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Lower Estimates for the Error of Best Uniform Approximation

by

Ginter Meinardus and G D. Tayl or

Abstract

In this paper the lower bounds of de La Vallée Poussin
and Remes for the error of best uniform approximtion froma
| i near subspace are generalized to give anal ogous estimates

based on k points, k =1,...,n .
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Introduction. In this paper we shall generalize the | ower bounds of

de La Vallee Poussin and Remes [2,p.82] for the error of best uniform

approximation from a linear subspace. Pprecisely, |et C[a,b] denote

the space of all continuous real valued functions defined on the closed
interval [a,b] with norm |f||= max{|f(x)|: xe[a,b]} . Then, the

above two results are

Theorem1. (de La vallée Poussin) Let V be an n di nensi onal Haar

subspace Of Cla,b] and let fe Cla,b] . Let h ¢ V and suppose t hat
there exist n+l  poi 2tsx “_q- - < X ,,<bsuch that the error function

e(x) = f(x) - h(x) satisfies

L e(xi)#o, I = 1,.0.,n+1,
2. sgn e(xiﬂ) = -sgn e(xi) , b = 1,...,n .
Then,
mn Je(x,)| < p(f) =inf [l£-p .
O<isn+1 pev

, denote the set of all algebraic polynomals

Theorem 2. (Remes) Let "

of degree <n-l and let fecfa,b]. Let hem . and suppose that there

exist n+1 points a<x <. ..~ X 4y Z D.such that the error. function

e(x) = f(x) - h(x) satisfies

1. e(x.)#0, i =1,...,n+



Then,

min S lelx) |+ Jelx,, )| < p (1)

In what follows we shall generalize these results to =ive anal ogous
estimates based on k points, k =1,,..,n. For the special cases

k = 1,n our estimates will sinply be the de La Vallée Poussin estimate

and the error of approxi mation on the points Xy peeesX , respectively.

n+1
For the case k = 2, we will have a slight generalization of the Renes
estimate in that we do not require the approxinants to be al gebraic
polynomals.  CQur precise generalization is given in section 4 |p the
next two sections we devel op the necessary tools to prove our generaliza-

tion.

2. Deconposition Theorem Fix n+1 distinct points a < x, < %,

<x,,,<b  Foreckk, 1<k<nand Vv, 1<v<n-k+1 define

X3 Let Vn:<CP1,...,(pn> be a fixed

M, by M, = {x\), x

v +17°

Haar subspace Of Cl[a,b] and for each j , 1<j<n, set V. = CHPPPRNON:
=7 = J J

(i.e., V.J is the subspace Of C[a,b] spanned by the functions CP],...,(pj) .

| f Vi (k =1,...,n) satisfies the Haar condition, then using the standard

theory of Haar subspaces ([2,p.191, a linear functional L\lf based on

ka can be defined by
vtk
K, .\ _ vk
@ L(f) = JszkJ.Jf(xj) , f e Cla,b],
vk . k . j-
wher e A" satisty kx >0, ks.’k #0for v<j <vtk, sgn ?\;k = (-1,

vk VK ; Vex vk
}: IANY5F =1 and Z)\.cp&x.) =0 for w=1,...k. The existence and
&, P=AB I



v+k
uni queness subject to x\\;k >0 and Z lk:kl = 1 , of such a linear
. . ] =V
functional is well known, as well as, that

(2) |t

S(8)] = inf { max 1f(x) - nx)]}.

h er X eka

For consistency of notation we shall wite Lg(f) = f(xv) t hroughout this

paper. Using this notation, we now turn to proving our deconposition theorem

Theorem3. Fix kK, 1<k<n,r, O<r<kandv,1<V <n-k+t1, and
assune t hat V.J satisfies the Haar condition for j =1,...,» and k
(if =0, then we only assunme this for j = k ). Then there exists a

uni que deconposition of the linear functional L‘kj in terms of the |inear

L functionals L§ v ) =V el vik-r
v+k-r
L k _ vk _r
(3) L,(f) = %_j:v Mg U0 f ¢ Cla,b],

where the real numbers A\.’llf are all different fromzero, sgn }Jﬂllf = (-1)j+"

. j =V ,..vikr and Y A

Proof. This theoremis valid for »r = 0 by our remarks concerning the properties

of Haar subspaces. Thus, we shall assume r >1. Since Ls is not the
zero linear functional, there exists a function o € C[a,b] for which Lk(q)) =1,
A%

Now on the point set M, the functions o, Py ewes B are l'inearly
i ndependent.  Thus,

Kk
(%) f(x) = oo (x) + u; auq)u(x) s XeM),

where @ , o , ., o are unique. W nust show, since L\lj(qo) =1

k
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k - -

and L ( =0, u=1 : .
Vo) ,...k , that there exist nunbers }‘S)i * uni quely
determ ned, which satisfy

VK -1
vk _r

J=v

1t
C
=
"
e
o

vHk-r

L o

il

Since, by definition of ¥,

vt+k-r

vk _r B
jg/ Ajr LJ. (cp“) =0

for w=1,...,r and every choice of ,Vk
jr 7’
to show that the (k-r+1)X(k-r+1) matrix

it is necessary and sufficient

r r
Lv(Qr +1) c e Lv+k-r(@r+7>
B =
r r
Lip) . . . Ly (P,
r r
Lle) . . . Ly p (@)

. . T
is nonsingular.  To do this, we consider the transposed matrix B and,

with any fixed vector b = (v ,... T : .
y (b, Jb\)+k-r) » the system of |inear equations

(6) Ba = b

T

where a = (O‘rH;-.-,ak,oz) represents a solution (if one exists).

Now
(6) can be rewitten as

(1) 1F :
7) Lj<0!q3 + Z Q/_:

i=r+]

" i) =bJ. > 3= Ve, viker



Thus, we wish to exhibit a function ¥ in <Cpr+1,...,(pk,q>> for which

(8) L:SY) = bj j =V,...,vtk-r

is satisfied. Using the representation (1) of each L?, j = V,...,vtk-r ,

we have that (8) is equivalent to

(9) c¥= b
. ~ ~ ~ T
with ¥ = (¥(x),.... 80, )) and
vr vr
PP N 0
0]
c = .
0
V+k-r,r Vv+k-r,r
0 0 )‘v+k—r . : )‘v+k

Since chas maxi mal rank k-r+1 (as A§r> 0 for all p = v,...,v+k) ,
the existence of values \Alf(xp) s P =V,..., vtk satisfying (9) is guaranteed.
Si nce (@1,...,cpk,<p> forms a basis for M+ We can find coefficients,

o, ¥ seee,0 SO that

. K
¥(x) = ap(x) + ¥ o (x)

Pl
'satisfies '?(xi = ¥(x;), i =v,...vk. Thus, the function
k
‘i’(xl) = ap (x) + ZduQJu(X)
p‘:r+1

satisfies (8) as desired and its coefficients are a solution of (6). Hence,

. . T
by the Fredholm alternative, the matrix B® is not singular as it naps

k-r+1 k-r+1 . . .
R onto R - From this follow the existence and uni queness of

vk

t he nunbers )‘jr



Al'l that remains to be done is to prove the remaining assertions

about the nunbers %’1; Let us begin by showing that 7\:}; # 0 and
3 . . vk
sgn x;llf:(-1)3+", j =V,...,vvker . Nowif r =k, then clearly A "= 1.

W shall prove the general result using an induction argunent on decreasing

r . Thus, let us assune that

Lk —v+k—r XVk r

R S

. vk _ j+v -
for fixed r, O <r< k where sgn 7\3.10—(-1)J . Consi der the
relation

r _ ,Vr r-1 vr r-1

Lv - xw.pW v vt+1, r=-"’ Lv+1'

Using the representation (1) of each linear functional of this expression

V,r-1
yr )\)

. vr
, we find that A = Ao rarty

and operating on fe da,b] where %<Xu) = 5\)@
inplying that A” >0, since both x:)’r and A
b

V,r-1

N are positive.

Li kewi se, applying this expression to g e Cla,b] where g(xp‘) =8

v+r oo
. . Vr _ vr v+1,r-1
gives Mobr = Ml -1 Aoer
. vr r v+l ,r-1 r-1 ,
Since sgn XV” = (-1) and sgn A, . = (-1) , 1t follows that
vr
SON Ay poq = -1 Therefore,
v+k-r
Ls = 5 x\.’k.r k
& 9T
v+k-r . .
_yVk _vr Lr—T + ( vk j=1,r + vk Jr Lr—1
T Tvr Mv,r-1Ty JEUHT J-1,r J,r-1 Jr “3,r-1 J
vk v+k-r, T -l

" Xv+k—r,r vtk-r+1,r-1"vtk-r+]

: , k . r-1 -
Uni queness of the representation ova in terms of L.J grves



sgn A. kr-l = sgn (}\\Jk )\3:‘7 T + . Vk | Jjr
I J=1,r%3,r-1 ir M-
and
vk
sen A, k-r,r-7 _ S8R (AK Vtk-r,r

V+K-r,r v+k-r+1,r-1

whi ch I he in iv r nt. .
ch conpletes the ductive argument Finally,

take ge Cla,b] SO that Li(g) # O .
to g on the point set M,

we have that

g(x) - blx)= (-N¥7VLF o

Thus, for v <] < vtk-r ,
r T sp
Li(g-h) = 3 A7 (g(X  _ h(x )
’ 3;J . PR

.k Jtr |
B Lv(g)<‘]y“Z% Xir(-l)u

= (1))

Hence,
vtk-r
Lfg) = (-1)VL§(g) Y y VK (=1)9
j=v T
or
v+}k:-r vk ) .
AL (=1)9V vk
j=v T ' J;;l Jrl 1

as desired, conpleting the proof of the theorem .

= (-1)fT

to show that

Let h eV, pe the best

Fromthe standard theory of Haar subspaces

2 p‘=\))o'.)\)+k .

= VHl,...,v+k-1 s

V+k-r vk
_Z‘ijrl =1 7

=v
appr oxi mation
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3. Recursive conputation of the linear functionals X  |n this section
v

we shall give a recursive schene for constructing the values of the |inear

functional L\lj applied to a given function f . |n order to acconplish

this, we nust first observe that Ll\f;] (cpk) is never zero and has a constant

sign as a function of v, 1< v < n-k+2 , provided Vi satisfies the Haar
condi tion.

R _ k-1
Lemma?. For each k ,1 < k<n and v ,1< v < n-k¢2 L, (9) # 0

k-1

k-1 _
and sgn L (cpk) =sgn L

Y (cpk), V = 1,..,,n-k+1

Proof. This is clearly true for kK =1 . For k > 2

ILIC'1 (cpk) | equals

the mnimal deviation in approximting P by v, on the point set

1
M/,k-l. If this were zero, then there would exist &ex, , equal to

¢, at the k points of M, Koo Si nce cpk;évk , , the difference would
then be a function in V., having k zeros which is not identically zero,
contradi cting the Haar condition. k-1 _ k-1
g To prove that sgn L, (q)k) = sgn L\)H(q)k) ,
one uses the continuous dependence of Ll\f‘](@k) on the points to show
: . . -
that a new sel ection of points could be made in the event sgn L] (@k) -

k-1 . -
~sen L. (@) (some v ) on which Ll\f1

() = 0 holds.  Thus, the above
argunents preclude this occurring. l

Using these facts, we can give a recursive scheme for cal culating

L ( ), f eclan], 7 <k <n, 1<V <n-kt1  This scheme is displayed

in Table 1 where

0 .
(10) Li(f) = f(xi) , b = v, vHl, 0L vtk
m-1 m-1 m-~1 m

m -_ .
(H)Lj(f) = — —— s, m=1 ,...Kk 5 = vye..,vikem .
LJ- (Cpm) + Lj+1 (cpm)



()

0 1

Lo () L (D)

0 1 o)

L\)+2( f) Lv+1 (f) L\)(f)
10 (f) I, (f 2 k

v+k vtk =1 ) LV+k-2( f) . . L\)( f)

Table 1
In the next section, the values I?(f)for fixed mand j = 1, |,

play a key role in generalizing the Theorens of de La Vallee Poussin and

Remes. Wth this in mnd, we would like to discuss the actual conputation

of Lﬁ(f)i n sonme nore detail. In an actual conputation one nust conpute
and store the val ues Ig(@v) for v=1,2,...,k, r = 0,1,...,v-1 and
i = v,...,vtk-r , in addition to the values Lg(f) D = vye..,vik QN
order to calculate L&(f). Thus, instead of Table 1we shoul d have possibly
witten
0 0
L, (o, ) L (£)
1 0 0 1
L, (9,) Lo, (@) Ly, (£) L ()
1 0 0 1
Tor(Pp) Iop(@) 1o (0) 1, (£)
k-1 ’ :
L\) ( k) e
k-1
L) . ... .. 1 ' 0 0 1 K
v1 Pk wik-1(Pp) Ly le) 1o, (f) Ly () - L(£)




The above procedure can be interpreted in terms of the process of
Gaussian elimnation. [Indeed, consider the follow ng systemof |inear

equations

1L

By
Vg]ozvcpv(xu) + (=1)"\ = f‘(xu) s b= 1,...,n+]

in the unknowns « > >\ . |f one applies Gaussian elinination (no

17
pivoting) with the constraint that the coefficient of r»is (-1)* in

the p-th row in each step, then after (k-1) steps the |ast n-k+

rows are
2 k-1 8 k-1
- =1 = - = -
vé avLu (@v)+ (-1)" L (£f) ,u=1,.0. yn-k+1

Before proceeding to our desired theorem we would like to relate the
above table with the notion of generalized divided differences wth respect

to a Haar system In [1] the k-th divided difference of f at X*""’X'+k
J dJ

Wi th respect to the Haar subspace v, = (@1,...,@k> is defined by

. (xj) @k—T(Xj)' .. f(xj) cp1(xj) e .. cpk(xj)

(12) A_(f,xj,...,xj+k) =

) ( Yo . f(x, ) P, (x,

J+k

c-[’1(Xj+k Preo1 E50x ) mk(xj+n>

(oserve that the k-th divided difference (12) is sinply a linear functional
A , based on the points Xgsowos X s anni hilating v, = Qpr ® k) and
normalized by the requirement that 4(p,,.)=1. The assunption that v,
IS a Haar subspace inplies that 4 is uniquely determ ned.

Now suppose that V, =<{p,,:..,0,) is a Haar subspace Of Cla,b] for

k =1,...,n. Because of the uniqueness of 4 it is easily shown that
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L(e)
(13) A(f,xo...,xv+k) = Lk( |
v CPk+1
for k = 1,2,...,n1. In particular, with the formlas
f(xv)
(14) A(f,xv)= 5V = 1see.,nt]
P, (x)
and
A(f,x ceesx ) = AO(f,x ,...,x )
(15) A(f,x ,. X\)+k) = V177 vtk v 7 PVtk-1 }
A((Pk_,_] JX\)+1 N JX\H-k) - A(Cpk+1 ’levco,XV_I_k_l )
V=1,...,n, K=l ,...,n-v+1 3

one can construct a generalized divided difference table with respect to
given points and a given Markoff systemin precisely the sanme manner that
the standard divided difference table is constructed. For the special
case that mi(x) = xl, this is the standard divided difference table, and
in this case one has that A(@k+1,xv,...,Xv+k])=:xv+. ° '+Xv+k-1 so t hat
it is not necessary to calculate the differences occurring in the denoni-
nation of (15). This, incidentally, reduces the operation count of nulti-
plications and divisions from (Xr‘?’) for the general case to O(ng) for

this special case. In a future paper we intend to discuss the use of these

general divided differences for interpolation

L. Main Theorem W now turn to proving the desired |ower estinmate. This

shal | be done using the deconposition theorem on L? ,

where m is a fixed integer satisfying O <m<n . In order that the



12

results of Theorem3 apply, it is only necessary to assume V= <cp1 ,...,cpr>

is a Haar subspace of (fa,b] for r=1,...,m and n .

Theorem k4. Let fe Cla,b], h eV and suppose V. is a Haar subspace Of

Cla,b] for r = 1,...,m and n where 0 < m<n . If there exists a set
of n +1ipoints, a<x <x, <. . . <%, <b, such that the error function
e(x) = f(x) - h(x) satisfies

1, L?(e) £0 , 3=1,...,n-m+1 ,

2. sgn LI;(e) = -sgn L% (e) , § = 1ye..,n-m

Jj+1

where the linear functionals Lgn, j =1,...,n-m+1 are based on the points

Xj""’Xj+m . Then

o e <o () = MY llf ol .

i <j_<n-mt

Proof. It is known that |L(£)] < p,(f) . Thus,

p(£) > TN (H)| = |LN(£-n) |

-m+1

= | NS Le) |
j=1 J 3
namr

= Z n| J e) |
J=
min m

2 ool i@ B

Corollary 1. Suppose Pyseees®P form a Markoff systemin Cla,b], f ¢ (Ja,b]

and hev . |If there exists a set of ntl points, a<x <xy <L <K

such that the error function e(x) = f(x) - h(x) satisfies
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1. e(xi) 0, 0 =1,...,041,

2. sgn e(xi) = -sgn e<xi+1) ;i = 1,..0,n

Then

. . 1
?1n71|e(xj)l §,1m%nl|L;(e)! < e gvan(e)[ S'pn(f) .

This is easily proved with repeated applications of the deconposition theorem
(bserve that for the special case of @v(x): xV", =1,...,N and

m=1, TheoremL is precisely the Remes estimate. Al so, Theorem! is

weaker than the de La Vallée Poussin estimatefor p,(f) (m= 0 case)

since one need only assune that v, IS a Haar subspace for this result.

5. The Polynomal Case. Theoremk is even new in the case that @vbd = ¢!

V=1,...,n . Therefore, it may be of interest to briefly outline a second
proof of the deconposition theorem for this case. This proof uses Cauchy's
integral formula and is the method first used in this study.

Thus, let A be a region in the conplex plane containing the closed
interval [a,b] . Let f be holomorphic in A and real on [a,b] and |et

¢ be a sinple closed rectifiable path in A containing [a,b] in its

~interior. Integrating in the positive direction, set
oK
rﬂk(f) _ v f(z)dz
v omide w (z) ’
vk
where a < x < X < <X <$b
v+k J\ -1
k -1 v
kol ) v,
j=v o (x.)
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) .

wpl2) = (z - x)... (2 - Xy

Gearly, F}\f is alinear functional on Afa,b], the linear space of

functions holomorphic in A and real on [a,b] , which annihilates m . .

Using the residue theorem one gets that

v+k f(x.)
k k
Coce) = cf _Z —

This relation can be considered to be a continuation of ||, to (a,b]
To prove the deconposition theorem for functions in Ala,b] , one nust

prove first a somewhat unusual partial fraction deconposition. Namely,

Lenmma 2. Let r be a nonnegative integer, r <k . Then, there exists

a unique partial fraction deconposition
vk

1 v+§-r djr
(16) 577 - RO
ka z - j=v wjr z

k

r

where the (real) numbers d,}]’ are all different from zero and

(_1 ),j+\)+r+k ,

K o
(17)  sgn d}’r = | = V,...,vikeT .

Proof. Miltiplying (16) by ka( z) and conparing the coefficients of the

powers of z leads to an inhomogeneous system of k-r+1 linear equations

for the k-r+1 unknowns dgif The correspondi ng honbgeneous systemis

equi val ent to the deconposition of the zero function. It is easily seen

that this system has only the trivial solution. Therefore, the nunbers

dvk

Jy Qre uniquely determined. For r = k-1 we have
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vk vk
1 dv,k-1 + dv+1,k-1

u(2) 0y (2] ey (e)

vk . vk : -
Thus, d K, ) < 0 and di x ' > 0, which corresponds to (17). | nduct i on

conpl etes the argunent.

Mul tiplying (16) by Cl\jf(z) and integrating, gives Theorem 3 wth
k
C
EF Vr d'vt
o
J

K _ _k v
rV_L\) and?\j

6. A Numerical Exanple. Let X :{xi DX, = glﬂ . 1= 0,1,...,64), f(x) =tan x,

1

cpi(x) = x71 e , 1 =1,...,5_. W shall use the above techniques in conjunction

with Remes nultiple exchange for finding the best approximation to f(x) = tan x
fromV = (e, xe¥, . . XX on X:(xi DX = 51[; , i =0,1,...,64} . Taking

Xgs X181 Xpg0 Xz6r X)s and Xs), as our initial guess, we find that

2 X i

X 4 .96068xe™ - .80272x°e + .375610eX + .031h2x'eX s the

h1 (X) = .00277e

best approximation to f on this set fromV with error .00007%. Perform ng
the multiple exchange gives new extreme points Xy Xy Xpp X390 X500 Xg,
where [f(xg) - By (xg)|. /£ -nll. Applying our lover estimtes to

f - h, at these points, gives the table (see Table 1):

-.00277h4
.000140 -.001601
-.000075 .000111 -.000875
.00009k4 -. 000084 .000099 -.000509
-.000280 .000179 -.000131 .000114 -.000315
.014042 -.006412 .002629 -.001227 .000607 000452

Table 3

Thus, .000075 < .000084 < .000099 < 000114 < .000315 < .000k52 < dist (f,V) <



16

01402 . Continuingwe get after the segendngthat .oooks5 <

.00049 < .00061 < <0L00069 < .0009% < (€& < .0027 ; after

the third exchange that .009k < .0009% - .00094 < .0009% .000978 <

.001005 < dist (f,v) < .001250 showing that we now are within ,0002k5

of the error of approxinmation with h3 (a relative error of less than

21%). At the end of the fourth exchange, we find that .00010059 < .00010059 <
00010066 < .0L0001009% .00010087 £ St (f.v) < .00010192

so that we are now within ,000001 of the error of approximation wth by,

(a relative error of less than 1%). The Renes algorithmterminated after

the fifth exchange.
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