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L is t  o f  F igures

Figure 1 - F r e q u e n c y  r e s p o n s e  o f  a  h e t r o d y n e  f i l t e r  w i t h  c e n t e r

frequency of 400 Hz and summation period of 10 milliseconds.

Figure 2 - Frequency response of a hetrodyne filter with center

frequency of 100 Hz and summation period of 10 milliseconds.

F igure  3 - Frequency response of a hetrodyne filter with center

frequency of 300 Hz and summation period of 10 milliseconds with the

signal beginning halfway through the summation.

Figure 4 - Hetrodyne f i l ter appl ied to a signal which is a sum of

sinusoids of frequencies 100, 200, and 300 Hz, with exponential attacks

of time constants 30, 20 and 10 milliseconds respectively. The graphs

are of the outputs of a hetrodyne fi lter with summation period of

10 mi I I iseconds. The center frequencies are, top to bottom, 100, 200

and 300 Hz.

F igure  5  - Same data as in figure 4, but the attacks are l inear rather

than exponential .

F i g u r e  6  - The magnitude and phase of the output of the hetrodyne

f i l t e r  w h e n applied to a 132 Hz guitar tone. The apparent modulation

is  the  resu It of beating with an inharmonic partial at 186 Hz.

F igure  7 - Frequency response of a hetrodyne f i I ter when the center

frequency i s not exactly an integral mu l t i p le  o f  t he  summat ion

frequency,
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The ana lys is  o f  the  a t tack  t rans ien ts  o f  voca l  o r  mus ica l

tones goes back as far as 1932 with Backhaus’ [I,21 tunable resonator

and drum recorder. Lute and Clark [3,4,51 used f i  I  ter ing methods to

se lec t  par t ia l  tones  fo r  ana lys is  and  record ing .  More recent ly ,  w i th

the advent of computer music, analysis of musical  instruments for the

purpose of simulation of timbre has been done by what wil I be called

a “hetrodyne f i I ter” f o r  w a n t  o f  a  b e t t e r  n a m e ,  Beauchamp E6l
analysed each part ia l  of  a complex waveform by f i rst  mult ip ly ing the

waveform by a sin and cosine at t h e  f r e q u e n c y  o f  t h e  p a r t i a l in

quest ion . The resul t  was then low-pass f i l tered, then squared and

s u m m e d .  F r e e d m a n  17,8,91,  and later Keeler [10,111  used a discrete

f i n i t e summation over one period of the fundamental frequency in

p lace  o f  Beauchamp’s  low-pass  f i l t e r ,  an  e f fec t  wh ich  as  we  sha l l

show later conveniently places a zero of transmission at all harmonic

part ia ls other than the one in quest ion.

It is the purpose of this art ic le to explore this method, ’

repor t  i t s  charac ter is t i cs ,  i t s  l im i ta t ions ,  i t s  uses  and some s imp le

extens ions.
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Let us define the hetrodyne fi I ter as fol lows, We begin with

a  d isc re te  func t ion  F i  wh ich  represents  a  con t inuous  func t ion  F(t)

a t  d i s c r e t e  i n t e r v a l s  t=ih, where h is the time between samples. h

is cal led  the  “sampl ing  in te rva l . ” The  rec ip roca l  o f  h  i s  ca l l ed  the

“sampl  ing frequency” or the “sampl ing rate.”  Let us def ine a and b

as fol lows:

&N-l
a =
z

Fi cos(moih + eo)
1=Qf

&-N-l (11

b = -
t

Fi sin(woih + 00)

i=a

,
UC wi I I be cal led the “center  f requency”.

Without loss of generality, we may define

TO = 80 + ah

and thus rewrite the sum as going from 0 to N-l.

N-l
a = >Fi eos(aoih + 'P,)

PO

N-l
b = ) Fi sin(woih + 'Oo)

i.=O

(2)

(3)

i
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Thi s change of var iables hides the t i me-pos i t i on o f the

f i l t e r in the phase. We must remember that as the filter is advanced

through t ime, the phase angle will increase, and that any

which depend on this phase angle will be functions of time.

r e s u l t s

Since the summation operation is linear, we may represent the

input waveform Fi as a sum of sinusiods and may thus examine the

response of the fi I ter to a sinusiodal

done wi th  I  inear fi 1 te rs .

N-l
a = r A cos(tih + vo)

i=O

exc i ta t ion,

N-l
b = x A cos(wih + Q) sin(xoih + u)o)

i=O

as is commonly

(4)
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Ip of  the summation calculus 1121  and some tr igonometr icWith the he

i d e n t i t i e s ,

e r r o r  a s  f o

we may compute the summation in c losed form without

I lows:

Th S

simpl fied somewhat by computing the sum of the squares of a and b.

A sinr(tim)Nh/2]  cos[(tiw)(N-l)h/2++w]
a =:-

2N sin[(w=wo)h/2]

+ sin[ w-cl,o)Nh 2] COS[(~-~O)(N-~)~/~+CD~~O]
$In[(w=wo)h/2] (5)

b=& c
sin[(dao)Nh/2]  sin[(wftuo)(N-l)n/2+co+Qo

sin[(w+wo)h/2]

+
sin[( wwo)Nh/2] sin[(wwo)  (N-l)h/2+Q- CDO

sin[ (up(go) h/2

S not a very useful expression as i t  stands, but it may be

a2+b2=  A2iI3 ( ~~~1+ -f&gyp
sin[(&Jo)Nh/2]sin[(w-w)Nh/2]

$- sin[(&cl)o)h/2] sin[(a=wo)h/2]  cos[wo(N-L)h + "']

(6)
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Nhwo =27&k= any integer # 0

Then some terms in equation 6 collapse to produce

a2+b2 = A2
4N2

2c0s[~oh - 2uo]
+ sin[ (u+dh/2] sin[ (w-ruo)h/2]  )

T h e  s q u a r e  -root o f  t h e  a b o v e  e x p r e s s i o n will be termed the

” magn  i t ude” of the output of  the hetrodyne f i l ter .  The arctangent of

the  ra t io  o f  a  to  b  w i l l  be  ca l led  the  “phase”  o f  the  ou tpu t  o f  the

hetrodyne f i I ter.

Thi s process i s  s i m i l a r  t o  t h e  d i s c r e t e  F o u r

except  tha t  on ly  one f requency  is  p rocessed ins tead

i er transform,

of many. The

resu l ts  o f  th is  ana lys is  can easily be generalized to represent the

output of  the DFT by sett ing the period of the center f requency to a

e mu l t i p le  o f  the  samp l ing  in te rva l .

i

i
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I f  o n e  f u r t h e r  a s s u m e s  t h a t  t h e  f r e q u e n c y  o f  t h e  i n p u t

sinusoid is close to the center frequency, then we see that

lim a2+bp A2=-
4N2

O+N2+0
w-w0

= $2

define au)= ~-u)o

sin~2,oh[(N-l)/2+~+Nsin~f&h[(N-l)/2+~]j

W-W cos{2woh[(N-1)/2+oJ~Ncos@h[(N-1)/2+0;]?

if N > 1 then

lim $ a tan [&d-4  (N-1)/2 + a13

T h u s  w e  s e e  t h a t  i n  t h e  l i m i t ,  t h e  m a g n i t u d e  o f  t h e  o u t p u t  ofthe

f i I ter becomes independant of time and becomes a measure of the

ampl i tude  o f  the  inpu t  s inuso id ,  The  phase  o f  the  ou tpu t of the

f i l t e r  r e m a i n s  a l w a y s  a  f u n c t i o n  o f  t i m e , bu t  i s  a lso  a  l inear

func t ion  o f  t ime , its slope being determined by the difference of the

center frequency and the input frequency.

i
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Th is  revea ls  a  method  o f  de te rmin ing  the  amp l i tude  o f  the

input sinusiod and gett ing a better est imate of i ts frequency. If the

center frequency of the summation is near the actual frequency of the

input sinusoid, the phase wi l l  be very nearly a l inear funct ion of

t inie, thus we may f ind the frequency deviat ion by f i t t ing the phase

wi th  a  s t ra igh t  l ine  and observ ing  i ts  s lope.

The consequences of choosing N as above are significant. If

t h e  c e n t e r  f r e q u e n c y  i s a multiple of some fundamental frequency,

then we may choose N to coincide with the period of the fundamental

a n d  t h u s  c a n c e l  o u t a l l  the  harmon ic  par t ia l s  excep t  the  cen te r

frequency. F igure  1 shows the log of  the magnitude of  the output

o f t h e  hetr&yne f i l t e r  f o r  a  r a n g e  o f  s i n u s o i d a l  i n p u t s . The

center frequency in this plot is 400 Hz and the summation period, Nh,

i s 10 mi I I i seconds. Figure 2 shows the log of the magnitude versus

frequency for a center frequency of 100 Hz and the same summation

per i od. N o t i c e  t h e  z e r o s  o f t ransmiss ion  at al I multiples of the

summation period except the center frequency.
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F r e e d m a n  [91 and Keeler  [111 both show that this method is

s u f f i c i e n t l y  a c c u r a t e  f o r  t h e i r purposes even when the input signal

i s not a perfect sum of s inusoids. Keeler does not even bother

computing the summation at each po in t ,  bu t  a t  regu la r  in te rva ls  on ly ,

and  p resen ts us with an elegant proof that the error in doing so is

negl igable. The above work may well seduce one as it did the author

in to  be l iev ing  tha t  th is  i s  a  per fec t l y  accura te  method,  un iversa l l y

appl icable. This is not so. T o  persue t h e  m a t t e r  f u r t h e r ,  l e t  u s

reformulate t h e  e q u a t i o n s  s o m e w h a t .  We s h a l l  c o m p u t e  n o t  t w o

ERROR  ANALYSIS

summations but one:

&-N-l
G = t
x

Fie
iwoh+@o

o?
(9)

i=a

- The result will be a complex quantity whose real and imaginary parts

correspond to  the  a  and  b  d iscussed ear l ie r .  We w i l l  be  in te res ted

in the magnitude and the phase of G. For the input waveform, Fi,  we

. shall take a complex sinusoid with exponential  decay.

G = F-' .(a+j,)ih+e jLI,oih+Qo
e

o! i=o

= eah[a+j(uI+wo)]+j(@+Oo) eNh'a-+j(w'wo)l-  1
(10)

L
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Again, we see the magnitude is re la ted  to  the  amp l i tude  o f

the input sinusoid and the phase dri f t  with t ime is  re la ted  to  the

frequency differece.  T h e  e x p o n e n t i a l  d e c a y  o f  t h e  i n p u t  s i g n a l

causes imperfect c a n c e l l a t i o n  o f o t h e r  h a r m o n i c  p a r t i a l s , and

depending on the speed o f  t h e  a t t a c k , t h e  d e v i a t i o n  c a n  b e

important.

A more reveal ing case would be to assume the signal begins

at  zero ampl i tude, and r ises exponential ly to i ts steady-state value

and tha t  the  s igna l  beg ins somewhere during the summation, say at

i=@.

e
jh(urtcuo)

- 1
(11)

_ p&+p) e(N-p)hb+hhdl  _ 1

ehb3+jh+~~)l - 1

This is equivalent to setting N to some smaller value. As the

h of thef i l ter  progresses through the at tack, t h e  e f f e c t i v e  widtl

window wi I I approach N, and the response of the filter w

more representat ive.

i I I become

L
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Here we see that even i f  N and the center f requency are

carefu l  ly chosen, the frequency response is not the same, Figure 3

shows the response for a ten ter frequency of 300 Hz, a s u m m a t i o n

interval of 10 mi I I i seconds, and P=NJZ. We see that the neighboring

harmonics are not canceled out. This shows that i f  the signal begins

anywhere within the sindow, the output should not be taken to be an

accura te  ind ica t ion o f  the  amp l i tude  o f  the  par t ia l . It i s  exac t l y

analagous to t a k i n g  N  t o  b e  a  n o n - m u l t i p l e  o f  t h e  p e r i o d  o f  t h e

fundamenta l  f requency .  F igu re  4 shows the output for an averaging

window of 10 mi I I iseconds and center frequencies of 100, 200, and

300 Hz. The input was a sum of s i n u s o i d s  o f  u n i t  a m p l i t u d e  a n d

frequent  i es 180, 200, and 300 Hz with exponent ial  attacks  of time

constants 3 0 ,  2 0 , and 10 mil l iseconds respect ively. The leakage

among the harmonics is apparent here.

If the  a t tack  i s  no t  exponent ia l ,  ano ther  fo rm o f  d is to r t ion

can occur. F i g u r e  5 shows the magnitude of the f i l ter output for the

same input and ten ter f r e q u e n c i e s  a s  f i g u r e  4 ,  b u t  w i t h  linear

attacks rather than exponent ial .

The presence of inharmonic partials can c a u s e  an e f f e c t

sinii lar to ampl i tude modulation. Figure 6 shows the magnitude and

phase of the fundamental of a guitar note at 132 Hz. The apparent

modulat ion is caused by an inharmonic part ial at 186 H z , the

frequency of a known box resonance.

Another source of  error is that of frequency quantizat ion. N

can not in general be chosen such that Nh is exactly the period of

the fundamental frequency and stil l have N be an integer. This can be

t o l e r a t e d ,  b u t i t  a lso  imp l ies  tha t the center frequency must be a

m u l t i p l e o f  Zn/Nh r a t h e r than a multiple of the fundamental

frequency. If we do not set the center frequency to exactly a

t
L



L

L
L
L
L

i;i
L

m u l t i p l e  o f  Zn/Nh,  w e  g e t  i m p e r f e c t  c a n c e l l a t i o n  o f  a  p o l e  a n d  a

zero. Figure 7 shows the magnitude versus frequency of such a case.

Note the doublet around 400 Hz, the center frequency.

S i n c e  N h  i s  n o t  e x a c t l y  t h e  p e r i o d  o f  t h e  f u n d a m e n t a l

frequency, the  harmon ic  par t ia l s  a re not exactly cancelled out.

Fur thermore, most string instruments show a dev ia t ion  f rom per fec t

in teg ra l  mu l t i p les  o f the fundamental frequency. This deviation also

contributes to leakage among the harmonics. Equation 10 may be used

to determine exactly how much leakage is present.

t

L
7
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A SIMPLE EXTENSION

Although there would seem to be no good solution to the

problem of the note beginning within the summation period, there is

a technique for deal ing with the  inharmon ic  par t ia ls .  i f  the  a t tack

t ime o f  the  par t ia l  in  ques t ion  i s no t  too  swi f t ,  i t  can  be  f i l te red

out before analysis of the harmonic partials is done. The harmonic

p a r t i a l s  m a y then be filtered out to allow analysis of the

inharmon ic  par t ia l s .

T h e  f i l t e r  a d v o c a t e d  h e r e is a comb filter. T h i s  i s

descr ibed simply by the recurrence relat ion:

*I-l = x* - x* m

With frequency response

peJdl = Jsin*(*h) + [co&nh)-l]*

(12)

(13)

. We see that the comb filter has a zero of transmission at all

m u l t i p l e s  o f  t h e base frequency l/mh.  The only hazards with the comb

f i l te r  a re  those  o f  t rans ien t  response and preturbing the harmonic

p a r t i a l s .  T h e  t r a n s i e n t  r e s p o n s e  o f  a  c o m b  f i l t e r  i s  e x p l i c i t .  It is

iden t i ca l  l y zero beyond mh s e c o n d s .  If t h i s  can be tolerated, then

the f i lter may be useful,

If the frequencyy o f  some harmon ic  pa r t i a l  f a l l s  near  one  o f
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the zeros of  t ransmission of  the comb, i t  wi l l  be at tenuated. We m a y

prevent  th is  by  a method which appeared in G o l d  and Rader  [13,141.

A t  t h o s e  z e r o s  o f t h e  c o m b  t h a t  w e  w i s h  t o  e l i m i n a t e ,  a  d i g i t a l

resonater i s used to cancel out the zero. T h e  d e t a i l s  o f  t h e

con f igura t ion  a re descr ibed in  fu l  I  de ta i l i n  the  re fe rences  and

wi l l  not  be repeated here.

For analysis of  an inharmonic part ia l ,  the harmonic part ia ls

may al l  be e l im ina ted  w i th  a  s ing le comb, subject to the l imitat ion

that the part ia ls may not be exact mult ip les of  the fundamental ,  and

t h a t  t h e  f r e q u e n c y of the fundamental becomes quantized when the

comb length, m, is chosen.

The comb wi I I, of course, attenuate the signal under

a n a l y s i s  b y  s o m e  a m o u n t .  We m a y  p r e d i c t  t h e  a t t e n u a t i o n  f r o m

equat ion 13 and then mult ip ly the resul ts of  the hetrodyne analysis

by the reciprocal o f  the  a t tenuat ion f a c t o r  t o  o b t a i n  a  b e t t e r

est imate of  the ampl i tudes of  the part ia ls.

L
L

I
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The techn ique  o f  comb ing  ou t  unwanted  s igna ls  and  then

ana lys ing the  rema in ing wavefo rm is  the  bas is  fo r  an  au tomated

t h e  a n a l y s i s o f  p o l y p h o n i c  m u s i c  c u r r e n t l y beings y s t e m  f o r

developed by the author. When two or more instruments are playing

simultaneously, a Fourier analysis is used to get an est imate of the

pitch and duration of each note. All notes but one are then

e l im ina ted  by  combing , a n d  t h e  h e t r o d y n e  f i l t e r i s  a p p l i e d  t o

de te rmine  the  a t tack  t ime o f  the  no te  and  to  co r rec t  the  es t imated

p i t c h  o f  t h e  n o t e .  T h i s i s  i t e r a t e d  f o r  e a c h  o f  t h e  n o t e s  i n the

piece. T h e  r e s u l t is subjected t o  a  h e u r i s t i c  a n a l y s i s  a n d  i s

eventually displayed as a musical score of the piece under analysis.

A lso  under s t u d y  b y  a  c o l l e a g u e i s  h o w t h e  p h y s i c a l

pa ramete rs  o f  mus ica l  tones s u c h  a s  r i s e t i m e s  o f  t h e  p a r t i a l s ,

trenielo, and steady-state value contr ibute to the perceived t imbre

o f  the  ins t rument . The hetrodyne method as outlined above is used to

d e t e r m i n e  t h e s e  p a r a m e t e r s  f r o m  d i g i t i z e d  r e c o r d i n g s  o f  t o n e s  o f

I
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L actual  musical  instruments.
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The hetrodyne f i l ter has been shown to be a useful method

f o r  t h e  a n a l y s i s  o f  t h e  p a r t i a l s  o f  m u s i c a l tones  as  long  as  i t s

I imi tat ions are observed. I t  can fa i l i f  the  a t tack  t imes  a re too

qu ick , i f  t h e  f r e q u e n c i e s  o f the partial3 d e v i a t e  t o o  f a r  f r o m

p e r f e c t in teg ra l  mu l t i p les  o f the fundamental  f requency, or i f  the

sampl ing  ra te  i s so low that f requency quant izat ion effects become

s i g n i f i c a n t , I t  c a n  a l s o  f a i l  i f  s u b s t a n t i a l  f r e q u e n c y  m o d u l a t i o n

(vi brato)  i s present.

An extent ion of the method to tones with inharmonic part ia ls

and even to mult iple simultaneous notes was shown to be possible by

use of  the comb f i l t e r  a s  l o n g  a s t h e  e f f e c t s  o f  t h e  t r a n s i e n t

response of the comb was judged to be tolerable.

These  methods  a re  cur ren t l y  in  use  by  the  au thor  and  h is ,

col leagues in the analysis of  digi t ized musical  sound,
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