STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-219

STAN-CS-73-394

PARALLEL PROGRAMMING:
AN AXIOMATIC APPROACH

BY

C. A. R. HOARE

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

OCTOBER 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

Parallel Programmng: an Axiomatic Approach

C. A R Hoare

Summary
Thi s paper devel ops some i deas expounded in [1]. It distinguishes a
number of ways of using parallelism jncluding disjoint processes, competition,
cooperation, communication and "colluding". |n each case an axiomatic pr oof

rule is given. Sone light is thrown on traps or ON conditions. Wrning:
t he program strﬁcturing met hods described here are not suitable for the

construction of operating systens.

Wrk on this paper has been supported in part by ARPA under contract Sp-183
and NSF under contract gJ-36473x.
The views expressed are those of the author.

!
L

r—

1. Introduction

A previous paper [1] sunmarizes the objectives and criteria for the
design of a parallel programmng feature for a high |evel programming
| anguage. It gives an axi omatic proof rule which is suitable for
disjoint and competing processes, but seens to be inadequate for
cooperating processes. Its proposal of the "conditional critica
region“ also seens to be inferior to the more structured concept of
the class [2] or monitor [3]. This paper introduces a slightly stronger
proof rule, suitable for cooperating and even communicating processes.
It suggests- that the declaration is a better way of dealing with
conpetition than the resource. It then defines a slightly different
formof parallelismnore suitable for non-determnistic algorithns,

and finally adapts it to deal with the vexed probl emof machine traps.

2. Concepts and Not ati ons

W shall use the notation [1]
& /9,
to denote a parallel program consisting of two processes Qy and Q
. Wwhich are intended to be executed "in parallel?. The program Ql‘er
is defined to termnate only if and when both Qy and Q, have
t er m nat ed.
The notation

P{QIR

asserts that if a propositional formula P is true of the program

variabl es before starting execution of the program statement Q, then

-

—

the propositional fornula Rwill be true on termnation of Q,
if it ever termnates. |f not, P{Q}R is vacuously true.

The notation

U EY

asserts that the program statenents Q, and Q have identical effects
under all circunmstances on all program variables, provided that Qy
termnates. The notation @, = Q, means Q, £Q, & Q, £Q; , i.e.;
they termnate together, and have identical effects when they do. The
theory and logic of the — relation are taken from Scott [L].

The notation

A B
~C

denotes a proof rule which pernmts the deduction of C whenever theorens
of the form A and B have been deduced.

The notations for assignment (x :=e) and conposition of statenents
(Q:L;Qz) have the same neaning as in AIGOL 60, but side-effects of function
eval uation are excluded.

As exanpl es of proof rules whose validity follows fairly directly

from these definitions we give:
P{Q,}s s{a IR

P{Ql;Q2 IR Rul e of Composition
Q;EQ P{Q IR
1 ="2 2 .
P{Ql}R Rul e of Contai nnment

Ve will use the word "process” to denote a part of a program
intended to be executed in parallel with sone other part; and use the
phrase "parallel progranf to denote a program which contains or consists

of two or nore processes. In this paper we will talk in terns of only

two processes; however all results generalize readily to nore than

t wo.

~ 3. Disjoint Processes

Qur initial method of investigation will be to enquire under what
circunstances the execution of the parallel prograleA/Q2 can be
¢ guaranteed to be equivalent to the sequential program Q. ;Q, -
Preferably these circunstances should be checkable by a purely
syntactic nethod, so that the checks can be carried out by a compiler
Y for a high {ével | anguage
L The nost obvious case where parallel and serial execution are
equi val ent is when two processes operate on di sjoint data spaces, in
the same way as jobs submtted by separate users to a multiprogramm ng
system Wthin a single program, it is permssible to allow each process
to access values of common data, provided none of themupdate it. In
order to ensure that this can be checked at conpile tine, it is necessary
to design a language with the decent property that the set of variables
subject to change in any part of the programis deternminable merely by
scanning that part. O course, assignment to a conponent of a
-structured variable nust be regarded as changing the whole variable,
and variabl es assigned in conditionals are regarded as changed, whether
that branch of the conditional is executed or not.
Gven a suitable syntactic definition of disjointness, we can
formulate the proof rule for parallel programs in the same way as that

for sequential ones:

—

Ple;}s s{Q,IR
P, /Q,lR

Asymmetric Parallel Rule

provi ded t hat Qy and Q2 are disjoint.

The proof of this (if proof it needs) may be based on the
commutivity of the basic units of action perforned in the execution
of Q; and Q, . Consi der an arbitrary assignment X, i=e) cont ai ned
in Q and an arbitrary assignnent X, i=e, contained in Q, - Since
Ql and Q2 are disjoint, e, does not contain X and e does not
contain X, . Thevalues of expressions are independent of the
val ues of the variables they do not contain, and consequently they are
unaffected by assignment to those variables. |t follows that:
53X :1=¢e

(%) :=e 5 2) = (X2 i=e, 53X :=el) :

1
i.e., these units of actions commute.

Consi der now any interleaving of units of action of Qy and Q -
[f any action of Q precedes any action of Q) the comutivity
principle (together with substitution of equivalents) may be used to
change their order, without changing the total effect. Provided both
Q; and. Q, ternminate, this interchange may be repeated until all
actions of Qy precede all actions of Q - But this extrenme case
is just the effect of executing the whole of Qp foll owed by the
whole of @, . If one or both of Q; and Q, fails to termnate,
then both Q;;q, and Ql//Q2 equal ly fail to terminate.

Thus we have proved that

W/, = 4539,

and consequently their correctness may be proved by the same proof rule.

O course, this justification is still very informal, since it is
based on the assunption that parallel execution is equivalent to an
arbitrary interleaving of "units of action". |t assunes, for exanple,
that two "simultaneous" accesses of the same variable will not interfere
with each other, as they mght if one access got hold of half the
variable and the other got hold of the other half. Such ridicul ous
effects are in practice excluded by the hardware of the conmputer or
store. On a multiprocessor installation the design of the store
modul e ensures that two accesses to the sane (in practice, even
nei ghboring) variables will exclude each other in tine, so that even
if requests arrive "simultaneously", one of themwill be conpleted
before the other starts. This concept of exclusion together with
commutivity Wi Il assume greater inportance in what follows.

In [1] the proof rule for disjoint processes was given in the nore

symetric form

P, {Q; 1R, Py{Q 1R,
P, %P, {Q,//Q, IR, &R,

Symmetric Parallel Rule

provided that P;, Q; , Ry are disjoint from Py,Q55 Ry Thi s proof

rule may be sinpler to use for systematic or automatic program construction
than the asymetric rule given above, in cases where the desired result

of a programis of the form R, &R, , and the programis not intended to
change any variable conmon to Ry and R, - The symetric formof the
rule can be derived from the asymetric form by showi ng that every proof
using one could also have used the other. Assume Pl{Ql}Rl and PE{QQ}RE
have been proved. The disjoi ntness of Ry and Qs and the disjointness

of P, and Q, ensure the truth of 132{@),1}P2 and R1{Q2}R1 : hence

P %P, {Ql}Rl &P,
and R, & PE{QE}Rl& R,
One application of the asymetric parallel rule gives
P, & B,{Q1//Q,)R, & Ry
which is the same conclusion as the synmetric rule.

In[1] it was shown that disjoint parallelismpernmts the
programer to specify an overlap between input/output operations and
conputation, which is probably the main benefit which parallelismcan
offer the applications programmer. |n contrast to other |anguage

proposals, it does so in a secure way, giving the user absol ute

conpile-tinme protection against tine-dependent errors.

L. Conpeting Processes

W shal | now explore a nunber of reasons why the rule of disjointness
may be found unacceptably restrictive, and show in each case how the
restriction can be safely overcone.

(One inportant reason may be that two processes each require occasiona
access to some limted resource such as a line-printer or an on-1line
device for conmunication with the progranmmer or user. In fact,' even
mai nstore for tenporary working variables may be a [imted resource:
certainly an individual word of mainstore can be allocated as |oca
wor kspace to only one process at a tine, but may be reallocated (when
that process has finished with it) to sonme other process that needs it

The normal mechanismin a sequential progranmm ng |anguage for making

a tenporary claimon storage during execution of a block of programis

the declaration. One of the great advantages of the declaration is

that the scope of use of a variable is nade nanifest to the reader
and witer; and furthernore, the conpiler can nake a conpile--tinme
check that the variable is never used at a tinme when it is not allocated.
This suggests that the declaration would be a very suitable notation
by which a parallel process may express the acquisition and relinquish-
ment of other resources, such as lineprinters. After all, a lineprinter
may be regarded as a data structure (largely inplemented in hardware) on
which certain operations (e.g., print a line) are defined to be available
to the programmer. Mre accurately, the concept of a line printer may
be regarded as a type or class of variable, new instances of which can
be "created" (i.e., clained) and named by neans of declaration, e.g.,
using the notation of PASCAL [1k]:
begi n managenmentreport: |ineprinter
The individual operations on this variable may be denoted by the
notati ons of [2]:
managementreport .output (itemline) ;

which is called fromw thin the block in which the managenentreport is
decl ared, and which has the effect of outputing the value of "itemline"
to the lineprinter allocated to nanagenmentreport.

This proposal has a nunber of related advantages
(1) The normal scope rules ensure that no programmer will use a resource

without claimng it, --
(2) O forget to release it when he has finished with it.
(3) The sane proof rule for declarations (given in [7]) may be used

for parallel processes..

-

(4) The programmer may abstract fromthe nunber of itens of resource

actual 'y avail able.

(5) If the inplenmenter has available several disjoint items of a resource

(e.g. two line printers), they may be allocated simultaneously to
several processes within the same program

These | ast three advantages are not achiéved by the proposal in [I].
There are also two disadvantages:

(1) Resource constraints may cause deadl ock, which an inplenentation

should try to avoid by conpile-time and/or run-tine techniques [1,5].

The proposal here gives no means by which a programmer can assi st
in this.

(2) The scope rules for blocks ensure that resources are released in
exactly the reverse order to that in which they are acquired. |t
is sometimes possible to secure greater efficiency by relaxing this

constraint.

Both these disadvantages nay reduce the anount of parallelism
achi evabl e in circunmstances where the denmand on resources is close to
the limt of their availability. But of course they can never affect
the |ogical correctness of the prograns.

It is worthy of note that the validity of sharing a resource
between two processes, provided that they are not using it at the sane
tine, also depends on the principle of commutivity of units of action.
In this case, the entire block within which a resource is clained and
used must be regarded as a single unit of action, and nust not be
interleaved with execution of any other block to which the sane resource

is allocated. The programmer presumably does not mind which of these

10

two bl ocks is executed first; for exanple, he does not mind which of
the two files is output first on the lineprinter, because he is
interested in themonly after they have been separated by the operator.
Thus as far as he is concerned, the two bl ocks commute as units of
action; of course he could not tolerate arbitrary interleaving of

lines fromthe tw files

5. Cooperating Processes

H therto, parallel programm ng has been confined co disjoint and
conpeting processes, which can be guaranteed by a conpile-time check to
operate on disjoint data spaces. The reason for insisting on disjoint-
ness is that this is an easy way for the conpiler to check that the
units of action of each process will commute. In the next two sections
we shall investigate the effects of relaxing this restriction, at the
cost of placing upon the programer the responsibility of proving that
the units of action comute. Processes which update one or nore
conmon vari abl es by conmutative operations are said to cooperate.

ne consequence of the commutivity requirenent is that neither
process can access the value of the shared variable, because this value
will in general be different whether it is taken before or after
updating by the other process. Furthermore, the updating of a shared
variabl e must be regarded as a single unit of action, which occurs
either wholly before or wholly after another such updating. For these
reasons, the use of normal assignment for updating a variable seenms a

bit msleading, and it seens better to introduce the kind of notation

11

used in [6], for exanple:

n:+l in place of N :=nt+l .

One useful comutative operation which nmay be invoked on a shared

set is that which adds nmembers to that set, i.e., g¢ot union:

s Ut (s :=sU%) ,
since evidently s :yt ;s :Utt*=s :Ut';s:Ut for all values of t
and t'

A simlar conmutative operation is set subtraction:
S :~t

As an exanple of the use of this, consider the primefinding algorithm

known as the sieve of Eratosthenes.

An abstract parallel

versi on of
this algorithm may be witten using traditional

set notations:
sieve :={i|2<i<N};
pl :=2; p2 :=3;

while p1° <N do

begin {renmove nultiples of (pl) /remove nultiples of (p2)};
i f PEE <N then pl :=min{i|i>p2&ie Sieve}
el se pl:=p2;
i f pl2 <N then p2 :=min{i|i>pl&i ¢ sieve]
end;
The validity of the parallelismcan be assured if the only operation on

the sieve performed by the procedure "renove muitiples of (p) "

is set
subtraction:

procedure remove multiples of (p: 2..W);

begin i: 2..N;

for i:=p° step p until N do sieve :- {i}
end;

12

—

—

O course, when a variable is a large data structure, as in the
exanpl e given above, the apparently atomic operations upon it may in
practice require many actual atom c machine operations. In this case
an inplementation nust ensure thaf t hese machi ne operations are not
interleaved with sone other operation on that sane variable. A part of
a program which nust not be interleaved with itself or with some other
part is known as a critical region [5]. The notational structure
suggested in [2] seens to be a good one for specifying updating operations
on variables, whether they are shared or not; and the proof rules in the
two cases are identical. The need to set up an exclusion nechani smfor
a shared variable supports the suggestion of Brinch Hansen [9] that the
possi bility of sharing should be nentioned when the variable is declared.

It is worthy of note that the validity of a parallel algorithm
depends only on the fact that the abstract operations on the structured
variabl e commute. The actual effects on the concrete representation of
that variable may possibly depend on the order of execution, and therefore
be non-determnistic. In sone sense, the operation of separating two
files of line printer paper is an abstraction function, i.e., a many-one
function mapping an ordered pair onto a set. Apstraction may prove to be a
very inportant nethod of controlling the conplexity of parallel algorithns.

In [1] it was suggested that operations on a shared variable s
shoul d be expressed by the notation

wth s do Q,
where Q was to be inplenented as a critical region, so that its
execution woul d exclude in tinme the execution of any other critica
region with the same variable s . But the present proposal is
di stinctly superior

1

(1) It uses the sane notations and proof rules as sequential prograns;

(2) It recognizes the inportant role of abstraction
(3) The intended effect of the operation as a unit of action is nade

more explicit by the notation

(4) The scope rul es make deadl ock |ogically inpossible.

Finally, the proof rule given in [1]is quite inadequate to prove

cooperation inachieving any goal (other than preservation of an invariant).

A useful special case of cooperation between parallel processes
which satisfies the comutivity principle is the use of the "meno
function" suggested by Mchie [10]. Suppose there are certain val ues
which may or may not be needed by either or both processes, and each
value requires some lengthy calculation to determne. |t would be
wasteful to conmpute all the values in advance, because it is not known
in advance which of themw |l be needed. However, if the calcul ation
I's invoked fram one of the cooperating processes, it would be wastefu
to throw the result away, because it mght well be needed by the other
process. Consequently, it may pay to allocate a variable (e.g. an
array A) in advance to hold the values in question, and set it
initially to some null value. The function which conputes the desired
result is now adapted to first look at the relevant element of A . If

this is not null, the function imediately returns its value wthout

further computation. |f not, the function conputes the result and stores

it in the variable. The proof of the correctness of such a technique
I's based on the invariance of some such assertion as:
vi(Ali] A null o A[i] = f(i)) ,

where A is the array (possibly sparse) in which the results are stored,

1k

—

and f is the desired function. The updating of the array A nust be

a single unit of action; the calculation of the function f may, of

course, be reentrant. This technique of neno functions may al so be used

to convey results of processes which termnate at an arbitrary point (see

Section 7).

6. Communi cating Prograns

The commutivity principle, which lies at the basis of the treatnent
of the preceding sections, effectively precludes all possibility of
communi cation between processes, for the follow ng reason. The nethod

that was used in Section 3 to prove
A/, = Q34
can al so be used to prove
Qe = Qe
It follows that a legitimate inplementation of "parallelisnt would be to

execute the whol e of Qy and then the whole of ¢ or to do exactly

2 1
the reverse. But if there were any communication between Q and Qy
this would not be possible, since it would violate the principle that a

communi cation cannot be received before it has been sent.

In order to permt communication between Ql and QE it is
necessary to relax the principle of commutivity in such a way that
conpl ete execution of Q2 before starting Ql is no |onger possible.

Consider an arbitrary unit of action q; of q and an arbitrary unit

l)
of action b of Q; Ve say that aq and a5 sem commute if:

939y S 9339

15

r—

If all g; and g, seniconmute, we say that Qq and Q, are

conmuni cating processes, and that Q is the producer process, and e,

is the consuner [5].

The effect of seniconnutivify is that some interleavings of units
of action may be undefined; but noving actions of Q, after actions of
9y will never give a different result or make the interleaving |ess well
defined; consequently the execution of the whole of Q, before starting
Q is still a feasible inplementation, in fact the one that is nost
def i ned:

U, € 438,
Thus it is still justified to use the same proof rule for parallel as
for sequential prograns.

|f assertional proof nethods are used to define a progranm ng | anguage
feature, it is reasonable to place upon an inplenentor the injunction to
bring a programto a successful conclusion whenever it is logically
feasible to do so (or there is a good engineering reason not to, e.g.,
integer overflow and it is not logically possible to termnate a program
of which "false" is provably true on termnation). In the case of
conmuni cating prograns, termnation can be achieved by sinply delaying an
action of Q, Where necessary until Q; has performed such actions as
make it defined, which will always occur provided Q50 term nates.

The paradi gm case of semicommutative operations are input and output
of items to a sequence. CQutput of an item x to sequence s will be
denot ed

s.output(x);

it is equivalent to

16

r—-

——

s:=s N (x);

where n is the synbol of concatenation, and (x) is the sequence whose
only itemis x . This operation appends the itemx to the end of the
sequence and is always defined. |nput of the first itemfroma sequence
s to the variable y will be denoted:

s.input(y)
which is equivalent to a unit of action consisting of two operations:

Y:=first(s); s :=rest(s);
where first maps a sequence onto its first itemand rest maps a sequence
onto a shorter sequence, nanely the sequence with its first itemrenoved
The removal of an itemfroman enpty sequence is obviously undefined;
on a non-enpty sequence it is always defined. A sequence to which an
Item has just been output is never enpty. Hence

s.input(y) ; s.output(x) = s.output(x) ; S.input(y)
i.e., these operations senicomute. Consequently a sequence may be used
to commumicate between two processes provided that the first only
perfornms output and the second only perforns input. If the second process
tries to input too much, their parallel execution does not termnate; but
neither would their sequential execution. Processes communicating by
means of a sequence were called coroutines by Conway [11], who pointed
out the equival ence between sequential and parallel execution

In practice, for reasons of econony, the potentially infinite

sequence used for conmmunication is often replaced by a bounded buffer,
with sufficient space to acconmodate only a fewitems. |n this case, the
operation of output will have to be delayed when the buffer is full,

until input has created space for a new item Furthernore the program

17

~

may fail to termnate if the nunber of items output exceeds the nunber

of items input by nore than the size of the buffer. And finally, since
either process may have to wait for the other, purely sequential execution
is in general no |onger possible, ‘because it would not termnate if the
total length of the output sequence is larger than the buffer (which it
usually is). Thus the parallel programis actually nmore defined than

the corresponding sequential one, which may seemto invalidate our proof
net hods.

The solution to this problemis to consider the relationship between
the abstract program using an unbounded sequence and the concrete program
using a bounded buffer representation for the sequence. In this case
the concrete programis the same as the abstract one in all respects
except that it contains an operation of comecrete output (to the buffer)
whenever the abstract program contains abstract output (to the sequence),
and simlarly for input. Concrete output always has the sane effect as
abstract output when it is defined, but is sonetimes undefined (when the
buffer is full), i.e.:

concrete output — abstract output
The replacement of an operation by a |less well defined one can never
change the result of a program (by the principle of continuity [4]), so
the concrete programis still contained in the abstract one

concrete = abstract
This justifies the use of the same proof rule for the concrete as for
the abstract program The abstract sequence plays the role of the
"mythical " variables used by Adint [12]; here again, abstraction proves

to be a vital programming tool

18

In order to inplenment a concrete data representation for a variable
which is being used to conmuni cate between processes, it is necessary
to have some facility for causing.a process to "wait" when it is about
to performan operation which is undefined on the abstract data or
inpossible on its current representation. Furthermore, there nust be
some method for "signalling" to wake up a waiting process. (One method
of achieving this is the condition variable described in [3]. O course,
i f either process of the concrete programcan wait for the other, it is
possible for the programto reach deadl ock, when both processes are
wai ting. In;Ehis case it is not reasonable to ask the inplenentor to
find a way out of the deadlock, since it would involve a conbinatoria
i nvestigation, where each trial could involve backtracking the program
to an earlier point in its execution. |t js therefore the programer's
responsibility to avoid deadlock. The assertional proof nethods given
here cannot be used to prove absence of deadl ock, which is a form of
non-termnation peculiar to parallel prograns.

A natural generalization of one-way conmunication is two-way
communi cati on, whereby one process Q, uses a variabl e s, to
conmuni cate to Q2 , and Q, uses a vari abl e s, to conmuni cate with
Q . Communi cation is achieved, as before, by sem commutative operations.
“ It is now inpossible to execute Q and Qs sequentially in either
order; and it is plain that the proof rule should be symmetric.
Furthernore, the correctness of Q, may depend on some property 5,
of S, whi ch Qb must make true, and simlarly, Q2 may need to assune
some property S, of s, Wwhich Q, nust make true. Hence we derive

the rule;

19

I

Py &S, {q; 15, & R) P,&8,{q,18, &R,

Rul e of two-way

P& P,{Q, / Qg}Rl&}kg Conmuni cat i on

wher e Pp,Q; R, 8 are disjoint from P,, Qs Ry » 8, except for
vari abl es S1» Sor which are subject only to sem commutative operations
in Ql and Q2 , as expl ai ned above; and P, , Sl’ R2 may contain S¢
(but not 52) and P, , S, , R, may contain 8, (but not sl). The

informal proof of this is conplex, and is included in an appendi Xx.

7. Colluding Processes

In certain conbinatorial and heuristic applications, it can be
difficult for the programrer to know which of two strategies is going
to be successful; and an unsuccessful strategy could run forever, or at
| east take an uncontrollable or unacceptable length of time. For
exanpl e, a theoremchecker mght attenpt to find a proof and a counter-
example in parallel, knowing that if one attenpt succeeds, the other
may not termnate. In such cases, Floyd [13] has suggested the use of
"non-determnistic® algorithns: both strategies are executed in parallel
until one of them succeeds; the other is then discontinued. |n principle,
this can be very wasteful, since all effort expended on the unsuccessfu
strategy is wasted, unless it has cooperated in some way with the
successful one. Processes which inplement alternative strategies we wll
cal | colluding

Col 'udi ng processes require a conpletely new notation and proof

rule, representing the fact that only one of them has to termnate.

20

These wi |l be taken from Lauer [8], who uses the form

A or Q5
to denote a programinvol ving execution of either Q, or q, , wher e
the programmer either does not know or care which one is selected. The
proof rule is adapted from the symmetric rule for disjoint processes:

P {Q; IR, P, {Q, 1R,

P, 2 Py{Q; or Q 1R, VR,

where P, , Q; , R, are disjoint from P, , Q » R,.

1 2

Not e the continued insistence on disjointness, which was not nade
in [8]. This has the advantage of permtting a genuine parallel
inmpl ementation. It has the even greater advantage that it does not
require an inplenentation to undo (backtrack) the effects of the
unsuccessful process. For suppose Q, Was successful, and t herefore
R, is true on completion of the program R, does not mention any
variabl e changed by Q, , SO t he programmer cannot know anything of the
values or properties of these variables at this point; and so the fact
t hat Q, has changed these values does not matter. However the val ues
are not formally undefined -- for exanple, they can still be printed
out. Furthernore, if Qy has used sonething |ike the neno function
techni que described in Section 5 it is possible to use the results of
its calculations, even after it has been termnated at an arbitrary
point in its execution.

However, it must not be a wholly arbitrary point; a process must not
be stopped in the mddle of one of its "units of action", i.e., in the
mddl e of updating a structured variable non-local to the process. If

it were so stopped, the invariant of the data structure mght no |onger

21

be true, and any subsequent attenpt to access that variable would be

disastrous. The need to inhibit termnation during certain periods was
recogni zed by Ashcroft and Manna [15].

Sonetimes a colluding process can detect that it wll never succeed,
and might as well give up inmediately, releasing its resources, and
using no more processor tine. To do this, Floyd suggested a basic
operation

failure;
the proof rule for this may be sinply modelled on that for the junp:

true [failure') false
which permts failure to be invoked in any circunstances (true), and
which states that failure always fails to termnate. |f all processes
fail, the programfails, and no property of that programwill hold after
the failure. The situation is the sane as that of a sequential program,
artificially interrupted by expiry of some tine limt.

In order to ensure that tine is not excessively wasted on an
unsuccessful process, the programmer should exert every endeavor to ensure
that a process usually detects whether it is going to fail as early as
possible. However, it may be that a process sonetimes discovers that
although failure is quite likely, it is not yet certain, and it may take
a longer time to decide than was originally hoped. |n this case, it woul d
be wise to delay continuation of the current process but wthout
precluding the possibility of later continuation. To achieve this, |
suggest a primtive scheduling statenent

wai t;

this is intended to cause imediate suspension of the calling process

22

| o |

allowing the processor to concentrate attention on the other processes,
until either
(1) one of them succeeds: the waiting process is then abandoned in
the normal way;
(2) all of themfail: the waiting process is then resuned in the normal
way as the last remaining hope;
(3) all non-failed processes have themselves invoked a wait: then the
| ongest waiting process is resumed.
(I'f several processors are available, the above remarks require adaptation.)
If greater sophistication in scheduling is desired, a process which
i s exceptionally unpronising should indicate this fact by passing a
parameter to the wait:
wait(t) s
where t is an indication of how many times the calling process is wlling
to be overtaken by nore promising processes. The inplenentation of this
i's acconplished nost easily by maintaining a pseudo-parallel time queue
as in SIMULA. For wise scheduling, +t should be proportionalto an
estimate of the expense required by the current process before it cones
to a decision on its own success or failure. O course, a process should
try to avoid waiting while it is in possession of expensive resources.
Since every process retains some allocation of storage and overhead during
a wait, waiting should be used sparingly. Nevertheless, it gives the
programmer a useful degree of control in specifying a "breadth first"
or "depth first" search of a tree of alternatives.
It hardly seens worthwhile to seek nore sophisticated scheduling

nethods for colluding processes. (ne great advantage of the wait is

23

-

that each process can schedule itself at a tinme when its resource

occupation is low, furthernore it can do so successfully without

knowi ng anythi ng about the purpose, logic, progress, or even the name

of any other process. This is the secret of successful structuring of

a large program and suggests that self-scheduling by a wait is a good
programmng |anguage feature, and surely preferable to any feature which
permts one process to preenpt or otherw se schedul e another at an
arbitrary pdint in its progress.

But perhaps the strongest argunent in favor of a wait is that the
insertion of a wait has no effect whatsoever on the logic of a process,
and in a prod% of correctness it may be ignored. |t is equivalent to an
enpty statenment, and has the delightful proof rule:

R {wait(t)}R
for any assertion R .

On conpletion of the program Qy or @, , it can be quite difficult
to find out which of themhas in fact succeeded. Suppose, for exanple,
the purpose of the programis to find a z satisfying R(z) . Suppose
processes @ and Q, satisfy

P,{a; IR(yy)
P{a, IR(y,) .
"It is now possible to prove

P, 2P, {(Q, or Q5); if R(y;) then z :=y, else z :=y,1R(2)

But R(yl) may be expensive or inpossible to conpute, and something better
s required. A possible solution is based on the "protected tail"
described in [15]. In this, a colluding process has two parts

Q t hen Q!

2L

where Q is the part that may fail to termnate, and Q' js initiated

only when @ has termnated. However all parallel colluding processes
are stopped before Q' starts. .That is why Q' has the name "protected
tail". Since a protected tail is never executed in parallel, the rule of
di sj oi ntness nmay be sonewhat relaxed, permtting the protected tails to
update the same variables, e.g.

Q, then z t=y; or Q, then z =Y,
The appropriate proof rule is:

P e 1Ry R, {Qj IR

Po{a, 1R, R, (@) R

P, £ P,{q, then Q] or Q, then QLR

\

wher e P, ,Q , R , are disjoint from P2 , Qo Ry

The construction Q; or Q, Is something |ike the |east upper bound
(4] of two functions f, Uf, . However f; U f, is inconsistent if
£, and f, both termnate and have different results; and it is not
possible to guarantee against this inconsistency either by a compile
tinme or a run tine check (which could go on forever if the functions
are consistent). The or construction is still well-defined (at |east
axiomatically), in spite of the fact that the effects of Q; and Q

are nearly always different.

8. Machine Traps

Dijkstra has expressed the view [16] that one of the main values of
paral l el programming ideas is the light that they shed on sequentia

programming. This section suggests that the idea and proof nethod for

25

col luding programs may be used to deal with the probl emof machine
traps that arise when a machine cannot performa required operation due
to overflow or underflow, and either stops the programor junps to some
trap routine specified by the programmer. At first sight such a junp
seens to be even nore undisciplined than a go to statenent invoked by
the program since even the source of the junp is not explicit. But
the main feature of such a junp is that it signals failure of the
machine to conplete the operations specified by the program @, ; i f the
programmer is willing to supply some alternative "easier" but |ess
satisfactory program Q, » the machine will execute this one instead,
just as in the case of colluding processes.

However, there are two great differences between this case and the
previ ous one.
(1) The programmer would very much rather conplete Qy t han Q-
(2) Parallel execution of Q and Q, IS not callea for. Q, is

i nvoked only when Q, explicitly fails.
For these reasons it would be better to introduce a different notation
to express the asymetry:

Ql ot herw se Q2

Al so, because parallelismis avoided, the rule of disjointness can be

- rel axed consi derably:

P {Q IR P {Q, IR,

Pl&PE{Ql ot herwi se Qz}RlVRe

wher e Q is disjoint from P, ; this states that Q, may not assune

anyt hi ng about the variabl es changed by Q - However Qs is stil

26

allowed to print out these variables, or take advantage of any meno
functions conput ed.

It is necessary to enphasize again the inpermssibility of stopping
in the mddle of an operation on a variable non-local to a process.

If failure occurs or is invoked in the mddle of such an operation, it

iIs the snmallest process |exicographically enclosing the variable that

nust fail. This can be assured by the normal scope rules, provided that
the critical regions are declared local to the variable, as in nonitors
and data representations, rather than being scattered through the program
whi ch uses them as in [I].

This proposal provides the programmer with much of the useful part
of the conplex PL/I [17] ON-condition and prefix mechanisns. The other
i ntended use of the ON-condition is to extend machine arithnetic by
supplying programer-defined results for overflow ng operations. For
this | would prefer conpletely different notations and nethods.

This proposal also provides the programmer With a nethod for
dealing with transient or localized failure of hardware at run time, or
even (dare | mention it?) with programming error. The need for a neans

to control such failures has been expressed by d'Agapeyeff [18].

9. Conclusion

In conclusion it is worth while to point out that the parallel
conposition of prograns has pleasant formal properties, nanely // and
or are associative and conmutative, with fixed point "do nothing" and
"failure" respectively, and otherwise is associative with fixed point

"failure". These facts are expressed by the equival ences:

27

U, = 4%y
Qy oF Qp = @y or Q@

Q/ (Qp/Qs)

(Qy//Q5) /8y
(@) or Qy) or @5 = Q; or (q, or Q)

(Ql ot her wi se QQ) ot her wi se Az = ot herw se (Q2 ot herw se Q5)

(Q/do-nothing) =Q
Q or failure = Q@q

failure otherwise @ = Q otherwise failure = q .

28

(1]

(2]

[3]

[5]

(6]

(9]
(10]

Ref er ences

C. A R Hoare. "Towards a Theory of Parallel Programming,” in
Qperating Systens Techniques, ed.C. A R Hoare and R H. Perrot.
Academ c Press, 1972.

C. A R. Hoare. "Proof Of Correctness of Data Representations,"
Acta Informatica 1, 271-281 (1972).

C. A R. Hoare. "Mnitors: an Qperating System Structuring Concept."
Sem nar delivered to I.R1.A, My 11, 1973.

D. Scott. "Qutline of a Mathematical Theory of Conputation," PRG-7.
Programming Research Goup, Oxford University.

E. W Dijkstra. "Cooperating Sequential Processes," in Programmi ng
Languages; ed. F. Genuys. Academ c Press, 1968.

C. A R. Hoare. "Notes on Data Structuring,” in Structured
Programming, by E. W. Dijkstra, 0. J. Dahl, C. A R. Hoare.

Academ c Press, 1972.

C. A R Hoare. "Procedures and Paraneters: an Axi omatic Approach,"
in Symposium on Senmantics of Algorithm c Languages, ed. E. Engeler.
Springer-Verlag, 1972.

P. E TLauer. "Consistent Formal Theories of the Semantics of
Progranm ng Languages," Ph.D. thesis, Queen's University, Belfast.
TR.25.121 | BM Laboratory, Vienna, Nov. 1971.

P. Brinch Hansen. (perating System Principles. Prentice-Hall, 1973.
D. Mchie. "Meno functions: a language feature with 'rote |earning'
properties," MP-R 29, Edinburgh University, (Novenber 1967).

M E Conway. "Design of a Separable Transition Diagram Conpiler,"
Comm. ACM 6, 396-408, (1963).

M. dint. "Program Proving: Coroutines," Acta Informatica 2,

50-63, (1973).

R. W. Floyd. "Nondetemministic Al gorithms," J. ACM 14, 4, pp. 636-6Lk,
(1967) .

N. Wirth. "The Programm ng Language PASCAL," Acta Informatica 1,

1 (1971), pp. 35-63.

29

(15] E. A Ashcrof't, z. Manna. "Formalization of Properties of

Par al | el

Programs," A.I .M. 110, Stanford University, February 1970.

[16] E. w. Dijkstra. Private Communication.
(17] Formal Definition of PL/I. “|BM Laboratory, Vienna, TR 25.071

(1967) .

[181 A d'Agapeyeff. Private communication.

30

Appendi x: Proof of rule of two-way comunication.

The informal proof of this depends on a nythical reordering of units
of action, where a unit of action‘is defined as an assignnent of a
constant to a variable, or the performance of an operation wth constant
paraneters to a variable. Thus for exanple, an operation in Q
s, -input(y) ;
woul d appear every time in a computation Of Q as
Y :=17;
s, .-truncate;
where 17 happens to be the value of the first item of s, at the tine
and the "truncate" operator renmoves the first itemfroma sequence.
Consi der a particular interleaved execution of Ql//Q2 . Sort the

conputation into the order

Fo1 3By 3B

wher e E,, is the sequence of all operations of q, on S 5
Ey is the sequence of all operations of Qq
Eon is the sequence of all other operations of Q -

This is feasible, because operations on one variable conmute with
Qperations on all other variables, and operations of Q2 on 5,
sem commute with operations of q, on S, , SO the rearranged sequence
can only be nore defined than the original interleaving.

Def i ne
P as the result of replacing all occurrences of S,

2

in P, by the initial value of Sy

31

'
i
|

and S, as the result of replacing in

5, all occurrences of
vari abl es changed by Q by their final values, i.e,,
after executing Eyy

W will assune that the premises of the rule are valid, and hence we

assert informally (i.e., not by showing it to be deducible):

P &5,{E,}8, &R, (1)
Py Sl{Egl;Egg}Sg & R, (2)

Ve will prove three |emmas.

(1) P1&Py{E, 1P & B 85,
(11) P &P, &5, {E }s, &R &5,
(111) 8, &R, & PE{EEQ}RJ_ &R,

The conclusion of the rule follows directly by the rule of composition.

Lemma T

The only variable free in 52 is Sy which is not changed by E

22 .
Its truth after g

oo inmplies its truth before.

Hence from (2) we get
P, & Sl{E21}82
The only variable mentioned in Esy S5, Wwhich is not nentioned in S

1l
Provided that there exist values satisfying 8, it follows that

is

Py {By 35,

(If S, were unsati sfiabl e,

Q woul d not term nate under any circum

stances; and neither would q,//g, . which would make any concl usion

about Ql//Q2 vacuously true). Since s

) s not nentioned in P1

22

P, &P, {E21}32 & Pl

The truth of 152 after E,; follows fromthe truth of P, bef or e.

Lemma IT
In (1), S, is the only part containing variables subject to
updating by @, . By instantiating these variables, we can get:
P &él {El}Sl & Ry
Si nce 1'52 contains no variable subject to change in E the lemma

follows imediately.

Lenmma |11

if and only if they are true before. pence from (2)

22

B, %8, {E, 1R,
Si nce R, does not nention any variable subject to change in E

Lemma Il is immediate.

e’

33

