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List of Figures

Figure 1 - Frequency response of a hetrodyne filter with center

frequency of 400 Hz and summation period of 10 milliseconds.

Figure 2 - Frequency response of a hetrodyne filter with center

frequency of 100 Hz and summation period of 10 milliseconds.

Figure 3 - Frequency response of a hetrodyne filter with center
frequency of 300 Hz and summation period of 18 milliseconds with the

signal beginning halfway through the summation.

Figure 4 - Hetrodyne filter applied to a signal which is a sum of
sinusoids of frequencies 100, 200, and 300 Hz, with exponential attacks
of time constants 30, 20 and 10 milliseconds respectively. The graphs
are of the outputs of a hetrodyne fi Iter with summation period of

10 mi | | iseconds. The center frequencies are, top to bottom, 100, 200

and 300 Hz.

Figure 5 - Same data as in figure 4, but the attacks are linear rather

than exponential.

Figure 6 - The magnitude and phase of the output of the hetrodyne
filter when applied to a 132 Hz guitar tone. The apparent modulation

is the result of beating with an inharmonic partial at 186 Hz.

Figure 7 - Frequency response of a hetrodyne f i | ter when the center
frequency is not exactly an integral multiple of the summation

frequency,
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INTRODUCTION

The analysis of the attack transients of vocal or musical
tones goes back as far as 1932 with Backhaus’ [1,2] tunable resonator
and drum recorder. Luce and Clark [3,4,5] used fi | tering methods to
select partial tones for analysis and recording. More recently, with
the advent of computer music, analysis of musical instruments for the
purpose of simulation of timbre has been done by what Wil | be called
a “hetrodyne f i | ter" for want of a better name, Beauchamp (6]
analysed each partial of a complex waveform by first multiplying the
waveform by a sin and cosine at the frequency of the partial in
question. The result was then low-pass filtered, then squared and
summed. Freedman [7,8,3], and later Keeler [18,11] used a discrete
finite summation over one period of the fundamental frequency in
place of Beauchamp’s low-pass filter, an effect which as we shall
show later conveniently places a zero of transmission at all harmonic
partials other than the one in question.

It is the purpose of this article to explore this method,’
report its characteristics, its limitations, its uses and some simple

extensions.
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THE METHOD

Let us define the hetrodyne fi | ter as fol lows, We begin with
a discrete function Fi which represents a continuous function F(t)
at discrete intervals t=ih, where h is the time between samples. h
is cal led the “sampling interval.” The reciprocal of h is called the

"samp! ing frequency” or the “sampling rate.” Let us define a and b

as fol lows:

otN-1
a = Fi cos{woih + @)

1=y

oHN-1 (1)
b= Z Fi sin(woih + ©0)

i=y

(We willbe called the “center frequency”.

Without loss of generality, we may define

P = 60 + gh (2)

and thus rewrite the sum as going from 0 to N-1,
N-1

> Fi cos(woih + o)

i=0

s}
Il

N-1 (3)
Z Fi sin(woih + %o)
i=0

o’
]
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Thi s change of variables hides the time-position of the
filter in the phase. We must remember that as the filter is advanced
through time, the phase angle will increase, and that any results
which depend on this phase angle will be functions of time.

Since the summation operation is linear, we may represent the
input waveform Fi as a sum of sinusiods and may thus examine the
response of the fi | ter to a sinusiodal excitation, as 1is commonly

done with | inear fil ters.

N-1
Z A cos(wih + %o)
i=0

@
I

o1 (4)
Z A cos(wih + ©) sin(wih + ©o)
1=0

op
I
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With the he Ip of the summation calculus [12] and some trigonometric
identities, we maycompute the summation in closed form without

error as fol lows:

A {sinL(um)o)Nh/z] cos[ (wtwo) (N-1)h/2+0 + wo]
sin[ (w-wo)h/2]

a = -

2N

sin[ @-@o)Nh 2] cos[ (y=qo) (N-1)h/2 +® = ©o]

+ 8in[ (w-wo)h/2] (5)

_ A { sin[ (wtwo)Nh/2] sin[ (wtwo)(N-1)n/2 + w+ Do
oN sin[ (wtwo)h/2]

+

sin[ ( w-wo)Nh/2]sin[ (¢~wo) (N-1)h/2+9 - 0o
sin[ (w-wo) h/2 }

Th s s not a very useful expression as it stands, but it may be
simpl! fied somewhat by computing the sum of the squares of a and b.

2 , 2
2_ A" sin [(w+wo)Nh/2]+ sin2[ (=0 )Nh/2]

iN2 1 sin?[ (wtwo)h/2] * sin?[ (om0 )h/2

+ sin[ (wtwo)Nh/2]sin] (w=-wo)Nh/2]
sin[ (ateo)h/2] sin[ (w-wo)h/2] €°°

2
a

+b

[wo(N-1)h + 2%]}

(6)
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Now if one chooses N to be such that
Nhwo = 2Tk, k = any integer # 0

Then some terms in equation 6 collapse to produce

2
o 2 A 2 o 1 !
a +b = ine sin (mNh/E){ sinc[(w+w0)h/2] + sin®| (g~wo)h/2]

2cos[ yoh - 2¥o] 7
+ sin[ ((,_,+mo)(;)1/2] sin[ ((D‘(L\O)h/Q] } 7

The square Toot of the above expression will  be termed the
"magnitude” of the output of the hetrodyne filter. The arctangent of
the ratio of a to b will be called the “phase” of the output of the
hetrodyne f i | ter.

Thi s process is similar to the discrete Fouri er transform,
except that only one frequency is processed instead of many. The
results of this analysis can easily be generalized to represent the
output of the DFT by setting the period of the center frequency to a

multiple of the sampling interval.
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If one further assumes that the frequency of the input

sinusoid is close to the center frequency, then we see that

2
lim a“+b°= 2, {'o + N+ o'} = 1°
yrwo L'»N

define Aw= w-wo

1im b, sinf{2yoh[ (N-1)/2+o[HNsin{Agh] (
w—mo o cosf2woh[ (N-1)/2+c] FNcos f/wh][ (

N-1)/2+g]}
N-1)/2+q]}

if N » 1 then

lim E ~ tan {Awh[(N-1)/2 + ]}

Thus we see that in the limit, the magnitude of the output ofthe
f i | ter becomes independant of time and becomes a measure of the
amplitude of the input sinusoid, The phase of the output Of the
filter remains always a function of time, but is also a linear
function of time, its slope being determined by the difference of the

center frequency and the input frequency.
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This reveals a method of determining the amplitude of the
input sinusiod and getting a better estimate of its frequency. If the
center frequency of the summation is near the actual frequency of the
input sinusoid, the phase will be very nearly a linear function of
time, thus we may find the frequency deviation by fitting the phase
with a straight line and observing its slope.

The consequences of choosing N as above are significant. If
the center frequency is a multiple of some fundamental frequency,
then we may choose N to coincide with the period of the fundamental
and thus cancel out all the harmonic partials except the center
frequency. Figure 1 shows the log of the magnitude of the output
of the hetrd&gne filter for a range of sinusoidal inputs. The
center frequency in this plot is 400 Hz and the summation period, Nh,
is 10 mil I i seconds. Figure 2 shows the log of the magnitude versus
frequency for a center frequency of 100 Hz and the same summation
period. Notice the zeros of transmission at al | multiples of the

summation period except the center frequency.
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ERROR ANALYSIS

Freedman [39] and Keeler [11] both show that this method is
sufficiently accurate for their purposes even when the input signal
is not a perfect sum of sinusoids. Keeler does not even bother
computing the summation at each point, but at regular intervals only,
and presents us with an elegant proof that the error in doing so is
negl igable. The above work may well seduce one as it did the author
into believing that this is a perfectly accurate method, universally
applicable. This is not so. T o persue the matter further, let us
reformulate the equations somewhat. We shall compute not two

summations but one:
Z L igoh+o
G = Fie w o (9)

The result will be a complex quantity whose real and imaginary parts
correspond to the a and b discussed earlier. We will be interested
in the magnitude and the phase of G. For the input waveform, Fi, we

shall take a complex sinusoid with exponential decay.

G =

df\]-l e(au'l‘jw) ih+eejwoih+eo
o

i=o

edh[a+j(w+w0)]+j(e+eo) eNh[a+j(w+wo)]_ )

Nt (utwo)T - 1 (10)
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Again, we see the magnitude is related to the amplitude of
the input sinusoid and the phase drift with time is related to the
frequency differece. The exponential decay of the input signal
causes imperfect cancellation of other harmonic partials, and
depending on the speed of the attack, the deviation can be
important.

A more reveal ing case would be to assume the signal begins
at zero amplitude, and rises exponentially to its steady-state value
and that the signal begins somewhere during the summation, say at

i=0.
otN-1 . s s . .
- (1_ealh) e_]wlh+9 e3(901h—l-eo

i=gtB
e<N'B) Jh(w+030)_ 1
(o+8) ih(wtwo)ti(e+80) =
=e o Jh(atwo) ]

(11)
ea*l(oﬂ'B) e(N'B)h[a+j(w+w0>] -1
eh[a+j(w+w0>] -1

This is equivalent to setting N to some smaller value. As the
filter progresses through the attack, the effective width of the
window will approach N, and the response of the filter wil | become

more representative.
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Here we see that even if N and the center frequency are
careful ly chosen, the frequency response is not the same, Figure 3
shows the response for a cen ter frequency of 300 Hz, a summation
interval of 10 mi | | i seconds, and 3=N/2. We see that the neighboring
harmonics are not canceled out. This shows that if the signal begins
anywhere within the sindow, the output should not be taken to be an
accurate indication of the amplitude of the partial. It is exactly
analagous to taking N to be a non-multiple of the period of the
fundamental frequency. Figure 4 shows the output for an averaging

window of 10 mi | | iseconds and center frequencies of 100, 200, and

300 Hz. The input was a sum of sinusoids of unit amplitude and

frequenc i es 109, 200, and 300 Hz with exponential attacks of time
constants 30, 20, and 10 milliseconds respectively. The leakage
among the harmonics is apparent here.

I1f the attack is not exponential, another form of distortion
can occur. Figure 5 shows the magnitude of the filter output for the
same input and center frequencies as figure 4, but with {inear
attacks rather than exponential.

The presence of inharmonic partials can cause an effect
sinii lar to ampl i tude modulation. Figure 6 shows the magnitude and
phase of the fundamental of a guitar note at 132 Hz. The apparent
modulation is caused by an inharmonic partial at 186 Hz, the
frequency of a known box resonance.

Another source of error is that of frequency quantization. N
can not in general be chosen such that Nh is exactly the period of
the fundamental frequency and still have N be an integer. This can be
tolerated, but it also implies that the center frequency must be a
multiple of 2r/Nh rather than a multple of the fundamental

frequency. If we do not set the center frequency to exactly a
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multiple of 2rn/Nh, we get imperfect cancellation of a pole and a
zero. Figure 7 shows the magnitude versus frequency of such a case.
Note the doublet around 400 Hz, the center frequency.

Since Nh is not exactly the period of the fundamental
frequency, the harmonic partials are not exactly cancelled out.
Fur thermore, most string instruments show a deviation from perfect
integral multiples of the fundamental frequency. This deviation also
contributes to leakage among the harmonics. Equation 10 may be used

to determine exactly how much leakage is present.
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A SIMPLE EXTENSION

Although there would seem to be no good solution to the
problem of the note beginning within the summation period, there is
a technique for dealing with the inharmonic partials. if the attack
time of the partial in question is not too swift, it can be filtered
out before analysis of the harmonic partials is done. The harmonic
partials may then be fitered out to allow analysis of the
inharmonic partials.

The filter advocated here is a comb filter.r This is

described simply by the recurrence relation:

Y =X =X (12)

With frequency response

|Hm(w) | = \[sine(mmh) + [cos(gmh)-1]° (13)

We see that the comb filter has a zero of transmission at all
multiples of the base frequency 1/mh. The only hazards with the comb
filter are those of transient response and preturbing the harmonic
partials. The transient response of a comb filter is explicit. It is
identical |y zero beyond mh seconds. If this canbe tolerated, then
the f i Iter may be useful,

If the frequencyy of some harmonic partial falls near one of
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the zeros of transmission of the comb, it will be attenuated. e may
prevent this by a method which appeared in Gold and Rader [13,14].
At those zeros of the comb that we wish to eliminate, a digital
resonater is used to cancel out the =zero. The details of the
configuration are described in ful | detail in the references and
will not be repeated here.

For analysis of an inharmonic partial, the harmonic partials
may all be eliminated with a single comb, subject to the limitation
that the partials may not be exact multiples of the fundamental, and
that the frequency of the fundamental becomes quantized when the
comb length, m, is chosen.

The comb wi | 1, of course, attenuate the signal under
analysis by some amount. le may predict the attenuation from
equation 13 and then multiply the results of the hetrodyne analysis
by the reciprocal of the attenuation factor to obtain a better

estimate of the amplitudes of the partials.
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CURRENT USES

The technique of combing out unwanted signals and then
analysing the remaining waveform is the basis for an automated
system for the analysis of polyphonic music currently being
developed by the author. When two or more instruments are playing
simultaneously, a Fourier analysis is used to get an estimate of the
pitch  and duration of each note. Al notes but one are then
eliminated by combing, and the hetrodyne filter is applied to
determine the attack time of the note and to correct the estimated
pitch of the note. This is iterated for each of the notes in the
piece. The result is subjected to a heuristic analysis and is
eventually displayed as a musical score of the piece under analysis.

Also under study by a colleague is how the physical
parameters of musical tones such as risetimes of the partials,
trenielo, and steady-state value contribute to the perceived timbre

of the instrument. The hetrodyne method as outlined above iq used to

determine these parameters from digitized recordings of tones of

actual musical instruments.
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CONCLUS TON

The hetrodyne filter has been shown to be a useful method
for the analysis of the partials of musical tones as long as its
limi tat ions are observed. It can fail if the attack times are too
quick, if the frequencies of the partials deviate too far from
perfect integral multiples of the fundamental frequency, or if the
sampling rate is so low that frequency quantization effects become
significant, It can also fail if substantial frequency modulation
(vi brato) i s present.

An extention of the method to tones with inharmonic partials
and even to multiple simultaneous notes was shown to be possible by
use of the comb filter as long as the effects of the transient
response of the comb was judged to be tolerable.

These methods are currently in use by the author and his

colleagues in the analysis of digitized musical sound,
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