
' STANFORD ARTIFICIAL INTELLIGENCE  LABORATORY
MEMO AIM-219

STAN-CS-73-394

PARALLEL PROGRAMMING:
AN AXIOMATIC APPROACH

BY

-- C. A. R. HOARE

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

OCTOBER  1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY



L

L

Parallel Programming: an Axiomatic Approach

C. A. R. Hoare

Summary
c

This paper develops saMe ideas expounded in [l]. It distinguishes a

number of ways of using parallelism, including disjoint processes, ccrmpetition,

cooperation, communication and "colluding". In each case an axiomatic proof

rule is given. Some light is thrown on traps or ON conditions. Warning:

the program strkturing methods described here are not suitable for the

construction of operating systems.

L

i

i

c

Work on this paper has been supported in part by ARPA under contract m-183
and NSF under contract GJ+@~~x.
The views eqressed are those of the author.



c’

c-

l.-

!
L

1 . Introduction

A previous paper [l] summarizes the objectives and criteria for the

design of a parallel programming feature for a high level prograrmning

language. It gives an axiomatic proof rule which is suitable for

disjoint and cmpeting processes, but seems to be inadequate for

cooperating processes. Its proposal of the "conditional critical

region“ also seems to be inferior to the more structured concept of

the class [2] or monitor [ 31. This paper introduces a slightly stronger

proof rule, suitable for cooperating and even communicating processes.

It suggests- that the declaration is a better way of dealing with

competition than the resource. It then defines a slightly different

form of parallelism more suitable for non-deterministic algorithms,

and finally adapts it to deal with the vexed problem of machine traps.

2. Conceuts and Notations

L We shall use the notation [l]

Ql /! Q2

to denote a parallel program consisting of two processes Q1 and Q2

1 which are intended to be executed "in parallel?. The program Ql /IQ2

is defined to terminate only if and when both Ql and Q2 have

terminated.

The notation

asserts that if a propositional formula P is true of the program

variables before starting execution of the program statement Q , then

2



L.

c

i

c

i

,
t
i

1
Ii

the propositional formula R will be true on termination of Q ,

if it ever terminates. If not, P(QjR is vacuously true.

The notation

QlCQ2

asserts that the program statements Ql and Q2 have identical effects

under all circumstances on all program variables, provided that Ql

terminates. The notation Ql 3 Q2 means QlzQ2 & Q2 EQl j i-e.,

they terminate together, and have identical effects when they do. The

theory and logic of the 5 relation are taken from Scott [&I.

The notation

A B
--c

denotes a proof rule which permits the deduction of C whenever theorems

of the form A and B have been deduced.

The notations for assignment (x :=e) and composition of statements

(4,;&,) have the same meaning as in AIGOL 60, but side-effects of function

evaluation are excluded.

As examples of proof rules whose validity follows fairly directly

from these definitions we give:

P(&,;Q2 ]R - Rule of Camposition

Rule of Containment

We will use the word "process" to denote a part of a program

intended to be executed in parallel with some other part; and use the

phrase "parallel program" to denote a program which contains or consists

of two or more processes. In this paper we will talk in terms of only

4



two processes; however all results generalize readily to more than

two.

L

c L
,
L

c

3. Disjoint Processes

Our initial method of investigation will be to enquire under what

circumstances the execution of the parallel program Q1//Q2 can be

guaranteed to be equivalent to the sequential program &,;Q, .

Preferably these circumstances should be checkable by a purely

syntactic method, so that the checks can be carried out by a compiler
-=.

for a high level language.

The most obvious case where parallel and serial execution are

equivalent is when two processes operate on disjoint data spaces, in

the same way as jobs submitted by separate users to a multiprogramming

system. Within a single progmn, it is permissible to allow each process

to access values of common data, provided none of them update it. In

order to ensure that this can be checked at compile time, it is necessary

to design a language with the decent property that the set of variables

subject to change in any part of the program is determinable merely by

scanning that part. Of course, assignment to a component of a

-structured variable must be regarded as changing the whole variable,

and variables assigned in conditionals are regarded as changed, whether

that branch of the conditional is executed or not.

Given a suitable syntactic definition of disjointness, we can

formulate the proof rule for parallel programs in the same way as that

for sequential ones: _



c

I

L

i

1
i

L

L

Asymmetric Parallel Rule

provided that Ql and Q2 are disjoint.. .

The proof of this (if proof it needs) may be based on the

commutivity  of the basic units of action performed in the execution

of Ql and Q2 . Consider an arbitrary assignment xl:=el contained

in
Ql

and an arbitrary assignment
x2 :=e2 contained in Q2 . Since

Ql and Q2 are disjoint, e2 does not contain x1 and el does not

contain x
2 . The values of expressions are independent of the

values of the variables they do not contain, and consequently they are

unaffected by assignment to those variables. It follows that:

(Xl:=el;X2 :=e2) E (x2 :=e2 ;xl :=el) ,

i.e., these units of actions commute.

Consider now any interleaving of units of action of Q, and Q2 .

If any action of Q2 precedes any action of Ql , the commutivity

principle (together with substitution of equivalents) may be used to

change their order, without changing the total effect. Provided both

4 Ql and. Q2 terminate, this interchange may be repeated until all

actions of Q1 precede all actions of Q2 . But this extreme case

is just the effect of executing the whole of Ql followed by the

whole of Q2 . If one or both of Q
1 and Q2

fails to terminate,

then both Q,;Q, and &1//Q, equally fail to terminate.

Thus we have proved that

QljQ2 = Q,;&,

and consequently their correctness may be proved by the same proof rule.



- i’

Of course, this justification is still very informal, since it is

based on the assumption that parallel execution is equivalent to an

arbitrary interleaving of "units of action". It assumes, for example,

that two "simultaneous" accesses of the same variable will not interfere

with each other, as they might if one access got hold of half the

variable and the other got hold of the other half. Such ridiculous

effects are in practice excluded by the hardware of the computer or

store. On a multiprocessor installation the design of the store

module ensures that two accesses to the same (in practice, even

neighboring) variables will exclude each other in time, so that even

if requests arrive %multaneously", one of them will be completed

before the other starts. This concept of exclusion together with

commutivity  will assume greater importance in what follows.

In [1] the proof rule for disjoint processes was given

symmetric form:

L I -L L L L
Pl s ‘p2 ia,//Q, ]Rl & R2

in the more

Symmetric Parallel Rule

provided that Ply Ql J Rl are disjoint from P2,Q2, R2 . This proof

rule may be simpler to use for systematic or automatic program construction

than the asymmetric rule given above, in cases where the desired result

of a program is of the form Rl&R2 > and the program is not intended to

change any variable common to
Rl and R2. The symmetric form of the

rule can be derived from the asymmetric form, by showing that every proof

using one could also have used the other. Assume Pl{Ql]Rl ad P$Q2]R2

have been proved. The disjointness of Rl and Q2 and the disjointness

of P2 and Ql ensure the truth of P2{QljP2 and Rl(Q2)Rl ; hence

7



L

c
i

1i
1
1
L

L

L

and
Rl&P2tQ2&&R2 l

One application of the asymmetric parallel rule gives:

which is the same conclusion as the symmetric rule.

In [l] it was shown that disjoint parallelism permits the

programmer to specify an overlap between input/output operations and

computation, which is probably the main benefit which parallelism can

offer the applications programmer. In contrast to other language

proposals, it does so in a secure way, giving the user absolute

compile-time protection against time-dependent errors.

4. Competing Processes

We shall now explore a number of reasons why the rule of disjointness

may be found unacceptably restrictive, and show in each case how the

restriction can be safely overcome.

One important reason may be that two processes each require occasional

access to some limited resource such as a line-printer or an on-line

device for communication with the programmer or user. In fact,' even

mainstore for temporary working variables may be a limited resource:

certainly an individual word of mainstore can be allocated as local

workspace to only one process at a time, but may be reallocated (when

that process has finished with it) to some other process that needs it.

The normal mechanism in a sequential programming language for making

a temporary claim on storage during execution of a block of program is

8



--.

1

.

the declaration. One of the great advantages of the declaration is

that the scope of use of a variable is made manifest to the reader

and writer; and furthermore, the compiler can make a compile--time

check that the variable is never used at a time when it is not allocated.

This suggests that the declaration would be a very suitable notation

by which a parallel process may express the acquisition and relinquish-

ment of other resources, such as lineprinters. After all, a lineprinter

may be regarded as a data structure (largely implemented in hardware) on

which certain operations (e.g ., print a line) are defined to be available

to the programmer. More accurately,
-- the concept of a line printer may

be regarded as a type or class of variable, new instances of which can

be "created" (i.e., claimed) and named by means of declaration, e.g.,

using the notation of PASCAL [lb]:

begin managementreport: lineprinter; . . l l

The individual operations on this variable may be denoted by the

notations of [2]:

managementreport.output(itemline);

which is called from within the block in which the managementreport is

declared, and which has the effect of outputing the value of lfitemlinef'

to the lineprinter allocated to managementreport.

This proposal has a number of related advantages:

(1) The normal scope rules ensure that no programmer will use a resource

without claiming it, --

(2) Or forget to release it when he has finished with it.

(3) The same proof rule for declarations (given in [7]) may be used

for parallelprocesses.-

9



c

I

t

i

(4) The programmer may abstract from the number of items of resource

actually available.

(5) If the implementer has available several disjoint items of a resource
I

(e.g. two line printers), they may be allocated simultaneously to

several processes within the same program.
m

These last three advantages are not achieved by the proposal in [l].

There are also two disadvantages:

(1) Resource constraints may cause deadlock, which an implementation

should try to avoid by compile-time

The proposal here gives no means by

in this.

and/or run-time techniques [1,5]*

which a prograzmner can assist

(2) The scope rules for blocks ensure that resources are released in

exactly the reverse order to that in which they are acquired. It

is sometimes possible to secure greater efficiency by relaxing this

constraint.

Both these disadvantages nay reduce the amount of parallelism

achievable in circumstances where the demand on resources is close to

the limit of their availability. But of course they can never affect

the logical correctness of the programs.

It is worthy of note that the validity of sharing a resource

between two processes , provided that they are not using it at the same

time, also depends on the principle of commutivity of units of action.

In this case, the entire block within which a resource is claimed and

used must be regarded as a single unit of action, and must not be

interleaved with execution of any other block to which the same resource

is allocated. The programmer presumably does not mind which of these

10



two blocks is executed first; for example, he does not mind which of

the two files is output first on the lineprinter, because he is

interested in them only after they have been separated by the operator.

Thus as far as he is concerned, the two blocks cOrnMute  as units of

action; of course he could not tolerate arbitrary interleaving of

lines from the two files.

50 Cooperating Processes

Hitherto, parallel programming has been confined co disjoint and

competing processes, which can be guaranteed by a compile-time check to

operate on disjoint data spaces. The reason for insisting on disjoint-

ness is that this is an easy way for the compiler to check that the

units of action of each process will commute. In the next two sections

we shall investigate the effects of relaxing this restriction, at the

cost of placing upon the programmer the responsibility of proving that

the units of action commute. Processes which update one or more

common variables by commutative operations are said to cooperate.

One consequence of the commutivity requirement is that neither

process can access the value of the shared variable, because this value

will in general be different whether it is taken before or after

updating by the other process. Mhermore, the updating of a shared

variable must be regarded as a single unit of action, which occurs

either wholly before or wholly after another such updating. For these

reasons, the use of normal assignment for updating a variable seems a

bit misleading, and it seems better to introduce the kind of notation

11



. .
b

L

used in [6], for example:

n:+l in place of n :=n+l .

One useful commutative operation which may be invoked on a shared

set is that which adds members to that set, i.e., set union:

s :ut ( S :=sUt) ,

since evidently s :Ut ;s :UV s s :Ut' ;s :Ut for all values of t

and t' . A similar commutative operation is set subtraction:

s t:- .

As an example of the use of this, consider the primefinding algorithm

known as the sieve of Eratosthenes. An abstract parallel version of

this algorithm may be written using traditional set notations:

sieve := (i12_<i_<N);

Pl :=2; p2 :=3;

while p12 <N do- v

begin {remove multiples of (pl)//remove multiples of (p2)];

if ~2~ <N then pl :=min{ili>p2&ie sieve}

else pl:=p2;

if p12 <N then p2 :=min{iIi>pl&i e sieve]

end;

The validity of the parallelism can be assured if the only operation on

the sieve performed by the procedure "remove mu&iples of (p) " is set

subtraction:

procedure remove multiples of (p: 2..N);

begin i: 2..N;

for i*--.-p2 step p until N do sieve :- (i]

end;

12



t

i,

b
L

i

1
I

c

Of course, when a variable is a large data structure, as in the

example given above, the apparently atomic operations upon it may in

practice require many actual atomic machine operations. In this case
. .

an implementation must ensure that these machine operations are not

interleaved with some other operation on that same variable. A part of

a program which must not be interleaved with itself or with some other

part is known as a critical region [5]. The notational structure

suggested in [2] seems to be a good one for specifying updating operations

on variables, whether they are shared or not; and the proof rules in the

two cases are identical. The need to set up an exclusion mechanism for

a shared varikble supports the suggestion of Brinch Hansen [9] that the

possibility of sharing should be mentioned when the variable is declared.

It is worthy of note that the validity of a parallel algorithm

depends only on the fact that the abstract operations on the structured

variable canunu-te. The actual effects on the concrete representation of

that variable may possibly depend on the order of execution, and therefore

be non-deterministic. In some sense, the operation of separating two

files of line printer paper is an abstraction function, i.e., a many-one

w
function mapping an ordered pair onto a set. Abstraction may prove to be a

very important method of controlling the complexity of parallel algorithms.

In [1] it was suggested that operations on a shared variable s

should be expressed by the notation

with s do Q ,

where Q was to be implemented as a critical region, so that its

execution would exclude in time the execution of any other critical

region with the same variable s . But the present proposal is

distinctly superior:

13



i

I
i

(1) It uses the same notations and proof rules as sequential programs;

(2) It recognizes the important r^ole of abstraction.

(3) The intended effect of the operation as a unit of action is made

more explicit by the notation.

(4) The scope rules make deadlock logically impossible.

Finally, the proof rule given in [l] is quite inadequate to prove

cooperation inachieving  any goal (other than preservation of an invariant).

A useful special case of cooperation between parallel processes

which satisfies the commutivity principle is the use of the "memo

--.
f'unction" suggested by Michie [lo]. Suppose there are certain values

which may or may not be needed by either or both processes, and each

value requires some lengthy calculation to determine. It would be

wasteful to compute all the values in advance, because it is not known

in advance which of them will be needed. However, if the calculation

is invoked from one of the cooperating processes, it would be wasteful

to throw the result away, because it might well be needed by the other

process. Consequently, it may pay to allocate a variable (e.g. an

e array A ) in advance to hold the values in question, and set it

initially to some null value. The function which computes the desired

result is now adapted to first look at the relevant element of A . If

this is not null, the function immediately returns its value without

further computation. If not, the function computes the result and stores

it in the variable. The proof of the correctness of such a technique

is based on the invariance of sCgne such assertion as:

Yi(A[i] f null 3 A[i] = f(i)) ,

where A is the array (possibly sparse) in which the results are stored,

14



and f is the desired function. The updating of the array A must be

a single unit of action; the calculation of the function f may, of

course, be reentrant. This technique of memo functions may also be used

to convey results of processes which terminate at an arbitrary point (see

Section 7).

6. Communicating Programs

i

t

i

1

L

The cmutivity principle, which lies at the basis of the treatment

of the preceding sections, effectively precludes all possibility of

communication between processes, for the following reason. The method

that was used in Section 3 to prove

Q1//Q2 - Q,;Q,

can also be used to prove

Ql/Q2 = Q2//Q1 .

It follows that a legitimate implementation of "parallelism" would be to

execute the whole of Ql and then the whole of Q2 , or to do exactly

the reverse. But if there were any communication between Ql and Qe ,

this would not be possible, since it would violate the principle that a

. communication cannot be received before it has been sent.

In order to permit communication between Ql and Q2 it is

necessary to relax the principle of commutivity in such a way that

complete execution of Q2 before starting Q
1

is no longer possible.

Consider an arbitrary unit of action ql of Ql , and an arbitrary unit

of action q2 of Q1 l We say that ql and q2 semicommute if:
.

%$I1 c qp* l



c

If a11 q1 and q2 semicommute, we say that Ql and Q2 are

communicating processes, and that Q
1 is the producer process, and Q

2
is the consumer [5].

. .
The effect of semicommutivity is that scme interleavings of units

of action may be undefined; but moving actions of Q2 after actions of

Ql will never give a different result or make the interleaving less well

defined; consequently the execution of the whole of Ql before starting

Q2
is still a feasible implementation, in fact the one that is most

defined:

Ql/Q2 c Q,;Q, .

Thus it is still justified to use the same proof rule for parallel as

for sequential programs.

If assertional proof methods are used to define a programming language

feature, it is reasonable to place upon an implementor the injunction to

bring a program to a successful conclusion whenever it is logically

feasible to do so (or there is a good engineering reason not to, e.g.,

integer overflow; and it is not logically possible to terminate a program

of which "false" is provably true on termination). In the case of

e communicating programs, termination citn be achieved by simply delaying an

action of Q2 where necessary until Ql has performed such actions as

make it defined, which will always occur provided Q,;Q, terminates.

The paradigm case of semic~utative operations are input and output

of items to a sequence. Output of an item x to sequence s will be

denoted:

s.output(x);

it is equivalent to

16



i

I
t

I
c

S :=s n (x);

where n is the symbol of concatenation, and (x) is the sequence whose

only item is x . This operation appends the item x to the end of the

sequence and is always defined. Input of the first item from a sequence

s to the variable y will be denoted:

sinput

which is equivalent to a unit of action consisting of two operations:

Y := first(s); s :=rest(s);

where first maps a sequence onto its first item and rest maps a sequence

onto a shorter sequence, namely the sequence with its first item removed. .

The removal of an item from an empty sequence is obviously undefined;

on a non-empty sequence it is always defined. A sequence to which an

item has just been output is never empty. Hence

s.input(y) ; s-output(x) & s.output(x) ; s.input(y)

i.e., these operations semicommute. Consequently a sequence may be used

to ccmmunicate between two processes , provided that the first only

performs output and the second only performs input. If the second process

- tries to input too much, their parallel execution does not terminate; but

neither would their sequential execution. Processes communicating by

means of a sequence were called coroutines by Conway [ll], who pointed

out the equivalence between sequential and parallel execution.

In practice, for reasons of economy, the potentially infinite

sequence used for communication is often replaced by a bounded buffer,

with sufficient space to accommodate only a few items. In this case, the

operation of output will have to be delayed when the buffer is full,

until input has created space for a new item. Furthermore the program

17



L

may fail to terminate if the number of items output exceeds the number

of items input by more than the size of the buffer. And finally, since

either process may have to wait for the other, purely sequential execution

is in general no longer possible, ‘because it would not terminate if the

total length of the output sequence is larger than the buffer (which it

usually is). Thus the parallel program is actually more defined than

the corresponding sequential one, which may seem to invalidate our proof

methods.

The solution to this problem is to consider the relationship between

the abstract program using an unbounded sequence and the concrete program

using a bounded buffer representation for the sequence. In this case,

the concrete program is the same as the abstract one in all respects

except that it contains an operation of cancrete output (to the buffer)

whenever the abstract program contains abstract output (to the sequence),

and similarly for input. Concrete output always has the same effect as

abstract output when it is defined, but is sometimes undefined (when the

buffer is full), i.e.:

concrete output c abstract output .-

The replacement of an operation by a less well defined one can never

change the result of a program (by the principle of continuity [4]), so

the concrete program is still contained in the abstract one

concrete c abstract .-

This justifies the use of the same proof rule for the concrete as for

the abstract program. The abstract sequence plays the role of the

"mythical" variables used by Clint [12]; here again, abstraction proves

to be a vital programming tool.

18
L



c

i

t c

i

1
L.

L

In order to implement a concrete data representation for a variable

which is being used to communicate between processes, it is necessary

to have some facility for causing..a  process to "wait" when it is about

to perform an operation which is undefined on the abstract data or

impossible on its current representation. Furthermore, there must be

some method for "signalling" to wake up a waiting process. One method

of achieving this is the condition variable described in [3]. Of course,

if either process of the concrete program can wait for the other, it is

possible for the program to reach deadlock, when both processes are

waiting. In this case it is not reasonable to ask the implementor to-=.

find a way out of the deadlock, since it would involve a combinatorial

investigation, where each trial could involve backtracking the program

to an earlier point in its execution. It is therefore the programmer's

responsibility to avoid deadlock. The assertional proof methods given

here cannot be used to prove absence of deadlock, which is a form of

non-termination peculiar to parallel programs.

A natural generalization of one-way communication is two-way

M
communication, whereby one process Ql uses a variable s1 to

communicate to Q2 , and Q2 uses a variable s2 to communicate with

Q, l Communication is achieved, as before, by semicommutative operations.

: It is now impossible to execute Ql and Q2 sequentially in either

order; and it is plain that the proof rule should be symmetric.

Furthermore, the correctness of Ql may depend on some property S2

of s2 which Q2 must make true, and similarly, Q2 may need to assume

some property Sl of s1 which Q1 must make true. Hence we derive

the rule: #

19



L

i

Pl a S2 CQ, ‘Is, & Rl p2&S11Q23S2&R2

Pl&P2C&&'Q2+R2
Rule of two-way
Communication. .

where Pl 9 Ql J Rl > Sl are disjoint from P2) Q2 J R2 ,, S2 except for

variables sl, s
2' which are subject only to semicommutative operations

in Ql and Q2 9 as explained above; and Pl, S
VR2 may contain s1

(but not s2 ) and P2 J S2 f Rl may contain s2 (but not s1 ). The

informal proof of this is complex, and is included in an appendix.

--.

7* Colluding Processes

In certain combinatorial and heuristic applications, it can be

difficult for the programmer to know which of two strategies is going

to be successful; and an unsuccessful strategy could run forever, or at

least take an uncontrollable or unacceptable length of time. For

example, a theorem-checker might attempt to find a proof and a counter-

example in parallel, knowing that if one attempt succeeds, the other

may not terminate. In such cases, Floyd [13] has suggested the use of
e

"non-deterministic" algorithms: both strategies are executed in parallel,

until one of them succeeds; the other is then discontinued. In principle,

this can be very wasteful, since all effort expended on the unsuccessful

strategy is wasted, unless it has cooperated in some way with the

successful one. Processes which implement alternative strategies we will

call colluding.

Colluding processes require a completely new notation and proof

rule, representing the fact that only one of these has to terminate.

20



I

t

These will be taken from Lauer [8], who uses the form

to denote a program involving execution of either Ql or Q2 , where
. .

the programmer either does not know or care which one is selected. The

proof rule is adapted fram the symmetric rule for disjoint processes:

PltQljRl P2 iQ21R2

PlsP2iQlor Q23RlvR2

where Pl J Ql j Rl are disjoint from P2 I Q2 9 R2 l

Note the continued insistence on disjointness, which was not made

in [8]. This has the advantage of permitting a genuine parallel

implementation. It has the even greater advantage that it does not

require an implementation to undo (backtrack) the effects of the

unsuccessful process. For suppose Ql was successf'ul, and therefore

Rl is true on capletion of the program. Rl does not mention any

variable changed by Q2 , so the programmer cannot know anything of the

values or properties of these variables at this point; and so the fact

that Q2 has changed these values does not matter. However the values

are not formally undefined -- for example, they can still be printed

out. Furthermore, if Q2 has used something like the memo function

technique described in Section 5, it is possible to use the results of

its calculations, even after it has been terminated at an arbitrary

point in its execution.

However, it must not be a wholly arbitrary point; a process must not

be stopped in the middle of one of its "units of action", i.e., in the

middle of updating a structured variable non-local to the process. If

it were so stopped, the invariant of the data structure might no longer

21



_ ------- . _ -_-. _

*. -

be true, and any subsequent attempt to access that variable would be

disastrous. The need to inhibit termination during certain periods was

recognized by Ashcroft and Manna..[15].

Sometimes a colluding process can detect that it will never succeed,

and might as well give up immediately, releasing its resources, and

using no more processor time. To do this, Floyd suggested a basic

I-

I

L

operation

the proof

failure;

rule for this may be simply modelled on that for the jump:

true [failure') false

which permits failure to be invoked in any circumstances (true), and

which states that failure always fails to terminate. If all processes

fail, the program fails, and no property of that program will hold after

the failure. The situation is the same as that of a sequential progrm,

artificially interrupted by expiry of some time limit.

In order to ensure that time is not excessively wasted on an

unsuccessful process, the programmer should exert every endeavor to ensure

that a process usually detects whether it is going to fail as early as

possible. However, it may be that a process sometimes discovers that

although failure is quite likely, it is not yet certain, and it may take

a longer time to decide than was originally hoped. In this case, it would

be wise to delay continuation of the current process but without

precluding the possibility of later continuation. To achieve this, I

suggest a primitive scheduling statement:

wait;

this is intended to cause immediate suspension of the calling process,.

22



c

k

t

t
L

1

c

allowing the processor to concentrate attention on the other processes,

until either

(1) one of them succeeds: the waiting process is then abandoned in

the normal way;

(2) all of them fail: the waiting process is then resumed in the normal

way as the last remaining hope;

(3) all non-failed processes have themselves invoked a wait: then the

longest waiting process is resumed.

(If several processors are available, the above remarks require adaptation.)

If greater sophistication in scheduling is desired, a process which

is exceptionally unpromising should indicate this fact by passing a

parameter to the wait:

wait(t) ;

where t is an indication of how many times the calling process is willing

to be overtaken by more promising processes. The implementation of this

is accomplished most easily by maintaining a pseudo-parallel time queue,

as in SIMJLA. For wise scheduling, t should be proportionalto an

estimate of the expense required by the current process before it comes

to a decision on its own success or failure. Of course, a process should

try to avoid waiting while it is in possession of expensive resources.

Since every process retains some allocation of storage and overhead during

a wait, waiting should be used sparingly. Nevertheless, it gives the

programmer a useful degree of control in specifying a "breadth first"

or "depth first" search of a tree of alternatives.

It hardly seems worthwhile to seek more sophisticated scheduling

methods for colluding processes. One great advantage of the wait is

23



L

that each process can schedule itself at a time when its resource

occupation is low; furthermore it can do so successfully without

knowing anything about the purpose, logic, progress, or even the name

of any other process. This is the secret of successful structuring of

a large program, and suggests that self-scheduling by a wait is a good

programming language feature, and surely preferable to any feature which

permits one process to preempt or otherwise schedule another at an
.

arbitrary point in its progress.

But perhaps the strongest argument in favor of a wait is that the

insertion of a wait has no effect whatsoever on the logic of a process,
--.

and in a proof of correctness it may be ignored. It is equivalent to an

empty statement, and has the delightful proof rule:

R {wait(t)]R

for any assertion R .

On completion of the program Q1o' Q2 9 it can be quite difficult

to find out which of them has in fact succeeded. Suppose, for example,

the purpose of the program is to find a z satisfying R(z) . Suppose

processes Ql and Q2 satisfy

P2tQ2 3R(y2) l
.

'It is now possible to prove

Pl%P2((Ql x &,); if R(yl) then z :=yl else z :=y2')R(z) .

But NY11 may be expensive or impossible to compute, and something better

is required. A possible solution is based on the "protected tail"

described in [ls]. In this, a colluding process has two parts

Q then Qt*

24



L

e

L

where Q is the part that may fail to terminate, and Qt is initiated

only when Q has terminated. However all parallel colluding processes

are stopped before Q' starts. -That is why Qt has the name "protected

tail". Since a protected tail is never executed in parallel, the rule of

disjointness may be somewhat relaxed, permitting the protected tails to

update the same variables, e.g.:

Ql then z :=yl 32 Q2 then z :=y2 .

The appropriate proof rule is:

Pl(Ql$ RlIQ-j-IR

P21Q21R2 R2 IQ; JR

Pl&P2(Ql then Qi s Q2 then Q&B

I

where Pl > Ql > Rl J are disjoint from P , Q2 2' R2 l

The construction Ql or Q2 is something like the least upper bound

[43 of two functions
fl u f2 l

However fl IA f2
is inconsistent if

fl and f2 both terminate and have different results; and it is not

possible to guarantee against this inconsistency either by a campile

e time or a run time check (which could go on forever if the functions

are consistent). The z construction is still well-defined (at least

axiomatically), in spite of the fact that the effects of Ql and Q2

are nearly always different.

8. Machine Traps

Dijkstra has expressed the view [16] that one of the main values of

parallel programming ideas is the light that they shed on sequential

prograzmning. This section suggests that the idea and proof method for

25



(c

c

L-

L

t

L

L

colluding programs may be used to deal with the problem of machine

traps that arise when a machine cannot perform a required operation due

to overflow or underflow, and either stops the program or jumps to some

trap routine specified by the programmer. At first sight such a jump

seems to be even more undisciplined than a go to statement invoked by

the program, since even the source of the jump is not explicit. But

the main feature of such a jump is that it signals failure of the

machine to complete the operations specified by the program Ql ; if the

programmer is willing to supply some alternative "easier" but less

satisfactory program Q2 , the machine will execute this one instead,

just as in the case of colluding processes.

However, there are two great differences between this case and the

previous one.

(1) The programmer would very much rather complete Ql than Q2 .

(2) Parallel execution of Ql and Q2 is called for. Q2 is

invoked only when Ql explicitLy fails.

For these reasons it would be better to introduce a different notation,

to express the asymmetry:

&l otherwise Q
2

.

Also, because parallelism is avoided, the rule of disjointness can be

: relaxed considerably:

plIQljR, P21Q23R2

Pl&P2{Ql otherwise Q2]RlVR2

where Ql is disjoint from 3 ; this states that Q2 may not assume

anything about the variables changed by Ql . However Q2 is still

26



allowed to print out these variables, or take advantage of any memo

functions computed.

It is necessary to emphasize again the impermissibility of stopping

in the middle of an operation on a variable non-local to a process.

If failure occurs or is invoked in the middle of such an operation, it

is the smallest process lexicographically enclosing the variable that

must fail. This can be assured by the normal scope rules, provided that

the critical regions are declared local to the variable, as in monitors

and data representations, rather than being scattered through the program

which uses them, as in [l].

This proposal provides the programmer with much of the useful part

of the complex PL/I [ 171 ON-condition and prefix mechanisms. The other

intended use of the ON-condition is to extend machine arithmetic by

supplying programmer-defined results for overflowing operations. For

this I would prefer completely different notations and methods.

This proposal also provides the progranvner with a method for

dealing with transient or localized failure of hardware at run time, or

even (dare I mention it?) with progrming error. The need for a means

to control such failures has been expressed by d'Agapeyeff [x8].

9* Conclusion

In conclusion it is worth while to point out that the parallel

c

composition of programs has pleasant formal properties, namely // and

or are associative and commutative, with fixed point "do nothing" and

"failure" respectively; and otherwise is associative with fixed point

"failureff. These facts are expressed by the equivalences:

27



c

c

t

i

Q1//Q2 s Q2//Q1

Ql z Q2 z Q2 or Ql

(Ql/Q2) //Q3 = Ql// (Q,llQ,)

(Ql or Q,> or Q3 =- Ql or (Q, z Q3)

(Ql otherwise Q2) otherwise Q 3 = Ql otherwise (Q2 otherwise Q,)

(Q//do-nothing) z Q

Q or failure E Q

failure otherwise Q = Q otherwise failure 5 Q .

c

28



t

,
t.

Dl

El

[31

WI

[51

WI

[71

VI

[91
- DOI

D11
I

cw

Cl31

D41

References

C. A. R. Hoare. " Towards a Theory of Parallel Programming," in

Operating Systems Techniques, ed. C* A. R. Hoare and R. H. Perrot.

Academic Press, 3,972.

C. A. R. Hoare. "Proof Of Correctness of Data Representations,"

Acta Informatica 1, 271-281 (1972).
C. A. R. Hoare. "Monitors: an Operating System Structuring Concept."

Seminar delivered to I.R.I.A., May ll, 1973.
D. Scott. "Outline of a Mathematical Theory of Computation," PRG-7.

Programming Research Group, Oxford University.

E. W. Dijkstra. "Cooperating Sequential Processes," in Programming

Languages; ed. F. Genuys. Academic Press, 1968.
C. A. R, Hoare. "Notes on Data Structuring," in Structured

Programming,  by E. W. Dijkstra, 0. J. Dahl, C. A. R. Hoare.

Academic Press, 1972.

C. A. R. Hoare. "Procedures and Parameters: an Axiomatic Approach,"

in Symposium on Semantics of Algorithmic Languages, ed. E. Engeler.

Springer-Verlag, 1972.

P. E. Lauer. "Consistent Formal Theories of the Semantics of

Programming Languages," Ph.D. thesis, Queen's University, Belfast.

TR+j.l.Zl IBM Laboratory, Vienna, Nov. 1971.

P. Brinch Hansen. Operating System Principles. Prentice-Hall, 1973.
D. Michie. "Memo functions: a language feature with 'rote learning'

properties," MIP-R-29, Edinburgh University, (November 1967).
M. E. Conway. "Design of a Separable Transition Diagram Compiler,"

Comm. ACM 6, 396-408, (1963).
M. Clint. "Program Proving: Coroutines," Acta Informatica 2-. ?
50-63, (1973).
R. W. Floyd. "Nondeterministic Algorithms," J.ACM 14, 4, pp. 636-644,

(1967)'
N. Wirth. "The Programming Language PASCAL," Acta Informatica 1,

1 (1971), PP* 35-63.

29



[15] E. A. Ashcrof't, 2. Manna. "Formalization of Properties of

Parallel Programs,fr A.1 .M. 110, Stanford University, February 1970.
[16] E. W. Dijkstra. Private Communication.

117 ] Formal Definition of PL/I. “IBM Laboratory, Vienna, TR.25.071

(1967).

1181 A. d'Agapeyeff. Private communication.

/
L

30



1
L

Appendix: Proof of rule of two-way communication.

The informal proof of this depends on a mythical reordering of units
. .

of action, where a unit of action is defined as an assignment of a

constant to a variable, or the performance of an operation with constant

parameters to a variable. Thus for example, an operation in Ql

s2.input(y);

would appear every time in a ccznputation of Q1 as

Y :=17;

s2 .-truncate;

where 17 happens to be the value of the first item of s2 at the time,

and the "truncate" operator removes the first item from a sequence.

Consider a particular interleaved execution of &L//Q2 . Sort the

computation into the order

where Eel is the sequence of all operations of Q2 on
s2 '

El is the sequence of all operations of Ql ,

E22 is the sequence of all other operations of Q2 .

This is feasible, because operations on one variable commute with

operations on all other variables, and operations of Q2 on. s2
semicommute with operations of Q, on

s2 ' so the rearranged sequence

can only be more defined than the original interleaving.

Define

p2 as the result of replacing all occurrences of s2

in P2 by the initial value of s2 ,
#

31



i’

1

and
s2 as the result of replacing in

s2 all occurrences of

variables changed by Q2 by their final values, i.e '9
*.

after executing
E22 l

We will assume that the premises of the rule are valid, and hence we

assert informally (i-e ., not by showing it to be deducible):

pl&S2EE13Slml (1)

p2& Sl~E21;E221s2  & R2 l
(2)

We will prove three lemmas.

The

(III) Sl 8~ Rl & F2{E2,}Rl  & R2 .

conclusion of the rule follows directly by the rule of camposition.

(1) 5&~2[E21]Pl&~2&S2

(11) Pl&F2&s2{El]Sl&Rl&F2

LemmaI

The only variable free in g2 is s2 , which is not changed by E
22 le

Its truth after E22 implies its truth before. Hence from (2) we get

p2 & s&1132 l

The only variable mentioned in E21 is s2 , which is not mentioned in S
1'

Provided that there exist values satisfying Sl , it follows that

p2 CE213Q  l

Of s1
were unsatisfiable,

Ql would not terminate under any circum-

stances; and neither would Q //Q1 2 ' which would make any conclusion

about Ql/Q2 vacuously true). Since s
2 is not mentioned in P

1



r,

L

c

L

Pl & P2 {E211g2  & P�
l

The truth of p2 after E21 follows from the truth of P2 before.

Lemma11

In (l), s* is the only part containing variables subject to

updating by Q2 . By instantiating these variables, we can get:

PI &B, CEJSl & Rl

Since F2 contains no variable subject to change in
E1 ' the knma

follows immediately.

Lemma III k

Since Sl and F2 do not mention s
2' they are true after E22

if and only if they are true before. Hence from (2)

F2 “sl@,,3J3,  l

Since Rl does not mention any variable subject to change in E22 ,

Lemma III is immediate.

c

33


