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ABSTRACT

Several nethods are being considered for storing arrays in a parallel
menory system so that various useful partitions of an array can be fetched
fromthe nenmory with a single access. Sone of these methods fetch vectors
in an order scranbled from that required for a conputation. This paper
considers the problem of unscranbling such vectors when the vectors belong
to a class called p-ordered vectors and the menory system consists of a
prine nunber of nodul es.

Pairs of interconnections are described that can unscranble p-ordered
vectors in a number of steps that grows as the square root of the nunber
of nenories. Lower and upper bounds are given for the nunber of steps to
unscranbl e the worst case vector. The upper bound calculation that is
derived also provides an upper bound on the mininmm dianeter of a star
polygon with a fixed number of nodes and two interconnections. An algorithm
is given that has produced optimal pairs of interconnections for all sizes
of menory that have been tried. The algorithm appears to find optimal pairs

for all memory sizes, but no proof has yet been found
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I NTRODUCI ' | ON

Many of the large conputers that are being used and designed today
have a parallel nemory system that consists of several menory nodul es.
Each nenory nodul e operates independently so that accesses to different
modul es can be overlapped to inprove the overall performance of the conputer.
One exanple of a conputer that uses such a menory systemis the ILLIAC IV
[Barnes et al., 1968; Kuck,1968]. Mich work has been done on how data
should be stored in this kind of menmory so that algorithns for ILLIAC IV
can be executed efficiently. Some of the proposed storage schenes provide
efficient access to the data, but when data is fetched from the nenory,
it is not in the order required by the algorithm  Thys there nust be
some means to unscranble the data so that it is in the correct order.

This paper considers a conputer architecture that is nodeled after
that of the ILLIAC IV and studies the problem of unscrambling the vectors
of data that can be fetched fromthe nenmory with a single nenory access
Storage structures that have been proposed are shown to give rise to a
class of scranbled vectors called p-ordered vectors. |npterconnections
are presented that can unscranble all vectors in this class. These inter-
connections are studied in detail to determne the best ones to use for
a given number of menory nodul es.

Section |l gives a brief description of the conputer nodel under
consideration and presents several ways to store two dinmensional arrays
in the parallel menory. The exanples show the appearance of p-ordered
vectors in typical situations. Section Il discusses the problem of

unscranbling p-ordered vectors and introduces the k-apart interconnection.



We show that a single k-apart interconnection is sufficient to unscranble
all p-ordered vectors as long as k is chosen appropriately. Each tine

a vector is routed along the interconnection, all elenents of the vector
are transferred in parallel. A numberof such routings take place in
sequence in order to unscranble a particular p-ordered vector. In Section IV
we consider using two different k-apart interconnections to speed up the
unscranmbling process. W are interested in nmininzing the nunmber of
routings required by a vector in the worst case. W give |ower and upper
bounds on this number of routings and show that both bounds are of the
order of \/ﬁ; where N is the nunber of menmory nodules. The upper bound

is shown to be close to the optimal nunmber of routings known for certain
values of N Finally, in Section V an algorithmis derived that gives an
optimal pair of interconnections for many values of N. W conjecture

-that the algorithm provides an optinmal pair for any value of N



Il.  &ORDERED VECTORS

We first briefly describe the conputer nodel treated here and then
show how two dimensional arrays might be stored in such an architecture
We see that p-ordered vectors arise naturally from these storage structures.
In order to define p-ordered vectors for all values of p, we find that we
must restrict the nunber of menory nodules to be a prime nunber.

The conputer nodel used throughout this paper is shown in Figure 2.1.
.This is the same architecture as the ILLIAC |V with the addition of the
i nterconnection network between the -processing elements and their nenories.
The single instruction streamis read and decoded by the control unit.
Instructions meant for the control unit are executed there. Processi ng
el ement instructions are sent on to the processing elements,, and al
processi ng el ements execute the same instruction simultaneously. Each
processing element has an index register and can add the contents of this
register to the address in the instruction to obtain the address of the
operand in its own nenory. Thus, a single load instruction causes each
processing element to fetch:some word fromits menory. The net result
is that a vector of data can be fetched in one menory access. The inter-
connection network consists of a register for each processing elenent.

Each register is connected to the nenmory buffer register of the correspon-
ding nenory unit and to sone set of registers in the processing element

so that values can be transferred between a processing elenent and its
menmory through this register. W are interested in defining the inter-
connections between the registers thenselves so that vectors fetched from
the menory can be unscranmbled efficiently.

Several people have studied the problem of storing arrays in parallel
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menori es [Kuck, 1968; Muraoka, 1969; Knowl es et al., 1967; Stevens, 1970;
Budni k and Kuck,1971]. The sinplest way to store a two dimensional array
is to use straight storage allocation as illustrated in Figure 2.2. The
rows of the array are spread across the processing el enent nenories, but
each colum is contained entirely within a single nenory. Cearly, any
row can be fetched fromthe menory with a single access as can the main
diagonal, but a colum requires an access for each element in the colum.
Skewed storage allocation can be used to overcone this probl em and
is illustrated in Figure 2.3. This nethod of storage allocation also
spreads rows of the array across the processing el ement menories, but
the first elenment of each rowis displaced one menory unit fromthe first
el ement of the previous row W can still fetch any rowwith a single
menory access by setting the index registers appropriately. Note that
it is not possible to fetch the main diagonal with a single access.
These two nmethods of storage allocation waste space if the nunber
of colums in the array is not the same as the nunber, of processing
el ement nenories. Figure 2.4(a) shows the same two dinmensional array
packed into the nenory with no wasted space. Each new row begins
imredi ately after the previous one. W can still fetch any rowwith a
single nenory access by setting the index registers properly, and a study
of the figure also shows that any columm can be fetched with a single
nenory access. Figure 2.4(b)shows the contents of the nenory buffer
-regi ster of each processing elenent if the first colum is fetched.
This is the first exanple of a vector which may not be in the correct
order. Suppose that we want the inner product of this colum and a row

from another matrix that is stored in the same way. W nust first align
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the fetched colum so that corresponding elenents of the row and colum
are in the same processing element. Then all nultiplications can be
done in parallel. Note that the second elenent in the desired order
of the colum (ael) is five elements away fromthe first elenent (all).

Sinilarly, the third element (a, ) is five elenments from the second.

31
This is an exanple of a p-ordered vector with p = 5. These p-ordered
vectors are characterized quite sinply in general. The mathematical
definition which follows the next example shows that elenments that should
be adjacent after the vector has been-unscranmbled are p elements apart
in the p-ordered vector.

Budni k and Kuck[1971] have |ooked at the problem of storing
arrays so that rows, colums, main diagonal, and square subarrays can
all be fetched with a single menory access. Their results place certain

restrictions on the nunber of nodules in the nenmory system  One useful

menory size is 22L + 1 menories, and they give an exanple of storing
a 4x4 array in five nenories. This is shown in Figure 2.5. A study

of this example shows that any row or columm, the main diagonal, and
al |l 2x2 subarrays can be fetched with one nenory access by setting the
index registers correctly. Note that if a colum is fetched, it is not
in the proper order. Elenments that should be adjacent are two apart
in the fetched vector so it is a 2-ordered vector. Simlarly, if the
mai n diagonal is fetched, a j-ordered vector results, since elenents
that should be adjacent are three elenents apart.

Wth these exanples of p-ordered vectors in mind we proceed to give
the general definition. W can associate a control vector with any
vector fetched fromthe nenory. This control vector specifies how the
fetched vector is to be ordered. If X is a vector fetched froma

memory with N nodules (X has N elements and is called an N-vector),
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and Ais the control vector, then A(1) =J, 0s1, J < NI, neans that
the value X(1) should be in position J after the vector has been reordered.
The vector X is p-ordered if its control vector is p-ordered as given in
the follow ng definition.

Definition: An N-vector Ais p-ordered, 1 sp < NI, if its contents

are described by

i (2.1)

A(pi nod N

where 0 s i NI

IA

Since we are not interested in the actual values of the vector elenents
fetched fromthe menory but in their relative positions, all vectors
mentioned in the rest of the paper are control vectors. |f 3 control
vector can be brought into numerical order, then the same operations
applied to the fetched vector will bring it into the desired order.
Figure 2.6 shows a 2-ordered vector with N = 7.

The definition in (2.1) requires one restriction. Some val ue nust

be assigned to each of the N elenments of A Thus, given any j, 0 < < NI,
we nmust be able to find some value of i, 0 <i < NI, such that
pi mod N = j.

This can also be witten as

pi =j (nod N).
Such a linear congruence has a solution for i only if gcd(p,N) divides
5, where gcd(p, N is the greatest common divisor of p and N [ Andrews,
1971, page 60]. If sone iy satisfies the congruence, then any multiple
of N added to or subtracted from i0 will also satisfy it. Therefore,
if the congruence has a solution, we know that we can find sone solution,

i, that satisfies 0 <i <NI. W want a solution for any j, but the

only number that divides all integer values from0 to NI is 1. tpyq,
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Figure 2.6

2-ordered Vector with N =7
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ged(p,N) = 1 so that p nust be chosen relatively prine to N Since

we want to unscranble all
restrict Nto be prine.

nunber of menory nodul es,

p-ordered vectors with 1 < p < NI, we nust
Therefore, in the remainder of the paper the

N, is prinme.
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[11.  UNSCRAMBLI NG P- ORDERED VECTORS

Havi ng seen that p-ordered vectors occur naturally when certain
storage allocation schemes are used for two dinensional arrays in a
parall el nenmory, we proceed to study the problem of unscranbling these
efficiently. W propose an interconnection called a k-apart inter-
connection and show that a single k-apart interconnection is sufficient
to unscranble all p-ordered vectors if k is chosen appropriately.

The nost obvious way to unscranble a p-ordered vector is to have
the registers containing the vector interconnected in such a way that
there is a direct connection from each vector elenent to the register
representing its final position. This idea is generalized in the follow ng
definition of a k-apart interconnection.

Definition: N registers are interconnected with a k-apart inter-

connection, 1 <k < NI, if the contents of register (ki nod N)

can be transferred directly to register i, with 0 i < NI. The

notation for such an interconnection is

reg [ki nod N] - reg [i].

As with the definition of p-ordered vectors, we nust restrict
k to be relatively prinme to N, but renenber that N has already been
restricted to a prinme nunber. \Wen a vector contained in the registers
is to be routed along the interconnection path, all registers transfer
their contents simultaneously. If the registers contain a p-ordered
vector with p = k, then one transfer is sufficient to unscranble the vector
to a |-ordered vector. The relationship between a k-apart interconnection
and arbitrary p-ordered vectors is given in the next theorem which
states that a single k-apart interconnection can be used to unscranble

all p-ordered vectors. Figure 3.1illustrates this with seven registers
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interconnected with a j-apart interconnection. The contents of the
registers is a 2-ordered vector, and the figure also shows that after
two routings along the interconnection path the vector is in the correct
order.
Since the proof of the theorem and later discussion use results
fromgroup theory, we first describe the notation that is used.
1. Aq is the additive group of integers under addition nodulo N
The synbol +  is used to denote the group operator. This is a
cyclic, abelian group, and every elenent that is relatively prine
to Nis a generator of the group. The order of the group is N
2. The notation (ia)g with i any positive integer and aca denotes
a sumcontaining i occurrences of the element a. For exanple,
(3a)N = a -+ ar,a
If i is a negative integer, then the notation represents a sum
containing |i| occurrences of the element -a, which is the inverse
of the element a. If i =0, we define (ia)Nto be 0.
3. MN is the multiplicative group of integers under multiplication
modulo N The synbol ® N is used for the group operator. In order
for this structure to actually be a group, N nmust be prine. Thi's

group is also cyclic and abelian, Since 0 is not in the group,

the order of the group is NI.

Theorem 3.1: Gven N registers, with N prime, which are interconnected

with a k-apart interconnection, if k is a generator of the group M,
then any p-ordered vector contained in these registers can be
converted to a |-ordered vector by a finite nunmber of routings
along the interconnection path.

Proof: Since Nis prine, we can replace the nod notation in the
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previous definitions of p-ordered vectors and k-apart inter-
connections with multiplication in the group MN Not e that
register 0 always contains 0 and can be ignored in the proof.
It is straightforward to show that after j routings through the
interconnection network the contents of the registers are given by
eg (@ 5T 0 N0 Ny, e (3.3)
In order for the vector to becone |-ordered after some nunber of
routings, j, it is necessary for register i to contain the value i
for all ieMc.  From (3.3), | nust-satisfy

-1 |
P~ 'y (kJ.;L)=i, ieMy !

Then the necessary number of routings, j, must satisfy
K - p. (3.4)

Since k is a generator of M\, and p is an elenent of MN such a j

clearly exists in the range 0 <) < N2, QE.D

We have shown that if the registers of the interconnection network
are connected with a k-apart interconnection such that k is a generator
of the group MN any p-ordered vector fetched from menory into these
registers can be unscranmbled to produce a |-ordered vector. This vector
can then be used by the processing elenments. |f we let N=7,we find
that k =3is a generator of M,_( If we want to unscranble a 2-ordered
vector with seven elenents, according to (3.4)it will take j routings
where j is given by 3J = 2. Si nce 3.7 3 =2, two routings are required.
This is precisely what was shown in Figure 3.1.

Since k is a generator of MN, and the order of MN is NI, each value
of k3 is distinct for 0 £j < N2. As a result, there nust be sonme val ue
of p that requires a worst case of N-2 routings to unscramble the corre-

sponding p-ordered vector. W can use nore interconnections between the



registers to decrease the number of routings in this worst case. Suppose
that we use two different k-apart interconnections described by inter-
connection distances k1 and k2. An argunent simlar to that used in
deriving (3.4) shows that in order to unscranble a particul ar p-ordered

vector the problemis to find i and j such that

[ J
k0 k7 =p. (3.5)

Then i routings along the kl- apart interconnection followed by j routings
along the k2-apart interconnection will unscramble the p-ordered vector.

The interconnections are commutative, since M i s an abelian group.
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[V. USE OF TWO K- APART | NTERCONNEC! ' | ONS

The use of two interconnections instead of one creates nany new
probl ens which are the subject of the rest of the paper. Wat conditions
nust be placed on the values of kl and k2 to guarantee that all p-ordered
vectors can be unscranbled by using these two k-apart interconnections?
What | ower and upper bounds can be derived for the total number of routings
required to unscranble any p-ordered vector in the worst case? How should
"kl and k2 be chosen to minimze the nunber of routings required to unscranble
the worst case p-ordered vector? The first two questions are considered
in detail in this section, and the third question is studied in the
foll owing section.

Rat her than looking for generator pairs for the multiplicative
group, MN, it is sinpler to deal with the additive group Ag q I we
find a satisfactory pair, (a,b) in A 17 the interconnection distances that
correspond to this pair are given by

a

k1=g,

k2 = gb, ‘

where g is a generator of N&.
W can then state the three questions posed at the beginning of this
section in terns of the group Ac ;- What conditions nust be placed on
the pair (a,b) to guarantee that the pair is a generator pair for the
group AN_l? What | ower and upper bounds can be derived for the number
of a's and b's required in any sumin the worst case? How should the
pair be chosen to minimze the nunber of terns required in any of the
suns?

Stone [1970] considers these problenms in a somewhat different

form He is interested in finding a star polygon with mninum dianeter



for a specified number of nodes and connections. A star polygon is a
directed graph with n nodes, each node having d outward directed edges.
The edges of the graph are given by a connection set containing d
el ement s. If the nodes are numbered fromO to n-I, then each node i
has an edge fromitself to node (i + sj) nmod n, where s.J t akes each val ue
in the connection set. Stone considers the case with the number of nodes
equal to a power of two and provides a |lower bound on the dianeter for
various nunbers of connections. He also gives the actual nininmum dianeter
in certain cases, which he obtained by using an exhaustive search. The
work that is presented here provides both a I ower and an upper bound on
the mninum diameter for star polygons with two connections and any
nunber of nodes, although their application to unscrambling p-ordered
vectors requires a prime nunber of nodes. A means of reducing the
di ameter bel ow this upper bound is discussed in the next section.

The next theorem gives the condition on (a,b) that nust be net
in order for the pair to be a generator pair. In this and later proofs
we inplicitly use gcd as a comrutative and associative binary operator.
This leads to identities such as

gcd(a, b, N1) = gcd(gcd(a,b),N1) = gcd(gcd(a, N1),b)

Theorem 4.1: The pair (a,b) is a generator pair for the group

Ay 1 if and only if gcd(a,b,N1) = 1.

Pr oof :

(a) Gven gcd(a,b,N1) = 1. Let h = gcd(a,b). Then positive
integers mand n exist such that

a = n,

b = nh, (k.1)

and gcd(mn) = 1.
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From the hypothesis, h is relatively prime to N-I. Therefore, h
must be a generator of Ay Thus, for all xeAN_l, there exists
1, 0 i < N2, such that

x = (i h)N_I _ (ih) mod N-I.
Since mand n are relatively prinme, integers | 1 and j 5 exi st such
t hat

jlm+ j2n = 1.
Multiplying this by ih gives

ijlmh + ij2nh = ih.

Using (4.1) in the above and taking the result modulo NI gives

]

x = (ih) md N1 = (if a+ ijeb) mod N-|

Thus, any el ement of A, can be witten as a sumof a's and b's.

(b) Gven that (a,b) is a generator pair for' AN—l' Then for all

X€A_ 1) there exist i,j = 0 such that
X = (ia)N_1 N1 (jb)N_l.
Let h = gcd(a,b) so t hat (4.1) can be used in the above to give

X

(i(mn))y ) *yop (G(nR))g g

(inh + jnh) mod NI

((im+jn)h) mod NI

((im + jnDh)N_l.
This last equation says that h is a generator of Ay 1 so that h
must be relatively prime to N-I. Thus, gcd(a,b,N1) = 1. QED

A lower bound on the nunber of terns required in the worst case

to represent any elenent of A as a sumof a's and b's is given in the

N-|

following theorem
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Theorem 4.2: Let a,bEAN 1 be a generator pair for AN__l. If each

el enent of Aer is witten as a sumof a's and b's with as few
terms as possible, then the nunber of terns, n, in those representa-

tions requiring the nost terms is bounded as foll ows:
n [‘/—BN - 3].

Proof: This result is easily seen by considering Table 4.1. Row i

of the table shows which elenents of ANI can be represented as

a sumof a's and b's containing i terms. Row n is the |owest
nunbered row such that all elements of ANI can be found in the table
in the rows corresponding to n or fewer terms. Note that each row
has one nore entry than the previous row so that row i contains i + 1
entries, 0 <i <n. W can now see that the nunmber of entries in

row 0 through row n nmust be at least NI (the nunber of elenents

in ANI)' This gives
n
(i +1) =2 NI.
i=0

This can be witten as

n+l
Ti=
i=1

or n2+3n+222N-2.

(n + 1)(2n + 2) o N1

This quadratic inequality can be solved for n to give

. [E)

QED.

In terms of unscrambling p-ordered vectors the last theorem says
that if we use any two k-apart interconnections that can unscranble all

p-ordered vectors, then some p-ordered vector will require a nunber of
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Nunbeizrn %fumTerms El enents of Ay Repr esent ed
o) 0
1 a b
2 a +y 8 2 N1 b b tN-1 b
n (na)N_I ((n—l)a)N_1 *No1 P (nb)N_I
Table 4.1

Representation of Elements of Ag, as Sums of the Elenents
a and b



routings that is at least as great as the l[ower bound of the theorem

In order to determi ne how much greater we now construct an upper bound

on the nunmber of routings required to unscramble all p-ordered vectors.
We return to the group A1 and consider generator pairs of the

form{(1,b). Such pairs will clearly generate all elenents of LY since

1 itself is a generator of Ay 1. Let x be any elenment of AN_l. Then x

can be witten in terns of (1,b) as

X

(1b)y 1 o1 Gy
= gfib)N_I tno1 30 i,j = 0.

W want to choose b so that i + j <the number of terms in the sum is
mnimzed for all x. An obvious way to choose i and j for any x is
shown in Table 4.2

The dotted lines partition the table into consecutive rows that
have the sane value of i. Each partition (except possibly the |ast)
contains b rows. The maxinmum value of i + j in the table occurs in the
last row of the last full partition (a partition with b rows). The
nunber of full partitions i; [(N—l)/bJ, and so the value of i in the
last full partition is

i = l:fN—l)/bJ -1

The value of j in the last row of any full partition is clearly b-1.

Thus, the maximum value of i + j in the table is
(1+3) = L(N—l)/bJ -1+b-1
= |~(N—1)/bJ +b - 2 (4.2)
W want to choose b so that (i + j)max is mnimzed. [f we mninmze the

function f(b) =(N-1)/b + b -2, we find that b =/N-1 gives the m ni mum

val ue. Since b nust be an integer, we choose b = l‘/N—lJ orb= [‘/N—l]



X J 1+
0 0 0 0
1 O 1 1
b-1 0 b1 lb—l _____
: Lo |
(2b)l\;| 1 1 b-1 b
ey, |2 | oo |
(3b)N:I -1 2 b- | b+1
_________________________ B O ——
ve
Table 4.2

Representation of Elenments of A1 8S X =(ib)N 1 *N 1]



depending on which minimizes i + j)max- As long as N is not a perfect

square we can show that

-2 =

_1;%%%%T + t/ﬁ:f _Fygé%j_ + [ N_l-l - 2.

Since N has been restricted to a prime number, we see that it makes no

difference which of the two values of b is chosen, 1D summary, we have

constructed an upper bound on the number of terms required to form any

element of A as a sum of 1's and b's. We choose b = L/N—lJ {or F/N—l]

N-1

and then the upper bound is
UB = l(N—l)/bJ + b -2, (h.9)

The second and third columns of Tablel}.3 give the lower bound of
Theorem 4.2 and the upper bound of (4.9) for various values of N, The
fourth column of the table was obtained from a computer program that
considered all possible pairs of k-apart interconnections for a given
value of N. For each pair the program determined how many routings
would be required to unscramble the worst case p-ordered vector. The
smallest value in this set of numbers is reported in coluxn four of the
table and corresponds to an optinal pair of interconnections, Note that
the constructed upper bound, which provides a pair (1,b) that meets this

bound, is very close to the optimal solution in all the cases shown.



N Lower Upper opti mal

Bound Bound ) Val ue
5 2 2 2
T 2 3 3
11 3 L L
13 b 5 >
17 5 6 5
19 5 6 6
23 6 7 7
31 T 9 8
61 10 13 12

257 22 30 27"
Tabl e 4.3

Lower and Upper
Worst-case p-ordered Vectors Conpared to Optinal

Routings in Wrst Case

¥* . .
This value is not the result of an exhaustive search but is

the best value found in a partial

optimal .

Bounds on Number of Routings to Unscranble
Nunber of

search and appears to be
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V. I MPROVING THE UPPER BOUND

In this section we again consider the problem of representing all
el enments of AN_1 as a sum of elements from a generator pair (a,b) and
construct an upper bound on the nunber of terns needed in any of these
sunms.  This upper bound is different fromthe one of the previous section
and not quite as good. It does, however, lead to an algorithm that will
produce an optinmal generator pair for those values of N shown in Table 4.3.
We have been unable to prove that the algorithm will produce an optinal
generator pair for all N but the enpirical evidence suggests that that is
the case.

We begin the derivation by considering sone elenent, a, of Ay 1.
W denote by (a) the subgroup generated by a. The order of this subgroup
is n, the value of which is given in the follow ng theorem Since this

result is well known, the theoremis stated wthout proof.

Theorem 5.1: If a is any elenent of AN_l, then the order of (a)
is given by
n=(NI)/gcd (a,N1). (5.1)

The nunber of distinct cosets of (a) in Ag, is given in Lang [1968, page 27].
This is denoted by mand is given by
m = (N-1)/n. (5.2)

Now we construct a table of the elements of AN_1 in the followng
manner.  Row zero of the table starts with 0, and each of the other
elements of the row is formed by adding a to the previous elenent. Thus,
this rowis just the subgroup (a). Choosing an elenent b from AN_l, we
form additional rows by adding b to each element of the previous row
O course, all addition is done nmodulo N-I. The rows of the table are

just the cosets of (a) in AN—l' If b is chosen so that the first m
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rows correspond to the mdistinct cosets, then the table with mrows
and n colums contains precisely the elenents of ANl‘ Since (a,b)
must be a generator pair for the group AN'l’ Theorem 4.1 says that b

must be chosen such that gcd(a,b,N1) = 1. The follow ng theorem

shows that this same restriction gives the mdistinct cosets as the first
mrows of the table. The theorem uses the fact that two cosets are
either equal or have no elements in conmon.

Theorem 5.2: |f gcd(a,b,N1) =1, then for all i, 1 <i < ml,

(1b)y y # () +y , (3b) 4

for all j, 05 <.
Proof: By using (5.1) and (5.2) we see that gcd (a,N1) = m Then
we wite the hypothesis as

gcd(mb) = 1. (5.3)
Using proof by contradiction, we assume the contrary of the conclusion

of the theorem Thus, there exists i 1<i < ml, such that

0’ 0
(1gP)y 1 € (2) +y ; (D) 4

for sone j, 0 < | <io.
This statenent says that integers ko> 0 < kO < n-1, and | o’ 0 < J-O < iO’

exi st such that
(1g0)yey = (gl *nea (pPly s

We can wite this equation in terns of regular integer arithmetic as
i - p(N-1) = kya + Jgb - a(N-1)
for some p,q = 0.

Rearranging the equation, we obtain

(10 - jo)b = kja + (p-q)(N-1).
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Since gcd(a,N1) = mand NI = nm mclearly divides the right-hand
side of this equation. Therefore, m nust divide the left-hand side
as well, but since the hypothesis states that m:and b are relatively
prinme, m must divide the term(io-jo). If we |ook at the ranges
in which i0 and Jo must lie, we see that
1 s (ig - jo)sml.

It is inpossible for mto divide (i, - jo) so we have reached a

0
contradiction, thus proving the theorem QE D

Figure 5.1 presents such a table for the group A, With a =3 and

30
b =2. The order of the subgroup (a) is given by (5.1) as n = 10, and
the number of distinct cosets is given by (5.2) as m =3, Diagonal
lines have been drawn in Figure 5.1 so that those elements on the sane
di agonal can be represented by a sumof a's and b's with the same nunber
of terms. For exanple, the elenments 4,5, and 6 are all fornmed from sunms
with two terms. If we count the diagonals, starting fromO0, we find
that all the elements of A3O can be represented as suns with no nore than
eleven terns. Note that this particular upper bound is not as good as
that given in Table 4.3, which shows an upper bound of 9 for N =31.

In the general case, the nunber of diagonals needed to cover a
table like that in Figure 5.1 provides an upper bound on the nunber of

terns needed in any sumif we want to wite all elenents of A as a

N
sumof a's and b's. W count the diagonals starting with zero, since the
element 0 requires no terms in its sum to obtain the general upper
bound of

UB=n+m- 2, (5.4)

Qbvi ously, the choice of a determines the values of n and m so we want

to choose a to nake this bound as small as possible.
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Figure 5.1

Coset Table for the Goup A

30vvitha=3andb=2



32

The results so far say that if we pick some element a and an el ement
b that satisfies (5.3), then all the elenents of AN—l can be put into a
table with mrows, each row containing a distinct coset of (a) in Agqe
W can cover this table, except the O elenent, with a nunber of diagonals
given by (5.4). If we are careful in selecting b, however, the table
can in general be covered with fewer diagonals. |f we generate additional
rows in the same manner and call each set of m consecutive rows a partition,
then each partition consists of the sane cosets, but the elements in each
coset are cyclically shifted fromtheir positions in partition zero.
This is easily seen by witing the element inrowi, 0<i s<sml, and
colum j, 0 <j sn-Il, as

Xij = (1b)yy *y-1 Gadyye

Then an element in row i of partition g, q =0, is given by

% pqn,j = (B + @By g +y g (J2)y

(10)yy ey ((@m)P)y gy y (ady -

If the elenent ((qm)b) can be shown to be an elenment of (a), then

N-1
this last equation says that any element in rowi + gmalso occurs in rowi.
In addition, each element of rowi + gmis formed by adding a to the previous
element so that rowi + gmis just a cyclic shift of rowi. VW show that
((qm)b)N_l is an element of (a) by showing that mis an elenent of (a).
Since mis in Ay 1s Ve have t hat ((qm)b)N_1 = ((qb)m)N_i. Therefore,
if mis in (a), then ((gb)m)y_,is in (a). From (5.1) and (5.2) we see that
m = ged(a,mn).
If mis given, then the elenent a is given by
a = km (595)
where 1 £ k < n-|

and gcd (k,n) = 1.
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The set of positive integers less than n and relatively prine to n forns
a group under the operation of nultiplication modulo n. Therefore,
k is in this group and has an inverse elenent, k'l, such that
(k-lk) md n = 1.
Using a result from Knuth [1969, page 39], we can wite the last equation
as
(k-"km) mod m =m
Now we apply (5.5) and use m = NI to obtain
(K a)yq =m
which gives the result that mis an elenent of (a).
Figure 5.2 shows additional rows added to the table of Figure 5.1
to give four partitions. Note that each partition consists of cosets
that are cyclically shifted two places left fromtheir positions in
the previous partition. The diagonals have been extended to cover the
new partitions. It is clear fromthis example that no fewer than eleven
diagonal s are sufficient, since the elenent 1 first occurs on the eleventh
di agonal .
Suppose we examine the table formed if we use b =4 along with a =3
This is shown in Figure 53. Now only 'nine diagonals are needed to make
certain that every element of the group occurs on sone diagonal. The
elements within the outlined boundary fall below the ninth diagonal in
partition zero, but in partition two, these same elenents lie on or above
the ninth diagonal
This procedure to reduce the upper bound can be generalized. W
assune that the elenent a is given so thatnand mare known. The el enent

L, in the lower right-hand corner of partition zero has a value that

depends on which element is--ultimately chosen for b, Since L is in row
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ml and colum n-I, its value is

L = ((m1)b) | +e , ((m=1)a) |,
or using the nod notation, we obtain

L=(nb-b+na-a) ndNI. (5.6)
From (5.%) we know that the occurrence of L in partition zero lies on
diagonal n + m- 2. Suppose we specify that in partition q, q = 1,
Listolieondiagonal n + m-2 - x, where x = 0. Then the occurrence
of L in partition q has moved up x diagonals fromthe occurrence of L
in partition zero. Therefore, the position of L in partition q is gm
rows down fromand gm+ x colums to the left of its position in partition
zero. As a result we can also wite I, as

L= ((qgm + m - 1)b) ((n-1-qgm - x)a)N-l',

N-1 N-1
If we equate this with (5.6) and sinplify, we find that b nust satisfy
qmb = (gm+ x)a (mod N1), q = 1. (5.7)
This last result tells how b must be chosen if x is known, but
how should x be chosen. W would like to choose x as large as possible
and still guarantee that all elements of the group lie on diagonals
0 through n + m-2 - x. For any value of x the only elenents that do
not satisfy this requirement are those in partition zero that lie below
diagonal n + m- 2 - x. In the last row of partition zero there are
exactly x elenents below that diagonal. W know, however, that if b can
be chosen to satisfy (5.7), then L will lie on diagonal n + m-2 - x
in partition q. If there is roomfor the other x-1 elements to the left
of L in partition q then all the elements of the last row will satisfy
the requirement. Note that since the relative positions of the elenents

are the same in each partition, the elements which are bel ow diagonal
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n+m-2-=- X in the other rows of partition zero will be above that
diagonal in partition g. Since colum j, O0<j < n-I, has precisely
j colums on its left, and since L is incolum nn-1-qgm- X in partition
g, the requirenent is satisfied if the following is true:
Xx-1l<n-1-gnm- x,
This sinplifies to
X < l(n - qm)/EJ, q=z1.
Renenbering that we wanted to neke x as |large as possible, we take q=1
to obtain
x5 l(n— m)/2J (5.8)
If n=m then the maximum value of x is zero. In that case the upper
bound cannot be inproved by considering partitions other than partition
zero. Then we can choose any value of b that will form a generator pair
with the value of a given by (5.5), since we do not care where the
elements lie in the other partitions. A convenient choice is b = 1.
Now that we have restricted g and know how x should be chosen,

we | ook nore carefully at (5.7), which is used to determne b. Setting

q=1and NI = nmand using (5.5) we obtain
m = (m+ x)km (mod nm,
where 1 < k < n-1, and ged(%,n) = 1.
Since gcdimnm) =m and mdivides (m+ x)km we know that this congruence

has m nmutual 'y incongruent solutions for b [Andrews, 1971, page 60]. One

solution is obtained immediately by using Knuth [1969, page 39]. The

result is
bO = (m+ x)k nod n
where 1 < k < n-1 and gcd(k,n) = 1.

Al'l the solutions are then given in terns of this one and are given by
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bt = ((m+ x)k) (nod n) + nt, (5.9)
where 1 < k < n-|
gcd(k,n) =1
<t <ml,
Any of the mvalues of b that satisfy (5.9) can be used along with a = km
to forma table of the type that has been discussed. The elenment L will
lie on diagonal n + m~- 2 - x in partition one, and all the elenents that
occur in partition zero will be covered by diagonals 0 through n + m -2 - x.
We require, however, that each partition contain all elenents of the group

that is that (a,b) be a generator pair of A As a result, b is

Al N1
restricted by (5.3)to be relatively prine to mso that only certain
solutions of (5.9)can be used. The next theorem says that we need only
consi der values of n, m and x that have no common factor. For such val ues
of n, m and x, the theorem says that we can use k =1 in (5.9) and be
guaranteed that some val ue of bt exists that satisfies (5.9) and that is
relatively prine to m

Before stating the theorem we show how (5.9)is sinplified by letting
k =1. W want x to be non-negative, and we have already discussed the
case of x = 0. Using (5.8), we see that we can restrict mto be strictly
less than n.  This result along with (5.8)leads to the follow ng relation:

m+xs<m+ l(n— m)/2J
sm+ (n-m)/2 =(m+ n)/2

< (n + n)/2=n.

Letting k = 1 and using this last relation in (5.9)gives

bt=m+x+nt, 0<t <ml. (5.10)
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Theorem 5.3: Gven positive integers m n, and x from which m

val ues are deternined by

bt=m+x+nt, 0t < ml,
then a value of t exists such that gcd(bt,m) =1 if and only
if gcd (mn,x) = 1.

Proof :

(a) Gven a value of t such that gcd(bt,m) = 1. Assume the contrary
of the conclusion that n, m and x have a common factor f > 1. Then

from the manner in which b, is defined, it is clear that f nust

di vi de b, . This contradicts the hypothesis so that gcd(mn,x) = 1.

(b) Gven gcd(mn,x) =1. Let f = ged(myn), and let d = mf. Then

ged(f,x) = 1 from the hypothesis so that integers u and v exist such

t hat

uf + vx = 1. (5.11)

We first show that a solution to (5.11) exists such that v is

relatively prime to d. If Uys Vo is one solution to (5.11), then

all solutions are given by [Andrews, 1971, page 24]

U = uo - tx (5’12)
vV = VO + tf
where t takes on all integer val ues.

Note that values for Uy and v, can be found by using the Euclidean

algorithmto find gcd(f,x) [N ven and Zuckernan, 1972, page T7].

| f Y is relatively prime to d, then we are finished. On the other
hand, suppose that Yo and d are not relatively prime. Then the set

of all prime nunbers that divide d can be partitioned into two disjoint

sets described by
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Y = {the set of all prine nunbers
that divide both d and vo}
Z = (the set of all prine nunbers
that divide d but not vo}.
Cearly Yis not enpty. Set t equal to the product of al
of the elenents of Z. If Zis enpty, set t = 1. Let u', V'
be the result of using such a value for t in (5.12), W now
show that v' is relatively prine to d. If we assume the contrary,
then any prime nunber that is common to both v' and d nust be
an element of either Y or Z.  Suppose that y € Y is comon to
both v' and d. Then since y € Y, y divides VO’ and from (5.12)
y divides tf. Nowy and f are relatively prine, since if they
had a conmon factor greater than 1, it would divide v_ as well

0
but v, is a solution to (5.11) and nust be relatively prime to f.

0
As a result y nust divide t, but t is either 1 or a product of the
el enents of Z In either case y cannot divide t. If Zis not
empty, the only remaining possibility is that z € Zis comon to
both v' and d. Since z € Z, we know that z divides t so from
(5.12) it is clear that z divides.vw
since z € Z.  Thus, we have shown the existence of a solution to
(5.11) in which v is relatively prime to d.
Since f = ged(m,n), integers r and s exist such that
rm+ sn = f
Using this and the solution u',v'in (5.11) gives
urm+ u'sn + v'x = 1.

This can be witten as

u'm+u'sn+VvxX+vm-vm+vine-vin=1

which again is a contradiction
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with i sone integer. Rearranging gives
vi(m+x +in) + (ur =v')m+ (Us-v'i)n=1 (5.13)
We now show that i can be chosen so that u's - v'i is a miltiple

of d. This requires that an integer j exists such that

us -Vv'i =jd.
This can be witten as
jd +iv =u's,

which is a linear Diophantine equation in unknowns j and i.
Ve have shown that ged(v',d) = 1, so the equation clearly

has a solution. If io and jo satisfy the equation then so do

i+ wd,

i
0

Jj = Jo-wv'
where w takes on all integers val ues.
Since d divides m it is clear that a value of i exists in the

inclusive range 0 to ml. Let i' be such a value and let ' be
the corresponding value of j. Using these results along with
n =ef and m= df, we see that (5.13) becones
vim+ x +i'n) + (u'r -v')m+ | def =
viim+ x %+i'n) + (ur -v' '+ j'em = 1.
Now t he second factor of the first termis just bi, so that
bi‘isrelatively prime to m QED
In the discussion so far we have assunmed that we are given the value
of n, fromwhich we can calculate m x, and a generator pair (a,b). In
order to conplete the procedure we nust specify how n is chosen. Since

n represents the order of a subgroup of the group A only those val ues

NI
of n that divide N-I (the order of the group AN-l) can be consi dered.

From (5.8) we see that in order to have x be non-negative, we nust have
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nsm Thus, from (5.2), which defines min terms of n, we finally conclude
that we must limt n to those integer values that are greater than or
equal to JINT and that also divide NI. W then choose that value that
m ni m zes the upper bound of n + m- 2 - x and that also leads to a
generator pair (a,b).

An exanple should clarify the use of the&procedure that has been
devel oped in the preceding discussion. W consider the group A3O’ whi ch
was used in exanples at the beginning of this section, to see if the upper
bound of nine depicted in Figure 53 can be inproved. Figure 5.4 shows
the calculations that give the best value for n. The first colum contains
those integers that are greater than or equal to,/30 and that divide 30.
The second colum is given by (5.2), the third colum is the maxinum
value for x as given by (5.8), and the last colum gives the upper bound
The snallest value of the upper bound is 8 so we should use n = 10, m= 3,
and x =3. From (5.5)we find that a value for ais a =3. Now we use
(5.10) to obtain a value for b, Substituting the known values of the
parameters, we obtain
b, =3+ 3+ 10t,

t
or b, = 6 + lot.

t
Noting that b nust be relatively prime tom we let t =1 and obtain b = 16.
Figure 55 shows the coset table that results fromthe generator pair (3,16).
Note that eight diagonals do indeed cover all the elenents of the group
and that eight was the optimal number of routings needed to unscranmble the
worst case p-ordered vector when N = 31 (see Table 4.3).

We conclude this section by summarizing this algorithm assumng

that the value of Nis given and that we want an "optinmal" generator pair

for the group Ay 1
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n m X n+m 2- x
615 |0 9
10 3 3 8
15 2 6 9
30 1 |14 15
Figure 5.4

Val ues of n and Corresponding Val ues
for m X, and Upper Bound for NI = 30
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Coset Table for the Goup A Ovvith a=3and b = 16
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1. For each value of n such that n 2 {/N-1 and n divides NI,
calculate m= (N-1)/n and cal culate all values of x such that
0<Xx < [(n -m)/2J.

2. For each of the triples in Step 1 calculate n + m-2-x,
Let n', m', and x' be the values that mninmze n + m-2-x

such that n', m, and x' have no common factor or such that

3. 1f x*=0, use a = m' and b = 1 as the generator pair.
4. Oherwise, let a =m' and choose b to satisfy the equation
bt=m'+x'+n‘t, O€tsm" -1,
such that ged(b,m') = 1.

Step 4 as stated might require generating several values of b, unti
one that is relatively prine to m' is found. The proof of Theorem 5.3, .
however, does give an explicit procedure to find a value of t such that
b, is relatively prime to m'. This algorithm has been applied to all of
the values of N given in Table 4.3. The generator pairs that are found can
generate all elements of the group Ac , as sums containing no nore terns

than the optimal value given in Table 4,3, Therefore, the al gorithm appears

optimal, but as nentioned before, no proof has been found
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VI.  CONCLUSI ON

We began this discussion by giving exanples of ways to store two
dimensional arrays in a parallel menory like that used in ILLIAC IV.
Certain of the structures give efficient access to the inportant partitions
of the arrays, but some partitions are not ordered correctly after they
have been fetched. The exanples showed that these scranbled vectors
belong to the class of p-ordered vectors. In order to allow p-ordered
vectors for any value of p, it was necessary to restrict the nunber of
menory nmodules, N, to be a prinme number. Then k-apart interconnections
were defined, and we showed that a single k-apart interconnection of the
interconnection registers was sufficient to unscramble all p-ordered
vectors as long as k was chosen as a generator of the group MN. Next we
consi dered the problem of choosing two different k-apart interconnections
in such a way that all p-ordered vectors can be unscranbled in as few a
nunber of routings as possible. This problemis isonmorphic to the problem
of finding a generator pair (a,b) for the group AN-l such that all elenents
of the group can be represented as a sumof a's and b's with a mni num
nunber of terms in the longest sum |f such a generator pair can be found,
then the best pair of interconnections is k1 = g% and k2 = gb, where g is
a generator of My Lower and upper bounds were derived for the nunber of
terns needed in the longest sum Both of these bounds are of the order of
Jﬁﬂ and the constructed upper bound, which gives a generator pair of the
form (l,b), gave results that were- very close to optimal for the val ues of
N that were studied. The final problem that was studied was the problem
of reducing the upper bound as much as possible to obtain an optima

. generator pair. An algorithm was given that produces a generator pair
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that should actually be optimal. A though a proof of this has not been
found, the algorithm has produced optimal pairs in all the cases tried
so far. It should be pointed out that this algorithmis applicable for
any group AN;l’ regardless of the value of N In order to apply the
results to unscrambling p-ordered vectors, however, it is necessary to
restrict Nto be prine.

There are several problens that remain unanswered. The nost striking
is to determine if the restriction of a prime nunmber of menories can be
removed. Perhaps other data structures or other kinds of interconnections
can alleviate the problenms that the nethods presented here are intended
to solve. The question of whether the algorithmto find optimal generator
pairs always finds an optimal pair should be considered, since that problem
is an interesting mathematical problemin its own right, regardless of its
application to conputer architecture. Finally, what can be said about the
probl em of using nore than two interconnections in the interconnection

network. Can the results here be extended, or must new tools be devel oped
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