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Lower Estimates for the Errorof Best Uniform Approximation

bY

G&ter Meinardus and G. D. Taylor

Abstract
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In this paper the lower bounds of de La Vall&e Poussin
-_

and Remes for the error of best uniform approximation from a

linear subspace are generalized to give analogous estimates

based on k points, k = l,...,n .



Introduction. In this paper we shall generalize the lower bounds of

de La Vallke Poussin and Remes [2, p.821 for the error of best uniform

approximation from a linear subspace. Precisely, let C[;t,b] denote

the space of all continuous real valued functions defined on the closed

interval b&l with norm lIfli= max(lf(x)l : x~[a,b]} . Then, the

L

L
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L
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above two results are

Theorem 1. (de La Vallge Poussin) Let V be an n dimensional Haar- -

subspace of C[a,b] and let fe C[a,b] .- - - Let h E V and suppose that

there exist n+l- - pointsa < x -=' . . . < x
- 1 < b such that the error functionn+2 - - - - -

e(x) = f(x) - h(x) satisfies

1 . e(xi) # 0 , i = l,...,n+l ,

2. sgn e(Xi+-,) = -sgn e(Xi) , i = l,...,n .

Then,

min le(xi)I < p(f) f inf /If-p/l .-
O<i<n+l- - PeV-

Theorem 2. (Remes) Let nn , denote the set of all algebraic polynomialsP--P

of degree < n-l and let- - - fE C[a,b] . Let henn 1 and suppose that there- -

exist W-1 points a 5 x1 c' . . . ' x ' b such that the error functionn-f-l- - - - -

e(x) = f(x) - h(x) satisfies

1. e(xi) # 0 , i = l,...,n+l

2. sgn e(Xi+,) = -sgn e(Xi) , i = l,...,n .
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Then:

min -$( le(Xi) 1 + le
1 <i<n- -

(xi+j)l <_P,Cf)  l

In what follows we shall generalize these results to oive analogousu

estimates based on k points, k = l,...,n . For the special cases

k = 1,n our estimates will simply be the de La VallGe Poussin estimate

and the error of approximation on the points
x1 ?*.*Y Xn+l , respectively.

For the case k = 2 , we will have a slight generalization of the Remes

estimate in that we do not require the approximants to be algebraic

polynomials. Our precise generalization is given in section 4. In the

next two sections we develop the necessary tools to prove our generaliza-

tion.

2. Decomposition Theorem. Fix n+l distinct points a 5 x7 < ,x
2

. . .

<x
n+l Fb l

For eack k , l<k<n and v,- - 1 < v < n-k+1- define-

Mvk bY Mvk = lx,, xv+l J***J X 3v+k l

Let Vn = (cp,,...,rp,) be a fixed

Haar subspace of C[a,b] and for each j , 1 < j < n , set V- -

(
j
= (c+**.,T.>

J

- i.e., V.
J

is the subspace of C[a,b] spanned by the functions cp, ,*..,cp.  l

If Vk (k = l,...,n)
J )

satisfies the Haar condition, then using the standard

theory of Haar subspaces [& PJ9 I, a linear functional Lt based on

M -vk can be defined by

(1) L,k(f) = vz hYkf(Xj) ,
j=v J

f E CC01 j

vkwhere A. satisfy A:'> 0 , AT" # 0 for V 5 j < v+k ,- sgn Ay" = (-#-v ,

=l and co for p=l,...k. The existence and
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Vk
v+k

uniqueness subject to h
V

) 0 and 1 lhikl = 1 , of such a linear
j=v

functional is well known, as well as, that

inf { max If(x) - h(x)I] .
h eVk x eMvk

For consistency of notation we shall write L:(f) = f(x ) throughout this
V

paper. Using this notation, we now turn to proving our decomposition theorem.

Theorem 3. Fix k ,l<k<n,r- - , 0 < r < k and v, 1 < v < n-k+1 , and- - - -

assume that V.
J

satisfies the Haar condition for j = l,...,r and k

(if r=O, then we only assume this for j = k ). Then there exists a

unique decomposition of the linear functional Lk in terms of the linear
V

functionals Li , j = v ,...,v+k-r :

(3) L;(f) = v+f-r 2; L;(f) , f E C[a,bl .,
j=V

where the real numbers hvk vk
jr

are all different from zero, sgn 1. =
Jr

v+k-r
j = v ,...,v+k-r and 1

j=v
IA;;1 = 1 .

)
j+v

I

L

Proof. This theorem is valid for r = 0 by our remarks concerning the properties

of Haar subspaces. Thus, we shall assume r > 7 . Since Lk is not the- V

zero linear functional, there exists a function cp E C[a,b] for which L;(q) = 1 ,

Now on the point set Mvk the functions cp, cp
1' l *�> 0, are linearly

independent. Thus,

where cy , CY
, 7 l �* ☺cuk are unique. We must show, since L$I) = 1
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and Lt(mil) = 0 , ~1 = 1 ,... k , that there exist numbers h vk
determined, which satisfy

jr
, uniquely

v+k-r

II h vk r

j=v
jr Lj (cP> = 1 l

Since , by definition of LT ,

W-k-r

c hvk r

j=v
jr Lj ('Pp) = O

i-
!

for 1-1 = 1 ,...,r. and every choice of A.
vk
jr '

to show that the (k-r+l) X (k-r+l) matrix

it is necessary and sufficient

i
B -=

‘Z(“r + Lrv+k-r(Pr+lJ

l l . L'
V+k-r((Pk)

l . .

Lz+k-,(q)

is nonsingular. To do this, we consider the transposed matrix BT and,

with any fixed vector b = (bv,...,b
v+k-rjT ' the system of linear equations

(6) Bra = b

where a = (CY
r+l" l l ,(2k,CY)T

(6) can be rewritten as

represents a solution (if one exists).
Now

c7) L;(Qq f f CYP ) =b.
i=r+j l i j

,-j = v ,*..,v+-k-r  ,
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Thus, we wish to exhibit a function Y in ('p,+, ~*-,(j&'~> for which

(8) L:(Y) = b
3 j

j = v ,...,v+k-r

is satisfied. Using the representation (1) of each Li , j = v,...,v+k-r ,

we have that (8) is equivalent to

(9) C?= b

with t = (i(xv),***,i(xv+k))T and

=c -

h
vr
V+r 0 . .

0 hv+k-r,rv+k-r l '

Since C has maximal rank k-r+1 (as Ai'> 0 for all p = v,...,v+k)  ,

the existence of values p = v,..., v+k satisfying (9) is guaranteed.

Since ('p, ,...,cp,,cp> forms a basis for Mvk , we can find coefficients,

'satisfies qxi = 'Y(xi) , i =

k

V> . . ..v+k . Thus, the function

y(xi) = cvCp  (x> + C cy Cp (x>
p=r+l’  ’

satisfies (8) as desired and its coefficients are a solution of (6). Hence,

by the Fredholm alternative, the matrix BT is not singular as it maps

Rk-r+l
onto Rk-r+l

. From this follow the existence and uniqueness of

the numbers hvk
jr l
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All that remains to be done is to prove the remaining assertions

vk
about the numbers h. . Let us begin by showing that hvk# 0 and

Jr jr
yr" = (-,)j'v, vk

sgn h j = v ,...,v+k-r  . Now if r = k , then clearly hvk = 1 .

We shall prove the general result using an induction argument on decreasing

r. Thus, let us assume that

for fixed r , 0 < r 5 k where sgn 'jrvk = (-l)j+' . Consider the

relation

r-l
L; = hVylr ,L;-' + A;;, r , Lv+, .

' - ' -

L

L

L

-

L

-

-

-

Using the representation (1) of each linear functional of this expression

vr vr
and operating on

V,r-1
;F C[a,b] where f(x,) = hvP , we find that h, = Av,r-lhv

implying that h:rr , >
' -

Likewise, applying this

0 ’ since both h:"
v,r-1

and hv are positive.

expression to g E Cb,bl where g(x,) = 6v+r ~ ,'

gives h
vr Vr v+l,r-1
v+r = h v+l,r-1 h .

v+r

Since sgn AZ:, = (-1)
r v+l,r-1

and sgn A,,, ( 0
r-l= - , it follows that

s

sgn h
vr
V+l,r-1 = -1 . Therefore,

Lk
v+k-r

= 7 pk Lr
V j&v jr j

+h
vk

h
v+k-r,r r-l

v+k-r,r v+k-r+l,r-lLv+k-r+l '

Uniqueness of the representation of v in terms of L.Lk
r-l
J

gives



h
Vk vk vr
V,r-1 h= vr Fv,r-1 > O '

sgn hvk
j,r-1 = sgn (Auk $-I ,r

j-l,r j,r-1
+ pk hjrjr j,r- ,) = (-l)j+v~ j = Vfl,.,.,v+k-r ’

and

sgn hvk
v k-r,r-1 = sgn (Auk Av+k-r,r

v+k-r,r V+k-r+),r-1 ) = (-1 f-r+1 ,

which completes the inductive argument.
Finally, to show that

v+k-r

take g E C[a,b] so that L:(g) # 0 .
~-+y+l = 1 ,

Let h eVk
j=v

be the best approximation
to g on the point set &$k

we have that

. From the standard theory of Haar subspaces

g(x,) - h(xN)= (-l)'+'Lk
V d ' p=v ,...,v+k .

rkUS, for v 5 j < v+k-r ,-

j+r
L;(g-h) = z Ajr (g(x

J pzj IJ1 !JJ
- h(x >>

P

.

Hence,

or

v+k-r 1 v+k-r
r: I$r"l = 1
j=v

as desired, completing the proof of the theorem.
0
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39 Recursive computation of the linear functionals Lkv . In this section

we shall give a recursive scheme for constructing the values of the linear

functional Lt applied to a given function f . In order to accomplish

this, we must first observe that L;-' (cp,) is never zero and has a constant

sign as a function of v , 1 5 v 5 n-k+2 , provided Vk satisfies the Haar

condition.

Lemma?. For each k , 15 k<n and v, 1 < v/n-k+2- - - ' L;-l (9,) # o

and sgn Lt-'((pk) = sgn LtIi(qk) , v = l,...,n-k-t-1 .

i

1

.

.

Proof. This is Glearly true for k = 1 . For k > 2- , IL:-' (cp,) 1 equa1s

the minimal deviation in approximating 'p,
by 'k-1 on the point set

Mv,k-1 l

If this were zero , then there would exist ip&Vk , , equal to

cpk at the k points of Mv k , .
7 -

Since 'pkkVk , , the difference would

then be a function in Vk having k zeros which is not identically zero,

contradicting the Haar condition. To prove that sgn Lvk-' (9,) = sgn L

one uses the continuous dependence of L;-'b,)

;;;(qk) 9

on the points to show

that a new selection of points could be made in the event

,-'m Lt;: (cpk) borne ' > on which L;-'(cp,) = 0 holds.

sgn LtW1('pk) =

Thus, the above

arguments preclude this occurring. 1

Lt( fj

Using these facts, we can give a recursive scheme for calculating

, f E C[a,b] , 7 < k < n , 1 < v < n-k+1- - .- - This scheme is displayed

in Table 7 where

(IO) L;(f) = f(Xi) , i = v,v+l,...,v+k

(11) L?(f) =
L;;;(pm) L;-'(f) - L;-l(q > Lrn (f)

m j-+1

LYy ((p,) '+ L;;; 'Pm)
3 m = l J***' k ; j = v,...,v+k-m  .
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Table 1

In the next section, the values L;(f) for fixed m and j = 1,-- . . ..n-m+l

play a key role in generalizing the Theorems of de La V&e Poussin and

Remes. With this in mind, we would like to discuss the actual computation

of L:(f) in some more detail. In an actual computation one must compute

and store the values LT(cpv) for v = 1,2,...,k , r = O,l,...,v-1 and

j = v,...,v+k-r , in addition to the values L;(f) , j = v,...,v+k in

order to calculate L:(f) . Thus, instead of Table 1 we should have possibly

written

L

l

Table 2
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The above procedure c<an be interpreted in terms of the process of

Gaussian elimination. Indeed, consider the following system of linear

equations

in the unknowns
9 ?***? a.9 lnh If one applies Gaussian elimination (no

pivoting) with the constraint that the coefficient of h is (-1)' in

the p-th row in each step, then after (k-l) steps the last n-k+1

rows are

(-lpi = L;-l(f) , p = l,... ,n-k+l .

Before proceeding to our desired theorem, we would like to relate the

above table with the notion of generalized divided differences with respect

to a Haar system. In [l] the k-th divided difference of f at x;,,..
'Xj-+-kJ

with respect to the Haar subspace Vk = ('pl "*"(&> is defined by

‘Pl (xj’ cPk_,(xj). ’ ’ f(Xj)

. .
.

. .

-7

. . l .

. . . ,

1 (Xjfk ) CPk-l(xj+k)' ' f(xj+k cpl ( xj+n) ’ . ’

(xj)

Observe that the k-th divided difference (12) is simply a linear functional,

A 7 based on the points x.,.,.,x
3 j+k ' annihilating Vk = (cp

1' l +k> and

normalized by the requirement that A(cp,,)  = 1 . The assumption that Vk+l

is a Haar subspace  implies that A is uniquely determined.

Now suppose that Vk = (cp,:; ..,cp,> is a Haar subspace of C[a,b] for

k = 1 >'*'I n. Because of the uniqueness of A it is easily shown that
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(13) A(f,x+...,x
v+k

) -

L:('pk+l )

for k = 1,2,...,  n-l . In particular, with the formulas

(14) A(f,x,J=
f(y))

cp,(x,) '
v=l ,...,n+l

and

(15) A(f,+... XV+k) f
A(~,x~+~ ?"e'XV+k > - A(f~X,,~-o~XV+k~l  >

A(qk+l ☺⌧v+,  7 l l l ☺⌧v+k)  - �h,,,  ☺⌧

V
,.*.,⌧

v+k-1 > '

v = l,...,n , k = l ,...,n-v+l ;
L

L

1
i

L
1
1
1

i

one can construct a generalized divided difference table with respect to

given points and a given Markoff system in precisely the same manner that

the standard divided difference table is constructed. For the special
.

case that qi(x) = x1 , this is the standard divided difference table, and

in this case one has that A(‘p,+, 7xv7’  l * lXVfk 1 > = Xv+- l dX v+k-1 so that

it is not necessary to calculate the differences occurring in the denomi-

nation of (15). This, incidentally, reduces the operation count of multi--

plications and divisions from 3O(n ) for the general case to O(n2) for

this special case. In a future paper we intend to discuss the use of these

g'eneral divided differences for interpolation.

4. Main Theorem. We now turn to proving the desired lower estimate. This

shall be done using the decomposition theorem on n
L1 '

L;(f) = "-f+lP& L;(f) ,
j=l

where m is a fixed integer satisfying O<m<n. In order that the_ _
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results of Theorem 3 apply, it is only necessary to assume vr = (cpl ,*4Pr)

is a Haar subspace of C[a,b] for r T 1 7***9 m andn.

Theorem 4. Let fe C[a,b] , h eVn and suppose Vr is a Haar subspace of

C[a,b] for r = 1 9.*-t m and n where 0 5 m G n . If there exists a set

of n + 1 points, alxl <x2 < . . . <x <b >n+l - such that the error function

e(x) = f(x) - h(x) satisfies

1. L:(e) # 0 , j=l,...,n-m+l ,

2. sgn L;(e) = -sgn Lmj+,(e) ) j = L-4-m

mwhere the linear tictionals L. , j = l,...,n-m+l
J

are based on the points

Xj,..',xj+m  . Then

min IL:(e)1 < p (f) E piE$ I/f-p11 .
i<j<n-m+l v - n- - n

Proof. It is

P,(f) >_
-

that IL;(f)! <_ p,(f) . Thus,kIlOWIl

I q f> 1 = IL+h) 1
n-m+1

= I c h
j=l

it L;(e) 1

n-m+1
= 1 ICJ IL;(e) 1

j=l

L l<j<n-m+lmin IL:(e)1 . 1
- -

Corollary 1. Suppose 'pl )*a*)'n form a Markoff system in C[a,b] , f E C[a,b]

and hEVn. If there exists a set of n+l points, a<x <x_ , 2 < . . . < xn+l < b ,

such that the error function e(x) = f(x) - h(x) satisfies
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1. e(xi) # 0 , i = l,.,,,n+l ,

2. sgn e(xi) = -sgn e(xi+,) J i = l,...,n

Then

1 - - - -

This is easily proved with repeated applications of the decomposition theorem.

Observe that for the special case of cpv(x) = x
v - l

, v =l 1***? n and

m=l, Theorem 4 is precisely the Remes estimate. Also, Theorem 1+ is

weaker than the de La Va&e Poussin estimatefor p,(f) (m = 0 case)

since one need only assume that Vn is a Haar subspace for this result.

5. The Polynomial Case. Theorem 4 is even new in the case that cp,(x) = xv-' ,

v = l,...,n . Therefore, it may be of interest to briefly outline a second

proof of the decomposition theorem for this case. This proof uses Cauchy's

integral formula and is the method first used in this study.

Thus, let A be a region in the complex plane containing the closed

- interval b&l . Let f be holomorphic  in A and real on [a,b] and let

C be a simple closed rectifiable path in A containing b&l in its

- interior. Integrating in the positive direction, set

fk( >

Ck
vf=4J f(z)dz

2n1 c km ’

where a<xv<x
v+l

<
l **

<x- <b Jv+k -
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Wvk(Z) = (z - xv)... (z - xv+k)  ,
-

i

L

Clearly, rt is a linear functional on A[a,b] , the linear space of

functions holomorphic  in A and real on [a,b] , which annihilates nnel .

Using the residue theorem, one gets that

v+k f(xj)
=c," 1-r ./ \r j=v wvktx.)J

This relation

To prove

prove first a

Lemma 2. Let

L-

L-

can be considered to be a continuation of r : to C[a,b] .

the decomposition theorem for functions in A[a,b] , one must

somewhat unusual partial fraction decomposition. Namely,

r be a nonnegative integer, r<k. Then, there exists_

a unique partial fraction decomposition

06) '
v+k-r dvk

u)vko = c
jr

j=V

vk
where the (real) numbers d. are all different from zero and

Jr

(17) sgn d;; = (-, )j+v+r+k , j = v,...,v+k-r .

. Proof. Multiplying (16) by wvk( z) and comparing the coefficients of the

powers of z leads to an inhomogeneous system of k-r+1 linear equations

vk
for the k-r+1 unknowns d. .

Jr
The corresponding homogeneous system is

equivalent to the decomposition of the zero function. It is easily seen

that this system has only the trivial solution. Therefore, the numbers

vk
d. are uniquely determined. For r = k-l we have
Jr
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vk vk
Thus, dv k 1 < 0 and dv+l k 1 ) 0 , which corresponds to (17). Induction

9 - 7 -

completes the argument.

L

Multiplying (16) by Ctf(z) and integrating, gives Theorem 3 with

r k
V
= L;

vk Ck vkand h. = v d.
Jr Cr Jr l

3

L
6. A Numerical Example. Let X =Cxi : xi = & , i = 0,1,... ,641 , f(x) = tan x ,

qx(x) = xi-l ex , i = 1,...,5 . We shall use the above techniques in conjunction

L with Remes multiple exchange for finding the best approximation to f(x) = tan x

from V = (eX, xeX, 4 x. . ..x e> on X=(xi :xi=&,i = 0,1,...,64]  . Taking

x9' x18' X~~, 36) x45 and x54 as our initial guess, we find that

h, (4 = .00277eX + .96068xeX - .80272x2eX + .37561dex + .03142x4ex is the

best approximation to f on this set from V with error .000074. Performing

- the multiple exchange gives new extreme points x0.' x14,
x26J 59J x5oJ x64

where lf(“64) - hl cx64) 1 = Ijf - hi/I l Applying our lower estimates to

L- f - hl at these points , gives the table (see Table 1):

e

L -.002774

.000140 -.001601

-.000075 .000111 -.000875

.000094 - l 000084 .000099 -.000509
c

-.000280 .000179 -.000131 .000114 -.000315

L- .014042 -do6412 .002629 -.001227 .000607 .000452

Table 3

Thus, .000075 <_ .000084 <, .000099 <_ 000114 5 .000315 5 .000452 5 dist (f,V) 5



L

I-

L

‘_ ’
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.01402 . Continuing, get after the second thatwe exchange .00045 5

.00049 <- .00061 .00066 dist5 5 .00069 1 .00094 5 (f,V) 5 .0027 ; after

the third exchange that .0094 2 .00094 L .00094 5 .00095 .000978< 5

.001005 5 dist (f,V) 5 .OOl25O showing that we now are within .000245

of the error of approximation with
s (

a relative error of less than

21%). At the end of the fourth exchange, we find that .00010059  .000100595 5

.00010066 < .00010076  <- .00010091 < dist (f,v) 5 .00010192.00010087  <- - -
so that we are now within .OOOOOl of the error of approximation with h4

(a relative error of less than 1%). The Remes algorithm terminated after

the fifth exchange.

i
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