom of regularity"?

Your exanple of examnation timetables is beautiful, but I wshit
had been carried off with a bit nore finesse.

First in the definition of "suitable" on page 160, there is no need
to say "-trial" in the assignment to untried , since trial = {e} and
e has already been renoved. (This is fortunate, because you |ater
decide to represent trial as a sequence and the other operands as
bitstrings.) But the big awkwardness occurs in gensupersets the
introduction of save 1 and save 2 is not clever nor is it art!

In the first place there is no need to say that gensupersets preserves
"untried", since the value of the latter is never used after
gensupersets. This elimnates save 1 . Secondly, the purpose of
save 2 is to restore wuntried at another place, and there is no
need for the trickery you pulled; instead, " save 2 :=untried;

untried :-inconpat(e) " and later " untried :=save 2 " woul d be
shorter (and faster in your eventual representation). But in fact

it sonmehow is clear that untried shouldn't be a global variable

that is explicitly saved and restored, it is a natural paraneter to
gensupersets. Thus, the entire program on page 161 becomes nuch
sinpler and cleaner:

procedure gensupersets(untried: powerset exanj,;

begin e: exam
record;

1f size(trial) < k then

while untried ¢ TJ do

begin e from untried;
trial: v{e};

i f sessioncount(trial) < hallsize then

_ gensupersets(untried -~ incompat(e)) ;
trial:- {e}
end,
end gensupersets. -

Prof. C A R Hoare -5 - January 15, 1975

It would perhaps be interesting te anal yze what made you go wrong
here, and to "abstract"” the source of the error, since presunmably
it is sonething students need to be taught to avoid.

Another point is that you haven't declared the procedure "sessioncount".
Since it appears in the innermost loop it is clear that actually the
sessions shoul d be redecl ared as

type session = {exans: powerset exam sessioncount, size: integer].

This is a very inportant consideration in this algorithm so I was
sorry to see it neglected.

\ Still another point is the representation of tinetable on page 16k4;
this is evidently an output variable (as you define on page 135),
except that you consider there only the case of sequences not
powersets. The best representation for timetable in your exanple
is to print it as you go.

C And there is yet another point to nmake. The first representation
of exam that cones to mnd is not necessarily the integer
subrange 0...500 , really a "sparse powerset sequence character"”
is more natural at least in the external real world representation.
Expecting 500 courses to be assigned a unique integer code number
between 0 and 500 is quite inpossible in the real world. So
C here we have another interesting (and typical) situation: the same
type (exam) wants two different representations in different parts of
the algorithm and we nust convert between themat the interface.

Pl ease excuse ny gloating over all these inprovenents. It is nuch
easier for me to inprove your programthan for you to have conposed
it inthe first place; I'm just a Monday-norning quarterback. The
point is that this timetable exanple is a vehicle for illustrating
- even nore things than you expect ed.

. 17. Since you are editor of this outstanding series of books for Academ c
— Press, | think you ought to give some thought to the standards for
typesetting, especially of ALGOL programs. About 40-50 years ago,
G H Hardy nade a study of mathematical conposition, for Oxford
University Press, and the resulting standards have been wi dely
adopted. (A short and fascinating bookl et explaining them has been
published: The Printing of Mathematics,by Chaundry et al., OxfordU. Press 195k.
| recommend it!) One of these sacred rules is to insert small spaces
= around every equals sign;, and unfortunately Academ c Press hasn't
been told not to do this in ALGoLt A proper letter fromyou wll
cause themto set " x :=y "instead of " x: =y ". (M spacing

- here is exaggerated, but | know they can do better than they have
done on the spacing.) The same should apply to your x :v y and
soon, if you still want to stick to these. The second thing you

— ought to consider carefully is the use of italics. At present

they are setting one-character variable nanes in italic type,

Prof. C. A. R. Hoare -6 - January 15, 1973

18.

ce:

P.S.

mul ti-character names in Roman type, This doesn't | 0ok so pl easing
to ne; see especially pages 112 " cardl.normal.r ", and page 128

at the top. The ACM conventions for ALGOL (which | think have been
witten down by Myrtle Kellington, you could wite to her) are nore
to ny taste. Have you noticed that, ever since the ALGOL report was
originally published in 1960, there is an interesting typographical
distinction between italics and Roman letters (besides the obvious
distinction with boldface letters)? Perhaps Peter Naur originally
suggested this. In the syntax for basic synbols, all the letters
are italics; and all identifiers are consistently printed in italics,
whet her they are one-character or nulti-character. On the other
hand, ALGOL 60 allows any set of characters (including sumation
signs, etc.) to appear in comrents and strings; and as if to prove
this, they traditionally use Roman letters in coments and strings,
except when an identifier of the programis nentioned.

This letter is long enough. Thank you again for teaching me a |ot
by witing your monograph.

Sincerely,

g rf & 4 .
A'C"’IL' 6‘/656 ¢ /#Mc/.. ZZ /
//a,r\-/:

Donald E. Knuth o
Professor

. 4. Dahl

. W. Dijkstra

. W Floyd

. Naur

. L. Sites

Wrth

ZR oW ®EO

Here are some comments on your paper "Proof of Correctness of Data
Representation” in Acta Informatica (Decenber 1972).

On page 273, | suspect the original formof the procedure "has" was
called "contains" because it doesn't end has ! In this exanple, the
second for loop in "renove" can be replaced by sinply " A[j] := A[m] ".
Did you consciously avoid this for sone reason?

On page 277, | don't see why the proof of "has" says nerely " | <m "
whil e the proof of "insert” says "0 <j <m™". Surely the |ower bound
on j is needed in both places since A[j+1] is used. But the nost
curious thing is that the condition m< 100 is a necessary prenise,
but it is not shown. Thus the | enma for "has" shoul d begin
"m< 100 &0 <) <mgj <mg. . . "

Finally, 1 enjoyed the closing acknow edgnent since you yourself are
the author of two of the referenced works!

Prof. C. A. R. Hoare -7 - January 15, 1973

P.P.S. Typos and mnor corrections:
p. 86, line 11, coefficients

p- 91, line 20, "Let S be a family of sets of integers"

p. 110, lines 28-29, local : | ocaJ__ch,
- foreign: visitor car
p- 113, lines 3-7, change S12855 ¢ -,an to Sl’ge, . "Sn)
- p. 152, line 33, type deck = sequence cardface;
p. 156, line 26, (s1 As2 = { }) or (sl=s2)
p. 160, line 11, e from remaining;
p. 162, lines 15-16, "remai nder" ghou1q be "remaini ng"
p. 162, line -4, untried .- save 2,
p. 164, line 21, operations on a session
Rk p. 166, line -2, theorens (%)
i p. 171, line 15, in
| p.- 172, x:-y is not defined
p. 173, line -3, dys-v.,d for SERRRYE

DEK/pw

CUMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY
STANFORD, CALI FORNI A 94305

Telephone:

415-321-2300

April 12, 1975

Prof. Ole-Johan Dahl
Matematisk | nstitutt
Universitetet i Gslo
Blindern, Gsl 0 3, Norway

Dear O-J:

This is the third and last in the series of letters to nyself
based on the book Structured Programmi ng. Your chapter is certainly
a masterful conclusion to this Tnportant book. |t sets forth the key

virtues of SIMULA in an especially clear and conpelling fashion.

comments aren't deep but you nmay be interested in a few
reflections | had as | read the chapter.

1 Page 183. The histogram exanpl e does not completely renove the
artificial separation of the operational and éata storage aspects,
because the array limts used to initialize the histogram must be
retained (and never changed) during the program execution. The
programmer nust be aware of this connection, he nust treat
"real array A[1l:7], B[1:12]; . . . initialise A,B..." at a
conceptual level next to the histogramclass and not at the
conceptual level of the rest of the program He nust be warned
that the use of A extends after the use of "new histogram (4,7) ",
assumng that he hasn't read the code for the histogram class.
This nmay seem a minor point, but sonehow | don't think it is
completely negligible; it demonstrates a conceptual need for
read-only variabl es.

2. The word "detach" had always seenmed to ne machi ne-oriented instead
of problemoriented, and it sounded quite mysterious. Your
expl anation here has cleared it up for ne, for the first time.
It is like the word"return" except at a nore global |evel.
| suppose a concept of superdetaching and supercalling m ght
exist, at a still nore global |evel, though | don't see any
i mportant applications.

3. Page 193. Itried the suggested pernutation procedure "based on
the same swapping strategy, which returns with the nunbers in
reverse order", and it didn't work; at |east, the swapping strategy
has to be changed. O herwi se we have

Prof. Ole-Johan Dahl -2 - April 12, 1973
original state: 12 3 4 5
after swap(p[1],p[5]): 5 3 2 1 b
after swap(p(2],p[5]): 1 45 5 2
after swap(p(3]1,p[5]): 5 3 2 1 4
| can't see anything better than e.g. swapping with p{1], plk-1] ,
p(3], p[k-3], ., ... , and ending with a different transformation

dependi ng on whether Kk is even or odd.

L. This permuter class does not rely on the fact that the numbers
pernuted are the integers 1 to n nor that they are initially
inorder. Therefore it seens slightly better to have p as a
par anet er

cl ass permuter (p,n); integer array p; integer n;
(Unfortunately Algol makes us commit ourselves to integer arrays.)

An anusing and quite natural way to wite the declaration,
using coroutines instead of procedures, now presents itself-

begi n Bool ean nore;

nore = true,

if n =1 then detach

el se begin ref (permuter) r; integer i,q;
for i =1 step 1 until n do

begin r :- new permuter (p,n-1);
whil e r.more do
begi n detach; call (r) end,
if i <n then o
begin:= opli]; pli] := pln]; pln] .- g,

det ach;
end
end;
g :=pl1];for i :=1 step 1 until n-1 do pli] := pli+1];
p[n] 1= q;
end,
more := false;

end of per-nuter

Prof. Ole-Johan Dahl -3 - April 12, 1973

5. Another permuter al gorithm can be based on Trotter's algorithm
This is interesting because (a) it's faster [n-1 times out
of n the operation is quite sinple'; (b) it uses a class
defined wi thin another class; (c) the programin these terms
di splays the idea behind Trotter's nethod while there is no way
to do this using Algol's recursive procedure control.

cl ass Tpermuter(p,n); i nteger n; comment assunme n > 2;

begi n Bool ean nore; nore := true,
integer t; coment the current "offset"”;
bedina_s s pernute(k); integer Kk;
begin if k = 2 then
begin detach; swap(plt],p(t+1]);
det ach; swap(p(tl,plt+1]);
nore := false;, detach

end else
begin ref (pernute) r; integer i;
r :- new permute(k-1); detach;
while nore do
begin for i :=1 step 1 until k-1 do
begi n swap(plitt-1],pli+t]); detach end;
call(r); detach;
for i := k-1 step -1 until 1 do
begi n swap(p(itt-1],p[i+t]); detach end;
t ;= t+1; call(r); detach;

end while nore;
end k > 2 case
end of pernute;
ref (pernute) r; integer t;
r - new permute (n);
while nore do
begin t :=1; call(r); detach end,

end
end of Tpermuter

4'______--.-...........l.l.l....l.-..........|||||llllllllllllllllllllllllllllE::E

Prof. 0Ole-Johan Dahl - b~ April 12, 1973

The idea is to swap(p[1],p[2]); swap(p[2],p[3]);.- . ; swap(p[n-11,p[n]);
then do the next step for sequence n-1 ; then

swap(p(n-1],p(n]); . . . ; swap(p[l],p[2]); then do the next step

for n-1 but shifted right one; then start overagain.

6. The syntax exanple you give is very beautiful, of course; | think
you should credit it to Bob Floyd, who was the first to publish it
(IEEE Trans. on Elect. Conputers 1964, the sane issue as ny
article on SOL). He presented it in ternms of men in a corporation
(almost like Chaplin's officers!), and at this time Bob and |
corresponded about how to express the al gorithm properly using
"recursive coroutines" since it was clear that recursive subroutines
were insufficient. This exanple is what first taught me about the
limtations of ALGOL's recursion

As I recall, Bob and | expressed the al gorithm somewhat |ess
elegantly at that time; we had one "class" declaration for every
syntactic type, and the prograns were conplicated by using only
resume/resume sequencing, SO that every object had to know the nane
of its superior. W wanted a symmetrical way to pass information
between coroutines, and | think we used |ocal variables instead of

gl obal variables for this purpose. So you can see why | was so

pl eased to see SIMULA when you first sent me its description in 1965!

7. | don't understand why you call the shortest-path algorithmthe
Lee algorithm, when it is generally credited to Dijkstra [Numerische
Mat hemat i k 1 (1959), 269-271]. | don't know what Lee you refer to
but if he cane after Dijkstra, the correct reference shoul d appear
in a book co-authored by Dijkstra

8. Your discussion of progranming levels by means of prefixed bl ocks
is very thought-provoking. (This is partly why | nissed the idea
of subtypes in Chapter 2.) As | was reading Section 7 it finally
dawned on me that this may be the way to string together the "pearls"
which Dijkstra described in Chapter 1, nmaking each independent
design decision correspond to a prefix. Therefore | went back to
the programin ny letter to Dijkstra, for that word-reversa
probl em where the pearls were identified by letters in the left
margin. | wote the followi ng code top-down al nbst exactly as it
appears here (therefore witing " B class A" before having any
i dea what B woul d involve, only knowmng that it represents a
| ower level which will be specified later!):

Prof. Ole-Johan Dahl _)
> - April 12, 1973
B class A, begin comment Dijkstra's 0dd inversion problem
char x; conment the character nost recentiy input;

repeat X = RNC;

absorb(x);
until X = pnt;
BC ()
end A

C class B; begin coment explain what "absorbing" means;
procedure absorb(x); char x;

SP OL_X = pnt then print a nonempty word
el se add to word(x);

end B

E class C, begin comment facilities for word nenory*

~J

i nteger k; char array word[1:20]; comment word[1:k] contains

the first k characters of the néxt word to be printed;
@ocedure n t

a nonempty Wor d;
if k > 0 then pegin print wgsd; k :=0 g
procedure add

0 word(x); char x; —’
if k =20 then word too long error
ELEE EEQLE kK@= k+1; word[k] := X end;
k::o; —

end C
F class E begin conment handl e the even-odd requirenent and spacing;

integer n; coment the number of words printed so far;
Procedure print word,;

begin if n>0L8 pvc(sp);

if odd(n) then print word backwards else print word forwards
n = ntl -

Prof. 0Ole-Johan Dahl - A - April 12, 1977

If class F; begin coment the way to print a word,;

virtual integer k; virtual char array word[1:20]; comment, word|L:i
contains the first k characters of the next word to be printed;

i nteger i;
procedure print word backwards;
begin i :=k;
repeat PNC(word[i]); i mnus 1;
until i = 0; -
end,
procedure print word forwards;
“begini =1,
repeat PNC(word[i]); i plus 1;
until 1 >k;
end,
end F;

The next lower level, H, will define the "word too long error’
procedure (curiously this seems to be a high level operation but
it appears lower), and the next level will-perhaps define pnc and
RNC, etc.

Conparing this programwith the earlier one leads to the follow ng
observations:

(a) AIl the "pearls" now do appear in one place. (| conbined C
and D, also F and G as being essentially on the same
level.) Furthernore each class does seemto nake sense as a
fairly isolated conceptual unit.

(b) This program if executed, would involve considerable procedure-
call overhead. A smart conpiler will renmove it. Some | anguages
have a way to specify that a procedure is '"in-line, neaning
that it is to be explicitly expanded wherever it is called.

(c) Inlevel ¥ | needed sone virtual declarations. Wen writing
programs in this top-down style | suspect that programmers W ||
often slip up and forget to include the necessary virtua
declarations. ~ An alternatjve would be to pass (k, word) as
paraneters through the various levels; but that doesn't seem
natural to nme sonehow, perhaps it shoul d.

Pr of .

read

Ole-Johan Dahl -7 - April 12, 1973

(d) 1 just noticed that my commrent explaining k and word is
not sufficient to prove that the program works; somehow it
nmust be stated that k is large enough to contain as nuch
of the word as has been absorbed so far. This points out
a common difficulty with programproving: W can prove the
validity of algorithms that solve famliar mathematical
probl ens, but when it cones to real software problens it is
often hard to state the invariants because they involve
concepts for which no standard notation exists.

Finally, a mnor point on page 219. You woul dn't want to have the
first order generate a reporter object as stated; for it would nean
inserting the " dt " specification at an extremely awkward place in
the input (within the first order's description). Better would be
to have reporter generate the first order, just before its

"while true*, and to change line 25 of the programto

simulate(new reporter(inreal), lim)

To sumup all these letters of mine, | can't remenber ever having
a conmputer science book that was so thoroughly stimulating from

cover to cover, and | want to thank all three authors again for the
considerable effort that has gone into it. This book wll certainly

have

P.S.

a profound inpact on the future of conputer science.

Sincerely,

" Druatd € W/w

Donal d E. Knuth
Pr of essor

Now that I've witten all these letters, | wonder if it mght

not be useful to circulate themto a w der audience by issuing
themas a Stanford C.S. report. (Not to be published in a
journal, but to go out to say 400 readers in typewitten form)
Please tell nme if you think this is a bad idea. | think it mght
contribute to the discussion of your book in various circles,
since structured progranmng is "nmaking so many waves" these days.

Pr of .

P.P.S

DEK/pw

Ole-Johan Dahl -8 - April 12, 1973

Here al so are sone typographical errors | noticed; nmany of
themare technically nontrivial, so you should check ne:

page 176, line 11, "As the . .."

page 182, class histogram + 5, should say Y > x[i+1]

page 182, line -5, "called by reference. ++

page 187, illustration, "detach" not "detatch"

page 193, lines -5 and -6, change "tree" to "binary tree"

page 197, syntax rule (5), mult sign not "x"

page 202, line before section 6, delete " . " after

page 203, line -11, delete "1" after "part"”

page 206, line -3, delete "shoul d"

page 207, line 8, add " ;" after "list"

page 207, line 9, change "should be" to "are"

page 207, line -11, change "linkage-list" to "list"

page 207, line -2, "y" is wong font

page 208, line 1, "L" is wong font

page 213, line 1, put "; " at end of line

page 216, line -10, quotes around "no ..limt"

page 217, line -13, and four places on the next two pages,
"mgroup” should not be partly italics!

page 220, reference (8), "Action".

page 220, reference (10), "pp. LO1-L1k."

page 219, line 9, delete "v"

SO on"

Since | foresee this book being reprinted often, | imagine
this list of msprints will be useful.

. Prof. Dr. E W Dijkstra
Prof. R W Floyd .
Prof. C. AL R. Hoare
Prof. P. Naur
Prof. N. Wrth

