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Sone Thoughts on Proving
Cean Termnation of Progranms

by Richard L. Sites

Abst ract

Proof of clean termnation is a useful sub-goal in the process
of proving that a programis totally correct. Cean termnation
means that the programtermnates (no infinite loops) and that it
does so nornally, without any execution-time semantic errors
(i nteger overflow, use of undefined variabl es, subscript out of range,
etc.). In contrast to proofs of correctness, proof of clean termnation
requires no extensive annotation of a programby a human user, but the
proof says nothing about the results calculated by the program
just that whatever it does, it termnates cleanly. Two exanple proofs
are given, of previously published prograns: TREESORT3 by Robert Fl oyd,
and SELECT by Ronald L. Rives-t and Robert Floyd.

This work was supported in part by the Fannie and John Hertz Foundation,
by the National Science Foundation and by IBM Corporation. Reproduction
in whole or in part is permtted for any purpose of the United States
Gover nment .
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CERTI FI CATION OF ALGORI THM 2k5[M1]

TREESORTS [ Robert W. Floyd, Comm ACM 7 (Dec. 1964), 701]:

PROCF OF CLEAN TERM NATION -- A NEW KIND OF PARTI AL CERTI FI CATI ON

Richard L. Sites
Conputer Science Departnent
Stanford University
Stanford, California 94305

Abst r act

The certification of a programcan include a proof that the program
al ways terminates cleanly, i.e., that as it runs on a real machine, it
generates no senmantic errors and it encounters no infinite loops. As an
illustrative exanple, a previously certified algorithm TREESORT3, isS
exam ned and a hidden restriction is exposed which prevents it from

running properly on some machi nes.

Keywords and Phrases: proof of termination, debugging, certification,

sorting, proof of correctness.
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This certification differs from London's certification [2] in two
i nportant respects: (1) it deals explicitly with running the algorithm
on a real machine which has restrictions on the validity of arithmetic
operations (roundoff error, overflow; (2) it deals only with proving
that the algorithmtermnates cl éanly, wi t hout exami ning what it
acconplishes (i.e., without proving that it sorts an array).

The need for such a certification follows fromthe fact that
TREESORT3 Wi || actually fail in realistic situations, although it has
been "rigorously proved correct”. This flaw was noted in London's
reply to Redish [3].

Proving that an algorithmterm nates cleanly neans proving that as it
runs on a r‘ﬂ‘eal machine it generates no senmantic errors and that it encounters
no infinite loops. A semantic error is produced by attenpting any operation
whi ch the |anguage specifies to be illegal or undefined, or any operation
which violates a restriction of a particular inplementation of the |anguage.
Many inplenentations fail to detect all semantic errors at run-time; this
produces meani ngl ess results and is one of the tragedies of our profession.
Common semantic errors include arithnetic overflow, underflow, division by

zero, subscript out of range, case or switch expression out of range,

use of wuninitialized variables, and use of a null pointer.
In the discussion below, it is assuned that the algorithmw Il run

on an ALGOL 60 machine with the follow ng properties:

L. I nteger overflow The binary operations i+ , i-] , ixj, i+j,
and i/j give the mathematically correct result if and only if i
and j have defined values and the result is in the range Lin

to Imx inclusive; otherwise a semantic error occurs. It is



assuned t hat Tpin < O and I . > 0 . Division by zero produces

a result outside of the range Tnin to I , i.e., a semantic

max
error occurs.

2. No assignnment of wuninitialized.values. The operation i :=j wll
assign the value of j to iif and only if j has a defined val ue;
if j is uninitialized then a semantic error occurs. It is possible
to wite algorithm which violate this restriction and still give
neani ngful results, but nore often violation of this condition
indicates an error which is best caught as soon as possible.

3. Subscript range checking. If Ais an array wth bounds [AI:Au]
then in all references to A[i], it nust be true that i is defined
and A, <i <A, -

L. Mathematically correct comparison. The relation i < | always

produces the proper value true or false, even in cases where j-i

woul d produce an overflow. On a machine which has no conpare
instruction, such as the CDC 6600, this property is not true; thus,
algorithns which are certified to execute and termnate cleanly on
the 6600 must be transformed so that every conparison is done as a
subtraction and a sign test, then all the subtractions checked for
overflow underflow. Two representations of zero are allowed if

the inplementation gives identical results for each.

5. Representable constants. Each integer constant nust be between

[ . and | i ncl usi ve.
mn max

The proof of clean term nation of TREESORT3, under suitable
restrictions on the parameters, is presented below in five parts:

a copy of the algorithm[1], the corresponding flow graph, a listing of



the assertions about semantic errors, a listing of the assertions about

| oop termnation,

and proofs of the assertions. An appendix extends

the analysis to machines |ike-the CDC 6600.






ALGORI THM 2k5
TREESORT? [M ]

Robert W. Floyd (Recd. 22 June 196k and 17 Aug. 196k)
N Conputer Associates, Inc., Wakefield, Mass.
procedure TREESORT 3 (Mn);
value n; array M integer n;
conment TREESORT 3 iS a major revision of TREESORT [LR. W Fl oyd,
Alg. 113, Comm. ACM 5 (Aug. 1962), 434] suggested by HEAPSORT
[J.W.J. Williams, Ag. 232, Comm. ACM 7 (June 1964),347]
v fromwhich it differs in being an in-place sort. It is shorter and
~ probably faster, requiring fewer conparisons and only one division.
It sorts the array M[1l:n] | requiring no nore than 2 x(2t p-2) x(p-1) ,

« or approximately 2 xn x (log,(n)-1)  conparisons and half as many
exchanges in the worst case to sort n = 2 tp-1 item. .. g gori thm

is nost easily followed if Mis thought of as a tree, with M[j +2]
the father of M[j] for 1 <] <n;

begin

procedure exchange (x,y); real x,y;
begin real t;t:=x; X :=y; y:=t
end exchange;

procedure siftup (i,n); value i,n; integer i,n;
coment M[i] i s noved upward in the subtree Of M[1:n] Of which
it is the root;
begin real copy; integer j,
copy :=M[1i];
loop: j :=2 xi;
if j <nthen
begin if j < n then
begin if M[j+1] >M[3] then j :=3+1 end,
it Mj] > copy then o -
begin M[i] :=M[j]; i :=J; go to | oop end

end,
M[i] :=copy
end siftup;



i nteger i;

for i:=n:2 step -1 until 2 do siftup (i,n);

for i :=n step -1 until 2 do

begi n siftup (1,i);
comment  M=s2] >M[j] for 1 <) <ij
exchange (M[1],M[i]);
comment M[i:n]is fully sorted,;

end

end TREESORT 3

The flow graphs are shown in Figures 1, 2, and 3. For reference
purposes, the arcs are nunbered, and the nodes are lettered. The synbol
w is used to represent the value "undefined". Follow ng treblock
structure rules of ALGOL 60, all local variables are set to w at

entry to the bl ock.



Figure 1.
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Fl ow graph of siftup.

15

Doubl e lines indicate |oop exits.




treesort 3 (M,n)

1
Bl w
i:=w
2
C ¥
i :=n+2
3
D
i>2
T
F
E \
siftup(i,n)
o 6
i:=1-1
G \I 7
i:=n
8
H
1> 2 T
10
F
9 siftup(l,i)

' \
11
J

exchange (M[1],M[1i])

12
K l

fi=d-1

L

15

Figure 2. Fl ow graph of treesort3.
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Figure 3.

Fl ow graph of exchange.



Assertions About Semantic Errors

Assertions are generated locally and nechanically, based on the

operators in a node. The assertions about a node are attached to al

arcs which enter that node.

The mechani cal style of assertion generation

and proof is intended to mmc a machine-generated certification of

clean termnation.

Assertions for siftup

Node Assertion

C itw
M, <i <M
Mi] £ w

D iftw

Imin <es Ima.x

lin S2x1 < Ty

mi
E JFw
nfw
F JFw
ntow

Reason generat ed

Cannot use uninitialized variable.

Subscri pt range. M, and M, are t he
| ower and upper bounds assuned for
array M

Cannot use uninitialized variable.

Cannot use uninitialized variable.

Constants nmust be in the representable
range.

I nteger overflow

10
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Node Assertion Reason gener at ed
G J#w
|m'nSlSIma.x
|min <J+l<—|max

Ml < j+l _<Mu

MIG*+1] £
JFw

M! <3 SMu
MJ] £ w

To keep this presentation nore readable, the following trivial assertions

wll be elided:

L | min S COnstant < 1,, Assertions describing the largest and
smal | est constants in each procedure wll
be added at the end.

2. v £ w Dropped when there is some other assertion
about v at the sane node, i.e., any assertion
about the value of variable v inplies the
addi ti onal assertion v £ o .

3. Any true expression involving only constants

Node Assertion Reason gener at ed

H | . < §+1 < |
= - 'm

min X

MISJSMu
MI3] £ w

copy £ w

11
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Assertions for treesort3

Assertion
M, <i<M
L - —u

M, < j

1

M3] A
JFw

Node
o

M

Assertion

n £ w
itw
ifw
n#tow

ifw

n £ w

iftuw
itw

Reason generated

Largest constant in procedure. Snallest
constant is 1, which is greater than

| min by assunption that Tpan < 0.

Reason generated

Argunments passed to value paranmeters must

be defined at time of call.

[Qher assertions about the argunents to siftup will be inserted

here after siftup is conpletely analyzed.]

Val ue paraneter.

[Assertions relating to name paraneters are all pushed into a copy
of EXCHANGE associated with this particular call.]

12



Node Assertion Reason gener at ed

K iftw
lmin S i-1 S Imax

also 2<71 Largest constant in procedure.
¢ :
L Assertions for exchange

Because it has NAVE parameters —eychange must be treated in strict

L accordance with the copy rule. A copy of exchange is made for each call,
l wi th appropriate argument substitutions. The call at node J of

treesort3 i S equivalent to:

3

t :=M[1]
E" 5
L
M[1] :=M[iu
2

Node Assertion Reason gener at ed
C M, <l Subscript range.
M{1] # w Cannot use uninitialized variable.
D Ml <l <M
- T = u
M[ <l <M
- = Tu
Mi] £ w
E M/z < i <M
- = u
tAw

13




Assertions About LooE Term nation

siftup

For any loop, asserting that it termnates is the same as asserting
that there exists a k > 1 such that on the k-th iteration of the |oop,
one of the paths leading to an exit arc will be taken. The siftup
procedure has just one loop, in the sense that all cycles in the flow
chart pass through node D. The notation i, means the value of i
at the beginning of the k-th iteration of the loop, i.e., just before

the execution of the statement j := 2 xi in node D .

The generalized loop termnation assertion is:

3k >1 s.t. [arc 5 taken] or
[arcs 6, 7, and 12 taken] or
[arcs 6, 8, 9, and 12 taken] or

[arcs 6, 8, 10, 11, and 12 taken]

This expression is expanded to reflect the branches taken to reach a

particular arc, using expressions in terns of values at the beginning

of the k-th iteration of the Ioop:

3k >1 s.t. {2x1k>nk} or

e xiy <m and 2xi, >mn and M[2xi ] < copy, } or

and 2x1k < n, and

M lexi+1] <M [2xi ] and M [2x1i,] < cop’yk} or

{2x i <n

. and 2><.1k<nk and

M2 x i +1]>M[2 x i,] and M2 xi,+1] < copyk} .

{2 xi, <n

k

In general, a loop ternination assertion such as this is unprovable,

but there are a few inportant special cases which work for many | oops.

1h
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Two such cases are (1) strictly nonotonic sequences of integers and
(2) pointers indexing through finite linked lists. |n the siftup

| oop, the fact that n, =Jy i's monotonically decreasing is one key to

proving loop termnation.

treesort 3
first |oop:
Tk>1 s.t. i <2
second | oop

3k>1ls.t. i <2

exchange -

No | oops.

There is a shortcut to this general method of proving |oop termnation
whi ch conpletely avoids analysis of the branching structure of the |oop:
If any variable is nonotonically increasing or decreasing inside the
| oop, and the loop generates no semantic errors, then it term nates!
If a monotonic variable is found, then no other assertions, proofs, or
| oop analysis is needed. The statements which nodify the nonotonic
vari abl e cannot be executed an unbounded number of tines w thout generating
an overflow, so proving that those statements generate no overflow
simul taneously proves that the loop termnates. This shortcut is

applicable to all the loops in treesort? and siftup .

15



Proofs of Assertions

Asindicated in the programs initial comment, all intended
references to the array M involve subscripts in the range 1 to n.
In case the value of n is changed in the program we wll define the

variable n, equal to the value of n upon entry to treesort . All

0
. . . *
subscript range assertions will assune that M, = 1 and M, = ng X/
Assertions for siftup (note that n and i are bound in siftup, not
treesort3).
Arc  Assertion Pr oof
2 i4w Val ue paraneters are always defined.

1 <igny -~ Not clear. Push back to arc 1 as an entry
condition for siftup. Eventually verify that
this assertion is true at each point of call.

Mli] £ w Again, not clear. In fact, there is a need
to assert that ¥ 1 <2 <nj, Mie] £w  at
the very begi nning of treesort . R ght
now, push this assertion back to arc 1.

5 ifFw Used in previous node, hence i is defined or
a previous assertion would be false.

I. <2<I The assertion I ., < 2 is true because of

min — —  max min —

t he assunption that Ipin < O .Push t he
assertion 2 <TI back to arc 1 as an entry
condition for siftup.

lyip $2xi<IT o Not clear. In fact, overfloww Il occur if

i =n, and ng >Ima.x/2 ~ W know fromarc 2
that 1 <i , so Tpin S 2 xi . Push the
assertion 2xi < I o back to arc 1.

Y It is possible to develop the proof of clean termnation using only M,
and M but doing so makes it significantly harder to prove that the
siftup | oop term nates when Ma =0 .

16
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Anal ysis of |oop.

Val ues of variables at beginning of k+t1 -st iteration in terns of

val ues at beginning of k-th iteration:
Pkl = Pk
COPYy.q = COPYy

1k+l = 2y i or 2 x1k+l

=1 =2 xi or 2xik+l

Ipe1 = Lpe1 k

M, = M, except Mk+l[ik] = Mk[e Xi.,] or = Mk[exikﬂ}

Mk+l[1k+1] > Copy,, 4

TS 3151
Tee1 S0y
Thus n and copy are invariant in the loop; i is nonotonically increasing

(since 2x i >1i wheni > 1 ); various elenments of M change val ues.

arc Assertion Pr oof
4 Jtw J is defined in previous node.
n#ow n is defined originally as a value parameter,

and is invariant within the |oop.

5 1<1i<n, Still true fromarcs 3 and 15.
copy £ w True fromnode C and copy invariant in
| oop.
6 JFw True from previous node.
n £ w True from previous node.
7



arc Assertion Pr oof

7 1<3<n, Not clear. On edge 7, =n, and nis
invariant within the |oop, so push the
assertion 1 <n <n,toarc 1.

M3l £ W I lbetrueif V¥1<g<ng,Mylto
on arc 1, since after that, an undefined
val ue can never be assigned to an el enent
of Min our nachine nodel.

copy £ w True from node C, and copy is invariant
within the |oop.
For a nore readable presentation we will elide the statenent and proof for
all assertions which are true because they were true earlier in the program
and haven't changed.
8 i < L ST . j Fwinplies T, <j , soclearly

Loin < j+1 . Because of test in node F,
J <D S Tpay s SO JHL S0 S Tgy -

1 < §+1 < n From top of |oop, 1<i, and | =2xi,
SO 2<Jj, thus 3 < j+t1 . Fromtest in
node F, j <n , so j*l <n <n, (see
arc 7).
lSano 2<j andj<n§no.
MI3+1] £ w True because we have chosen to require all
el ements of Mto be defined on entry
M) £ w (see arc 7).
11 1<3J <0, True fromarc 8, where 1 <j+1<n .
M3] £ w M[j+1] # w from arc 8.
15 it Just assigned a val ue.
L S2x1<T 00 May not be true. \% know that i, . <n

at this point, so push the assertion
2>(n_<_1m_'.X back to arc 1. Also see arc 3.

18
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Proof of termnation of |oop.

Since i is nonotonically increasing, the loop terminates if no
semantic errors occur, i.e., if all the entry assertions are true.
V& have now proven siftup to be free of semantic errors and

infinite loops, if the followi ng assertions are true on entry:

(al) 1<i<n, fromarc 2
(a2) ¥1<t<n,, M2] A w fromarcs 2 and 7
(a3) 2 < Tnax fromarc 3
(alt) 2xi§1;nax fromarc 3
(a5) 1 <n<n, fromarc 7
(ab) exng I oo fromarc 15

These are sufficient (although not quite necessary: sone el enents
of Mneed not be defined) conditions for siftup to generate no
semantic errors as it executes on the "real" machine we have assumed.
Note that assertions al and ak make assertion a3 redundant. Also, this
set of assertions could be further sinplified if the programer stated the
entry condition that is inplied by the initial coment in giftup ,
1<i<n<n, . The above set of assertions represents hidden restrictions
which are rarely included in the description of an algorithm In
particular, if treesort? were used to sort an array of 30,000 el enents
on a machine with 16-bit 2's conpl enent integers ( paxe = 325767)

and > 16-bit addresses (such as a large PDP-11 or a 360 with half-word

integers), the statenent

J = 2xi;
could be executed with i = 30,000 , either generating an overflow or
quietly assigning -5536 to j . Either the overflow woul d termnate

19



execution, or (worse), the conparison M[j+1] > M[j] would term nate on
a subscript range error, or (worse yet, but somehow nost |ikely) the

assignment M[i] := M[j] would store into a random |ocation in menory

on the following iteration of the loop. _Thus, a mathematically correct,
certified programcoul d generate conpl ete garbage when run on a real

machi ne.

20



Assertions for treesort3 (remenber that

o is the value of n upon
entry to treesort3 ).

Arc Assertion Pr oof
: nf£w * Val ue parameters are always defined.
3 1w Set in previous node.

Anal ysis of first |oop:

o

Tepy = 1L

so n isinvariant and i is nonotonically decreasing.

o ntw ' Fromarc 2 and n invariant in |oop.
b iftw True from previous node.
ntw

Fromarc 2 and n invariant in |oop.

Assertions for call to siftup, Wth argunents i and n (bound in

treesort3 ) substituted for paraneters i and n .

(1) 1 £ic<ny 2<4i, but it is not immediately clear

that i < nj . Since I\ Ts nonotoni-
cally decreasing, it is clear that if

i, <ny, all other i wll be <n

’ k
But i, = n+2 and 2<i;, s0to
enter the loop at all, n, >k in
which case it is true that ny +2 ino,

(2) ¥ 1 <t <ny,Mt] # o This nust be an entry assunption for
treesort? . Mve it to arc 1.

(3) 2xi <TI0 Sincen:no, this assertion is
implied by (1) and (6).

21



(6) 2xn < Ima.x

-0

Arc Assertion
(5) 1<n<n
6 Lyan S -1

Anal ysis of second | oop:

Assertions for
r paranmeters i

10

11 [ See anal ysis of exchange ,

12

al so

i

=1i-1.

kt1

n is invariant in |oop.

fo

cal

k

(1) 1<1<1i

to siftup ,
and n .

(2) v1515nO,M[z];éw

(5) 1<ig<n

(6) 2xi ST oax

Imin

2<1

< -l

max

0

22

Pr oof

n=n, and we noted above that to

get to this arc at all, nozh.

This nust be an entry assunption for
treesort? . Mve it to arc 1.

True because i >2 and Imin <0 .

with argunents 1 and i substituted

True ; 1 > 2 at this point.

Entry condition for treesortd , see
arc 5.

i's monotonically decreasing.

True because i < n,, and
2xny < I .. IS entry condi tion

for treesort3 (see arc 5)-.

bel ow. ]

True. 2 <1 Tsn <O

Mve to arc 1, as an entry condition.



Term nation of |oops.

Since each loop has a nonotonically decreasing variable, i , each
terminates if it generates no semantic errors, i.e., if the entry

conditions for +treesort?d are satisfied.

Assertions for exchange (as called fromnode J in treesort? ).

Arc Assertion

¢
|
L 2 lSnO
L
L

Pr oof

True. n, > 2 to get to this call at all.

MI1] £ o Entry condition for treesort? .
3 1 <n, Tr ue.
[ 1<ig<ng Tr ue, 2<ign, within the treesort?
v ) | oop.
Mil A w Entry condition for treesort3 .
L 1<i<n, True.
. t £ w Defined in node C.

Concl usi on

V¢ have now proven +treesort3 to be free of semantic errors and
infinite loops if executed on the nmachine described and if the follow ng

assertions are true on entry:

(1) ¥ 1 <t <ny,M] £ w fromarc 5
(2) 2xny <I o fromarc 5
(3) 2 < I | argest const ant

The second assertion is a hidden restriction which will prevent the proper

execution of the algorithmon large arrays on a machine with |arger

addresses than integers (such as a large PDP-11 or a 360 wWith hal f-word

integers). Note in passing that siftup has the entry condition that

1 <ny , but treesort? does not require 1<n

o A qui ck exam nation

23



of treesort3 shows that it works quite properly in this degenerate
case, skipping both loops and returning.

The only difficult parts in the norass of detailed proofs were:
(a) the proof that i is nmonotoni caIIy‘.increasing in the main |oop
of siftup , in which we used the overly-stringent assunption that
i>1; and (b) the proof at arc 8 of siftup that 1 < j+l < n, ,
which used global information about the behavior of n inside the |oop.

APPENDIX: Cean termnation of treesort3 on CDC 6600.
Because comparisons may generate overflow, the follow ng additional

assertions are required:

Node Assertion Pr oof
(These proofs assume the additional constraint
that I .+ Tpae » RN, and Ry, are

symetrical about zero, i.e., that

lm’n = Thax 7 Bain = “Rnax )
siftup
E min S B < Loy j and n are both >1 (from node C),
and the difference of two nunbers with
the sane sign cannot overflow
F lyin-<n-) < I .4 Sare.
G R .. < Mg+1]-M[j ] Cannot be proved without a restriction |ike
< ¥1<t? <n, R, +2 <M[£] <R *2
T omax or
¥1<t<ny, O <M1] SRoax
This is an additional entry restriction
on treesort3 . This subtraction may
al so generate an underflow if Mj+l] and
M[(j] are very small and al nost equal .
Riin <MIG . couy See node G above.
<R
— max

2L
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Node Assertion Pr oof

treesort3

D l . <i-2<T1I
= - m

min On arc 3: Imin+2 <i <Imax+2 from

node C, so the assertion is true if

lmin < (Imin+2)-2 , .e., if lmin5'5 )
Al though not very interesting, thisis a
valid entry restriction on treesort? .

A nore interesting one would be n > 2 .

ax

On arc 7:since | > 1 at this point,
the assertion is true because of our
initial assunmption that 1, <0 .

min

H 'pin SRS T On arc 8:since i =n, this becones
the entry condition I, <n-2.
min

Oh arc 13: since i > 1 at this point,
the assertion is always true.

Concl usi on

treesort3 W Il termnate cleanly on a CDC 6600 if the follow ng

additional restrictions are true on entry:

(1) ¥ 1,5 such that 1 <i <Ny and 1 <j <n,

F%mi][1 < Mi]-M[§] < R oax -

Two sufficient forms of this are:

V1< ks =
<t<n,, min T2 SMIL] <R +2
and
Y1<t¢ <n, OSM[2]<R
() I, <n2 and I < -3

25
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NN « aRS(N)
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320 C = P/NORM
S = O/NORM
GO TO RETURN+ (3103404360}
5% ¢ = 1
S . 0.
NORM .
GO TO RETURN, (31143404360}
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ABSTRACT: Thecertification of an agorithm can take the form
of uproot that the algorithm is correct. As an illustrative but
practiatexample, Algorithm 245, TREESORT 8 for sorting an
airov is proved correct.
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(‘ertiticatron of algorithms by proof. Since suitable techniques
now exist for proving thr rorrectness of many algorithms [for
example, 3-7}, it is possibleand appropriate to certify algorithms
with @ proof of correctness. This certification would be in addi-
tion to or in many eases instead of, the usua certification. Certi-
fiention by testing <till is u<eful beeause it is easier and bhecause it
nlsecpaavides, for exumple, timing data, Nevertheless che existenca
af noprocf shoubd be weleame mddivionnd cortinention of we nlgo.
richm The proof shows that ao slgorithm is debuggrzed by showe
ing conclusively that no bugs exisi.

Tt,does not matter whether allusers of analgorithm will wish
.9, or be able to, verify asometimes lengthy proof. One is not
required to aceept a proof before using the algorithm any more
than one i S expeeted to rerun the certification tests. In both
caces ome could depend, in part at least, upon the author and the
refer -

A H anexample of a certification by proof, the algorithm
TREESORT 312} is proved to perform properly its elnimed task
wf sarting an array M{1:n} into ascending order, Thia algorithm
hasbeen previously certified (1], but in that certification, fOr
example, no arrays of odd length were tested. Since TREESORT 8
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is s fast practieal algorithm for in-plneo Borting and one with
sufficicnt complexity so thnt its correctness is not immediately
apparent, its use ax the example is more than an abstraet exercise.
It is anexample of considerable practical importance.

Outline of TREESORT 8 and method of proof. The algorithm is
most cnsily followed if the array is viewed as a binary tree.
Mlk~ 2] is the parent of M[k]), 2 <k <. In other wordsthe
children of M{j} nre M|2j} and M(2;41} provided one or both
of the children exist.

The first part. of the algorithin permutes the Af array so that
for asegment of the nrrny, each parent islarger than both of the
children (one child if the sccond does not exist). Fackeall of the
auxiliary procedure siftup enlarges the segment by causing one
more parent to dominate its children. The second part of the
algorithm uses siftup to mnkc the parents larger over the whole
array, exchanges M(1] with the last clement and repeats on an
arry one element shorter. The above statemonts arc motivation
and not part of the forma proof.

That TREESORT 8 is correct is proved in three parts. First
the procedure siflup is shown to perform as it is formally defined
below. Then the body of TREESORT 3, which uses siftup in two
ways, is shown to sort the array into rscending order. (The proof
of the procedure ezxchange is omitted.) The proofs are by a method
described in [3, 4, 7): assertions concerning the progress of the
computation are made between lines of code, and the proof con-
sists of demonstrating that each assertion is true each time con-
trol reaches that assertion, under the assutnption that the previ-
ously encountered assertions arc true. Finaly tcrminntion of the
algorithm is shown separately.

The lines of the origind agorithm have been numbered and the
asscrtions, in the form of program comtnents, are nutnbered cor-
respondingly. The numbers are used only to refer to codeand to
assertions and have no other significance. One extra begin-end
pair has been inserted into the body of TREESORT 3 in order
that the control points of two assertions(3.1and 4.1) could be dis
tinguished. In siftup the assertions 10.1 and 10.2 express the cor-
rect result; in thebody of TREESORT 8 the assertions 9.3 and
9.4 do likewise.

Definition of siftup andnotation. W e now define formally the
procedure siftup(i,n), where n is a formal parameter and not t he
length of the array M. Let 4 (s) denote the set of inequalities
Mik+2) > Mlk) for 2s<k<n. (If 8> n+2, then A(s) iS A vacu-
ous statement.) If A(Z+1) holds before the cal of si/ftup(i,n)
and if 1 €i<n<arraysize, then after siftup(i,n):

(1) A (i) holds;

(2) the segment of the array Wil throngh Y(n} s permuted;
and

(3) the segment outside (7] through M[n] is unaltered.

In order to prove these propertics of siftup, some notation is
requircd. The formal parameter ¢ will be changed mmside sifrup
Since 7 is called by value, that change will be invisible outside
siftup. Nevertheless it i3 necessary to use the initial value of ¢
as well as the eurrent valvwe of 7 in the proof of aiftup. Let 7y denote
the value of 7 upon ontrey o aftiep.

Stnituely et My denotec the AL wreeny upon endey io siftup
The notation M = p(Ma) with M = copy” means “4f Mi] e
copy were done, M is some permutation of A, as deseribed in (2)
and (3) of the definition of siftup.” “M = p(M,)’’ means the
same withont the reference to Mli} := copy being done.

Code and assertions for siflup.
0 procedure siftup(i, n); value i, n; integer ¢, N ;
1 beginreal copy; integer j;
commen |
11 1 <th=t<n<array sizc
1.2: A (to+1)
1.3: M =p(M,);
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2 copy = M[il;
3 loop: j:=2 X 1
comment
3.1 i<n
3.2: 2 =3
33 i =dy0ri>2i
3.4: M = p(Mo) with M{i]}:= copy
3.5: A (1) Or (i =1q and A (fo+1))
3.6: M(i+2]> copy or &=t
3.7 M[i+2]1=2 M|t] or i =1e;

4 if | <nthen
5 begin if j <n then
6a begin if M{j+1] > M{j] then
6b j =]+ 1lend,;
comment
6L i=j]+2

62 2<j<n

6.3: 71 = 1o OF i > 24y .

6.4: M = p(Mo) with M[i]:= copy

6.5: A (1o) or (i = 4o and A(e+1))

6.6: M[i+2]>copy Or i =1,

6.7: M{i+2] 2 M[i] or i =1

6.8: (2i <n and M{j] = max(M[2i], M[2i+1])) o r
2i=n and M[j] = M(n])

6.9: M[i} > M[j] or i =1t

7 if M{j] > copy then
8a begin M[i]:=M{j];
comment
81 i = dp0ri =21 -~

82 2iLj<n
8.3 M{j+2] = M[t] = M[j] > copy
8.4: M[i+2] > M[jl or i =1
8.5: M = p(Mo) with M{j]:= copy
8.6 : A4 (10);
8b 1:=7;
comment
8.7: i 22
88 i=j<n
8.9: M{i+2]> copy
8.10: Mi+2]> M[i]
8.11: M = p(Mo) with M[i]:= copy

8.12: A(d);
8c go to loop end
9 end ;

comment

9.1: M[j]<copy if reached from 7 or
2{ =] >n if reached from 4;
10 M[i] := copy;

comment
10.1: Al = p(Mo)
10.2: A(i0);

11 end siftup;

Verification of the assertions of siftup. Reasons for the truth of
cach assertion follow:
1.1-1.2: Assumptions for using siftup.
1.3: p is the identity permutation.
3.1-3.7: If reached from 2,
3.1 1.1
3.2 3.
3.3, 3.56-3.7:i =1y by 1.1
34: 1.3 and 2.
If reached from 8, respectively, 8.8, 3, 8.7, 8.11, 8.12,
8.9 and 8.10.
6.1: At3.2 j = 2i and by 6b, j might be 2i + 1. ¢ = j+2 in dither
case.
6.2: After 4,j <n.jis altered from 3.1 to 6.2 only at 6b. Before
6b,j <nbyb5. Hencej<n at 6.2.2¢ < j by 6.1.
6.3-6.7: 3.3-3.7, respectively.

3.5 also requires 1.2.
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6.8: If 4istrue and 5 is false, j = 2i =n (using 3.2) so the
second clause of 6.8 holds. If 4 is true and 5 is true, then
at 6a, 2i = | <n(using 3.2) 8o M[j+1] = M[2i+1}is
dcfincd. Now at 6.8, ] = 2i or j = 2i4+1. In either case,
by 6a and 6b, the first clause of 6.8 holds.

6.9: By 6.5 i #fogives A(7). 2, <21 <j<nby6.3 and 6.2.
Ilence A (10) and 6.1 give M[ij= M[j+2] > M(j].

8.1: 6.3.

8.2: 6.2.

8.3: i = j+2by06.1, M[:] = M[j}by 8a and M([j] > copy by 7.

8.4: 6.7 nnd 6.9.

8.6: 6.4 requires that M(i] be replaced by copy. Since M[i] =

" M{j] by 8a, M[j] may equally weli be replaced with copy.
8.1 and 8.2 give i, <i <n s0 that the change to M at 8a
is in the segment M{i,] through M(n].

8.6: By 83 and if 6.8 (first clause) holds, Mti}>M([2¢] and M[i]2>
M{2i+1]. By 8a and if 6.8 (second clause) holds, Mii] =
M{jl= M(n} = M[2¢] and M{2i{+1] does uot exist for this
call of siftup. A(io+1) holds at 6.5 since A (i) implies
A@Go+1). If i =14y , A(te+1) and the relations above on
M[i] give A (o). If ¢ %14, then 8a, 84, A(i) a 6.5 aud
the relations above on M([i] give A (%) at 8.6.

8.7: 8b, 8.1 and 8.2.

8.8: 8b and 8.2

8.9: 8b and &3.

8.10: At 86, 2i,<j<n by 8.1 and 8.2. Hence by 8.6, M[j+2]>
M[j]. Use 8b on M[j+2]2> M{j].

8.11: 8b and 85.

8.12: 8.6.

9.1: 9.1 is reached only if 7 is false orif 4isfalse. 2i = j by 3.2.

10.1-10.2: If reached from 7,

10.1: 6.4 and 10. (6.2 and G.3 give 70 < i <n ensuring
the change to M at 10 is in the segment M[is]
through 3 {n].).

10.2: By 10, 9.1, G.2 and 6.8, M[i] = copy > M[j] =
M{2{] and, if M[2:+1] esists, M{j] > M (2i41]. If
1 =1 , 10.2 follows as in 8.6. li i #1i,6.6 and
10 give M [i+2]>copy = M[i]. A (i) at 6.5 now
gives A (i) at 10.2.

If reached from 4,

10.1: 3.4 and 10. (3.1 and 3.3 give %4 <i<n)

10.2: 2i > n means no relations in A (%) of the
foom M[]2> .- . Ifi =4 , 35 gves 10.2. If
i #1% , 3.6 and 10 give M[z+2]> copy = M[:].
A (10) at 3.5 now gives 10.2.

Code and assertions for the body of TREESORT 8.
0 integer t;
comment
0.1: A(n+2+1);
1 for 1:=n+2step -1 until 2 do
2 begin
comment
2.1 A(i+1)
2.2: Assumptions of siftup satisfied;
3 siftup(i,n);
oommcnt
3.1 A(3);
4 end;
- comment
4.1: Mlpl<Mlp+llforan+ 1<p<n—1
4.2: A(2), i.e. Mk+2]> MIk] for 4 <k <n;
5 for t:=n etep -1 until 2 do
6 begin
comment
6.1: Mip]<Mp+1lfori + 1 <p<n—1
6.2: Mk+2]1> Mk] for 4 <k<i
6.3: Mii+1]>Mrjfor 1 <r< i
6.4. Assumptions of siftup satisfied;
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7 siftup (1,3);
comment
7.1 Mpl < Mip+1]fori+1<
T2 ME+2] > Mk]for2 < k <
7.3 M > NMr]jfor2<r <t
T4 MU+1) > M{1);
8 cxchange (M{1}, M[iD);
comment
81 MU>Mr] for 1 £r <t~ 1
8.2: Mipl]<M[p+1]) for i £p<n~—1
S.3: Mk+2]> M[k) for 4 k<1~ 1;
9 end;
comment
0.1: M{p]<£Mp+l]for 2 <p<n—-1
9.2: M[2] > M[1]
9.3: M{p]<Mp+1] for 1 Lp<n—1,ie Mis fully
ordered
9.4: M is a permutation of Mo;

pS<n—1
Y

Verification of the assertions for the body of TREESORT 8.
Reasons for the truth of each assertion follow:
0.1: Vacuous statement since 2(n<+2+1) > n.
2.1:  |If reached from 0.1, by 1 substitute i =n+2 in 0.1.
If reaclied from 3.1, by 1 subgtitute 4 =i- 1 in 3.1 to ac-
count for the change int from 3.1 to 2.1.
22: 21, the bound on i implied by 1 and the array size being n.
3.1: 2.1 and the definition of siftup(, n).
4.1: Vacuous statement.
4.2: If n>4, 3 is executed; hence 3.1 with 1= 2. If n<3,
vacuous Statement.
6.1-6.3: If reached from 4.1,
G.1-6.2: By 5 substitute ¢ =n in 4.1 and 4.2.
6.3: Vacuous statement for i = =.
If reached from 8.1, by 5 substitute + =44 1 in 8.2,
8.3 and S, respectively.
6.4: 5and 6.2, i.e. A (2) for the subarray M[1:3].
7.1: Gl and (3) of siftup.
7.2. 6.2 and (1) of stftup.
7.3: 7.2 noting that M[1) = M[k=2]if k= 2 and using the transi-
tivity of >.
7.4. Vacuous for 2 = n. Otherwise 6.3 for the gppropriate r since
by (2) of siftup, M[1] a 7.3 is one of the M[r], 1 <r <3,

at 6.3.

8.1: 7.3 with the changes caused by 8 (only MI1] and M[¢] are
dtered by 8). *

8.2: By 8 substitute M{:] for M[1] in 7.4; then 7.1 also holds for
p =i

8.3: 7.2 excluding only the one or two relations M[1}> ..., and

the one relation . - - > M[z].
9.1-9.3: If n> 2, 8 is executed;
9.1: 82 with 7 = 2.
9.2: 8.1 with 1=2.
9.3: .1and 9.2,
If n <1, 9.1-9.3 nre vacuous statements,
0.4: ‘The only operations done to M nre siftup and exchange ull of
which leave M ns a permutation of Mo .

Proof of termination of TREESORT 8. Provided siftup and ez-
change terminate, it is elear that TREESORT 8 terminates. Note
that each parameter of siftup is called by value so that 4 is not
changedint he body of the for loops.

T'he proeedure exchange ccrtninly terminates. In siftup the only
possibility for an unending loop is from 3 to 8b and back to 3.
Note thatallchangesto i (only at 8b) and toj (only at 3 and Gb)
oceurin this loop and that on each cycle of this loop both i and j
are changed. By the test at 4, it is sufficient to show that | drictly
inerenses in value. i > 1 means 2i > i. At 8b, ] =$<2¢ while at
3,7 =2 iej@ 3 =2 > i =j(at 8n). Hence each setting to j
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at 3 strictly increascs the valuo of j. The only other setting to j
(at 6b), if made, emilarly increases the value of j.
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Hibbnrd [1] hns coded this method in a way thatincreases the
apeed signifieantly, In SHELLSORT, ench stage of each wift con-
gists of suecessive pair swaps, The madification replaces each vey
of n pair swaps by onc “save,”’ n— 1 moves, andone inertion,

Table | gives timing information for ArgoL, FORTR \N, and
Compass (assembly language) versions of SHELLSORT and the

TABLE 1. SonrtiNng TiMEs IN SECONDS FOR 10,000 RANDOMLY
ORDERED NUMBERS oN THE CDC 6400 COMPUTER

Algorithm Sowrce Language
ALgoL FORTRAN COMPASS
SHELLSORT 53.40 7.1s 2.3s
SHELLSORT 36.56 5.98 1.87
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Abst r act

This paper presents a systemfor proving that a conputer program
contains no semantic errors and no infinite loops, and hence that it always
termnates cleanly. This work differs fromother work on verification
of program correctness in two inportant ways: (1) it deals explicitly
with the finite linitations of real machines, and (2) it does not
exam ne what the program acconplishes; no description of the correctness
properties of the programis required. A recent ALGOL program for

conputing medians is used as a running exanple.
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Mich of the theoretical work in verifying program correctness has
concentrated on theorem proving techniques, formal |anguage schemata
formal logic, program synthesis, and program equi val ence. A conmon
theme in this work is the process of describing a programby a set of
assertions, and then inductively proving that the assertions are true.
In such an approach, the assertions (or at least the inportant ones)
are usually supplied by a human, then the verification systemtries to
prove them At the successful conclusion of this process, the program
has been proved to do exactly what the assertions describe [Fl oyd],
[King], [Good].

One of the drawbacks of this approach is that it takes a |ot of
effort to create the proper assertions -- to find assertions which
describe both what the program actual |y does and what it is intended
to do. It is easy to wite down assertions which | oosely describe what
the program does, but which happen to fail in degenerate cases (such as
the first time through a loop, or a normally positive variable starting
out exactly zero); it is also easy to wite down assertions which do
not fully describe the intended functioning of the program so that the
- program nay be carefully proved to work as the assertions describe, but
it still would contain "bugs" in actual use. For exanple, the correctness
of-a program to sort elements 1 through n of an array A m ght be
described with a final assertion like this:

¥1<#2<n-1 |, Ale] < Al#+1]
Wiile this is a perfectly reasonabl e description of the intended function
of the sort program the follow ng programcan also be rigorously shown

to work as the assertion describes:



=
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for i :=1 until n do
Ali] := 37

Anot her problemwi th programs that have been proved correct is that
the proof applies only to ideal machines whose nunbers have unlimted
precision and range. Wen run on real, finite, conputers, such wurograms
may deliver inproper results even after they have been rigorously
certified (see for exanple [Sites]).

Large "real -world" programs (such as a conpiler) are usually
devel oped to the point that they appear to go through all the right
notions, that they basically work, and then the programenters a shakedown
period during which many test cases are run and perhaps new users are
allowed to try the program  The purpose of this shakedown is to elininate
most anonalies and to inprove the confidence |evel that the programis
wor ki ng properly.

The rest of this paper describes a systemto make this shakedown
process nore rigorous and to detect errors due to the finite limtations
of real machines. Programs exhibit bugs in one of two ways: they produce
incorrect results, or they terminate abnormally. Correct results are
sonetimes hard to describe rigorously (although there is a high payoff
in describing sinple consistency checks), but abnormal termnation can
be nore precisely specified. In fact, we have no good notation for
describing what it means for a conplicated programto be correct; many
data processing concepts, such as "this conpiler produces correct object
code", have no sinple rigorous form A systemwhich tries to prove that
a programw || always termnate normally could be quite useful for
increasing confidence in the proper functioning of a large program The

system woul d say nothing about what the program does (i.e., sort an array);



instead, such a system would report that whatever the program does, it
termnates cleanly. The system would verify that the program contains
no semantic errors or infinite loops -- no overflows, out-of-range
subscripts, references to null or undefined pointers, etc

Wiile proving that a programternminates is in general an unsolvable
probl em nost real prograns are intended to termnate and have good
reasons for doing so. Therefore, it is reasonable to expect that
automatic means could be used to prove termnation of many useful
progr ans.

To make this concept nore specific, let us consider a version of
a nontrivial program witten by R L. Rivest [Rivest and Fl oyd]. This
example will be used throughout the paper to illustrate the techniques
presented. See Program on next page.

To prove that this programternmnates cleanly, it is necessary to
prove, for exanple, that line 19 produces no overflow, that in line 26,
i is defined and in the proper subscript range for X ; and that the
loop at lines 28-29 term nates (without a bad subscript).

Thi s paper discusses many of the issues in creating a nechanica
proof that Rivest's program termnates cleanly. It does not, however,
go into much detail about theorem proving techniques, or about the specific
t heorens of Rivest's program It will not deal with the recursive cal
to select at |ine 17; essentially, the discussion below will only treat
the functioning of select when r-£ < 600 . The dotted paths on the flow
graph below are intended to indicate that as an inexpensive byproduct of
the techniques presented here, some cases of recursion can be shown to
termnate by treating the recursive call as an assignment to the paraneters
and a branch to the beginning of the program O course, treating the

call as a branch does not deal with what happens when the call returns.
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procedure select(x,s,r,x); Val Ue £,r,k; array X
coment  sel’'ect will rearrange the Val des—ef—X[f:r]so that
X[k] contains the (k-g+1)st_smallest val ue- --*-

£ <i <k inplies X[1].<.Xl[}] a4
X k < itS r inplies XIi] > X[k
ngig ;Dzege\; ;3 ' TS, sd, 28, rr, ot
begi n
if r-g > 600 then
begi n
n = r-0+1;
1= k-£; \
S := entier( 0.5 * exp(Q*ln(n)/j) )/;’

if

while X[j] >t do

i f

if

end

n
white X[i] <t do

sd := entier(0.5

* sqrt(ln(n)*fs*(n-s)

/

20 = max( g, k - ixg/hy -

rr t=mmin( i, k i+ (n-i)*s/n + sd );

select(X, ¢4, rr,k)

ena;

X[r] <t the
X

exchange( X[r], X[21]);

I

Ii=1+ 1

Ji=g - 1; 7
I <] then
begi n

‘excha.rllge( x[i], X[31);

i:=10 + 1
. 1;

J ::j_
g0 to P
end:

X[£] = t then

o

exchange( x[f], X[j] )
el se begin

ioi=) o+ 1

exchange( X[j1, X[r] )

end:

—_—

j <k then

end sel ect

Program

/n) * sign(i-n/2) );



This paper will not deal with lines 11-16 because they involve floating-

poi nt nunbers, which the prototype systemis not prepared to handle,

and for which exposure to overflow, wunderflow, and division by zero

are nuch harder to avoid than for integers.

In summary, proofs of clean ternmination are useful for severa

reasons:

(1) This technique nay be economcally applicable to a |arger set of
prograns than nore exacting proofs of correctness

(2) Machines are better than hunmans at nechanical | y exani ning
degenerate cases; it is difficult to create correctness assertions
which are true in all cases including the degenerate ones.

(3) By exanmining prograns run on real machines, with finite precision
and finite-range arithnetic, the systemdeals with a source of
bugs which other correctness techniques don't address at all.

(W) If the program cannot be proved to termnate cleanly, then the
proof process should detail which parts of the programw || al ways
termnate and which may not, thus focusing the user's attention on
the conplicated, error-prone, or interesting part of a program

(5) For prograns |ike operating system subsystens, it is often desirable

that the program always return control to the operating system even

if it sometimes gives incorrect results

Fl ow G aph Processing

Let us now take Rivest's program and apply to it a mechanical

process which is often able to prove clean termnation. W start by

viewing the program as a flow graph (Figure 1)
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The flow graph for Rivest's program
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Figure 1 continued.
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In order to nake analysis of the loops nore nanageable, {pe f|ow
graph is nodified according to the following set of rules.

First, we performinterval analysis [Allen a,b], [Allen and Cocke],

[Cocke], [Cocke and Schwartz] on the flow graph, and do any necessary

node splitting so that every loop has a single entry node.

The point of
forcing all

| oops to have a single entry node is to avoid situations
like the one in Figure 2a

Figure 2a. Flow graph which needs node splitting

where it is inmpossible to determne the state of the program when entering

node B without having first examned the state of the program when

| eaving node B . Node splitting produces the nodified graph in Figure 2b,

Figure 2b. Same graph after node splitting.

in which the loop now has a single entry node, C
Wien applied to Figure 1, interval analysis |eads to successive

reductions as shown in Figure 3. No node splitting is required
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Second, at the head of each interval which is a |loop, we add a

"loophead” node and reroute all the latchback arcs (arcs which branch
back to the head of the interval) and initial entry arcs through this
new node. The loophead node gives us a convenient place to attach

| oop induction information and |oop termination assertions. This
step generates four loophead nodes in our exanple, see Figure kL.

(For sinmplicity, we shall henceforth ignore the dotted arcs, which

correspond to the recursion.)
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Figure 4. Flow graph after interval analysis and insertion
of "loophead" nodes. Double lines are loop exit arcs.
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Third, in order to separate information related to the issue of
| oop termnation, we in general need to nodify each | oop so that every
path around the | oop goes through a test which can exit the loop. W
make a separate, contained, |oop out of any paths which do not exit
directly, as in Figure 5. There are no paths around the |oops in Rivest's

program which require this nodification.

— — e | — — — - ...___._I.._......._.._.
— v - ‘

loophead #1 loophead #1
test A e s}
loophead #2

exit
exit
5a. The paths of this flow graph are 5b. The paths of this flow graph
are described by the regul ar are described the regul ar
*
expr essi on (A(B+CDE))*ACD expr essi on ((AB)*ACDE)*(AB) ACD

Figure 5. Exanple of forcing each path around a loop to
go through an exit test.
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In generating loop termnation assertions, we will essentially be

stating that "for some k , an exit path is taken on the k-th iteration
of the loop". It is convenient for the generation of such assertions
to have loops in which the exit tests are near the top of the [oop.
Specifically, if there are enbedded loops, function calls, or conplicated
cal cul ati ons between the loophead node and the various tests which exit
the loop, then it will be hard to describe the values of the program
variables at the test node in terms of their values at the loophead node.
Therefore, our fourth nodification is to attenpt to pernute the nodes in
the loop so that all exit tests occur inmediately after the loophead
node. Qur nodified flow graph for m now | ooks like Figure 7, with
copies of loops 3 and 4, and |oop 2 pernuted.

This nodification cannot always be done, as the third example
in Figure 6shows. However, all loops with exactly one immediate
exit arc can be successfully pernuted. The effect of these last two
modi fications is put the programs in nested while format. For another

nmethod to acconplish this transformation, see [Ashcroft and Mnna].

15
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N
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loophead

I
B

exit

=

regul ar expression = (ABCDTAX

EXAVPLE 6a. Transform this to 6b.

exit

regul ar expression = AB(CDAB)*C
EXAMPLE 6b. Leading test form of 6a.

loophea.dll

y
(embedded loop)

<§mbedded 1ogg>

EXAMPLE 6¢. Cannot nove both tests
to top of outer Ioop.

Figure 6. Exanples of permuting |oops' to create |eading tests.
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Wth the flow graph put in the desired form we are now ready

for the work of creating and proving assertions about clean termnation.

[1. Semantic Error Assertions

W start by attaching assertions to the arcs of the flow graph
stating that all operations in the subsequent node are well-defined and
that no semantic errors are generated. This is essentially an operation-
driven process of inserting assertions on all incoming arcs of a node,
speci fying exactly what conditions nust be true for the contained operations
to execute cl eanly.k_A Typical assertions are:

Operation Assertion generated

i 4] i,éwAj)éwAIminSHjAi+j51max,v\here
w stands for "undefined", Lin is the snall est
representabl e integer in the machine on which the
program wi | | execute, and T ox I's the |argest
representable integer.

Ali] i fFwoAA ST Al <A, where A is the lover
bound for legal subscripts of A and A, I's the
upper bound.

i = jFw.

See Figure 8 for an exanple of this assertion synthesis process. Note
that if a node has many incomng arcs, the same set of assertions wl|
be attached to each arc. A detailed exanple of assertion generation
appears in [Sites].

If all the assertions generated at this stage are proved to be true,

then the program contains no semantic errors, i.e., it does not "blow up"
during execution, perhaps with a run-tine error message.

18
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r-4 > 600

Figure 8. Example of assertion generation

In nost cases, the generation is quite sinple, but sone conplications

arise in handling procedure calls:

() Arguments passed to value paraneters of a procedure are
treated |ike the right-hand side of an assignment -- the argunent
expression nust be defined and nust not generate semantic errors when

it is evaluated at the point of call.

(i) Procedures with name parameters nust be handled strictly
according to the copy rule, making a unique copy of the procedure for
each call and logically inserting the body of the procedure instead of

that call. This is the only way to properly reflect the side effects

which can result fromtricky useof nane paraneters. |t is also a

reason that Algol 60 recursion is hard to analyze nechanically.

(i) Procedures with array argunments have the problem that the
procedure does not specify the legal |ower and upper bounds for

the subscripts. Either of two strategies can be adopted for generating

and proving assertions about-subscripts in the proper range: synpolic

19



names (i ke A, and A, ) can be used in all the assertions, and the
proof techniques can push back to the entry point of the procedure any
assertions (restrictions) which nust be true on entry in order to avoid
subscript range errors; alternately, the programmer can supply an extra
statement to the proof system describing the bounds for each array. The
first strategy is equivalent to asking, Wat are the necessary array
bound conditions for this procedure to always termnate cleanly?" The
second strategy is equivalent to saying, "Here are the conditions which
will always be true when the procedure is called; are they sufficient to
guarantee clean termnation?"

If the programmer has definite assunptions about ranges of array
bounds in his mnd, then it is best to state themto the proof system
Failure to do so forces the systemto try to synthesize the equival ent
information, a process which may well fail.

In the assertions and proofs which follow, it will be assumed that
t he proof system has been told that X[zo:ro] is the declaration for
array X, where £y equal s the value of 2 upon entry to select ,
and r, equals the value of r upon entry. This binding allows the

- subscript range assertions to be independent of the fact that the

variables ¢ and r change value as the program executes.

20
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[Il. Loop Termnation Assertions

Loop termnation assertions are harder to generate than semantic
error assertions because the goal is nmuch nore abstract. For semantic
errors, the assertions generated are a straightforward function of the
| anguage definition and conpiler/conmputer inplenmentation restrictions.

For loop termnation, however, synthesizing the proper assertion nmay well
be harder than proving it true.

Loop termnation can be approached on a wide variety of |evels of
abstraction. One extreme is to assert that control passes through each
loophead node a finite nunber of times. However, such a statenent
desn't lend itself to direct proof. Another extrene is to require all
| oops to be FOR |oops or DO |oops in which the step and limt are
eval uated exactly once and the iteration variable cannot be changed
inside the loop. Such loops termnate by definition (if a zero step is
prevented). In between these extremes are some useful strategies.

One strategy is to use the taking of an exit branch as a goal to
drive the assertion generation. For any |loop, asserting that it termnates
is equivalent to asserting that 3k > 1 such that on the k-th iteration
of the [oop, one of the sets of tests leading to an exit arc will be
true. Gven the formof loops with [eading tests that we have specified

it-is easy to generate such an assertion mechanically.

21
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Figure p. Exanpl e flow graph for discussion of |oop
termnation assertions.
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Using the notation ik to nean the value of variable i at the

loophead node on the k-th iteration of the |oop, the term nation

assertion for Figure 9 is:

4k >1 s.t. (2xi >nk) v

k
oy . .
( xi, <mn. A 2x1k >n, A Mk[Q xlk] < ck) v

(2xi, <n_ A 2xi_ <n_ A M

k =7k k X k[2xik+l]§c

»
This expression was derived by substituting for j its value in terns
of the values of the program variables at the top of the loop. pNote
that depending upon the path taken, this value is either 2 xik or
2xik+l .

Wiile an assertion such as the one above can be generated from any
| oop described in Section nit is in general an unsolvable problemto
prove that the assertion is true. However, a small variety of techniques
based on nonotonic variables, finite sets, and search |oops can prove
the termnation of nost |oops encountered in practical prograns.

Also, this strategy of generating a B . . . assertion sonetines

allows a proof systemto state that a |oop definitely never termnates.

For instance, if the statement i := | were accidently left out of the

exanpl e |oop above, then it can be shown that all variables in the

assertion are invariant within the loop. Thus, the existentia

quantifier can be dropped, and the remaining assertion states that the

programexits the loop on the first iteration. If this assertion is true,

the loop termnates immediately, if it is false, the |oop never terninates.
Anot her strategy is to use the existence of a nonotonic variable

whi ch does not overflow as a goal to drive the assertion generation. If

23



a |l oop contains a nonotonically increasing or decreasing variable which
never overflows when it is updated, then the variable takes on a finite
nunber of values, so the loop terminates. Assertions specifying no
overflow are already generated by the semantic error assertion nechanism
so if a nmonotonic variable is found inside a |oop, no other assertions
are needed: if the existing "no overflow' assertions are true, then the
| oop termnates.

This sinple strategy is beautiful when it works, but of course it
won't always work. For exanple, if the assertions are not true and an
overflow may occur, the proof systemmay not be able to state directly
that the programhas an infinite loop. Also, if no nonotonic variables
are found, this strategy doesn't suggest anything else to try.

Using the first strategy, we generate the follow ng | oop term nation

assertions for Rivest's nodified program

Loop #1 3k > 1s.t. (r-f < 0) v (r -, > 600)

Loop #3* 3k > 1 s.t. X [3] >t

Loop #4+* 3k > 1 s.t. Xk[jk] <ty
Loop #2 3k >1 s.t. i >3

Loop #3 3k >1 s.t. Xk[ik] >t

- Loop #4 3k >1 s.t. Xk[jk] Stk.

Using the second strategy, we find that in loops 3', 4, 2, 3,
and 4 there are nonotonic variables. Ve are going to be in trouble
| ater, however trying to prove that, at node M, i := i+l does not

overflow In loop 1, we have another problem Neither ¢ nor r are

ol



monotonic, but their difference r-1 is strictly decreasing. Using
the second strategy, it is not clear howto discover that r-1is a

rel evant expression.

|V. Proofs of Assertions

W now order the nodes in the nodified flow graph according to the

follow ng rules.

(1) Logically reduce each loop in the programto a single node (a |oop
is the set, of nodes in an interval, plus the loophead node, m nus
all nodes in the interval which have no path |eading back to the
loophead node) .

(2) Topologically sort the nodes in the reduced graph, using the
(directed) arcs as the ordering.

(3) For each node in the reduced graph which represents a | oop,
topol ogically sort the nodes within the I oop, ignoring al
| at chback arcs, then insert those nodes in the nmain topol ogica
ordering as a single group, so that all nodes in the |loop precede
any nodes which followed the loop in the reduced ordering

(4) Apply step 3 until all |oops have been expanded (see Figure 10).

25



(1) reduced graph

C start D

A
B
C )
D
E
F
Loop
G
%
K
H
stop
I
d
(2) Odering: ABDCEF (I oop) K

(3) Ordering within (Ioop)
GHI J

(4) Final ordering
ABDCEF GH J K

Figure 10. Exanple of node ordering.
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The proof mechanismwill visit the nodes of the graph in the order
specified above. At each node, it will attenpt to prove all assertions
on all incomng arcs. The order specified has a few fairly obvious
properties: (1) Except for loophéad nodes, whenever a node is visited
by the proof mechanism all predecessor nodes will have been visited.
(2) For loophead nodes, all initial entry predecessor nodes will have
been visited. (3) If a predecessor node is inside a loop, all nodes
in that loop will have been visited. (4) The question "Is node X
inside [oop N ?" can be answered with a sinple range test.

[f a program consists of many non-recursive procedures, we process
the innermost Procedure first, so that each procedure will have been
conpl etely processed before any calls to it are encountered.

W will process nodes in the modified flow graph of select
(Figures 7 and 1) in the order:

AB (loop 1) D
or AB CEF HJK L'M' N O RR LM NO STUWXYZ D

The processing at each node visited will be discussed in ternms of

the nmodel in Figure 11.

Gven 1 /Given 2

arc 1 arc 2

Assertions 1A\ f—— Assertions 2
| Node —l

J resulting known information

v

Figure 11. Mdel node for assertion proofs.
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If the node being visited is not a loophead node, we try to prove
the assertions on each incomng arc, using the "given" infornation
attached to the sane arc (the arc |eaving the START node has enpty
"given" information attached to it). Moxe precisely, we try to prove
the theorens

Gven 1 o Assertions 1

Gven 2 o Assertions 2 .
If the node being visited is a |oophead, We try to prove the assertions
on just the initial entry (non-latchback) arc(s).

If any assertion cannot be proved conclusively true, then a message
Is printed for the--user.

To catch mstakes or state restrictions as early in the program as
possible, we try to nmove assertions which cannot be proven true back
toward the entry point of the procedure. This is purely an optional
step, in which we try to help the user by noving unproved assertions
to the earliest place in his programthat he is likely to want to insert
a fix for the bug. W do this novenent by taking an assertion and
attenpting to "pass it through" the precedi ng node, attaching the
* (possibly nodified) assertion to each incomng arc, as shown in

Figure 12.

assert i+2 < 20 ——assert it2 < 20

==

- assert i <20

Figure 12. Passing an unproved assertion back through a node
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Sometimes, it will not be possible to nove an assertion because the

operations inside the node are not reversible (read, or perhaps a

procedure call). Wen pushing an unproved assertion through a loophead

node, we don't attach it to any latchback arcs, since then the assertion

woul d be pushed around the inside of the loop forever. |n general, it

is not useful to push an assertion back through a |oop which nodifies

any of the variables in the assertion, as in Figure 13.

assert k < 20

Figure 13. The unproved assertion cannot be pushed back usefully.

If we are visiting a loophead node, the processing is nore

conplicated. Qur nodel node now | ooks like the one in Figure 1k.
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initia

— |
entry S
arcs
loophead

&—— | at chback
arcs
| oop termnation
assertion
exit arcs

Figure 14.  Mdel node for loophead processing.

First, we process all assertions on the initial entry arcs as
described above. Then we set all programvariables to dumy synbolic
values, say i = iO s 3 =3 X =%y and visit all the nodes in
" the loop body, propagating and nerging the "given" information based on
these symbolic values, but not proving any assertions. W& do not follow
the exit arcs, and we stop when the given information has been established
for all latchback arcs. (The given information on a |atchback arc m ght
be sonething like i =i#1 Ai <11 .)

W then feed the initial entry conditions and the once-around-the-I|oop
synbol i c expressions on the |atchback arcs to an induction routine that
tries to synthesize a range or set of values which each program variable

takes on at the loophead node. In this induction routine, particular
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care shoul d be given to detecting variables which are invariant within
the loop, and those which are nonotonic. e attach the induced ranges
and relationships as "given" information on the arc |eaving the loophead
node. Using this information, we take a second pass over the body of
the loop, processing it in the normal way. Note that a |oop nested n

| evel s deep will be processed a total of 2% tines.

After visiting a node and handling the assertions on its incom ng
arcs, our next step is to create the resulting "given" information to
attach to the exit arc(s). This information consists of all input arc
given information, plus all input assertions (since if we |eave the
node cleanly, all the i nput assertions nust have been true), nodified
by any assignnents which occur inside the node. If the node being
visited is a test, we add the relation or its negation to the true
and false exit arcs respectively.

If two or nore incoming arcs specify different "given" conditions
we take the nost enconpassing information, i.e., if one incomng arc
specifies i >10, and another i >11, we use i >10 . Wenever
information is lost by this merging process, we mark the resulting item
(the exanples below use an asterisk) so that if later it becomes
significant whether i is exactly equal to 10 , we will know that there

-is a possibly useful refinement to the information | > 10 .

v. Application of Proof Process to Rivest's Program

Referring back to Figure 7, we find that the nodified flow graph

for select consists of |oops nested three deep, as shown in Figure 15.
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loop 1

(-l oop)

loop 2
loop 5
loop 1+

Figure 15.  Structure of |oop nesting in select.

W Dbegin the first pass over loop 1 by attaching the synbolic

val ues

to the arc between the loophead #1 node and node C. On this first pass,
we will analyze the nodes inside loop 1 and devel op induction expressions
relating the values of all variables after one iteration through the

loop to their values at the beginning of that iteration; the symbols
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Toslos. . +sXg represent these initial values. Followng the process
given in Section IV, we visit (in order) nodes C, E F', and H,
devel oping the following information on the arc entering node |
(refer back to Figure 1 for the exact content of the nodes involved):

r=r. AL =1L A k=k A t=1t, A X=X, A

0 0 0 0 0
= 25t1 A
j= ro-l A
0 < ry-f, < 600

One of the biases in our processing should be to reflect relationships in
terms of initial values at the top of the loop;, thus we wite 0 < -1,
instead of o< r-1, the latter signifying the values of r and ¢ at
the arc to which the relation is attached. If, say, r is changed, the
relation 0 < r-¢ may no longer be true, while 0 < ro-Ly still would be.

After processing node | , we attach the following information to

the arc leading to node J :

0 0 0
i = Lyt1A
j= ro-l/\
0 <ry-fy < 600 A

X[ky] = Xo[lo]/\

X[t = X [k

o] 0 0]
X[m] :Xo[m] f or m;éko,lo )

=t

To develop the relations about X , we needed to exam ne two sub-cases in
node | : (i) X, # I and (i) k, = £y - 1IN order to keep the

size of the information attached to the arcs manageabl e (and hence to
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keep the conplexity of the proofs using this information manageable),
our information development al gorithns must be biased toward m m cking
the human trait of finding useful |emas which are true for as nmany
different cases as possible. In analyzing the assignnents in node | ,
we should notice that the degenerate case k, = £y does not upset any
of the relationships from the general case: the relations above are a
true and conplete description of the effect of executing node | , even
when we substitute " ky " for " " inall relations, so after this
checking we find no need to distinguish the degenerate case. x/

In processing nodes J and K, we have to exam ne the degenerate
cases r, = k, and [, = ki (r, cannot equal £, because O < ry-L,;
if we fail to use this fact on the first pass through loop 1, it gets
much harder to keep track of all the assignnents to elements of X ).

On the true exit fromnode J , we attach the | emmu:

X[ro] < tAt= X[!O]

(which is true independent of the relationships between R and kj ),

and the nore detailed information

(rg # ky A Xolrgl < X [ky1) v (rg = kg A Xole5] < X lk41)

After the exchange in node J , the |emma becones:

x[2,] <t At = X[rg]

0
On the false exit fromnode J , we attach the | emmm

t =X[2,] A t < X[r,]

¥ [f the third assignment had been X[#] := t+1 , we woul d have the

following relationships, which do distinguish the two cases:
(%, £ £o A Xk = X[ 1A & = Xo[ko] A X[e,] = xo[ko]+1)

v (ky =t At= Xo[ko]/\ X[k, = XO[kO]+l)
In the second case, X[k,] # Xol2,]
3L



Moving on to the loophead #3' node in Figure 7, we have to nerge

the information on the two initial

the two relationships

<tAt= X[r

——

X2, <t <Xl T*

fact will

where the asterisk indicates that a refinenent of the information is

avail able by considering the incomng paths seaprately.

allow us to prove that the while |oops on i

(3', kv, 3, and &) all termnate, and do so without producing a

subscript-out-of-range error.

Ther ef or e,
3k > 1 s.t. X

Thus [oop 3' term nates,

The remainder of the processing will
In loop 3', i takes on the set of values {10+1,10+2, 13, o g &

Included in this set is »., since 0 < r -t

0

the loop termnnation assertion for [oop 3!,

entry arcs. In particular, we nerge

This cruci al

only be sketched.

inplies ¢

wli ] >t 5 is at worst true when i

arc are the relations:

+1 <1 < r. A

0]

X[i] > ¢ .

- Simlarly,

i nformation:

loop 4" ternminates with the following included in its

35
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The first pass through loop 2 establishes that i is strictly
increasing and that j is strictly decreasing. This nonotonicity neans
that the test i <j wll eventually be false, so |oop 2 termnates
if loops 3 and 4 do. The second pass through |oop 2 conbines this
information with the exit conditions fromloop 4" and with the truth
of the test i <j to establish that the exchange in node Q never

. *
changes Xx[¢.] or x[ro] . Thus, the relation X[zo] <t Sx[ro]

ol
is invariant in loop 2, so on the second pass through loop 2, |oops 3
and 4 can be shown to termnate
For our present purposes, the only interesting thing about nodes S

thru Z is that either or both of the assignnents

A = jtl

r := j-1
are done in the context

(. <j<r

0 o -

Thus, the quantity r-1 is strictly smaller than r,-£, after one
iteration of loop 1, proving the termnation condition for loop 1

3k >1s.t. r-f <O0. This conpletes the first pass of processing
| oop 1.

On the second pass through loop 1, the initial values of r and ¢#
and the pseudo-declaration for X (discussed in Section II(iii) above)
are used to prove all the semantic error assertions in the loop. These
assertions deal mostly with subscript range errors, overflow errors,
and undefined variable errors. The proofs of all these are quite

easy, given the information on the bounded ranges of 1, 3 , r , and 2

gathered on pass 1.
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VI.  Concl usion

W have explored a structured collection of techniques for
nechanical |y proving that a program termnates cleanly. s then
applied these techniques to the proof of clean termnation of a

non-trivial program suppressing nost of the detailed processing which

woul d be done by an actual conputer inplementation of such a system

o7
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