Sponsored by
Advanced Research Projects Agency
ARPA Order No. 2494

Stanford Artificial Intelligence Laboratory April 1974

Memo AIM-226

Com puter Science Department
Report STAN-CS-74-407

FAIL

by

F.H. G. Wright I
R. E. Gorin

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

Abstract

This is a reference manual for FAIL, a fast, one-pass assembler for PDP-10 and PDP-6 machine
language. FAIL statements, pseudo-operations, macros, and conditional assembly features are
described. Although FAIL uses substantially more main memory than MACRO- 10, it assembles
typical programs about five times faster. FAIL assembles the entire Stanford time-sharing
operating system (two million characters) in less than four minutes of CPU time on a KA-10
processor. FAIL permits an ALGOL-style block structure which provides a way of localizing the
usage of some symbols to certain parts of the program, such that the same symbol name can be

used to mean different things in different blocks.

This manual was supported by the Advanced Research Projects Agency of the Department of Defense
under Contract No. DAHC15-73-C-0435. The views and conclusions contained in this document should
not be interpreted as necessarily representing the official policies, either expressed or implied, of the

Advanced Research Projects Agency or the U.S. Government.

Thiss-manual supersedes SAILON-26.

Available from the National Technical Information Service, Springfield, Virginia 22151.

FAIL i

Table of Contents

Section Page

1. Introduction 1

2. Basic Syntax 2
2.1 Statements 2
2.1. 1 Instruction Statement . 2
2.1.1.1 Opcode Field 3

2.1.1.2 Accumulator (AC) Field . 3

2.1.1.3 Indirect (Q) Field . . . 3

2.1.1.4 Address Field 4

21.15 Index Field 4

2.1.2 Halfword Statement 4

2.1.3 Full-Word Expression 5

2.1.4 Truncated Expression . 5

2.1.5 Input-Output Instruction Statement . 5
2.1.5.1 Device Selection Field . . 5

21.6 Comment Field 6

2.1.7 Statement Termination 6

2.2 Expressions 6
2.3 Atoms 8
2.3.1 Identifiers 8

2.32 Values 8

2.3.3 Constants 9
9.33.1 Simple Numbers : 9

2332 Decimal Numbers . . . 10

2.3.3.3 Floating-Point Numbers . 10

23.3.4 Ascii Constants 10

2335 Sixbit Constants 11

2.3.4 Symbols . 11
2.34.1 Labels . 12

2.3.4.2 Parameters (ASS|gnment Statements) : 13

2.3.4.3 Variables - 14

2.3.4.4 Predefined Symbols 14

2.3.45 Half-Killed Symbols 15

2.34.6 Block Structure . . 15

2.3.4.7 Linkage with Separately Assembled Programs 18

2348 Symbols and Arrows . S 19

2.3.5 Complex Atoms . 19
2.3.5.1 Atomic Statements - 20

2.3.5.2 Literals - 20

i Table of Contents

3. Pseudo-Ops

3.1 Destination of Assembled Code
311 LOC, RELOC, and ORG
3.1.2 SET and USE. . . .
3.1.3 PHASE and DEPHASE.
3.1.4 HISEG
3.1.5 TWOSEG’
3.1.6 LIT
3.1.7 VAR

3.2 Symbol Modifiers
3.2.1 OPDEF .
3.2.2 BEGIN and BEND
32.3 GLOBAL . .
3.2.4 INTERNAL and ENTRY
325 EXTERNAL . .
3.2.6 LINK and LINKEND
3.2.7 LOAD and .LIBRARY .
3.28 PURGE
3.2.9 XPUNGE .
3.2.10 SUPPRESS andASUPPRESS
3.2.11 UNIVERSAL and SEARCH . .

3.3 Entering Data

331 DEC and OCT

332 BYTE.

3.33 POINT

334 XWD

3.3.5 IOWD e e e
3.3.6 ASCII, ASCIZ, ASCID, and SIXBIT
3.3.7 RADIX50 .

3.4 Reserving Space for Data
341 BLOCK . . N
3.4.2 INTEGER and ARRAY ...

3.5 Assembler Control Statements
3.5.1 TITLE .
352 END and PRGEND::::
3.5.3 COMMENT
354 RADIX . .
355 INSERT

3.6 Listing Control Statements
36.1 TITLE and SUBTTL . . .
3.6.2 LIST, XLIST, and XLISTI ..
3.6.3 LALL and XALL
36.4 NOLIT
3.6.5 NOSYM

FAIL

22

22
22
22
23
24
24
25
25

26
26
26
26
27
27
27
28
28
29
29
29

30
30
30
31
31
31
32
32

33
33
33

34
34
34
34
35
35

36
36
36
36
36
37

FAIL

Table of Contents

3.6.6 CREF and XCREF
3.6.7 PAGE.
3.6.8 PRINTX

4. Macro Operations

4.1 Macros

4.1.1 Macro Bodies

4.12 Concatenation

4.1.3 Arguments in Macro Deflnltlons
414 Macro Calls . . , .

4.1.5 Arguments in Macro Calls

4.1.6 How Much is Eaten by a Macro Call

4.1.7 Complex Example ,

4.2 FOR

42.1 String FOR .
4.2.2 Character FOR
4.2.3 Arithmetic FOR

4.3 REPEAT

4.4 Conditional Assembly

Appendices

441 Numeric IFs
4.4.2 Text IFs
4.4.3 Symbol IFs

A Command Language

B

Relocatable and Undefined Values

C Predefined Opcodes

D Stanford Character Set

E Summary of Character Interpretations

Index

iii

37
37
33

38

38
38
39
39
40
40
41
42

43
43
44
44
45
46
46
46
47
48
48
50
51
56
57

59

FAIL I ntroduction 1

1. Introduction

FAIL isan assembly program for PDP-6 and PDP-10 machine language. FAIL operates in one
pass, which means that it reads the input file only once; the linking loader program (LOADER or
LINK- 10) completes any aspects of the assembly which could not be done by FAIL. The
efficiencies which have been employed in its coding make FAIL five times faster than
MACRO- 10, the DEC assembler.

FAIL processes source program statements by translating mnemonic operation codes into the
binary codes needed in machine instructions, relating symbols to numeric values, and assigning
relocatable or absolute core addresses for program instructions and data. The assembler can
prepare a listing of the program which includes a representation of the assembled code. Also, the
assembler notifies the user of any errors detected during the assembly.

FAIL has a powerful macro processor which allows the- programmer to create new language
elements to perform special functions for each programming job.

FAIL permits an ALGOL-style block structure which provides a way of localizing the usage of
symbols to particular parts of the program, called blocks. Block structure allows the same symbol
name to be given different meanings in different blocks.

The reader of this manual should be familiar with the PDP-10 instruction set, which is described
in both DECsystem-10 System Reference Manual and PDP-10 and PDP-6 Instruction Sets
(SAIGON-7 1).

Other documents of interest;

Frost, M. UUO Manual, SAILON-55.3, December 1973
Petit, P. RAID, SAILON-58, September 1969
Harvey, B. Monitor Command Manual, SAILON-54.3, December 1973

The following are available in the DECsystem-10 Software Notebooks:

Cross-Reference Listing: CREF, June 1973

DDT-10 Programmer’s Reference Manual, June 1973

Linking Loader Programmer’s. Reference Manual, August 197 1
LINK-10 Programmer’s Reference Manual, May 1973

MACRO-10 Assembler Programmer’s Reference Manual, June 1972
DECsystem-10 Operating System Commands, February 1974
DECsystem-10 Monitor Calls, June 1973

2 Basic Syntax FAIL

2. Basic Syntax

This section describes the basic components of a typical FAIL source program. It covers the
normal mode of turning each source statement into a binary word. Pseudo-operations and macro
features are explained in later sections.

This section is organized in a top-down manner: the complex constructs, statements, are described
first, followed by a description of the language elements from which statements are built, etc.

Statements are the elements of the language that generate machine code and other binary data. A
statement is generally free format, consisting of several fields, each of which is an expression.
Expressions are composed of atoms and operators. The operators signify typical arithmetic and
boolean operations, such as addition or logical OR. Atoms are either constants, symbols, or
complex atoms.

2.1 Statements

Statements are the syntactic units which actually produce code. The statements that are described
in this section usually generate one word of code. A null statement, which consists of no
expressions, generates no code. A typical statement consists of one or more expressions separated
by spaces, commas, or parentheses.

There are five kinds of statements: instruction statements, full-word expressions, truncated
expressions, kalfword statements, and input-output statements. The most common of these is the
instruction statement. Also, there are pseudo-operations (called pseudo-ops), which are described
in section 3, page 22. A pseudo-op may direct FAIL to perform an assembler control
function or to assemble data in a particular format.

The examples that are given below are intended to be as general as possible. In most cases, many
of the indicated fields may be omitted.

2.1.1 Iﬁstruction Statement

OPCOOE AC, @ADDRESS (| NDEX) 1 COMMENT

An instruction statement is used to assemble one machine instruction. The typical format is
shown above; the parts will be explained later. Any portion of the instruction statement may be
omitted. The comment field is not really part of the instruction statement, but may be included on
the same line for clarity and conciseness. The parts may appear in any order, except that the
opcode field, if present, must be the first expression. Also, each part must be syntactically
identifiable. The form above is hallowed by years of use; departure from it will render a
program less intelligible to other readers.

FAIL Basic Syntax 8

If the opcode field is omitted, all other fields will be recognized and handled normally, unless the
address expression is the first field seen, in which case the statement is treated as a full-word
expression.

2.1.1.1 Opcode Field

If the first atom appearing in the statement (excluding labels and assignment statements) is an
identifier, it will be looked up in the opcode table to see if it is an opcode, in which case the
opcode alone will be returned as the first expression, overriding any significance it may have as a
symbol. An opcode (short for operation code) may be a machine instruction mnemonic, a UUO
mnemonic, a pseudo-op, or a user-defined opcode (see OPDEF in section 3.2.1, page 26). An
opcode, if it appears, must be the first thing in the statement (except for labels or assignment
statements).’

If an opcode is a pseudo-op mnemonic, FAIL will process that particular pseudo-op as
appropriate. The syntax of pseudo-ops differs from that of normal statements.

If an opcode is a machine instruction, UUO mnemonic, or user opcode, its value is placed in the
binary word being assembled. These opcodes are treated as having full-word values, but in most.
cases only the opcode field (bits 0-8) is non-zero. A few machine instructions, and many UUO
mnemonics, specify values for other fields as well. The values of the other fields (except the
address field, if non-zero) can be modified by subsequent operands.

Whenever an opcode is recognized, it is immediately processed without regard for any arithmetic
operator that might follow. Although FAIL tries to allow a symbol and opcode with the same
name to co-exist, it cannot resolve the ambiguity in all circumstances; it is a good idea to avoid
conflicts as much as possible. FAIL will not recognize an identifier as an opcode if the identifier is
followed by any one of the characters colon (), left-arrow («), up-arrow (1), tilde (~), or number
sign (#).

2.1.1.2 Accumulator (AC) Field

If an expression appears in a statement followed by exactly one comma, its value will be placed in
the accumulator field of the current word (bits 9-12), possibly replacing the accumulator field
indicated by an opcode. This expression must be defined, available, and absolute (some of these
terms are defined in section 2.3.2, page 8). For the sake of brevity, “accumulator” is often
written as “AC”.

2.1.1.3 Indirect (e) Field

If one or more at-sign characters (@) appear as part of a statement, the indirect bit (bit 13) will be
turned on in the word being assembled. The at-sign may appear anywhere in the statement as
long as itis not embedded inside symbols or expressions. The character open single quote (¢)
may be used as an alternative to at-sign.

Basic Syntax FAIL

2.1.1.4 Address Fidd

If in a statement an expression appears which is neither enclosed in parentheses nor followed by a
comma, it is considered to be an address expression unless it is the first expression (including the
opcode) in the statement. Address expressions are truncated to 18 bits and placed in the address
field (bits 18-35) of the word being assembled.

Only one address field may be assembled per statement; an attempt to assemble more than one is
an error. This error sometimes occurs because an undefined opcode is used, which is treated as an
expression in case it is really an undefined symbol. This error can also occur when an opcode
includes an address field and the user attempts to supply another address field.

2.1.1.5 Index Field

If an expression is enclosed in parentheses in a statement, the right half of its value will be ORed
into the left half of the current word. Also, if no address field has appeared yet, the left half of its
value will be ORed into the right half of the current word. The expression must be defined,
available, and absolute. This construct is most commonly used for specifying the index field (bits
14-17).

Sometimes, this construct is used for putting left-half quantities in address fields, or as a general
halfword-swapping operation. Often when this is done, the expression in parentheses must be

-enclosed in brokets (< and >) to force its evaluation as an atomic statement; see section 2.3.5.1,
page 20. If the left half of the expression is non-zero, the word will be flagged as containing an
address field, making another address field illegal.

Examples:
MOVEI 2, -1(6) ;assembles 201106 777777
MOVSI 1, (<JRST>}, ;assembles 205040 254000

2.1.2 Halfword Statement

EXPR , , @ADDRESS (1 NOEX) 1 COMMENT

If an expression is followed by comma-comma (, ,), it will be placed in the left halfword of the
current location, and FAIL will continue to process an address field, index field, and indirect field,
T his is more convenient than the XWD pseudo-op for assembling halfwords since it allows the
entire -effective address to be specified in the usual way. The only restriction is to beware of
possible interpretation of the first symbol as an opcode. If the expression followed by the comma-
comma is not the first thing assembled in the word, the warning message /ilegal ,, will be printed,
although the statement will assemble correctly. This prevents confusion if an extra comma is
typed after an accumulator field.

FAIL Basic Syntax 5

2.1.3 Full-Word Expression

EXPR + COMMENT

When the first expression in a statement is not preceded by a comma and is not an opcode, FAIL
assumes that the expression is a full-word expression. The entire 36-bit value of the expression is
placed in the current word. The full-word expression is the only ordinary statement (i.e., not a
pseudo-op) that assembles a single expression with a full 36-bit value. Full-woid expressiuns are
treated as address fields for purposes of the multiple address field error.

If a full-word expression contains any undefined symbols, unavailable symbols, or strange
relocation constants,’ the entire word will be updated with the value of the expression when it
becomes known. This will obliterate any index, indirect, or accumulator field appearing after the
expression on the line. If the expression actually has only an 18-bit value, this can be fixed by
prefixing the expression with a comma (i.e., by using a truncated expression). If a full-word value
is actually needed and the problem is not just one of availability (curable by the use of GLOBAL
or down-arrow (¥); see section 2.3.4.6, page 16), it may be necessary to use an explicit expression
to set the accumulator, index, and indirect fields.

2.1.4 Truncated Expression
, EXPR 1 COMMENT

If a comma appears before any expression in a statement, it flags the current word as containing
data-in order to force a subsequent expression to be treated as an address field even when it is the
only expression in the statement. This can be used to form an M-bit truncated expression. Note
that a statement consisting of a single comma will assemble a zero word.

2.1.5 Input-Output Instruction Statement

OPCODE DEVY, @ADORESS (INDEX) 3 COMMENT

An input-output instruction statement is used to assemble one hardware 170 instruction. Most
parts are the same as in an instruction statement, except that a device selection field appears
instead of an accumulator field. Also, the opcode portion must be one of the PDP- 10 kardware
input-output instructions (e.g., DATAOQ). Note that hardware 1/0 instructions are not related to
operating system UUOs.

2.1.5.1 Device Selection Field

The same syntax and restrictions that apply to an accumulator field apply also to the device
selection field. The value of the device selection field is placed in bits 3-9 of the current word.
This value is often called the device code.

Basic Sy n tax FAIL
216 Comment Field

When FAIL’s statement processor encounters a carriage return or semicolon (;), all characters up
to the next line feed or form feed are completely ignored except for listing and certain macro
processor functions (see section 4.1, page 38). Upon reaching the line feed or form feed, the
comment is terminated. Usually, this is used to insert a relevant comment at the end of a line of

code.
2.1.7 Statement Termination

A statement is terminated by a comment or by any of the characters line feed, double-arrow («),
right’ bracket (1), or right broket (>) when not processing a comment. When a statement is
terminated, the value of the current word (if any) is-returned. A statement returns no value at all
if no expressions appear in it or if it is a pseudo-op which assembles no code. Terminating a
statement with one of the bracket characters often has special significance, as in atomic statements
or literals. Double-arrow can be used for assembling more than one statement on a line, but will
not terminate a comment.

2.2 Expressions

Expressions are built from atoms connected by operators which allow the specification of values
based upon arithmetic and logical functions of several values. These expressions follow essentially
the same rules as conventional programming languages. Each operand in an expression may be
an atom, an atomic statement, or an expression in parentheses, preceded by any number of unary
operators. If parentheses are used, the expression inside the parentheses is evaluated before
performing any operations using that operand. If a unary operator appears, its function will be
evaluated before any operations using that operand (but after the expression in parentheses, if
parentheses are used). Multiple unary operators are evaluated from right to left, so --1is
processed as -(-1). Finally, these operands can be connected with binary infix operators whose
order of evaluation-is determined by their assigned precedence levels (highest first) and is left-to-
right for operators of the same level. An expression may, of course, consist of a single operand
(i.e., atom) with no operators at all.

Surrounding an entire expression with parentheses sometimes signifies an index field (see section
2.1.1.5, page 4). All arithmetic isinteger or boolean; no type conversion is done for floating-point
operands.

FAIL Basic Syntax 7

The following is a list of the available operators and their precedence levels:

Symbol Meaning Precedence Level
binary operators

Addition
Subtract ion
Multiplication
Division
Logical AND
Logical AND
Logical OR
Logical OR
Exclusive OR
Exclusive OR
Logical Left-Shift

+

@IV 1 < —T00\N%
D WWWWWWN N

unary operators

Negation (two’s complement) S
- Logical NOT (one’s complement) 5

If an expression contains any undefined values, its own value is undefined. If an expression is
used in a context where undefined values are legal, FAIL retains a structure describing the
evaluation needed, called a Polish fixup for its similarity to Polish arithmetic notation, in order to
complete the evaluation when the unknowns become defined. As soon as all values in the
expression are defined, a fixup will be output (to the loader) to correct the value (or the value will
be corrected directly in the case of a literal). If the expression is not completely defined by the end
of the assembly (due to external references or errors), the Polish structure is sent to the loader for
evaluation at load time. In other words, the right thing usually happens with a partially
undefined expression as long as it is legal in the context where it is used.

Expressions may also begin with any number of labels or assignment statements, which have no
effect on the value of the expression.

Examples
FOOe2 ;value of FOO shifted left 2 bits
(BAR-1)e-2 ;value of BAR-| shifted right 2 bits
(A+2) xB
-(A+2) %-B ; same value as above
<A+2>%B i another way (The symbol A must
sbe defined and available. See
;sAtomic Statements, section 2.3.5.1, page 20)
=60%=60
"A"-48
{81 -1 seven literal9 can appear in expressions

FOO: BAR4 105 ; the value of this expression is 105
; {labels and assignment statements have no
ieffect on the value of the expression)

8 Basic Syntax FAIL

2.3 Atoms

An atom is the most basic syntactic element. An atom is either a symbol or a constant. There are
also complex atoms which are not really atoms at all, but which can be used in the same way as
atoms in forming expressions. Every atom represents a value.

2.3.1 ldentifiers

Identifiers are very basic syntactic elements. They have many different uses, all of which involve
referring to something by a convenient symbolic name. The uses of identifiers will be covered as
the various applications arise. Identifiers may be defined either by the programmer or by FAIL.

The characters legal in an identifier are letters, digits, and the four characters dollar sign (It),
percent sign (%), point (.), and underbar (_). An identifier is any non-null string of characters
from this set, delimited by characters not from this set, except that the first character of an
identifier must not be a digit. Only the first six characters of an identifier are significant, and
upper and lower case letters are treated as equivalent. Thus “FOOBAR” and “foobarb | etch” are
equivalent identifiers. Also, *_" is considered equivalent to.“. ", so, for example, “A-7” and “A. 7”

are equivalent identifiers.

Certain identifiers have special meaning in FAIL, and cannot be used except with their own
special meanings. Some of these reserved identifiers are IFAVL, IFDEF, IFDIF, IFE, IFG, IFGE,
“IFIDN, IFL, IFLE, IFMAC, IFN, IFNAVL, IFNDEF, IFNMAC, IFNOP, IFOP, IOWD,
.FNAM I, . FNAM2, ".", and "8.".

2.3.2 Values

Most of the normal assembly process consists of translating text strings into their corresponding
binary values. The main transformation happens when the atomic elements are converted to their
binary representations; these are combined by binary operations into more complex constructs.

Often the final 36-bit value of an atom depends upon information not available at the time the
atom is seen. This value may become known when a later part of the program is assembled, or it
may not be known until the program is actually loaded. Consequently, up until the final loading
of a program into a core image, its' representation must be a slightly expanded form of simple
binary so that the steps necessary tp complete the calculation of all binary values can be
adequately described. Partially defined values are commonly used in writing FAIL programs;
several mechanisms exist to enable FAIL (and the loader) to handle such values correctly. The
full impact of forward references and relocatable values is discussed in appendix B, page 50.

Some of the different kinds of values that often occur in FAIL are distinguished by particular
names: relocatable, absolute, defined, undefined, available, and unavailable. The definitions that
follow involve symbols and block structure to some extent. Refer to section 2.3.4, page 11, and
section 2.3.4.6, page 15, for further elucidation.

FAIL Basic Syntax 9

A value that depends on where the program is when it is loaded in core is called relocatable.
Relocatable values occur most frequently when some location in the program or in the data is
referred to. Values that do not depend on where the program is located are called absolute or
unrelocatable. An example of an absolute value is a constant. Another example of an
unrelocatable value is the length of a table (that is, the difference between two relocatable values).

A symbol is an identifier that has a value. A symbol is defined when a value is assigned to it. A
symbol can be referenced before it is defined, that is, when the value of the symbol is undefined.
FAIL makes sure that the right thing happens when the value becomes defined as long as an
undefined value is legal in the particular context where it is used.

A symbol that is defined is said to be available (after the point of definition) in the block where it
is defined. When another (lower) block is entered, such a symbol becomes unavailable unless the
programmer has taken steps to force the availability of that symbol in lower blocks.

2.3.3 Constants

Constants are the simplest forms of atoms; their values do not depend on context or previous
operations (with the exception of the radix for interpretation of numbers). Constants are absolute,
i.e., independent of where the program is loaded. A constant may be one of several types of
numerical or text constants. In addition to the atomic constants described here, there are various
data entry pseudo-ops described in section 3.3, page 30.

2.3.3.1 Simple Numbers

A simple number consists of a string of digits, optionally followed by the letter “B" and one or two
additional digits which represent a scale factor. The digit string is interpreted as a number in the
current radix. Since the radix is initialized to 8, simple numbers are usually interpreted as octal
by default. In this case, the accumulation is done by logical shifting, so the number is considered
unsigned. If the radix is anything other than 8, the accumulation is done by multiplication, and
the sign bit cannot be set (but a negative number can be entered as an expression). The current
radix can be set with the RADIX pseudo-op (see section 3.5.4, page 35).

The one- or two-digit argument following the “B”, intirpreted in decimal, specifies the low-order
bit position of the number in the word. The number is shifted left logically a number of bit
positions equal to 35 (decimal) minus'the argument.

Examples:

1743

2

25488

1B33 sequivalent to 4
22818

10B37 ;equivalent to 2

10 Basic Syntax ' FAIL
2.3.3.2 Decimal Numbers

Decimal numbers provide a way of entering decimal information regardless of the current radix.
A decimal number is a simple number preceded by an equal sign (=). Since decimal numbers are
handled identically to simple numbers except for the radix, the “B” shifting operation may also be
used with decimal numbers.

Examples:

=100
=69
=10B27

2.3.3.3 Floating-Point Numbers

Numbers may also be entered in standard floating-point notation, in which case they will be
converted to PDP- 10 single-precision floating-point format. Floating-point numbers are always
interpreted in decimal regardless of the current radix. Note that any arithmetic performed by
FAIL on numbers is always integer arithmetic, even if the operands are floating-point numbers.

A floating-point number consists of two strings of digits, separated by a decimal point and followed
by an optional scale factor. The digit strings before and after the decimal point represent the
integer and fraction parts of the floating-point number, respectively. The scale factor is the letter
"E", an optional minus sign, and one or two digits. The number following the "E" specifies a
power of ten by which the number will be multiplied.

Although the fraction part of the number may be omitted, it is probably better to include the
redundant 0 to avoid a possible future conflict that could arise if FAIL were modified to allow a
decimal point following a digit string to signify a decimal number.

Examples:
3B 781 i igquivalent to 107.0
0.13
18. sbetter to write this as 10.0
1.86E@S
31.4159E-1
69E1 ;presently equivalent to 690.0

2.3.3.4 Ascii Constants

Constants may also be specified as the ascii value of a character or string of characters. The ascii
value of a character is its ‘I-bit code in the Stanford Character Set, a modified form of the
USASCII code (see appendix D, page 56). An ascii constant is written as a string of characters
not containing a double quote ("), enclosed with double quotes, e.g,"Foo". If the string is null,

FAIL " Basic Syntax 1

i.e.,, "", theresulting value will be zero. If the string contains exactly one character the resulting
value will be the ascii value of that character. If the string contains more than one character,
each additional character will shift the total left 7 bits and add its own value, much as an octal
number is accumulated. This results in packing characters into right-justified 7-bit bytes. Only
the low-order 36 bits of the total are used, so if more than 5 characters appear in the string, only
the last 5 characters and the low-order bit of the sixth-from-last character will affect the value.

This right-justified form is not the standard way of packing text for addressing with byte
instructions, but is intended mainly for small immediate operands, etc. Text pseudo-ops (described
in section 3.3.6, page 32) are used to store text in the usual left-justified format in multiple

words.

Examples:
“A” ;1181 octal
"aC" 3 27503 -
" f oobar " : 337576130362

2.3.3.5 Six bit Constants

Another character code that is frequently used is sixbit. It is a modified version of ascii code
which uses only 6, instead of 7, bits in order to pack 6 characters into a word rather than 5.

The -basic ascii to sixbit transformation consists of subtracting 40 (octal) from the ascii code,
which maps ascii 40-137 (all the printing characters of 64-character ASCII) into the desired 0-77.
Since the 140- 177 range consists mostly of lower-case versions of the 100- 137 characters, a better
transformation also maps this range to 40-77. The method used by FAIL is to copy the 100 bit
into the 40 bit and set the 100 bit to 0. The inverse transformation is accomplished by adding 40

to each sixbit character.

Sixbit constants can be specified in FAIL in the same way as ascii constants, except that close
single quotes (apostrophes) (") should be used instead of double quotes. Naturally, if more than
one character appears in the string, the shifting will be 6 bits at a time instead of 7, and the last 6
characters of the string will always be completely significant. Again, a pseudo-op is available (see
section 3.3.6, page 32) to pack longer strings into multiple words.

Examples:
‘a’ s41
‘DSK ' i 446353000000
' gronker’ 1 625756534562
2.3.4 Symbols

Symbols are one of the most important features provided by an assembler. One capability
provided by symbols is the ability to abbreviate a complex expression with asingle identifier.

12 Basic Syntax FAIL

Another is to represent an assembly parameter, so that its value can be changed at the symbol
definition only, without having to modify the places where the parameter is used. A third use is
to represent values which are difficult for the programmer to calculate, such as values dependent
upon exactly where certain parts of the program are stored.

A symbol is an identifier which at some point in the program (or possibly in an external program)
is assigned a value which will be associated with that identifier whenever it is used in a context
where symbols are recognized (see section 2.1.1.1, page 3, and section 4.1.4, page 40, for
discussion of possible conflicts with opcodes or macros). The point at which a value is assigned to
a symbol is said to be the point where it is defined.

In most circumstances, a symbol may be used to stand for a value either before or after it is
defined. A symbol is said to be referenced when it is used to stand for a value. If this reference
occurs earlier in the source file(s) than the definition, it is said to be a forward reference; if the
reference follows the definition, it is said to be a backward reference. Backward references can be
handled fairly easily, by merely replacing the symbol by its known value. However, forward
references create some complication since FAIL does not know the value of the symbol until later
in the file.

Two-pass assemblers avoid the forward reference problem by assembling the program twice. On
the first pass the assembler calculates the value for each symbol; on the second pass these known
values are used when the corresponding symbols are referenced. This method probably has the
smaller storage requirements, but it requires more cpu time since the entire source file is scanned
twice.

-FAIL uses the one-pass approach to save execution time (at the expense of increasing the storage
requirements). In this method, each forward reference assembles an incomplete word, but
sufficient information is included in the binary file to enable the loader to complete the assembly.
Part of the necessary mechanism exists in the loader anyway in order to handle externally defined
symbols, which must be treated as forward references even by a two-pass assembler. Information
placed in the binary file to update the value of an incompletely assembled word is referred to as a

fixup.

Because of the problem of forward references in a one-pass assembler, the meaning of “defined” as
used in this manual is not “defined somewhere within the program’, but rather “defined in the
program before the place being considered”. In this sense a symbol is not considered to be
“defined” at the time of a forward reference, even if it is defined later in the program.

A symbol may be defined in one of four ways. It may be defined as a label, as a parameter, or as
a variable, or it may be a predefined symbol. These types of symbols are discussed in the
following subsections.

2.3.4.1 Labels

Labels are the most common type of symbol. They are used as symbolic references to locations in
the program. Labels help to keep such references independent of the exact placement of those
parts of the program in the core image. The value of a label is calculated automatically by FAIL,

FAIL Basic Syntax 13

so that the programmer need not keep careful account of the exact numeric locations of all parts
of his program.

A label is defined by simply writing an identifier followed by a colon (:) at the beginning of any
expression being scanned. This will normally define the symbol as equal to the location counter,
i.e., the location where the next word will be assembled. However, in some circumstances
involving the use of literals (section 2.3.5.2, page 20) or the PHASE pseudo-op (section 3.1.3,
page 23), the value of the label may differ from the location counter. The value assigned to a
label is usually relocatable because the location counter is initialized to relocatable zero, but it may

be absolute.

Although labels may occur at the beginning of any expression, they almost always occur at the
beginning of a line. This convention improves the readability of programs by keeping labels in a
place where they are easily recognized.

In order to detect possible conflicts in label usage, FAIL does not allow any label to be defined
more than once. (However, FAIL block structure allows a label to be redefined in different blocks;
see section 2.3.4.6, page 15.) Once a symbol has been defined as a label, it cannot be redefined; a
symbol cannot be defined as a label if it has any previous definition. An attempt to do either of
these things will result in a multiple definition error message, and the new definition will not take

effect.

Examples:
LOOP: JRST LOOP ipoints to itself
FOO: ;labels the location of the next instruction

2.3.4.2 Parameters (Assignment Statements)

A parameter is a symbol that is given an arbitrary 38-bit value by an assignment statement.
Actually, the final value is 36 bits, but since either 18-bit halfword may be relocatable two more
bits are included in the representation of the value. The basic format of an assignment statement
is an identifier followed by a left-arrow (<) followed by an expression. The 38-bit value of the
expression, which must be defined, will be given to the specified symbol. An equal sign (=) may
also be used as an alternative to left-arrow to allow partial compatibility with other assemblers,
but if the first atom after the = begins with another = to indicate a decimal number, at least one
space should separate the two to distinguish them from ==, which has a different function (see
section 2.3.4.5, page 15).

As with labels, any number of assignment statements may appear at the beginning of any
ex pression, but they are normally written as separate statements for -improved readability. In its
full generality, an assignment statement may define more than one symbol by beginning with
several symbol names, each followed by a left-arrow, and finally followed by the expression, whose
value will be given to all symbols mentioned.

Unlike labels, parameters may be redefined as often as desired. Once a parameter has been
defined, each reference to it will use the value in effect at the time of that reference (i.e., as of the

14 Basic Syntax FAIL

last assignment). The value appearing in the symbol table in the binary output file will be the last
value assigned. The value used for forward references (i.e., before the first definition) will be that
of the first assignment. Note that this is an incompatibility with two-pass assemblers, which would
instead use the last value assigned during pass one.

Examples:
FOO«~185
BAR«=63
BLETCH«BARF «L0SS<F00+BAR%3
garps= =37 ;jnote space between = is necessary

2.3.4.3 Variables

Variables are symbols whose values are the addresses of cells automatically allocated by FAIL for
data storage. A variable is usually created by immediately following a symbol reference with a
number sign (#). The symbol, which must not be previously defined, is declared to be a variable
and will have its location assigned when the location of the variables area is known (see section
3.1.7, page 25). The symbol is not defined at this point; it cannot be used in contexts which
do not allow forward references. However, it can be used as any other forward-referenced symbol;
the number sign need not be used with more than one occurrence of the symbol. Similar effects
can also be obtained with the INTEGER and ARRAY pseudo-ops (see section 3.4.2, page 33).

Examples:

SETZM FOO#
HOVE1 A BAR#-1

2.3.4.4 Predefined Symbols

Predefined symbols are available for use in all circumstances where symbols are recognized.

Two predefined symbols, point (.) and dollar-point ($.) refer to the location counter, which is the
location where the next complete word will be stored. In the absence of special circumstances, *."
and "8 . " have the same value; "." is the one usually used. These values are usually relocatable

but may be absolute; see section 3.1.1, page 22.

The reason for having two of these symbols is that some features of FAIL create complications
affecting the location counter; see the discussion of literals (section 2.3.5.2, page 20) and the
PHASE pseudo-op (section 3.1.3, page 23).

Examples:

JRST .-1
JUHPN T,$.+3

FAIL Basic Syntax 15

The predefined symbols, . FNAM1 and . FNAMZ refer to the name of the current source file. The
value of . FNAM lis the 36-bit binary representation of the source file name; . FNAM2 has the
value of the source file extension (or second file name).

2.3.4.5 Half-Killed Symbols

Symbols are included in the binary output file to aid debugging and to allow the loader to link
several programs together. The debuggers (RAID and DDT) have symbolic disassemblers which
take binary words and interpret their fields to display mnemonic opcodes, addresses, accumulator
names, etc. Sometimes, the user wants to prevent particular symbol names from being displayed
by the symbolic disassembler. Symbols that have been marked to prevent their display are called
half-killed. Half-killing a symbol is useful for parameters which might incorrectly be displayed as
core addresses or accumulator names. Half-killing is also handy for labels in code that is relocated
at runtime. The debuggers do recognize half-killed symbols-when they are input.

FAIL treats half-killed symbols precisely the same as other symbols, except, when the symbol is
written in the binary output file, a bit is set to inform the debugger that the symbol is half-killed.

In FAIL, half-killing a symbol is accomplished by doubling the defining character (e.g., : :,cc, or
==), In the case of ==, the two equal signs must not be separated by any spaces, because this is
how the ambiguity is resolved with ’'respectto the other use of equal sign to indicate decimal
numbers, A parameter will be half-killed if any one of its definitions specifies half-killing.

Examples:
ERRFLG«<100 fthe usual way of writing it
IOFLG «« 2000 s+ this can have spaces anywhere
BUFSIZ -- 100 sbut this can’t (100 is octal)
BUFSIZ == 100 ;since this means decimal, not half-killed
BUFSIZ === 100 sthis is unambiguous (188 is decimal)
BUFSIZ -- = 100 ; (188 is decimal)

LOOP: : SKIPN A, (B) 1a half-killed label

2.3.4.6 Block Structure

Block structure is very basic to the usage of symbols. This section may be skipped if the reader
does not plan to use block structure. The one thing to remember is that in the absence of block
structure any symbol which is defined is also available.

FAIL block structure provides a way of localizing the usage of symbols to particular parts of the
program, called blocks. Block structure allows the same symbol name to be given different
meanings in different blocks. The block structure used in FAIL issimilar to that of ALGOL, but
is somewhat less restrictive.

A program is considered to be a block whose name is the same as the program name (set by the
TITLE statement; see section 3.5.1, page 34). Each block may contain any number of inner

16 Basic Syntax FAIL

blocks, but the depth of nesting may not exceed 17 (decimal). A definition of a symbol, a user-
defined opcode (see section 3.2.1, page 26), or a macro (see section 4, page 38) applies
only within the scope of the outermost block in which it is defined. The scope of a block includes
the scope of each block it contains, unless the symbol (etc.) in question is defined again in an inner
block, in which case the more local definition takes precedence within the scope of that block. A
block is delimited by a BEGIN statement and a BEND statement (see section 3.22, page 26).

Features exist in FAIL for controlling the block level of symbols. If a symbol, when defined as a
label or parameter, is preceded by an up-arrow (1), it will be treated as if it were defined in the
next-outer block. If a double up-arrow (™) is used, the symbol will be treated as though it were
defined in the outermost block of the program. These features are most commonly used for such
things as making subroutine entry - points available to outer blocks when the subroutines
themselves are contained in blocks. In simple cases, this could be done by beginning the block
after the entry label(s) or even after some of the code, but this makes reading the routine more
difficult and hence the up-arrow construct is preferred. Tilde (~) may be used instead of up-
arrow.

Here are some examples of symbol usage, with and without block structure. Both examples
generate the same code:

FOO1: JRST FO0O1 FOO1: JRST FO0O1
JRST FO02 JRST F002
JRST FO03 JRST FO03
JRST FO05 JRST FOOS

BEGIN

FOO02: JRST F0OO1 FO022: JRST FOO1

TF003: JRST FO02 FO03: JRST F0022
JRST FO03 JRST FO03

BEGIN
JRST FOO1 JRST FO0013

MFO0S5: JRST F002 FO05: JRST F0022
JRST FO03 JRST FO03

FOOl: JRST FO04 FO013: JRST FO004

BEND

TFO04: JRST FOO4 FO04: JRST FO04

BEND

FO02: JRST FO04 FO02: JRST FO04

A complication arises with FAIL block structure due to the absence of the ALGOL requirement
that all identifiers be declared at block entry time. FAIL allows forward references, yet does not
require any declaration of symbols other than their defining occurrences. Hence, FAIL cannot
decide whether to use an existing outer-block version of a symbol or to make a forward reference
to a more local definition that may occur later.

To resolve this ambiguity, FAIL always considers a symbol reference to be a forward reference
when the symbol has not been defined in the current block, even if it has been defined in some
outer block. If no other definition is given by the time the block ends, then the outer-block
definition is used to resolve the forward reference. While in the inner block in this situation, the
outer-block symbol is still said to be defined, but it is also said to be unavailable. Thus block
structure forces many references to be forward references, even when they would not otherwise be
such.

FAIL Basic Syn tax 17

Macros and user-defined opcodes cannot be forward-referenced. Such symbols are always
available; references to them will use their outer-block definitions.

Examples:
FOO: MOVSI 1,-62 +F00 is defined as a label
BAR: CAME 2,20T(1) ss0is BAR
AOBJN I,BAR +BAR is referenced
BEGIN +F00 and BAR are defined, but now unavailable
LOSS : MOVE1 1,8 1LOSS is defined
JRST LOSS :a backward reference to LOSS
JRST FOO s+ this is treated as a forward reference
FOO: HRRM 6,LOSS 1s0 it can reference this definition
BAZ: JRST BAR s this is treated as a forward reference
JRST FOO s this refers to this block’'s FO O
BENO s The outer-block definition of BAR becomes

savailable at this BEND. A fixup is emitted
s to fix the reference to BAR at BAZ

Many contexts do not accept forward references (e.g., accumulator and index fields). In these
contexts unavailable symbols cannot be used, even if they are defined. Therefore, FAIL provides
two mechanisms for forcing defined symbols to be available to lower blocks. One is the down-
arrow mechanism, which is used at the defining occurrence of the symbol, and the other is the
GLOBAL pseudo-op (see section 3.2.3, page 26), which is used in the referencing block.

The down-arrow mechanism is the more commonly used method, since this problem is most often
associated with particular symbols (accumulator names, assembly parameters, etc.). Preceding the
symbol name in a label or assignment statement with a down-arrow () causes that symbol to
remain available whenever inner blocks are entered. Usually it is dangerous to redefine such
symbols locally, since any forward references will have incorrectly referred to the outer-block
definition. Consequently a warning message is printed in this case, but if no forward references
are made to the local version, it will assemble correctly. However, if the redefinition of a down-
arrowed parameter is effective at its original block level (possibly via T or 1), FAIL will change
the original definition without complaint. This allows redefinition of global parameters from
inner blocks. A question mark (?) may be used instead of down-arrow.

18 Basic Syntax FAIL

Examples:
VAl ssome accumulator (AC) definitions
Be2
YFO0ee=63 sand a parameter
BEGIN .
ADD B,A sthis is i | legal because AC
ssymbols must be available
MOVE A,B ibut this is legal since A is available
sby ¢
At5 ; this will produce a message and is too
s late to affect the instruction above
Beb sthis is legal and will fix up the MOVE
; to be MOVE1,86
MOVE A,B ;whereas this will be MOVES,6
00185 s this is legal since it is “aimed” at the
+FO0 in the outer block
BEND

There are further details in section 3.22, page 26, and section 3.2.3, page 26, about the
block structure pseudo-ops BEGIN, BEND, and GLOBAL.

2.3.4.7 Linkage with Separately Assembled Programs

It is sometimes desirable to have a program which is assembled in several parts, either to save
reassembling the entire program for each change or because the program is written in a mixture
of languages. Even with asingle assembly it is usually necessary to use some of the job data area
symbols, and sometimes symbols from the debuggers (RAID or DDT), all of which are reached
through the linking loader. In this context, the word program refers to the result of one assembly
or compilation, and thus a core image may contain several programs.

To allow reasonable communication between these programs, the loader allows symbol definitions
to be passed between programs. For this purpose, symbols are divided into two classes, local
symbols and global symbols. (There is no relation between the GLOBAL pseudo-op and the
global symbols discussed here.)

Symbols are normally considered local, which means that they will not be available outside their
own program and may be defined in more than one program without conflict. Global symbols,
however, a.re available to all programs and hence must not have conflicting definitions within the
set of programs to be loaded. The easiest way to declare a symbol to be global is to follow some
occurrence of the symbol by an up-arrow. This flags the symbol as a global without specifying
whether jt is defined in this program or another program, since FAIL will have figured that out
by the end of the assembly. Undefined globals (external symbols) will have appropriate fixup
information passed to the loader for resolution when the defining programs are loaded. Globals
may also be declared with the EXTERNAL (section 3.2.5, page 27) and INTERNAL (section
3.2.4, page 27) pseudo-ops.

FAIL Basic Syntax 19

Declaring a symbol global forces its scope to the outermost block in the same way as does a double
up-arrow. Therefore, if a symbol is defined and declared global in an inner block, there must not
be a conflicting definition in an outer block.

One other related’feature is the library mechanism. A library is a file that contains a set of utility
programs. Each program in the library may be loaded independent of the others, depending on
whether it is required by the programs that have been loaded thus far. To implement this, there
is associated with each program in the library (in one or more entry blocks) a list of certain global
entry points defined in that program. In most cases these are the names of the routines contained
in the program. When the loader is in library search mode, it loads only those programs for which
at least one of the entry points corresponds to an existing unsatisfied global request (external
symbol). Only those programs actually needed are loaded from the library; the rest are ignored.
The ENTRY pseudo-op (section 3.2.4, page 27) is used to declare symbols to be entry points
which will be available to a library search.

2.3.4.8 Symbols and Arrows

This is a brief restatement of the ways that identifiers are used as symbols in conjunction with
arrows.

Examples:

PSYM: +SYM is available at the next-outer block

1B0Le¢18 ;BOL is half killed and available at the
soutermost block

MZ0T= -69 +Z07T is available at the outermost block

VAT7 ;A is global and available to lower blocks

FOO*: ;FO0 is global and defined here (internal),
savailable at the outermost block

PUSHJ P,BAZ* ;BAZ is global, may be external, available at the

soutermost block

2.3.5 Complex Atoms !

Two CONStructs exist which assemble one or more statements in much the same way as FAIL’s
normal top-level statement processor, but then return as an atom the value associated with the
statement(s) assembled, rather than outputting the binary data. Both of these constructs involve
the use of opening and closing characters to delimit the text. For an atomic statement, broken
brackets, called brokets(< and >), are the delimiters. For literals, the delimiters are square brackets

(tand I).

When the opening character is recognized, FAIL saves its present state and enters an auxiliary
statement-assembly loop, continuing to assemble statements until a statement is encountered which
terminates with the closing character. The closing character is located as a statement delimiter, not
by keeping a count of the opening and closing characters. Thus if the delimiter character appears
in a text constant, it will not be countéd toward the match; also, attempting to use a comment (see

20 Basic Syntax FAIL

section 2.1.6, page 6) in the final statement of the sequence will prevent recognition of the closing
delimiter. Note that this method of counting brokets is different from the macro processor, which
counts brokets rigidly, independent of context. Nesting of complex atoms is handled by the
recursive nature of FAIL’s statement processor.

2.3.5.1 Atomic Statements

When it is useful to have the value of an entire statement treated as an atom, enclose that
statement in brokets. Some number of statements will be assembled as described above, and the
value of the first word assembled will be returned as the value of the atom, just as if the
corresponding number had been typed. The values of any additional words assembled up to the
closing broket will be ignored, although their side effects (if certain pseudo-ops are used) may
remain. For example, if one of the multiple-word text pseudo-ops is used inside brokets, only the
first text word will be returned, and the rest will be-dispatched to the great bit bucket in the sky.
This type of atom is constrained by FAIL to be handled as a number, so all symbols used in this
context must be defined and available.

Examples:
<JRST> sequivatent to 254000000000
<JRST 105 1254000000105 will be the value
JRST BAR ;and this statement won't do anything except
spossibly produce an error message if BAR
y isn’'t defined and avai lable >
> sthis broket will end it, not the one above
2.35.2 Literals

Although the PDP-10 instruction set allows a large percentage of constants to be specified as
immediate operands, it is still frequently necessary to reference constants stored elsewhere in
memory. Instead of explicitly setting up these constants and referencing them by labels, it is
possible to reference these constants as literals. The basic function of literals is to allow the
programmer to write the value of the desired constant directly (i.e., literally), while the assembler
automatically allocates a memory location for it; stores the value in it, and supplies the address of
the cell for the reference. Also, an operation called constants optimization occurs, which consists of
comparing (the binary value of) each literal with previous literals to see if the required constant
has already been allocated, in which case the existing cell will be used rather than allocating
another. This avoids multiple copies of a given constant.

Touse a literal, put a statement of the desired value in square brackets and use it as an atom.
The value (of the literal) will be the address of the literal in memory, which is treated like an
undefined symbol since the actual location will not be assigned until later (usually the end of the
program; also, see section 3.1.6, page 25). Literals can be used only where forward references

are legal.

FAIL Basic Syntax 21

Because of the constants optimization, it is often dangerous (and considered poor form) to write a
program which changes the contents of a literal. Such a change affects ail parts of the program
attempting to use that constant, which is not usually the desired effect.

A literal may contain more than one word if desired. The syntax of iiterais is basically the same
as that of atomic statements, except that @/l words assembled are used. Multiple-word literais are
most commonly used to store long text strings, but may be used to store sequences of instructions.
There is no rigid limit on the maximum size of a literal, but large iiterais do consume assembler
core fairly rapidly.

For purposes of assembling code in iiterais, it should be noted that the predefined symbol "."
retains its value during the assembly of a literal, rather than referring to the current location
within the literal. Thus it refers to the location where the reference to the outermost literal is
being made. The current location within the (current) literal can be referred to by using the
symbol "8." (but this may not do the right thing if the PHASE pseudo-op is in use).

Naturally, labels may appear inside iiterais, but if they do they will be assigned the value of the
current location within the literal, rather than the value outside. (Labels that appear inside
iiterais are called literal-labels.) This is the only time that FOO: and FOQ«. assign different values
to FOO. The location of a literal is unknown at the time it is processed; hence, labels that are
defined within iiterais (and “it.” when used inside iiterais) are undefined symbols. For example, it
is illegal to say FOO<$. inside a literal because assignment statements do not accept undefined
values. Note also that constants optimization will still occur with labeled iiterals, and this may

result in several labels having the same value, if appropriate.

‘Examples:
PUSH P, 151 sno PUSHI, so a literal is handy
OUTSTR [ASC1Z /FO0BAR/] ;a two-word text constant
JR S TIMOVEIC,12 isome code in a literal
PUSHJ P,WRCH
suBp,I1,,1] ;a nested literal
JRST .+1] \ sreturns to the next instruction
soutside the | i teral
PUSHJ P, [YTST: CAIE C,"Y" ;a subroutine in a literal
CAIN C,"y" ; (very rarely done actually)
A0S (P)
POPJ P,J.

PUSHJ P, YTST scalling the above subroutine

22 Pseudo-Ops FAIL
3. Pseudo-Ops

Most statements are translated into operations for the computer to perform when the program is
executed. Pseudo-ops (short for pseudo-operations), on the other hand, signify operations to be
performed at assembly time. Some of these operations affect the behavior of the assembler in
particular ways; others serve as convenient methods of entering data in commonly used formats.

3.1 Destination of Assembled Code

The assembler uses a location counter to keep track of the location where the code it is assembling
will go. This counter is initialized to relocatable 0 at the start of the assembly; it is incremented
by 1 for each instruction assembled. The value in the location counter is the location where the
next word assembled will go.

3.1.1LOC, RELOC, and ORG

The contents of the location counter can be changed with the LOC, RELOC, and ORG
_ statements.

The LOC pseudo-op takes one argument, an expression, which must be defined and available.
The effect of LOC is to put the value of the expression into the location counter and to set the
relocation of the counter to absolute, regardless of the relocation of the argument.

The RELOC statement has the same effect as the LOC statement except that the relocation is set
to relocatable, regardless of the relocation of the argument.

The ORG statement has the same effect as the LOC and RELOC statements except that the
relocation is set to the relocation of the argument.

Whenever LOC, RELOC or ORG. is used, the current value (and relocation) of the location
counter is saved (there is only one such saved-location counter, not one for each pseudo-op). A
LOC, RELOC, or ORG statement with no argument will cause the saved value and relocation to
be swapped with the current value (and relocation) of the location counter.

3.1.2 SET and USE

It is possible to have multiple location counters and to switch back and forth among them. Only
the currently active location counter is incremented. Location counters may be given any names
which fit the syntax of identifiers. There is no relationship between location counters and labels
with the same name.

FAIL . Pseudo-Ops 23

The SET pseudo-op is used to initialize a location counter. It takes two arguments separated by a
comma. The first is the name of the location counter; the second is the value to which the counter
will be set. SET has the same effect as ORG except that it changes the indicated location counter
and has no effect on the current location counter unless it is the same as the indicated one. SET
is usually used to create a new location counter.

The USE pseudo-op is used to change location counters. It takes one argument, the name of the
location counter to change to. USE causes the current location counter value to be saved away
and the value of the indicated counter to be used. If a subsequent USE indicates the location
counter which was saved away, the value it had when it was saved away will become the current
value. If the indicated location counter has not appeared in a SET before its appearance in a
USE (i.e., if it has no value), it will be given the value of the current location counter. The
location counter which the assembler starts with has a blank name (i.e., a null argument indicates
this first one).

In the example below, a close single quote (apostrophe) (*) is used to denote that the value it
follows is relocatable. This is the convention that FAIL uses when making a listing of the
assembled code.

Example:
Location Instructions
0} JRST FOO
1’ JRST BAZ
2’ SET GARP, 37
2’ USE GARP
37 JRST FOO
40 USE
2’ JRST FOO

3.1.3 PHASE and DEPHASE

It is sometimes desired to assemble code in one place which will later be moved by the program
itself to another place. In this case, it is desired that labels be defined as referring to locations in
the place where the code will be moved, rather than where the assembler will put it. To
accomplish this, the PHASE pseudo-op is used. PHASE has one argument, the location to which
the next word assembled will be moved by the program. For instance, if, while the location
counter is at 74, a PHASE 32 appears and a label appears on the next line, the label will be given
the value 32, but the code on that line will be placed in location 74. Under these circumstances,
the "." symbol will have the value 32, but the "$." symbol will have the value 74. The PHASE
pseudo-op remains in effect until cancelled by a DEPHASE pseudo-op (no argument).

If a RELOC, LOC, or ORG pseudo-op (see section 3.1.1, page 22) appears while PHASE is in
effect, the following considerations apply. If the relocation of the location counter remains
unchanged by the RELOC (or LOC or ORC), then the value of‘the ‘phase will be offset by the
same amount as the location counter changes. That is, the value of "." and "$. " will be changed
by the same amount. If the relocation of the location counter changes and the relocation of the

24 Pseudo-Ops FAIL

phase was the same as the relocation of the (old) location counter, then the relocation of the phase
will be changed and the phase will be offset by the same amount as the location counter changes.
Otherwise, the error message indeterminate Phase due to RELOC will occur and FAIL will
dephase.

3.1.4 HISEG

This statement outputs information directing the loader to load the program into the high
segment. It should appear before any code is assembled.

3.1.5 TWOSEG

This statement directs FAIL and the loader to assemble and load a two-segment program. This
complicates the relocation process because the loader must maintain two relocation constants, one
for each segment. Since only one bit of relocation information is available for each value in the
relocatable binary file, a kludge is used to decide which relocation to apply to each relocatable
value. To do this, the loader compares the unrelocated value to a quantity known as the Aiga-
segment origin, which is the first address used for the high segment within that program, Any
value greater than or equal to this quantity will be considered a high-segment address, while any
value less than this quantity will be considered a low-segment address. When the value in
question is a location specifier, the choice of relocation will determine which segment the code is
-actually loaded into.

Unfortunately, there is a possible bug in this relocation method. It is possible to have an
expression which evaluates, through normal relocation arithmetic, to a relocatable quantity whose
unrelocated value does not correspond to the segment the relocation was originally derived from.
For example, if FOO is a label at high segment location 120, it will probably have a value of
relocatable 400120. The expression FOO-400000 would be calculated by FAIL to have the value
relocatable 120. This value would be passed directly to the loader since Polish appears
unnecessary. However, the loader would apply the low-segment relocation to this value and
probably have incorrect results. At present, the best way to get around this is to say
FOOx1 -488088, which will force the Polish to be passed to the loader.

The high-segment origin is specified by an optional argument to the TWOSEG pseudo-op, or set
to the default of 400000 in its absence. In this case a RELOC 400000 followed by a RELOC 0 will
initialize the dua location counter to assemble into the low segment and to switch segments
whenever a RELOC statement with no argument is encountered (see section 3.1.1, page 22). Like
HISEG, TWOSEG should be used before any code is assembled.

FAIL Pseudo-Ops 25

Example:
T | TLE EXAMPLE
PDLEN««188
Pel?

TWOSEG 400000 sinitialize to two segments

RELOC 0 sinitialize dual location counters

RELOC 400000 snow assemble code in the high segment
START: TDzZA 1,1

MOVNI 1,1
MOVEM 1,RPGSW#
CALL1 O
MOVE P, [10WDPDLEN,PDLISTI]
RELOC ;set the relocation to low segment
PDL | ST: BLOCK PDLEN ;define space for data storage
RELOC ;set location counter to the high segment

PUSHJ P,CORINI ;code is assembled in the high segment
;s the rest of the program goes here

RELOC sback to the low segment
VAR ;do variable8 in the low segment
RELOC s to the high segment
LIT sandliterais here
END START
316 LIT

The LIT statement causes all previously defined literals to be placed where the LIT statement
occurs. The LIT statement must not appear inside a literal. If a two segment sharable program is
being assembled, LIT should appear in the upper segment.

3.1.7 VAR

The VAR statement causes all variables which appeared with a # in this block (or a sub-block of
this one) to be placed where the VAR appears. VAR must not appear inside a literal. If a two
segment sharable program is being assembled, VAR should appear in the lower segment.

26 Pseudo-Ops FAIL

3.2 Symbol Modifiers

The pseudo-ops in this section perform several functions, all relating to the definition or
availability of symbols, or affecting the linkage of this program to others.

3.2.1 OPDEF

The OPDEF statement has the following form:

OPDEF symbo | ha | uel

OPDEF inserts the symbol into FAIL’s opcode table with the indicated value. The symbol, which
is a user-defined opcode, may then be used as any other opcode. The value part of the OPDEF
must be defined and available. User-defined opcodes are sometimes called opdefs because of the
pseudo-op by which they are defined.

3.2.2 BEGIN and BEND

The BEGIN statement is used to start a block. The block it starts will end at the corresponding
BEND statement. The BEGIN may be followed by an identifier that will be used as the name of

-that block. DDT and RAID recognize block names. If no identifier appears, the assembler will
create one of the form A. 000, where the 000 will be replaced by the block number of this block in
octal. (The block number is initialized to zero and incremented for each BEGIN.) There is no
relationship between labels and blocks with the same name. All text following the identifier is
ignored until the next line feed or double-arrow.

BEND may be followed by an identifier which, if present, is compared to the block name of the
block being ended; if they don’t match, FAIL prints an error message.

FAIL does not require block nhames to be unique; however, the loader and the debuggers
sometimes depend on unique block names, so the user would be wise to avoid conflicts.

For a discussion of block structure, see section 2:3.4.6, page 15.

3.23 GLOBAL

The GLOBAL pseudo-op should be followed by a list of symbols separated by commas. Each
symbol should be defined in an outer block. The effect of GLOBAL is to find the nearest outer
block in which that symbol is defined and to make the definition in that block immediately
available in the block in which the GLOBAL appears. GLOBAL does not affect the definition of
the symbol in any intervening blocks.

FAIL Pseudo-Ops 27

If a symbol has been declared GLOBAL in a block and later is redefined in that block, the
redefinition affects the definition in the outer block where GLOBAL found the original definition.
Doing this causes strange effects if the definition was not in the next-outer block; it should not be
done without some careful thought.

The GLOBAL pseudo-op has no relation to the concept of global symbols.
3.24 INTERNAL and ENTRY

These statements declare certain locally defined symbols to be internal symbols. Internal symbols
are those which are made available to other programs by the loader. INTERNAL (or ENTRY)
should be followed by a list of symbols separated by commas. These symbols need not be defined
before the INTERNAL (or ENTRY) statement appears, but they must be defined by the end of
the program.

ENTRY emits special library entry blocks to the loader; see section 2.3.4.7, page 19. ENTRY
statements must appear before any other statements that emit code, except that it is specifically
legal to precede ENTRY statements by a TITLE statement.

3.25 EXTERNAL

The EXTERNAL statement declares that certain symbols are external symbols. An external
symbol is a symbol that is declared internal in some other program. EXTERNAL is followed by a
list of symbols separated by commas. The loader will fix up any references to an external symbol
when the program in which it is defingd is loaded.

Symbols must not be defined at the time they are declared with an EXTERNAL statement. If an
external symbol is subsequently defined, it is automatically converted to an internal symbol.

If any occurrence of a symbol is immediately followed by an up-arrow (f), that symbol is made
external if it is not yet defined, or internal if it is defined. If an external symbol is subsequently
defined, it will be made internal.

3.2.6 LINK and LINKEND

LINK and LINKEND are used to establish a single-linked list among several separately
assembled programs. Each linked list is identified by a link number in the range 1-20 (octal).
The formats are

LINK number, location

LINKEND number, location

28 Pseudo-Ops FAIL

The number is the link number; the location is the address where the link information will be
stored. The effect is to allow 20 lists to be threaded through several separately assembled

programs.

The loader initializes each link (and iinkend) to zero. LINK N,FQOO causes the loader to store in
FOO the current value of link N. Then link N is set to (point at) FOO. LINKENDN, BAZ causes
the the loader to store the address BAZ as the iinkend for link N. When the loader finishes
loading ail programs, the final value of each link will be stored in the corresponding iinkend
address, only if that address is non-zero. The LINKEND feature allows the head of the list to be
in a known place, rather than in the last place LINKed.

3.2.7 .LOAD and .LIBRARY

The .LOAD pseudo-op causes the loader to load a specific REL file as a consequence of loading the
program in which this pseudo-op occurs. The format is

.LOAD DEV:FILE [PRJ,PRG]

The DEV: field is optional (the default is DSK:); it specifies the device where the REL file can be
found. ThelPRJ, PRGI field is optional; it has the usual meaning. The file named must have the
extension REL (this is a loader restriction).

In non-Stanford FAIL installations, the file name is scanned in accordance with the convention
- that prevails at that site.

The .LIBRARY pseudo-op is similar to . LOAD, except that instead of loading the file, the loader
will search the named file as a library.

3.2.8 PURGE

The PURGE pseudo-op takes a list of symbols, separated by commas, as its argument. Each of
the symbols named will be purged, i.e., removed from FAIL’s symbol table. A purged symbol can
be an opcode, macro, label or other symbol. For PURGE to be legal, the symbol must be defined
and available when the PURGE occurs. Some symbols, such as variable names literal-labels, and
global symbols, cannot be purged. Purged symbols are not passed to the loader or debugger.

PURGE searches the symbol table for opcodes first, then macro names, and finally labels (and
parameters). This means that if a symbol has a definition as both an opcode and a label, purging
that symbol will delete the opcode, and a second purge of that symbol will delete the label
definition.

If the identifier name of some purged symbol is used after the purge, FAIL makes a new and
totally different symbol, which has no relation to the purged symbol. The CREF program will
also consider such a symbol to be different from the purged symbol.

FAIL Pseudo-Ops 29

Caution: if an opcode, pseudo-op, or other predefined symbol is purged, it will remain unavailable
to subsequent assemblies performed by the FAIL core-image from which it was purged. Also, itis
unwise to purge a macro while it is being expanded.

3.29 XPUNGE

XPUNGE is used to delete ail local symbols from one block. XPUNGE takes effect only at the
next BEND (or END or PRGEND) statement following the XPUNGE. At that BEND, most
local symbols will not be emitted to the loader. This decreases the size of the REL file and makes
loading it faster. Block names, internal and external symbols, variables, and literal-labels will be
passed to the loader.

3.2.10 SUPPRESS and ASUPPRESS

When a parameter file (i.e., a file that contains assembly parameters for use in several assemblies)
is used in assemblies, many symbols get defined but are never used. Unused defined symbols take
up space in the binary file. Unused symbols may be removed from symbol tables by means of the
SUPPRESS or ASUPPRESS pseudo-ops. These pseudo-ops control a suppress bit associated
with each symbol; if the suppress bit is on and the symbol is not referenced, the symbol will not be
output to the binary file.

SUPPRESS takes a list of symbols, separated by commas, as its argument, The suppress bitis
turned on for each symbol named. A symbol may- be an opdef, a parameter, or a label. The
symbol should be defined before the SUPPRESS statement occurs.

ASUPPRESS turns on the suppress bit for every user-defined symbol and opcode that exists in
the symbol table at the time the ASUPPRESS occurs.

Variables, literal-labels, internals, and entry point symbols are never suppressed. Externals that
are not referenced can be suppressed.

If ASUPPRESS appears in a universal program (see section 3.2.11, page 29), then all symbols
in the universal symbol table will have the suppress bit set when they are used in a subsequent
SEARCH.

3.2.11 UNIVERSAL and SEARCH

The UNIVERSAL pseudo-op ha.s the same syntax as TITLE (see section 3.5.1, page 34). In
addition to the functions of TITLE,. UNIVERSAL declares the symbols defined in this program
to be universal symbols. Universal symbols are symbols which can be accessed by other programs
that are assembled after the universal symbols have defined. That is, UNIVERSAL causes
symbols to be retained by FAIL after it finishes assembling the universal file. When subsequent
files are assembled (using this copy of FAIL, which has the universal symbols), the universal

30 Pseudo-Ops FAIL

symbols can be accessed as any other local symbols. The program name set by UNIVERSAL is
used to name the universal symbol table created to contain the universal symbols defined by this
program. Only outer block symbols (and macros and opdefs) are retained in the universal symbol
table. Variables, literal-labels, and internal symbols are not retained.

Universal files are intended for making definitions, not for assembling code. The usual use for a
universal file is to define opcodes, macros and parameters for subsequent assemblies. It is not wise
to include relocatable symbols in the universal file. The exception is that a universal file may
declare a symbol to be external; that declaration can be used by subsequent assemblies that search
this universal symbol table.

SEARCH controls access to the universal symbols. SEARCH takes a list of arguments, each of
which is the name of a universal symbol table. For each universal table named, ail the symbols in
that table are added to ke end of the main symbol (or macro or opcode) table. Then, when the
symbol table is searched, if there is no other definition of the symbol, the universal definition will
be found. Universal symbols are considered to be defined at the outer block. If such symbols are
to be made available to inner blocks, they must be defined with a down-arrow, or declared

GLOBAL.

3.3 Entering Data

3.3.1 DEC and OCT

The DEC and OCT statements both take a string of arguments, each a number, separated by
commas. The radix is temporarily set for this one statement to 10 for DEC or to 8 for OCT.
The numbers are placed in successive locations.

Exam pies:
DEC 5,9,409' ;assembles three words
OCT5,11,10008 ;assembles the same three words
332 BYTE

The BYTE statement is used to enter bytes of data. Arguments in parentheses indicate the byte
size to be used until the next such argument. The first argument of a BYTE statement must be a
byte size argument. Other arguments are the byte values. An argument may be any expression
that is defined, available, and absolute. Arguments in parentheses (byte size) are interpreted in
decimal (base 10) and other arguments in the prevailing radix. Bytes are deposited with the byte
instructions, so if a byte will not fit in the current word, it will be put in the left part of the next
word. Unused parts of words are filled with zeros. Byte size arguments are not surrounded by
commas, but other arguments are separated by commas. For instance, the statement

FAIL Pseudo-Ops 31

BYTE (7)3,5(11)6
will put two ‘I-bit bytes (3 and 5) and an | I-bit byte (6) in a word, left justified.

Two successive delimiters, i.e., two commas or a comma and parenthesis, indicate a null argument,
which is the same as a zero.

3.3.3 POINT

The POINT pseudo-op assembles a byte pointer in one word. The first argument should be an
expression and is interpreted in decimal. The expression must be defined and available. It
indicates the byte size, and its value is placed in the size field of the assembled word. The second
argument should contain one or more of an index field, an address field, and an at-sign. The
third field, if present, indicates the bit position of the low order bit of the byte, i.e., its value is
subtracted from 35 (decimal) and placed in the position field. It is interpreted in decimal and
must be available. If the third argument is omitted (no comma should be present after the second
argument), the position field is set to 36 (decimal) so that the first time the pointer is incremented,
it will point to the first byte of the word.

3.3.4 XWD

The XWD statement takes two arguments, separated by a comma, and assembles a single word
with the value of the first argument in the left half and the value of the second argument in the

right half. Both arguments must be present.
3.3.5 IOWD)

IOWD is a permanently defined macro (see section 4, page 38). Its definition is

DEFINE IOWD (A, B)
<XWD -(A) ,B-1 >

IOWD takes two arguments and assembles a word in which the negative of the first argument
goes in the left halfword and one less than the value of the second argument goes in the right
halfword. This format (i.e., negative word count, and memory address minus 1) is often used in
communicating with the operating system to specify the address and length of a data block. Also,
IO WD may be used to initialize an accumulator for use as a push down pointer.

32 Pseudo-Ops FAIL

3.3.6 ASCII, ASCIZ, ASCID, and SIXBIT

There are four text statements; ASCII, ASCIZ, ASCID, and SIXBIT. Each takes as its argument
a string of characters starting and ending with, and not otherwise containing, some non-blank
character which serves as a delimiter. This delimiter should not be any one of the characters: left-
arrow («), colon (:), up-arrow (#), tilde (~), or number sign (#).

ASCII puts the ‘I-bit representation of each successive character in the string (excluding the
delimiters) in successive words, 5 characters per word, until the string is exhausted. The low
order bit of each word and the left-over part of the last word are filled with zero.

ASCIZ is the same as ASCII except that if the last character is the 5th of a word, a word of zero
is added at the end. This is to ensure that there is at least one 0 byte at the end.

ASCID works as ASCII except that the low order .bit of each word generated is a 1. ASCID
assembles data suitable for either the Ill or Data Disc display systems at Stanford. Also, the
ASCID format is used for line numbers in the SOS editor.

SIXBIT works as ASCII except that the characters are converted to the sixbit representation and
packed 6 to a word. The last word is filled out with zeros if necessary. Ascii characters are
converted to sixbit by replacing the 40 bit with the 100 bit and removing the 100 bit.

3.3.7 RADIX50

This pseudo-op takes two arguments, separated by a comma. The first argument is a number; the
second argument is an identifier. The value assembled by the RADIX50 statement is the radix 50
representation of the identifier, with the number ORed into the high-order 6 bits. The 2 low-
order bits of the number are cleared before ORing.

Radix50 is the representation used for symbol names in the loader, DDT, and RAID. Radix50 is
used to condense 6-character symbols into 32 bits. Legal characters are reduced to a value in the
range O-47 octal. The radix50 value is obtained by accumulating a total composed of each
character value times a weight. The weight is the power of 50 (octal) corresponding to the
character position. The weight of the rightmost non-blank character is 1; the second from the
right has weight 50; the third has weight 50«50; etc. The correspondence between characters and
their radix50 value is given below:

ngﬂk - 0
A-Z w1344 102
. - 45

)

% w By

FAIL Pseudo-Ops 33

3.4 Reserving Space for Data

3.4.1 BLOCK

The BLOCK statement is used to reserve a storage area for data. The value of the argument is
added to the location counter, so subsequent statements will be assembled beyond the area
reserved by BLOCK. The argument must be defined and available. A warning will be given if
the argument is negative. The loader will initialize each word reserved by the BLOCK statement
to zero; however, well-written programs do their own initialization. Note that the BLOCK
pseudo-op has no relation to block structure.

BLOCK Nand ORG . +N are equivalent.

3.4.2 INTEGER and ARRAY

INTEGER should be followed by a list of symbols, separated by commas. Each of these symbols
is then treated as a variable, i.e., as though it had appeared in the block where the INTEGER
appears, followed by a number sign.

The ARRAY statement takes a list of arguments separated by commas. Each argument is a
symbol followed by an expression in brackets. The effect is similar to INTEGER, except that the
expression (which ought to be defined and available) denotes the number of locations to be
reserved (as in BLOCK), with the symbol being the address of the first one. For example,

ARRAY FOO (18],BAZ (28]

will reserve 10 words for FOO and 20 words for BAZ. The symbols FOO and BAZ are not
defined by this statement; they can only be used where forward references are legal.

34 Pseudo-Ops FAIL

3.5 Assembler Control Statements

3.5.1 TITLE

TITLE names the program and sets the heading for the pages of the listing. There should be
precisely one TITLE statement per program; it should appear before any statement that generates
code.

TITLE should be followed by a string of characters, the first part of which should be an
identifier. That identifier is used as the program name which DDT and RAID will recognize. It
is also used as the name of the outermost block.

The string of characters in the TITLE statement is-printed as a part of the heading on all pages
subsequent to the one on which the TITLE statement appears; if TITLE appears on the first line
of a page, it also affects the heading on that page. The string used in the heading for TITLE is
terminated by the first carriage return or semicolon.

If no TITLE statement appears before the first symbols are emitted (generally, at the first BEND
or END), then FAIL will generate a title with program name ". MAIN”. If a TITLE statement
appears after code has been emitted (except for entry blocks), the resulting binary file may be
unsuitable for use as part of a library file.

3.5.2 END and PRCEND

The END statement is the last statement of a program. It signals the assembler to stop
assembling; no text following it will be processed. If an argument is given, it is taken as the
starting address of the program.

An END statement includes implicit VAR and LIT statements (see section 3.1.7, page 25, and
section 3.1.6, page 25). That is, all outstanding variables and literals are placed starting at the
current value of the location counter when the END is seen. Variables are put out first.

PRGEND is used in place of END when it is desired to assemble more than one program to
and/or from a single file. It behaves exactly like END, including taking an optional argument as
the starting address, and then restarts FAIL completely, except that I/0 is undisturbed. It
therefore cannot appear in a macro expansion or similar situation. PRGEND is particularly
useful for directly assembling a library which consists of many small programs.

353 COMMENT

The first non-blank character following the COMMENT pseudo-op is taken as the delimiter. All
text from it to the line feed following the next occurrence of this delimiter is ignored by the

FAIL Pseudo-Ops 35

assembler, except that it is passed to the listing file. The delimiter should not be any one of the
characters left-arrow («), colon (:), up-arrow (%), tilde {(~), or number sign (#).

3.5.4 RADIX

The RADIX statement changes the prevailing radix until the next RADIX statement is
encountered. It has no effect on numbers preceded by an equal sign. The one argument of
RADIX is interpreted in the current radix unless it is preceded by a equal sign. Thus, the
statement RADIX 10 will have no effect (since 10 in the current radix equals the current radix).
The radix may be set to almost anything, but for radices above 10 (decimal) there are no digits to
represent 10, 11, etc. Zero is not permitted, and I should be avoided if one is going to use either
an arithmetic FOR macro or a macro argument with this radix.

3.5.5 .INSERT

The .INSERT pseudo-op causes FAIL to remember its position in the current input file and then
start reading (and assembling) another file. When the end of the inserted file is reached, FAIL
continues processing the original file from the point where it left off. The format is:

. INSERT DEV:FILE.EXT [PRJ,PRG]

The DEV: field is optional (the default is DSK:); it specifies the device where the inserted file can
be found. The [PRJ,PRGI] field is optional; it has the usual meaning. In non-Stanford FAIL
installations, the file name is scanned in accordance with the convention that prevails at that site.

This pseudo-op will not work if it appears in the input stream from any device other than DSK,
since random access features are required to accomplish the repositioning of the file.

36 Pseudo-Ops FAIL

3.6 Listing Control Statements

These pseudo-ops affect the format of the assembly listing. Several descriptions below refer to
command line switches; appendix A, page 48, describes the command line format and the
different switches.

36.1 TITLE and SUBTTL

The TITLE statement can be used to set the heading that appears on the pages of the listing.
See section 3.5.1, page 34.

SUBTTL is followed by a string of characters which is used as a subheading on all subsequent
pages until another SUBTTL appears. If SUBTTL appears on the first line of a page, it will

affect the subheading of that page also. The string used in the heading for SUBTTL is
terminated by the first carriage return or semicolon.

3.6.2 LIST, XLIST, and XLISTI

The XLIST statement causes listing to stop until the next LIST statement. LIST causes listing to
resume if it has been stopped by an XLIST or XLISTI statement. Otherwise it is ignored. LIST
is the default.

The X LIST I statement has exactly the same effect as XLIST unless the /1 switch was used in the
command string, in which case it is ignored.

3.6.3 LALL and XALL

XALL causes the listing of the body of macros, REPEATSs, and FORs to be suppressed during
macro expansion. LALL causes it to start up again. LALL isthe default.

3.6.4 NOLIT

This statement causes the binary listing of code in literals to be suppressed. This has the same
effect as /L in the command string.

FAIL Pseudo-Ops 37
3.6.5 NOSY M

This statement disables the listing of the symbol table, counteracting /S in the command string,
3.6.6 CREF and XCREF

These turn on and off the emission of information to CREF, the Cross-Reference Listi'n’g program.
These pseudo-ops have no effect unless /C was used in the command string. CREF is the default,

3.6.7 PAGE

This pseudo-op has the same function as a form feed; it is included for compatibility with
MACRO- 10. A form feed is placed in the listing immediately following PAGE. The effect is to
skip to the top of the next page of the listing. Use of this pseudo-op will destroy the
correspondence between listing pages and source file pages, so its use is generally not
recommended.

3.6.8 PR INTX

This pseudo-op causes the line on which it appears to be printed on the user’s terminal. This is
sometimes useful for giving a progress report during long assemblies.

38 Macro Operations FAIL

4. Macro Operations

The FAIL macro processor providesfeatures for modifying the input text stream in many ways,
such as the ability to abbreviate a frequently occurring sequence with a single identifier or to
iterate the input of a stream of text a number of times. In both cases, substitutions can be
specified which allow each different occurrence of the text to be somewhat modified. Provision for
making the assembly of a body of text conditional on any of a variety of circumstances is also
included.

4.1 Macros

Macros are named text strings which may have substitutable arguments. Macros may be used
whenever the same or similar pieces of text (code) occur in several places. A macro has a name
and a macro body; also, it may have a concatenation character and an argument list. The several
characteristics of a macro are specified by a DEFINE statement.

DEFINE and the macro name must appear on the same line. The macro name is an identifier; it
may be followed by an optional concatenation character, which must also be on the same line as
DEFINE. The formal arguments, if any, are enclosed in parentheses and separated by commas.
The argument list may occur on a subsequent line. The macro body, enclosed in braces {{and I),
appears after the argument list in DEFINE.

In the macro processor, braces and brokets are equivalent, i.e., " {* and "<" are equivalent, as are
"} * and ">". The equivalence between brokets and braces applies at all times within the macro
processor; the text and examples that follow use braces, but brokets can be used instead. The
macro processor counts braces independent of context; specifically, braces and brokets that appear
in comments, text constants, etc. are counted by the macro processor. In the discussion that
follows, “non-blank character” omits both blank and tab characters.

4.1.1 Macro Bodies |

The macro body may be any string of characters, subject to the restriction that the right and left
braces must be balanced. The macro body itself is enclosed in braces and appears after the
argument list in a DEFINE statement. The macro body is stored in FAIL’S memory, associated
with the macro name. At any point following the DEFINE statement, the macro body will be
substituted for occurrences of the macro name.

FAIL Macro Operations 39

4.1.2 Concatenation

The concatenation character may be any non-blank character (excluding also carriage return, line
feed, and right brace) that appears in DEFINE after the macro name and before the argument list
and macro body. This character may then be used to delimit identifiers so that they will be
recognized as arguments. Appearances of this character will be deleted from the macro body
whenever they appear. This allows a macro argument to be part of an identifier, instead of an
entire identifier. See the example at the end of section 4.1.6, page 42.

4.1.3 Arguments in Macro Definitions

Arguments in macro definitions must. be identifiers. A list of them, enclosed in parentheses, may
appear after the macro name in the definition. If no list of arguments appears before the macro
body, it is assumed that there are no arguments.

Each instance of an identifier in the macro body which is the same as one of the arguments will
be replaced with the string of text corresponding to that argument when the macro is called.
Thus, if FUDLY is one of the arguments in the definition of a macro and the following text
appears in the body:

A+FUDLY B

then FUDLY will be recognized as an argument. But if the following appears:

A+FUDLYB

then, since FUDLYB is an identifier and is different from FUDLY, it will not be recognized as an
argument. To concatenate the "B" above with an actual argument, use a concatenation character.
For example, if the concatenation character is "$" and

A+FUDLYS$B

appears in the macro body, then FUDLY will be recognized as an argument, and the "$" will
disappear when the macro is expanded.

Here is a sample macro definition:
DEFINE FOO (AC, ADDRS)
{MOVNI AC, 3
IMUL AC, ADDRS
ADDI AC.37
"MOVEM AC, ADDRS+11}
If the text:
FOO (A,FARB+7)

appears in the program somewhere after the DEFINE above, it will expand into;

40 Macro Operations FAIL

MOVNI A3

IMUL A,FARB+7
ADDI A.37

MOVEM A,FARB+7+1

4.1.4 Macro Calls

A macro name may appear anywhere and will be replaced by the macro body, as long as the name
appears as an identifier and is considered to be an identifier by the assembler. A macro name may
appear alone on a line or in the accumulator, index, or address field. If the macro name appears
in a context where it is not considered to be an identifier, the macro will not be expanded. For
example, macro names that appear in a comment or in the text argument of an ASCII statement
will not be expanded. Also, there are some other cases where a macro name will not be expanded:

the macro name in DEFINE,

the formal argument list in DEFINE and FOR,

the symbol name in OPDEF, PURGE, SUPPRESS and RADIX50,
the tested symbol in a symbol IF,

the block name in BEGIN and BEND,

the location counter name in USE and SET,

the universal symbol table name in SEARCH, and

the program name in TITLE and UNIVERSAL.

. Macros may be used recursively. That is, a macro body may contain a macro call or macro
definition. However, if such macro calls are nested too deep, the macro push-down list may
overflow, resulting in an error message and termination of the assembly. If this occurs, the /P
switch should be used in the command string. Every occurrence of /P in the command string
causes the assembler to allocate an extra 200 (octal) words of memory for the macro push-down
list (see appendix A, page 48).

4.1.5 Arguments in Macro Calls

The list of arguments to a macro call may be enclosed in parentheses, or not. The arguments
themselves are separated by commas. For example, if FOO is the name of a macro that requires
two arguments, FOO A,FARB+7 and FOO (A, FARB+7) have the same effect.

If the argument list is enclosed in parentheses, then the first argument begins with the first
character after the "(", even if it is blank. Subsequent arguments begin with the first character
after the comma that terminates the previous argument. Arguments do not include the comma or
") " used to terminate them. Arguments are scanned until the matching ")" is seen.

If the argument list is not enclosed in parentheses, the first argument begins with the first non-
blank character after the macro name. Subsequent arguments begin with the first character after
the comma that terminated the previous argument. Arguments do not include the comma or other

FAIL Macro Operations 41

character used to terminate them. Arguments are scanned until any one of right bracket, right
broket, right brace, semicolon, or carriage return is seen.

Two commas in a row with nothing in between signify a null argument, i.e., an argument that
consists of no characters. If more arguments are called for than are supplied, the last ones are
considered to be null. If more arguments are supplied than are called for, the extras are ignored
by the macro processor; see section 4.1.6, page 4 1.

Unless the first character of an argument is “I”, the argument terminates at the first comma, right
parenthesis, right brace (or broket), right bracket, or carriage return. If the first character of an
argument is "{" (or "<"), then all characters included between the matching braces are taken as the
argument. This allows the argument to contain commas, parentheses, etc. which would not be
legal otherwise, but the braces must be kept balanced. In addition, all characters between the "i"
that closes the argument and the next argument terminator are ignored. This allows the
continuation of a list of arguments from one line to the next (i.e., enclose the last argument on the
line in braces and put the comma for it at the start of the next line).

If the first character of an argument is a backslash (\) or right-arrow (), then the next thing after
the backslash (or right-arrow) is considered to be an expression (and it better be defined). The
expression is evaluated and the value is converted to a string of ascii digits in the current radix
(the radix ought not be 1). This string of digits is taken as the argument. All characters from the
end of the expression to the next argument termination character (comma, etc.) are ignored.

4.1.6 How Much is Eaten by a Macro Call

When a macro call appears, some of the text following the macro name is considered to be part of
the call. Any text that is not part of the macro call will be assembled as usual. For instance, if

DEFINE FOO (A) {A +7/6}
has appeared, then when

MOVE | A,FO0 (3) (B) ;comment
appears, it will be assembled as

MOVE | A,3 + 7/6 (B) ;comment

Thus, the text FOO (3} is considered to be part of the macro call and is “eaten”.

The following rules govern how much text gets eaten in a macro call. If the macro was defined as
having no arguments, then only the macro name and any following spaces (or tabs) are eaten. If
the macro was defined as having arguments and the first non-blank character after the macro
name is a left parenthesis, then everything from the macro name to the right parenthesis which
closes the argument list, inclusive, is eaten. If the macro was defined as having arguments and the
first non-blank character is not a left parenthesis, then everything from the macro name to the
comma or carriage return which terminates the last macro argument used is eaten. Thus, if

42 Macro Operations FAIL

parentheses are not used and too few arguments are supplied, everything from the macro nameto
the carriage return will be eaten. If parentheses are not used and the macro was defined as
having arguments and enough or too many arguments are supplied, then everything from the
macro name to the comma (or carriage return) which terminates the last argument used will be

eaten.

Example:

DEFINE FOO $(A,B){ASB}
MOVE1l FOO01,2,,37(B);uillexpandto:
sMOVEI 1 2 ,37(6)
1 “FO0O1,2," has been eaten

4.1.7 Complex Example

This example is given without a full explanation. It shows an example of an information
carrying macro. The macro BAR is expanded (by being redefined) every time that ADDL1 is used,
The \BAR in the definition of ADD 1 is necessary to cause the evaluation of BAR as an expression
(which causes a macro expansion to occur).

Example:

DEFINE BAR {8,1}

DEFINE FOO (A,B,C){DEFINE BAR {8,<B .
C>}}

DEFINE ADD1(X){FDO(\BAR,X)}

DEFINE SEC (A,B){B}

+BAR = 0 |
ADD1 (X1)
1BAR = 8,<
H X1>
ADD1 (X2)
+BAR = B,<
H X1
H X2>
ADD1 (X3)
;1BAR = B, <
H X |
H X2
' X3>
SEC (\BAR) 1 THIS GENERATES THE FOLLOWING:
X1

X2
X3

FAIL Macro Oper ations 43

42 FOR

There are three types of FORs; all have the same general form. Each consists of the word FOR,
an optional concatenation character, a range specifier, and a FOR-body. The FOR statement
expands into the text of its FOR-body, possibly with substitutions, repeated once for each element
in the range of the FOR. FOR replaces the IRP and IRPC pseudo-ops found in MACRO-IO.

The optional concatenation character is specified by following the word FOR with an at-sign
followed immediately by the concatenation character. If a FOR is used inside a macro and
concatenation of FOR arguments is desired, it is necessary to have a concatenation character
specified for the FOR which is different from the one for the macro.

The range specifier is different for each type of FOR and will be explained below. The FOR
statement may have one or two formal arguments which are specified in the range specification.

The FOR-body has the same form as a macro body; the text is enclosed in braces, and braces must
be balanced.

4.2.1 String FOR

The range specification consists of one or two formal argument identifiers, followed by either the
identifier “IN™ or the containment character (c), followed by an argument list. The argument list
has the same syntax as a macro call argument list (see section 4.1.5, page 40), but the list must be
in parentheses. The effect is that the body of the FOR is assembled once for each element in the
argument list, and that element is substituted for the first (or only) formal argument each time.
The second formal argument, if present, will have the remainder of the argument list (starting
with the element following the one currently substituted for the first argument) substituted for it.

Examples:
Source Expans i on
FOR AINI(ORN,{(<JRST4,>)},STORP) MOVSI 13,QRN
{MOVSI 13, A PUSHJ P, GORP
PUSHJ P,GORP MOVSI 1 3, (<JRST 4,>5)
} PUSHJ P, GORP
MOVSI 13,STORP
PUSHJ P, GORP
Source Expans i on
-FOR Z0T,FUB c (A,B,C,D) MOVEI A,1373B,C,LDLEFT
{MOVE12Z0T7,137;FUB LEFT MOVEI 8,137 ;C,DLEFT
} MOVE1 C,137; D LEFT
MOVEIO,1373LEFT

44 Macro Operations FAIL

4.2.2 Character FOR

The range specifier consists of one or two formal arguments followed by either the letter "E" or the
character epsilon (¢}, followed by a string of characters enclosed in braces. The only restriction on
the string of characters is that the braces must balance. The body of the FOR is assembled once
for each character in the list, with that character substituted for the first formal argument each
time and the rest of the string substituted for the second formal argument, if any.

Examples:
Source Expans i on
FOR ZOT, FUB ¢{ABCD} MOVEL A,137; BCD LEFT
{MOVEI ZOT, 137 ; FUB LEFT MOVEI 8,137 3 CD LEFT
} MOVEIC,137;0LEFT
MOVEI 0,137 LEFT
Source Expans i on
FOR @% QRN E {AZ1Q5} ZORPA«D
{ZORPS$QRN«Q ZORPZ«8
} Z0ORP1 tO
ZORPQ«B
ZORPS5«8

4.2.3 Arithmetic FOR

This type of FOR is similar to the ALGOL FOR statement. The range specifier consists of one
or two formal arguments followed by a left-arrow, followed by two or three expressions, separated
by commas. The expressions are like the two or three arguments of a FORTRAN DO statement.
The value of the first is the starting value, the value of the second is the ending value, and the
value of the third is the increment. If the third expression is not present, 1 is used as the

increment.

The body of the FOR is assembled- repeatedly, first for. the starting value, then for the starting
value plus the increment, etc. until it has been assembled once for each such value which is less
than or equal to the ending value (greater than or equal if the increment is negative). If the
starting value is already greater than the ending value (less than, for negative increment), the
FOR body is not assembled at all. For each repetition, the current value is converted to ascif
digits in the current radix, and that string is substituted for the formal argument(s) (both
arguments have the same value). Note that all expressions must be defined, available, and

absolute.

FAIL

Examples (assume RADIX =8):

Source

FOR 1143, 25, 7
{XWD FOO, |
f

Source
FOR e%2Z0T«11,4,-1

{ZOTQYZ0T : ZOT +3
f

4.3 REPEAT

Macro Operations

45

Expans i on

XWD F00, 4
XWD FOO, 13
XWD FO00, 22

Expans i on

207011 : 1 1 43
207018 : 10 +3

20TQ7 : 7 43
20706 : 6 +3
20705 : 5 +3
ZOTQ4 : 4 +3

The REPEAT statement is included for compatibility with MACRO-I10. The format is

REPEAT exp, {text}

The expression exp is evaluated, and the text is assembled that number of times, with a carriage
return and line feed inserted at its end each time. The text is like a macro body: braces must

balance.
For example, the statement:

REPEAT 3, {8}

will expand to:

0
0
0

cledme RECEAT (N, T)T) § for T 1N §TxT}

46 Macro Operations FAIL

4.4 Conditional Assembly

The conditional assembly opcodes (the IFs) are like macros: they will be recognized wherever they
appear, as long as the assembler sees them as identifiers. Thus, an IF need not be the first thing
on a line. Attempts to use IFs as symbols will produce erroneous results.

44.1 Numeric IFs

There are six numeric IFs:.

IFE exp, {text] assembles text if exp-0
IFN exp, {text} assembles text if exp=0
IFG exp, Itextf assembles text if exp>0
IFL exp, {text] assembles text if exp<8
IFGE exp, {text} assembles text if exp28
IFLE exp, ltextf assembles text if exps®

The expression exp is evaluated. Ifits value bears the indicated relation to zero, the text is
assembled once; otherwise it is not assembled. The text, which is called the IF-body, is like a

macro body: braces must balance.

Examples:
IFE 3, {ZOT} assembles nothing
IFGE 15, {JRST START} assembles JRST START
PUSHJ P, IFN PARM, {BAZ;}F0O assembles PUSHJ P, BAZ; FOO if PARM=@
PUSHJ P, IFN PARM, {BAZ;1FOO assembles PUSHJ P, FDO if PARM=8

4.4.2 Text IFs

There are two text IFs. They are IFIDN and IFDIF, which stand for “if identical” and “if
different”, respectively. The format is

| F1 DN {text 1} (text 2} {text 3}

The texts can be any string of characters in which the braces balance. For IFIDN, if the two
strings text 1 and text 2 are identical in each and every character, the string text 3 will be
assembled, otherwise it will not. For IFDIF, if text 1 and text 2 are different, text 3 will be
assembled, otherwise it will not.

FAIL Macro Operations 47

4.4.3 Symbol IFs

There are eight symbol IFs. They are IFDEF, IFNDEF, IFAVL, IFNAVL, IFOP,IFNOP,
IFMAC, and IFNMAC. A typical example is

IFDEF symbol, {text}

If the indicated condition is true for the symbol, the text is assembled; otherwise it is not. These
conditionals come in pairs; if one of a pair is true, the other is false.

IFDEF is true if the symbol is defined in this block or in an outer block. Defined symbols may be
either opcodes, macro names, labels, or parameters. IFDEF will be true if the symbol could be
used on a line by itself (ignoring possible future definitions).

IFAVL is true if the symbol is available. That is, IFAVL is true if the symbol is defined as an
opcode or macro or if it has been defined in this block, declared global in this block and defined
in an outer block, or defined in an outer block with a down-arrow.

IFOP is true if the symbol is defined as an opcode.

IFMAC is true if the symbol is defined as a macro (including the IFs, IQWD, and the predefined
symbols . FNAM 1, . FNAM2,"8." and ". ").

48 Appendix A FAIL

Command L anguage

The basic format of a FAIL command is
binary-file,listing-fileesource-file-1l, ... ,source-fi le-n
File specifications consist of

device: f i le

If device: is missing, DSK: is assumed. Either (or both) output file(s) may be omitted. If the
listing-fileisincluded, a comma must precede it. Source-f i le names are separated by
commas. The device name for source files is sticky, so to change devices the device name must be
explicit, even if it is DSK:. Multiple source files are concatenated as one assembly. If the last
source-f ile name on a line ends with a comma (and carriage return-line feed) then the next line
is taken as a continuation of this command. i

If no file extension is given for the binary and list files, REL and LST are assumed, respectively (in
the non-Stanford FAIL, CRF is the default extension for the list file). If no extension is given for
the source file(s), FAI is tried first; failing that, a blank extension is tried,

Switches should follow file names and may be either of the slash type or parentheses type (e.g.,
"/x" or "(x)").

- Device switches (must follow the name of the affected file):

nA advance magnetic tape n files

nB backspace magnetic tape n f i les

T skip to logical end of magnetic tape
W rewind magnetic tape

2 zero DECtape directory

Assembler switches (may appear after any file name):

make a cross-reference (CREF) listing
don’t pause after errors (inverse of R)
ignore XLIST1 pseudo-op
turn on cross-reference listing output
turn off cross-reference listing output
don’t list literal values with text
don’t list assembly errors on TTY
pause after each assembly error
list symbol table
underline macrg expansions on listing

v set the number of lines/page in listing to n
don’t list macro expansions

XIJICwhwo=Zr XKa—To

The P switchis used to allocate extra space for the macro push-down list (PDL), which is
normally 200 (octal) locations long. If recursive macros are used, more space may be needed. The
macro PDL will be expanded by 200 words for every occurrence of the P switch in the command
string. A numeric argument may given with the P switch to specify amultiple of 200 words by
which to expand the PDL.

FAIL Appendix A 49

Sometimes, assembly parameters are specified from the user terminal, rather than being included
in the source program. Suppose the line SEGSWe«1 needs to be included in the assembly of the file
BAZ. The following command sequence would do that (and make a cross-reference listing of

BAZ):

BAZ,BAZ/Ce«TTY:,DSK:BAZ
SEGSWe«1
v4

Thetext is typed to FAIL and terminated with control-Z (#Z) (at Stanford displays, control-meta-
line feed is used instead of control-Z). Using RPG (known elsewhere as COMPIL), the command
sequence would be

COMPILE/CREF TTY:F+DSK:BAZ
SEGSWe«1
P4

The file name F is needed to satisfy the RPG syntax; the device name OSK: is needed to switch
the default input device to DSK.

If the command FI LEe is seen, the named file will be read and interpreted as containing a series
of commands of the usual form.

The command FILE! causes FAIL to exit and run the named program. The default device for
this command is SYS..

To_ provide some compatability with RPG-style commands, FAIL accepts "=" for "«" in the
command line. Also, either "+" or ";" may be used instead of "," to separate source-f i | e names.

50 Appendix B FAIL

Relocatable and Undefined Values

FAIL binary programs are usually required to be relocatable, i.e., loadable anywhere in a core
image. Many values depend upon the absolute location of a program within its core image, e.g.,
the target address of a branch instruction. The final determination of these values must be made
by the loader.

The problem of relocation can usually be reduced to a question of whether or not to augment a
value by the relocation constant, which is simply the location at which the loader decides to begin
loading this program. The mechanism for handling this involves associating with each value a
relocation factor, which is (at load time) to be multiplied by the relocation constant and added to
the value. For the simple relocation mechanism to work, the relocation factor must be a constant
and either 0 or 1. Since 36 bits may contain two 18-bit addresses, a relocation factor is provided
for each halfword. Thus, a value which is completely determined except for simple relocation can
be expressed in 38 bits. A value in which at least-one relocation factor is non-zero is said to be
relocatable; one in which both are zero is said to be unrelocatable or absolute.

There is a more general, less efficient mechanism for delaying calculations until load time. This is
used in more complex cases where the simple relocation scheme is inadequate. Whenever a value
cannot be calculated immediately and cannot be handled by the relocation mechanism because it
requires some other type of deferred calculation, the value is said to be undefined. Undefined
values are represented by relatively complex structures which are retained in FAIL for final
evaluation or, if necessary, passed to the loader for evaluation. Undefined values are illegal in
those contexts which require the value to be immediately known, including some situations where
the relocation factor mechanism is legal. The legality of undefined or relocatable values is
indicated in the discussion of each possible usage.

FAIL Appendix C 51
Predefined Opcodes

The standard machine instruction mnemonics of the PDP-10 (KA-10) are defined in FAIL.

When the Stanford version of FAIL is started, it obtains from the system the definitions for all
system UUOQOs and CALLIs that are available at the time of the assembly.

The table that follows includes all the pseudo-ops, machine instruction mnemonics, special
symbols, and UUO mnemonics currently available at Stanford. The indication SAIL is used to
indicate UUQs and machine instructions available only at Stanford. The indication UUO is used
to mark system calls that are also available on a DEC system. Hardware 1/O instructions are
indicated by | /0; these instructions are not available to normal user programs. Machine
instruction mnemonics for the Ki-10 processor are available as a conditional assembly feature in
FAIL; these are flagged with the indication KI. The entry for each pseudo-op includes the page
number where that pseudo-op is explained.

Note that there are sometimes subtle differences between DEC system UUQOs and Stanford UUQs;
consult the appropriate reference manual. Also note that some DEC mnemonics conflict with
those used at Stanford.

[l

52

s.

FNAML
.FNAM2
. INSERT

Predefined
Predefined
Predefined
Predefined
pseudo-Op

.LIBRARY Pseudo-0Op

.LOAD

ACCTIN
ACTCHR
ROD
ADDB
AOO |
AoDoM
ADSHMAP
AND
RNDB
ANDCA
ANDCRB
ANDCRI
ANDCAM
ANDCB
ANDCBB
ANDCB |
ANDCBH
RNDCM
ANDCHB
ANDCH I
ANDCHMM
ANDI
RNDM
ROBJN
A0BJP
ROJ
ROJR
ROJE
ROJG
ROJGE
ROJL
ROJLE
ROJN
ROS
AOSA
AROSE
ROSG
AOSGE
AOSL
ROSLE
ROSN
APRENB
RRRAY
ASCID
ASCII
RSCIZ
ASH
ASHC

Pseudo-0p

CALL1 480101
CALLI 488185
270809, ,8
273000, ,0
271008, ,0
272880,) 8
CRLLI 488118
484000, ,0
487088,
410009, ,
413008, ,
411080, ,
4120080,,8
440888, ,8
443888, ,8
441888, ,8
442088,) 8
428000,,8
4230988,,8
421088,) 8
422088, ,0
485009, ,8
406800, , 8
2530080, ,8
252000, ,8
3480080,,8
3440009,,8
342988,,8
347009,,8
345080, ,o0
341080,,0
343088, ,0
346880, ,9
358080,,8
354808, ,0
352000,,8
3570089, ,8
355000,) 8
351008,) @
353099,,8
356008,,8
CRLLI 16
Pseudo-0p
Pseudo-0p
Pseudo-0p
Pseudo-0p
248080, ,0
244008, ,8

00D

- -

ASUPPRESS Pseudo-0p

RTTSEG -

BEEP
BEGIN
BEND
BLKI
BLKO
BLOCK

CALLI 488816

CALLT 408111
Pseudo-0p
Pseudo-0p
708808, ,8
788188,) 8
Pseudo-0p

page
page
page
page
page
page
page

SAIL
SAIL

SAIL

uuo

page
page
page
page

page
SAIL

SAIL
page
page
1/0
1/10

page

14
14

29

26
26

33

BLT
BUFLEN
BYTE

CR!
CRIR
CAIE
CAIG
CAIGE
CARIL
CRILE
CARIN
CALL
CRLL I
CALLIT
cAan
CRMR
CAME
CAMG
CAMGE
CAML
CANLE
CRMN
CHNSTS
CLKINT
CLOSE
CLRBF 1
CLRBFO
COMMENT
CON1
CONO
CONS
CONSO
CONS2Z
CORE
CORE2
CREF
CTLV

DATA |
DATAO
DATE
DRYCNT
DOCHAN
DDTGT
DDTIN
0DTOUT
DOTRL
DDUPG
DEBRERK
DEC
DEFINE
DEPHASE
DETSEG
DEVCHR
DEVNUM
DEVUSE
DFAD
OFOV
QFHP
DFN
DFSB
DIAL
DISMISS
DIV

Appendix C

2516089, ,8
CRLL 1408842
Pseudo-Dp

308000, ,0
304008, ,8
382888, ,8
387800, ,8
305888, ,8
381088, ,0
363000,,8
3e6808,,8
848888, ,0
847880,) 8
CALL | 488874
310000,,8
314888, ,8
312888, ,8
317088, ,0
315888, ,8
311600,,8 -
313888, ,8
316888, ,8
716008,,8
717888,) 8
878008, ,8
851448,,8
051588, ,0
Pseudo-Op
788248, ,0
768208, ,8
257008, ,0
788348, ,8
780388, ,8
CRLLI 11
CRLL 1488015
Pseudo-Op
CRLL 1488881

760848,,8
788148, ,8
CRLLI 14
CALL1 488188
CALL | 488667
CRLLI 5
CRLLI 1
CRLLI 3
CRLLI' 7
715148,,8
CALL I- 488835
Pseudo-0p
Pseudo-0p
Pseudo-Op
CRLL 1488817
CRLLI 4
CALLI 408104
CALLI 408851
118888, ,8
113808, ,8
1120e8,,0
131868,,8
111888,,8
CALLI 488117
CALL 1 408824
234000, ,8

SAIL

page 38

uub
uub
SAIL

SAIL
SAIL
uuo
uuo
uuo
page
1/0
1/10
SAIL
1/0
170
uuo
SRIL
page
SAIL

1/0
1/0
uuD
SRIL
SAIL
uuo
uuo
uuo
uuo
SAIL
SRIL
page
page
page
SAIL
uuo
SAIL
SAIL
K

Kt

K1

Kl
SRIL
SAIL

34

37

38
38

DIVB
DIVI
DIVH
DMOVE
DMOVEM
DMOVN
DMOVNM
DPB
DPYCLR
DPYOUT
DPYPDS
DPYSIZ
OSKPPN
DSKTIM

EI0TH
END
ENTER
ENTRY
EQV
EQVB
EQUI
£avn
EXCH
EXIT
EXTERNAL

FAD
FADB
FADL
FROM
FRDR
FADRB
FRDR |
FADRL
FRDRM
FBREAD
FBWAIT
FBURT
FOv
FDVB
FDVL
FDVM
FDVR
FDVRB
FDVRI
FDVRL
FOVRN
FIX
FIX
FIXR
FLTR
FHP
FMPB
FMPL
FHPH
FHPR
FMPRB
FHPRI
FHPRL
FHPRM
FOR
FSB
FSBB
FSBL

237808, , 8
235000, ,8
236888, , 8
120808, ,8
124800, ,8
121888, ,8
1258898, , 8
137909, ,8
781888, , 8
793009, , 8
762188, ,8
782148, ,8
CALL | 488871
CALL 1488872

CRLLT 488885
Pseudo-0p
877088, ,8
Pseudo-0p
444888,) 8
447888, ,8
445888,) 8
446888, ,8
258888, , 8
CALLI 12
Pseudo-0p

140009, ,8
143888,,8
141888, ,8
142888, ,8
144800,,8
147808, ,8
145088, , 8
145808, , 8
146888, ,8
766988, ,8
CALLT 488857
787880,) 8
176009, ,8
173888, ,8
171888, ,8
172888, ,9
174808, ,8
177808,,8
1758080, ,8
175088, ,8
176808, ,8
2470808, ,8
122888, ,8
126888,,8
127880, ,8
168888,) 8
163808,,8
161088,) 8
162880, ,8
164608, ,8
167008,,8
165899, ,0
165008, ,8
166888,) 8
Pseudo-0p
158080, ,8
153888, ,8
151880,,8

FAIL

Kl
K!
Kl

SAIL
SAIL
SAIL
SAIL
SAIL
SAIL

SARIL
page 34
uuo
page 27

uuo

page 27

SAIL
SAIL
SAIL

page 43

FAIL Appendix C 53

FSBM 152008, ,08 HRLOS 527080, ,8 INTDEJ 723008, .8 SRIL
FSBR 154900, ,8 HRLS 587688, ,8 INTOMP 723148,,8 SAIL
FSBRB 157008, ,8 HRLZ 514880, ,8 INTEGER ~ Pseudo-0Op page 33
FSBRI 155009, ,0 HRLZI 515009,,8 I NTENB CALL1 480025 SRIL
FSBRL 155608, ,0 HRLZM 516080, ,8 I NTENS CRLLI 488038 SAIL
FSBRM 156009, ,0 HRLZS 517ee6,,8 INTERNAL Pseudo-Op page 27
FSC 132000, ,8 HRR 540000, ,0 INTGEN CALL1 480833 SRIL
HRRE 570800,) 8 INTIIP CALL1 408831 SRIL
GDPTIM CALL1 488865 SAIL HRREI 571888, ,8 INTIPI 723288,,8 SRIL
GETCHR CRLLI 6 uuo HRREM 572888, ,8 INTIRQ CALL1 488832 SRIL
GETLIN 851308,,0 SAIL HRRES 573008,,8 INTJEN 723808, ,8 SAIL
GETLN CRLLI 34 uuo HRRI 541808, ,8 INTMSK 720880,,8 SAIL
GETNAM CRLLI 408862 SAIL HRRH 542080, ,8 INTORM CRLLI 408026 SRIL
GETPPN CRLLI 24 uuo HRRO 568800, ,8 INTUUO 723600, ,8 SRIL
GETPR2 CALL 1 488853 SRIL HRRO | 561608,,8 INURIT ~ @s5l1e@8,,8 SRIL
GETPRV CALL1 488115 SAIL HRROM 562008,,8 10PDL 726089,,8 SRIL
GETSEG CRLLI 48 uuo HRROS 563888, ,8 10POP 725808, ,8 SAIL
GETSTS 862668,,8 uuo HRRS 543008,,0 | OPUSH 724088, , 8 SAIL
GETTAB CALLI 41 uuo HRRZ 550088,,8 10R 434000,,8
GLOBRL Pseudo-0p page 26 HRRZI 551¢e8,,8 10RB 437888,) 8
HRRZM 552008, ,8 IORI 435000, ,8
HRLT 2542889,,8 HRRZS 553080,) 8 10RN 436888,,0
HISEG Pseudo-0p page 24 106D Pseudo-0p page 31
HLL 580008,,0 1BP 133089, ,8 IHAIT CALL 1 480848 SARIL
HLLE 530000, ,0 IDIV 230800, ,8 IUKMSK 723188, ,8 SAIL
HLLE | 531000,,8 101vB 233808, ,8
HLLEM 532009,,8 101V 231808, ,8 JBTSTS CRLLI 488813 SAIL
HLLES 533080,,8 IDIVA 232888, ,8 JCRY 255380, ,8
HLLI 581098,,8 1DPB 136888, ,8 JCRY8 255280, ,8
HLLM 502089, ,8 1ENBU CALL 1488845 SRIL JCRY 1 255188, ,8
HLLO 520008, ,08 IFAVL Conditional page 47 JEN 254500, , 8
HLLO | 521000, , 8 IFDEF Conditional page 47 JFCL 255098, ,8
HLEON 522089,,8 IFDIF Conditional page 46 JFFO 243800, ,8
HLLOS 523008,,8 IFE Conditional page 46 JFOV 255848, ,8
HLLS 583088,,8 IFG Conditional page 46 JOBRD CALL1 488850 SRIL
HLLZ 518608, ,0 IFGE Conditional page 46 Jov 255408, ,8
HLLZI 511000, ,8 IFIDN Conditlonal page 46 JRA 267080, , 8
HLLZM 512008,,8 IFL Conditional page 46 JRST 254080, ,0
HLLZS 513000, , 8 IFLE Conditlonal page 46 JRSTF 254108,,8
HLR 544000,,8 IFMAC Condltional page 47 JSR 266800, ,8
HLRE 574000,,8 IFN Conditional page 46 JSP 265808, ,8
HLRE | 575000,) 8 I FNRVL Conditional page 47 JSR 264808, , 8
HLREN 576008, , 8 IFNDEF Conditional page 47 JUNP 320089,,8
HLRES 577008, ,0 IFNNRC Conditionai page 47 JunPA 324008, ,8
HLRI 5450880, ,0 IFNOP Conditional page 47 JUMPE 3220080, ,8
HLRN 546080, ,0 IFOP Conditional page 47 JUMPG 327888,) 8
HLRO 564009, ,08 ILDB 134008,, 8 JUMPGE 325088, ,8
HLROI 5656808, ,8 IMSKCL 722888, ,8 SAIL JUNPL 321088,,8
HLRON 566000, ,0 INSKCR 723248, ,8 SAIL JUMPLE 323888, ,8
HLROS 567000, ,8 INSKST ~ 721808,,8 SRIL JUNPN 326008,,8
HLRS 547080, , 8 IMSTH 723840, ,8 SAIL
HLRZ 554060,,8 IMUL 220008, ,8 LALL Pseudo-0p page 36
HLRZI 555000, ,8 INULB 2236800,,8 LOB 135808, ,8
HLRZM 556000, ,8 IMULI 221808, ,8 LEYPOS 782388,,8 SAIL
HLRZS 557888, , 8 IMuLM 2220080,,0 LINK Pseudo-0p page 27
HRL 584080,) 8 IN 856608,,8 uuo LINKEND Pseudo-Op page 27
HRLE 534888, , 8 INBUF 864860,,8 uuo iINKUP CALL | 408823 SAIL
HRLE | 535608, ,8 INCHRS ~ 851188,,8 uuo LIOTH CRLLI 480006 SAIL
HRLEN 536009, ,8 INCHRU 851008, ,8 uuo LIST Pseudo-0p page 36
HRLES 537608, ,80 I NCHSL 851240,,8 uuo LIT Pseudo-0p page 25
HRL 1 585000, ,8 INCHWL 851288, ,0 uuo Loc Pseudo-Op page 22
HRLM 506808, ,8 INIT 841800, ,8 uuo LOCK CALL 1468876- SRIL
HRLO 524888, ,8 INPUT 066800, ,0 uuo LOGIN CRLLI 15 uuo
HRLO | 525809, ,0 INSK IP 851548,,8 SAIL LOGOUT CRLLI 17 uuo

HRLON 526000, , 8 INTRCM CALLI 408027 SAIL LOOKUP 876008,,8 uuo

54

LSH
LSHC

MRIL
MAP
MOVE
MOVE1
NOVEN
MOVES
Move
MOVMI
MOVHMA
NOVNS
HOVN
MOVNI
MOVNHM
NOVNS
MOVS
NOVSI .
HOVSM
NOVSS
MSTINE
NTRPE
MUL
NULB
HUL 1
MuLH

NAMEIN
NOLIT
NOsYH

ocT
OPOEF
OPEN
OR

ORB
ORCR
ORCRB
ORCR 1
ORCRN
ORCB
ORCBB
ORCB 1
ORCBM
ORCM
ORCMB
ORCMI
ORCMM
ORG
ORI
ORM
ouT
OUTBUF
OUTCHR
OUTF 1V
OUTPUT
OUTSTR-

PRGE
PEEK
PGRCT
PGCLR
PG INFO

242608,,8
246000, ,8

719009, ,9
257008, ,8
208008, ,8
201009, ,0
202008, ,8
203008, ,8
214088, ,8
215898, ,0
216008, ,8
217008, ,0
210069, ,8
211008, ,8
212088, ,0
213008, ,6
204089, ,8
205009, ,8
206080, ,8
287089, ,8
CRLLI 23

872008, ,8
224008, ,0
227008, ,8
225088, ,8
226009, ,8

CRLL 1 488843
Pseudo-0p
Pseudo-0p

Pseudo-0p
Pseudo-0p
850008, ,0
4348808, ,8
4370800, ,8
454000, ,0
4578600, ,8
455000, ,0
456000, ,0
470080, ,80
4730808, ,8
471088,,80
472098, ,8
464808,,08
467600, ,8
465000, ,8
4668909, ,0
Pseudo-Dp
435088, ,8
436008, ,8
857009, ,8
265008, ,8
851048,,80
851749, ,8
867808, ,8
851148,,8

Pseudo-0p
CRLLI 33

715048, ,8
715168,,8
715208,,0

SAIL
K1

uuo
uuo

SAIL
page
page

page
page
uuo

page

uuo
uuo
uuo
SRIL
uuo
uuo

page
uuo

SAIL
SAIL
SAIL

36
37

38
26

22

37

PGIOT
PGSEL
PHRSE
PJOB
PNRME
POINT
POINTS
POP
POPJ
PORTRL
PPRCT
PPHLO
PPINFO
PPIOT
PPREL
PPSEL
PPSPY
PRGENO
PRINTX
PTGETL
PTIFRE
PTJOBX
PTLORO
PTOCNT
PTRD1S
PTRDIN
PTRDS
PTSETL
PTURLS
PTHRIW
PTURS7
PTURSS
PTYGET
PTYREL
PTYUUO
PURGE
PUSH
PUSHJ
PZE

RROIX
RADIX50
RERSS |
RELEAS
RELOC
RENMAP
RENAME
REPEAT
RESCAN
RESET
RLEVEL
ROT
ROTC
RUN
RUNMSK
RUNTIN

SEARCH
SEGNAM
SEGNUN
SEGSI1Z
SEND
SET
SETA

Appendix C

715888, ,8
715889, ,8
Pseudo-0p
CRLLI 38
CALL1 488007
Pseudo-0p
712008, ,8
262000, ,0
263000, ,0
254048, ,0
782048, ,0
782348, ,8
782240, ,0
702000, ,8
782200, ,8
7082008, ,8
CALL 1 488187
Pseudo-0p
Pseudo-0p
711540, ,8
711180, ,8-
711708, ,8
711648,,8
711148,,8
711288, ,8
711248,,8
7114880,,8
711688, ,8
711308,,8
711348, ,8
711448,,8
711588,,8
711088, ,8
7110848,,8
7110809,,9
Pseudo-0p
261009, ,8
268008, ,0
608609, ,0

Pseudo-0p
Pseudo-0p
CALL1 21
871008, ,8
Pseudo-0p
caLL! 37
055080, ,@
Pseudo-0p
851408, ,8
CRLLI- 8
CALL1 480054
241008,,8
245808, ,0
CALLI 35
CRLLI 488846
CRLLI 27

Pseudo-0p
CRLLI 488837
CRLLI 488821
CRLLI 488822
710008, ,8
Pseudo-0p
4248089, ,8

SRIL
SAIL
pagr 23
uuo
SAIL
page 31
SAIL

K1

SAIL
SAIL
SAIL
SAIL
SRIL
SAIL
SAIL
page 34
page 37
SAIL
SRIL
SRIL
SAIL
SRIL
SAIL
SAIL
SAIL
SAIL
SAIL
SAIL
SRIL
SRIL
SAIL
SAIL
SAIL
pagr 28

page 35
page 32
uuo

uuo
page 22
uuo

uuo
page 45
uuo

uuo
SAIL

uuo
SAIL
uuo

page 29
SAIL
SRIL
SAIL
SAIL
page 22

SETRB
SETRCT
SETRI
SETAM
SETCR
SETCRB
SETCRI
SETCRN
SETCH
SETCNB
SETCMI
SETCHM
SETCRO
SETOOT
SETLIN
SETH
SETMB
SETHI
SETMM
SETNAM
SETNM2
SETO
SETOB
SETOI
SETOM
SETPOV
SETPR2
SETPRO
SETPRV
SETSTS
SETUUP
SETZ
SETZB
SETZI
SETZNH
SIXBIT
SKIP
SKIPR
SKIPE
SKIPG
SKIPGE
SKIPL
SKIPLE
SKIPN
SKPHIM
SKPME
SKPSEN
SLEEP
SLEVEL
SNEAKS
SNERKU
S0J
SOJR
SOJE
S0JG
SOJGE
SOJL
SOJLE
SOJIN
S0S
SOSR
SOSE
SOSG
SOSGE

427868,,8
851648,,8
425808,,8
426099, ,8
4500908, ,0
453000, ,8
4510608, ,8
452008, ,8
460000, ,08
463080, ,8
461009,,8
4620808, ,8
CRLLI 488873
CRLLI 2
0851348, ,8
414808,,0
417009,,8
4158988,,8
416868, ,8
CRLLI 43
CRLLI 488836
474899, ,8
477889,,8
475008, ,8
476889, ,8
CALL1 32
CRLLI 488852
CRLLI 400028
CRLLI 480866
060000, ,8
CALL1 36
4606608, ,08
483008, ,8
48l1088,,8
492889,,0
Porudo-0p
330008, ,0
334000,,8
332000, ,8
3370808, ,0
335008, ,8
331008,,8
333000, ,8
3366008,,8
718208,,8
718148,,8
710248, ,8
CALL1 31
CALLT 488844
CALL 1 -408864
CALL1 488863
368000,, 0
364800, ,8
362000, ,8
367000, ,8
365000, ,8
361080,,8
363660,,0
366009, ,8
376088, ,8
374890, ,8
372008, ,8
377889, ,8
375009, ,8

FAIL

SAIL

SRIL
uuo
SAIL

uuo
SRIL

uuo
SRIL
SAIL
SAIL
uuo
uuo

page 32

SAIL
SRIL
SAIL
uuo
SRIL
SRIL
SAIL

FAIL

SosL
SOSLE
SOSN
SPCWRR
SPCWGO
SPWBUT
SRCV
STRTO
STATZ
SuB
SUBB
SUBI
sugH
SUBTTL
SUPPRESS
SWRP
SWITCH

TOC
TOCR
TOCE
TOCN
TON
TONR
TONE
TONN
TOO
TDOR
TOOE
TDON
TO2
TDZR
TOZE
TDZN
TIMER
TITLE
TLC
TLCR
TLCE
TLCN
TLN
TLNR
TLNE
TLNN
TLO
TLOR
TLOE
TLON
TLZ
TLZR
TLZE
TL2N
TMPCOR
TNPCRO
TRC
TRCR
TRCE
TRCN
TRN
TRNR
TRNE
TRNN
TRO
TROR
TROE
TRON

371689,,8
373800, ,8
376698, ,0
843008,,0
CRLLI 48008083
CALL1 408088
719109, ,8
861000, ,6
863000, ,80
274000, ,0
277008,,0
275089, ,8
2760880, ,8
Pseudo-0p
Pseudo-0p
CRLLI 488004
CRLLI 20

650008, ,0
654008, ,8
652009, ,8
656800, ,86
6108009,,8
614008,,0
612008,,0
616008, ,80
6579008, ,8
674009, ,8
672000, ,0
676888, ,0
630088, ,8
6340080,,0
632089,,0
6360800, ,8
CRLLI 22
Pseudo-0p
641000, ,8
645800, ,08
643008, ,8
647008, ,0
601008, ,8
605008, ,8
663008, ,8
6870080, ,8
661088, ,8
665009, ,8
663008, ,8
6670089, ,8
621008,,8
625008, ,8
6230089, ,0
627008, ,8
CRLLI 44
CRLLI 488183
648000, ,08
644000, ,0
642008,,0
646008, ,0
600000,,0
684008, ,08
682008, ,8
6086060, ,8
668000, ,8
664000, ,0
662080, ,0
6660080, ,08

SRIL
SAIL
SRIL
SAIL
uuo
uuo

page 36
page 29
SRIL
uuo

uuo
page 34

uuo
SRIL

TRZ
TR2A
TRZE
TR2N
TSC
TSCR
TSCE
TSCN
TSN
TSNR
TSNE
TSNN
TSO
TSOR
TSOE
TSON
TS2
TSZR
TSZE
TS2N
TTCRLL
TTRERO
TTYI0S
TTYJOB
TTYMES
TTYSKP
TTYUUO
TUOSEG

UFR
UFBCLR
UFBERR
UFBGET
UFBGIV
UFBPHY
UFBSKP
UGETF
UINBF

Appendix C

628600,,8
624080, ,0
622088, ,08
626008,,8
651908,,0
655000, ,8
653808, ,8
657009, ,8
611600,,8
615009, ,8
613008,,0
617008,,8
671688,,9
675608, ,8
673009,,8
67780e0,,0
631809,,0
6350089,,0
633660,,0
637809,,0
8510980, ,8
851708,,8
CRLLI 488814
CRLLI 488113
CRLLI 488847
CALL1 488116
851008, ,8
Pseudo-0p

138800, ,8
CRLLI 488812
CRLL I 483868
CRLLI 488818
CRLLI 488811
CRLL 1 408855
CRLLI 488856
673609,,8

764988, ,8

UNIVERSAL Pseudo-0p

UNLOCK
UNPURE
UOUTBF
UPGIOT
UPGMVE
UPGMVM
USE
USETI
USETO
USKIP
UTPCLR
uuosIn
UNARIT

VRR
VOSNRP

WAIT
WRKEME
UHO
URCV

XRLL
XCREF
XCT
XGPUUO
XLIST

CRLLI 488877
CRLLI 408182
705004, ,0
7083008, ,8
7130088, ,8
714800,,8
Pseudo-0p
874088, ,0
875009, ,0
CRLLI 4008841
CRLLI 13
CALLT 488186
CRLLI 488834

Pseudo-0p
CALL1 488870

CALLI 18
CALLL 400861
CALL1 408112
716648, ,8

Pseudo-0p
Pseudo-0p
256600,,8
CALL1 488875
Pseudo-0p

uuo
SRIL
SAIL
SRIL
SAIL
SAIL
uuo

page

SRIL
SRIL
SAIL
SAIL
SARIL
SRIL
uuo

SRIL
page
SAIL
SAIL
SAIL
SAIL
SAIL
SRIL
page
uuo

uuo

SAIL
uuo

SAIL
SAIL

page
SRIL

uuo
SRIL
SAIL
SAIL

page
page

SAIL
page

24

29

22

25

36

36

XLIST1
XOR
XORB
XORI
XORM
XPUNGE
Xuo

Pseudo-0p
438600, ,8
433008, ,08
431088,,8
432068,,80
Psrudo-0p
Psrudo-0p

55

page 36

page 29
page 31

56

Appendix D

Stanford Character Set

FAIL

The Stanford Character Set is displayed in the following table. The three-digit octal code for a
character is composed of the number at the left of its row plus the digit at the top of its column.
For example, the code for A is100+1 or 101.

000
010
020c
030
040
050
060
070
100
110
120
130X
140
150h
160
170

NUL
TAB
LF
VT
FF
CR
SP
ALT
BS

3 4 5 6 7
v a A~ € «
TAB LF VI FF CR « d
>n u v 3 ® &
+ ~ = £ 2 = v
R A T 4 6 !
*) + 9, - e /
1 2 3 45686 7
9: 3 < = > ?
A B C 0D E F G
| J K L M N O-
Q R S T U V W
Y z [N | e
a b c d e f g
i] k | m n O
qr s t wu vV W
y z { | AT } 8BS
Nul |
Horizontal Tab
Line Feed
Vertical Tab
Form Feed
Carriage Return
Space
Al tmode

Back Space

FAIL

Appendix E 57

Summary of Character Interpretations

The characters listed below have special meaning in the contexts indicated. These interpretations
do not apply when these characters appear in text strings or in comments.

800
001
002
003
084
885
886
ee7
810
011
012
013
814
015
016
017
020
821
822
823
024
025
026
027
030
031
032
033
034
035
036
037
040
841
042
843
044
845
846
847
858
051
052
053
854
055
856
057
868
871
072
073
874
075

076
877

c
—

SN 1 TR &=

P 9 w<CC DOV O o8

T < MIVvIAN)
el

+ T s O NR W

noA e -

v

nul 1
down-arrou
alpha

beta

logical and
logical not
epri lon

pi

| ambda

tab

I ine feed
“vertical tab
form feed
carriagereturn
infinity

part ial
containment
impl icat fon
set intersection
set union

for all

there exists
circle times
doub | e-arrow
underbar

r ight-arrou
ti Ide

not equal
less or equal
greater or equal
equivalence
logical or
space
exclamation
double quote
number sign
dollar sign
percent
ampersand

close single quote

left parenthesis
right parenthesis
asterisk

plus

comma

minus

point

slash

digi ts

colon
semicolon
left broket
equa |

r ight broket
question mark

ignored on input
makes a symbol available in a iower block

boo 1 ean AND
boo 1 ean NOT
del imi ter in FOR

same as space (848)
line delimiter

line del imi ter; causes new | is-t ing page
statement terminator

delimiter in FOR

arithmetic shift operator

statement terminator; remainder of line is interpreted as another statement
same as . (856) in ident if iers

same as backslash (134)
same as up-arrow (136);
boolean XOR

i | legal as the del imiter in ASCIZ, COMMENT, etc.

same as not equa | (833)

boolean OR

general delimiter

same as logical or (837)

delimits ascii constants

declares a variable; illegal as the delimiter in ASCIZ, COMMENT, etc.
may be used in identifiers

may be used in identifiers

same as logical and (884)

delimits sixbit constants

encloses macro arguments, expressions, and index fields

see left parenthesis (858)

integer multiply

integer addition

general argument separator

integer subtraction or negation

may be used in identifiers, floating point numbers, or predefined symbol
integer division

used to form number, parts of idontifirrs

used to define labels; illegal as the delimiter in ASCIZ, COMMENT, etc.
forces remainder of line to be acomment

delimits complex atoms; same as left brace (173) to the macro processor
denotes decimal number; al ternate to left-arrow (137) in assignment
s tatements

see left broket (874)

same as down-arrou (881)

58

108
181

> @D

132
133
134
135
136

- SN

137 «

148 ¢
141 a
172 2
173 i
174 |

at-sign
upper case letters

left bracket
backs I ash
right bracket
up-arrow

left-arrow
open single quote

lower case letters

left brace
vertical bar

175 ALT al tmode

176 1

177 BS

right bracs
back space

Appendix E FAIL

sets indirect bit in Ins truct ions; precedes concatenation character In FOR
used for identifiers; B and E are special in numbers; E is special in FOR

delimits literals, value part of OPOEF, size in ARRRY, PPN in ,LOAD

evaluate a macro argument and converts the result to a digit string

see left bracket (133)

moves asymbol definition to an outer block; makes asymbol INTERNAL or
EXTERNRL; illegal as the delimiter in RSCIZ, COMMENT, etc.

denotes assignment statement; arithmetic FOR; illegal as the delimiter in
ASCIZ, COMMENT, etc.

same as at-s iqn (168)

same as upper case lstters, sxcept in text constants

delimits macro bodies, IF-bodice, FOR-bodies, macro arguments
same as r ight brace (176)

see left brace (173)
illegal in ipput .

FAIL

$. 14, 21, 23

. 14,21, 23
FNAM1 15
FNAM2 15
INSERT 35
.LIBRARY 28
.LOAD 28

absolute 9, 14, 50

AC 3

Accumulator Field 3
Address Field 4

apostrophe 11, 23
Arguments in Macro Calls 40
Arguments in Macro Definitions 39
Arithmetic FOR 44

ARRAY 33

ASCID 32

ASCII character set 56

Ascii Constants 10

ASCII pseudo-op 32

ASCIZ 32

Assembler Control Statements 34
assignment statement 13
ASUPPRESS 29

at-sign 3, 43

atomic statement 4, 6, 20
atoms 6, 8

available 9, 15, 17

backslash 4 1
backward reference 12
BEGIN 26

BEND 26

blank 38

block 9

block number 26
BLOCK pseudo-op 33
Block Structure 15
braces 38, 41, 44
brackets 19, 33, 41
brokets 4, 19, 20, 38, 41
BYTE 30

byte pointer 31

carriage return 6, 34, 36, 39, 41
Character FOR 44
character interpretations 57

Index

close single quote 11, 23
colon 3, 13, 15, 32, 35

59

comma 3, 5, 23, 26, 27, 30, 31, 32, 33, 38, 40,

44, 48
comma-comma 4
Command Language 48
comment 6

COMMENT pseudo-op 34

COMPIL 49
Complex Atoms 19

concatenation’ character 39, 43

Conditional Assembly 46
Constants 9

constants optimization 20
containment character 43
con trol-meta-line feed 49
control-Z 49

CREF 1, 37, 48

CREF pseudo-op 37

Cross-Reference Listing 37, 48

DDT 1, 15,18, 26, 32, 34
DEC pseudo-op 30
Decimal Numbers 10
decimal point 10
DEFINE pseudo-op 38
defined 9, 12

DEPHASE 23

Destination of Assembled Code 22

device code 5

Device Selection Field 5
dollar sign 8
dollar-point 14, 21, 23
double quote 10
double-arrow 6
down-arrow 5, 17, 19, 47

END 34

Entering Data 30
ENTRY 19, 27

entry blocks 19, 27
entry point 19

epsilon 44

equal sign 10, 13, 15, 35
Expressions 6
EXTERNAL 18, 27
external symbols 18, 27

fixup 12

60

Floating-Point Numbers 10
FOR 43

FOR-body 43

form feed 37

formal arguments 43
forward reference 12, 33
Full-Word Expression 5

GLOBAL pseudo-op 26
global symbols 18

Half-Killed Symbols 15

Halfword Statement 4

hardware input-output instruction 5
hardware instruction 3, 51

high segment 24

HISEG 24

Identifiers 8
IF-body 46
IFAVL 47
IFDEF 47

. IFDIF 46

IFE 46

IFG 46

IFGE 46

IFIDN 46

IFL 46

IFLE 46

IFMAC 47

IFN 46

IFNAVL 47

IFNDEF 47

IFNMAC 47

IFNOP 47

IFOP 47

Index Field 4

indirect bit 3

Indirect Field 3 \
Input-Output Instruction Statement 5
Instruction Statement 2
INTEGER 33
INTERNAL 18,27
internal symbols 27
IOWD 31

IRP 43

IRPC 43

Labels 12

Index

FAIL

LALL 36

left-arrow 3, 13, 15, 19, 32, 35, 44

library 19

library search mode 19

line feed 6, 34, 39

LINK 27

Linkage with Separately Assembled
Programs 18

LINKEND 27

LIST 36

Listing Control Statements 36

LIT 25, 34

literal-label 21, 28, 29, 30

- literals 19, 20, 25, 34

loader 1,7, 8, 12, 18, 19, 24, 27, 28, 29, 32,
33, 50

LOC 22

local symbols 18

location counter 13, 14, 22

machine instruction 3, 51
Macro Bodies 38

Macro Calls 40

Macros 38

multiple definition 13
multiple location counters 22

NOLIT 36

NOSYM 37

null argument 41

null statement 2

number sign 3, 14, 25, 32, 33, 35
Numbers 9

Numeric IFs 46

OCT 30

octal 9

Opcode Field 3
OPDEF 26

opdefs 26

open single quote 3
operator 6

ORG 22

PAGE pseudo-op 37

parameter 13

parentheses, 4, 6, 30, 38, 39, 40, 43, 48
percent sign 8

PHASE 23

FAIL

point 8, 14, 21, 23
POINT pseudo-op 31
Polish fixup 7
Predefined Opcodes 51
PRGEND 34
PRINTX 37

program 18
Pseudo-Ops 22
PURGE 28

guestion mark 17

RADIX 35

RADIX 50 32

RAID 1, 15, 18, 26, 32, 34
range specifier 43
reference 12

RELOC 22
relocatable 9, 13, 14, 50

relocation constant 50
relocation factor 50
REPEAT 45

reserved identifiers 8
Reserving Space for Data 33
-right-arrow 4 1

RPG 49

SEARCH 29
segment 24

semicolon 6, 34, 36, 41
SET 22

Simple Numbers 9
sixbitl1, 32

Sixbit Constants 11
SIX BIT pseudo-op 32
slash 48

special characters 57
Stanford Character Set 56
starting address 34
Statement Termination 6
Statements 2

String FOR 43
SUBTTL 36
SUPPRESS 29
suppress bit 29
symbol 9

Symbol 1Fs 47

Symbol Modifiers 26
Symbols 11

Index

tab 38

Text IFs 46

text statements 32

tilde 3, 16, 32, 35

TITLE 34

Truncated Expression 5
two-segment program 24
TWOSEG 24

unavailable 9, 16
undefined 9, 50
underbar 8
UNIVERSAL 29
universal program 29
universal symbols 29
unreiocatable 9, 50
up-arrow 3, 16, 18, 19, 27, 32, 35
USASCII 10

USE 22

user-defined opcode 26
uuo 1, 3, 5, 51

Values 8
VAR 25, 34
Varidbles 14, 25, 33, 34

XALL 36
XCREF 37
XLIST 36
XLIST1 36
XPUNGE 29
XWD 31

61

