
SOME THOUGHTS ON PROVING

CLEAN TERMINATION OF PROGRAMS

BY

Richard L. Sites

STAN-CS-74-417

MAY 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Some Thoughts on Proving

Clean Termination of ProgramsL
1 by Richard L. Sites

f
lb--

Abstract

Proof of clean termination is a useful sub-goal in the process

of proving that a program is totally correct. Clean termination

means that the program terminates (no infinite loops) and that it

does so normally, without any execution-time semantic errors
--.

(integer overflow, use of undefined variables, subscript out of range,

etc.). In contrast to proofs of correctness, proof of clean termination

requires no extensive annotation of a program by a human user, but the

proof says nothing about the results calculated by the program,

just that whatever it does, it terminates cleanly. Two example proofs

are given, of previously published programs: TREESORT by Robert Floyd,

and SELECT by Ronald L. Rives-t and Robert Floyd.

L
I
L

L
I

L
i

L a
1
L

L This work was supported in part by the Fannie and John Hertz Foundation,
by the National Science Foundation and by IE;M Corporation. Reproduction
in whole or in part is permitted for any purpose of the United States
Government.

L

b

CERTIFICATION OF ALGORITHM 245[~1]

TREESOKI'3 [Robert W. Floyd, Comm. ACM 7 (Dec. 1964), 7011:

PROOF OF CLEAN TERMINATION -- A NEW KIND OF PARTIAL CERTIFICATION

Richard L. Sites

Computer Science Department

Stanford University

Stanford, California 94305fI_
c

I
k- Abstract

The certification of a program can include a proof that the program

always termtiates cleanly, i.e., that as it runs on a real machine, it

generates no semantic errors and it encounters no infinite loops. As an

illustrative example, a previously certified algorithm, TREESORT3, is

examined and a hidden restriction is exposed which prevents it from

running properly on scme machines.

L

I
i

4
t

Keywords and Phrases: proof of termination, debugging, certification,

sorting, proof of correctness.

c1i
i

CR Categories: 4.42, 4.49, 5.24, 5.31

c

L

1

L

i

!

kg .

c-
I

L

i

k.
i

L

e
i

L

i

c-

L

This certification differs from London's certification [2] in two

important respects: (1) it deals explicitly with running the algorithm

on a real machine which has restrictions on the validity of arithmetic

operations (roundoff error, overflow); (2) it deals only with proving
. .

that the algorithm terminates cleanly, without examining what it

accomplishes (i.e., without proving that it sorts an array).

The need for such a certification follows from the fact that

TREESORT will actually fail in realistic situations, although it has

been "rigorously proved correct". This flaw was noted in London's

reply to Redish [3].

Proving that an algorithm terminates cleanly means proving that as it

runs on a real machine it generates no semantic errors and that it encounters

no infinite loops. A semantic error is produced by attempting any operation

which the language specifies to be illegal or undefined, or any operation

which violates a restriction of a particular implementation of the language.

Many implementations fail to detect all semantic errors at run-time; this

produces meaningless results and is one of the tragedies of our profession.

Gammon semantic errors include arithmetic overflow, underflow, division by

zero, subscript out of range, case or switch expression out of range,

use of uninitialized variables, and use of a null pointer.

In the discussion below, it is assumed that the algorithm will run

on an ALGOL 60 machine with the following properties:

1. Integer overflow. The binary operations i+j , i-j , ixj , i+j ,

and i/j give the mathematically correct result if and only if i

and j have defined values and the result is in the range Imin

Ii0 Imax inclusive; otherwise a semantic error occurs. It is

I

assumed that Imin < 0 and Imax > 0 . Division by zero produces

a result outside of the range Imin to Imax ; i.e., a semantic

error occurs.

2. No assignment of uninitialized..values. The operation i :=j will

assign the value of j to i if and only if j has a defined value;

if j is uninitialized then a semantic error occurs. It is possible

to write algorithms which violate this restriction and still give

meaningful results, but more often violation of this condition

indicates an error which is best caught as soon as possible.

3* Subscript range checking. If A is an array with bounds [A~:A~]

then in all references to A[i] , it must be true that i is defined

and AL <i sAu .-

4. Mathematically correct comparison. The relation i < j always

produces the proper value true or false, even in cases where j-i

would produce an overflow. On a machine which has no compare

instruction, such as the CDC 6600, this property is not true; thus,

algorithms which are certified to execute and terminate cleanly on

the 6600 must be transformed so that every comparison is done as a

subtraction and a sign test, then all the subtractions checked for

overflow/underflow. Two representations of zero are allowed if

the implementation gives identical results for each.

50 Representable constants. Each integer constant must be between

Imin and I inclusive.
max

The proof of clean termination of TREESOKI?, under suitable

restrictions on the parameters, is presented below in five parts:

a copy of the algorithm [l], the corresponding flow graph, a listing of

3

the assertions about semantic errors, a listing of the assertions about

loop termination, and proofs of the assertions. An appendix extends

the analysis to machines like-the CDC 6600.

. .

4

i

t

t

I‘-
V

ALGORITHM 245
TREESORT [Ml]

Robert W. Floyd (Recd. 22 June 1964 and 17 Aug. 1964)
Computer Associates, Inc., Wakefield, Mass.

procedure TREESORT 3 (M,n); ~
value n; array M; integer n;

comment TREESORT 3 is a major revision of TREESORT [R. W. Floyd,

Alg. 113, Comm. ACM 5 (Aug. lg62), 4341 suggested by HEAPSORT

[J. W. J. Williams, Alg. 232, Comm. ACM 7 (June 1964), 3471
from which it differs in being an in-place sort. It is shorter and

probably faster, requiring fewer comparisons and only one division.

It sorts the array M[l:n] , requiring no more than 2 x(2 t p-2) x(p-1) ,
or approximately 2 xn x (log2(n)-1) , comparisons and half as many
exchanges in the worst case to sort n = 2 tp-1 items. The algorithm
is most easily followed if M is thought of as a tree, with M[j t2]

the father of M[j] for 1 < j Ln ;

begin

procedure exchange (x,y); real x,y;

begin real t; t :=x; x :=y; y:=t

end exchange;

procedure siftup (i,n); value i,n; integer i,n;

ccmment M[i] is moved upward in the subtree of M[l:n] of which

it is the root;

begin real copy; integer j;

COPY :=M[i];

loop: j :=2 xi;

if j Ln then

begin if j < n then

begin if M[j+l] >M[j] then j :=j+l end;- -
if M[j] > COG then

begin M[i] :=M[j]; i :=j; go to loop endBW
end;

M[i] :=copy

end siftup;

integer i;

for i:=n+2 step -1 until 2 do siftup (i,n);

for i :=n step -1 until 2 do- -
begin siftup (1,i);

comment M[j _+2] >M[j] for 1 C j _<i;

exchange (M[l],M[i]);

comment M[i:n] is fully sorted;

end

end TREESORT 3

The flow graphs are shown in Figures 1, 2, and 3. For reference

purposes, the arcs are numbered, and the nodes are lettered. The symbol

w is used to represent the value "undefined". Following theblock--.

structure rules of ALGOL 60, all local variables are set to u) at

entry to the block.

6

Ic-
t

0
A723sif%up(i,n)

1
B??Icopy :=w . .

j :=w

2
\L

COPY :=M[i]

-2n
-m

1 M[i]:=M[j] 1

Figure 1. Flow graph of &.i.f'tup. Double lines indicate loop exits.

7

. !
. .

treesort 3 (M,n)
I

4
-=.

i nG-2:=
4n

3

sifiUp(l,i)
c I

12
KYILIi := i-1

Figure 2. Flow graph of treesort 3.

8

i

t

L
1 exchye(x,y)]

2
CVIIt x==

3
DVIX := Y

4
E-5.-Y ta-

L

Figure 3. Flow graph of exchange.

9

Assertions About Semantic Errors

Assertions are generated locally and mechanically, based on the

operators in a node. The assertions about a node are attached to all

arcs which enter that node. The mechanical style of assertion generation

and proof is intended to mimic a machine-generated certification of

clean termination.

Assertions for siftup

Node Assertion

C i+w

M1 <i <Mu- -

D ijh

'm-in L 2 5 Imu

Imin<2xi<I- max

E j+

nfw

Reason generated

Cannot use uninitialized variable.

Subscript range. MI and Mu are the

lower and upper bounds assumed for

array M .

Cannot use uninitialized variable.

Cannot use uninitialized variable.

Constants must be in the representable

range.

Integer overflow.

10

Node Assertion Reason generated

i
L

‘i

i

t
L

i

I
L

L
!
L

1
L

L

L

Imin L ' < Imu-

Imin 5 j+l < I . .
- max

Ml _< j+l <M- U

Mb+11 f w

j#w

Ml <j <Mu- -

Mb1 # w

To keep this presentation more readable, the following trivial assertions

will be elided:

1. Imin _< constant < I,,- Assertions describing the largest and

smallest constants in each procedure will

be added at the end.

2. V#W Dropped when there is some other assertion

about v at the same node, i.e., any assertion

about the value of variable v implies the

additional assertion v f u) .

3. Any true expression involving only constants.

Node Assertion Reason generated

H Imin 5 j+l < I- max

I Ml <j -<Mu-

Mb] f w

Node Assertion

CJ ML <i<Mu- -

M1_<j<M- U

Mkd + w

K

L Mp <i<Mu- -

COPY + w

also
2<1max-

Assertions for treesort

Node Assertion

C nfw

D i#w

E ifw

nfw
[Other assertions about

here after siftup is

F i#w

Imin < i-l < Imax- -

G n#w

H i#W

I i+w

J [Assertions relating to name parameters are all pushed into a copy

Reason generated

Largest constant in procedure. Smallest

constant is 1 , which is greater than

Imin by assumption that Imin < 0 .

Reason generated

Arguments passed to value parameters must

be defined at time of call.

the arguments to siftup will be inserted

completely analyzed.]

Value parameter.

of EXCHANGE associated with this particular call.]

12

L

Node Assertion

K ifw

Im-in 5 '-IL ,< Imax

also 2 S 'ma

Assertions for exchange

Reason generated

. .
Largest constant in procedure.

Because it has NAME parameters , exchange must be treated in strict

accordance with the copy rule. A copy of exchange is made for each call,

with appropriate argument substitutions. The call at node J of

treesort is equivalent to:

-=.

t :=o

2
\ tb 4

t :=M[l]

3
W

ML11 :=M[i]

M[i.] :=t
r I

5

Node Assertion

C Mt < 1 < Mu- -

MC11 # w

D MI 5 IL L Mu

MR ,< i 5 Mu

Mb.1 # w

E M1 5 i <Mu-

t#w

Reason generated

Subscript range.

Cannot use uninitialized variable.

13

Assertions About Loop Termination

siftup

For any loop, asserting that it terminates is the same as asserting

that there exists a k 2 1 such that on the k-th iteration of the loop,

one of the paths leading to an exit arc will be taken. The siftup

procedure has just one loop,

chart pass through node D .

at the beginning of the k-th

in the sense that all cycles in the flow

The notation ik means the value of i

iteration of the loop, i.e., just before

the execution of the statement j := 2 xi in node D .

The generalized loop termination assertion is:

3k >l s.t. [arc 5 taken] orA-.

[arcs 6, 7, and 12 taken] or

[arcs 6, 8, 9, and 12 taken] or

[arcs 6, 8, 10, 11, and 12 taken] .

This expression is expanded to reflect the branches taken to reach a

particular arc, using expressions in terms of values at the beginning

of the k-th iteration of the loop:

3k ~1 s.t. (2xik >nk) or-

c2 x ik 5 nk and 2xik > nk and s[2xik] < copyk} or- -

12 x ik _< nk and 2xik<nk and

Mk[2Xik+l] _<Mk[2xik] and Mk[2xik] 5 copyk] or

c2 x ik _< nk and 2xik<nk and

%L2 x ik+ll > 5i2 x ikl and Mk[2 xi$l] 5 copyk} .

In general, a loop termination assertion such as this is unprovable,

but there are a few important special cases which work for many loops.

14

L

L
(;
i
Ic
r

L
I

c-
i
L

(!L

Ii

4

i

c

Two such cases are (1) strictly monotonic sequences of integers and

(2) pointers indexing through finite linked lists. In the siftup

loop, the fact that nk-jk is monotonically decreasing is one key to

proving loop termination.
. .

treesort 3

first loop:

3k_>l s.t. ik<2

second loop:

3 k_>l s.t. ik < 2

exchange -+

No loops.

There is a shortcut to this general method of proving loop termination

which completely avoids analysis of the branching structure of the loop:

If any variable is monotonically increasing or decreasing inside the

loop, and the loop generates no semantic errors, then it terminates!

If a monotonic variable is found, then no other assertions, proofs, or

loop analysis is needed. The statements which modify the monotonic

variable cannot be executed an unbounded number of times without generating

an overflow, so proving that those statements generate no overflow

simultaneously proves that the loop terminates. This shortcut is

applicable to all the loops in treesort and siftup .

i

i

15

Proofs of Assertions

AS indicated in the program's initial comment, all intended

references to the array M involve subscripts in the range 1 to n.

In case the value of n is changed in the program, we will define the
. .

variable no equal to the value of n upon entry to treesort . All

-I*subscript range assertions will assume that Me = 1 and Mu = nO .

Assertions for siftup (note that n and i are bound in siftup, not

treesort3).

Arc Assertion

2 i+w

1 <isno =.-

Mb-1 # w

Imin -<2xi<Imax-

Proof

Value parameters are always defined.

Not clear. Push back to arc 1 as an entry

condition for siftup. Eventually verify that

this assertion is true at each point of call.

Again, not clear. In fact, there is a need

toassertthat Vl<n_<n,, M[a]{u at-
the very beginning of treesort . Right

now, push this assertion back to arc 1.

Used in previous node, hence i is defined or

a previous assertion would be false.

The assertion Imin < 2 is true because of-
the assumption that Imin < 0 l Push the

assertion 2<1max
back to arc 1 as an entry-

condition for siftup.

Not clear. In fact, overflow will occur if

i = n0
and n

0 � Ima⌧/:! l

We know from arc 2

that 1 < i , so Imin 5 2 xi . Push the

assertion 2xi 5 Imax back to arc 1.

*
J It is possible to develop the proof of clean termination using only MQ

and Mu 7 but doing so makes it significantly harder to prove that the

sif'tup loop terminates when M
a
=o.

16

t

Analysis of loop.

Values of variables

values at beginning

at

of

beginning of k+l -st iteration in terms of

k-th iteration:

nk+l = nk

"PYk+l = “PYk

.
lk+l = 2 x ik or 2xik+l

.
Jk+l = ik+l = 2 xik or 2xik+l '

Mk+l = Mk except Mk+l[ik] = M&2 xi.,] or = Mk[2xik+l]

Mk+l k+l[i 1 > "mk+l

.
’ _< --&k+l 5 no

Thus n and copy are invariant in the loop; i is monotonically increasing

(since 2x i > i when i > 1);- various elements of M change values.

arc Assertion Proof

c

4 j+w j is defined in previous node.

,n f w n is defined originally as a value parameter,
and is invariant within the loop.

5 l<i<n, Still true from arcs 3 and 15.- - v

COPY # (JJ True from
loop.

node C and copy invariant in

6 jjh True from

nfw True from

previous node.

previous node.

17

Proofarc Assertion

7 l_<j<no Not clear. On edge 7, j = n , and n is

invariant within the loop, so push the

assertion 1 < n 5 nO to arc 1.

Willbetrueif Vl_<a_<n,, M[a]kw

on arc 1, since after that, an undefined

value can never be assigned to an element

of M in our machine model.

True fram node C, and copy is invariant

within the loop.

For a more readable presentation we will elide the statement and proof for

all assertions which are true because they were true earlier in the program

and haven't changed.

8 Imin - -< j+l < Lax

1 _< j+l ,< no

l<j_<no-e

M[j+ll k w

11 l<j<no- True from arc 8, where 1 <j+lL n .

Mb1 { w M[j+l] # w fram arc 8.

15 ijb

'm-in L 2 x i 5 &ax

Just assigned a value.

May not be true. We know that iHl-< n

at this point, so push the assertion

2xn-<hax back to arc 1. Also see arc 3.

18

j + w implies Lin 5 j , so clearly

Ikn in < j+l .
Because of test in node F,-

j <n_<Im, y so j+l_<n_<Imax.

From top of loop, l_<i, and j =2xik

so 2sj, thus 3 5 j+l . From test in

node F, j <n , so j+lLn Ino (see

arc 7).

2_<j and j<n_<no.

True because we have chosen to require all

elements of M to be defined on entry

(see arc 7).

I
c-

L
I
r-
L

L
i

Proof of termination of loop.

Since i is monotonically increasing, the loop terminates if no

semantic errors occur, i.e., if all the entry assertions are true.

We have now proven siftup to be free of semantic errors and

infinite loops, if the following assertions are true on entry:

(1)a l<i_<no from arc 2-

(2)a V 15 1 -<no , Mhl f w from arcs 2 and 7

(3)a 25 Im7.xc from arc 3

(4)a 2xi < Lax- from arc 3

(5)a l<n_<no- from arc 7

(6)a 2 m-5 I,, from arc 15

These are sufficient (although not quite necessary: some elements

of M need not be defined) conditions for siftup to generate no

semantic errors as it executes on the "real" machine we have assumed.

Note that assertions al and a4 make assertion a3 redundant. Also, this

set of assertions could be further simplified if the programmer stated the

entry condition that is implied by the initial comment in siftup ,

l_<i_<n_<n,. The above set of assertions represents hidden restrictions

M which are rarely included in the description of an algorithm. In

particular, if treesort were used to sort an array of 30,000 elements

on a machine with 16-bit 2's complement integers (I max = 32,767) Y

and > 16-bit addresses (such as a large PDP-11 or a 360 with half-word

integers), the statement

ii := 2xi;

could be executed with i = 30,000 , either generating an overflow or

quietly assigning -5536 to j . Either the overflow would terminate

19

execution, or (worse), the comparison M[j+l] > M[j] would terminate on

a subscript range error, or (worse yet, but sanehow most likely) the

assignment M[i] := M[j] would store into a random location in memory

on the following iteration of the loop. -.Thus, a mathematically correct,

certified program could generate complete garbage when run on a real

machine.

20

r;
/

i-

i

i

i

k
L
t

II-b

L

Assertions for treesort (remember that n
0 is the value of n upon

entry to treesort).

Arc Assertion Proof

2 nfw -. Value parameters are always defined.

3 ijh Set in previous node.

Analysis of first loop:

nk+l = nk

ik+l = ik-1

so n is invariant and i is monotonically decreasing.

4’ --'nfw From arc 2 and n invariant in loop.

4 i#iu True from previous node.

ow From arc 2 and n invariant in loop.

L

Assertions for call to siftup , with arguments i and n (bound in

treesort) substituted for parameters i and n l

(1) 1 <isno- 2<i , but it is not immediately clear

that i 5 no . Since i
k is monotoni-

cally decreasing, it is clear that if

il 5 no , all other ik will be < n
- 0.

But il = n t2 and 2sil, soto

enter the loop at all, no 2 4 , in
which case it is true that no t2 < n

- 0'

(2) V 1 < f +oyMII] #- w This must be an entry assumption for

treesort . Move it to arc 1.

(3) 2xi<I- max Since n = no , this assertion is

implied by (1) and (6).

21

Arc Assertion

(5) l_<n_<no

(6) 2xn <Imax-

6 lmin 5 i-l True because i>2 and Imin<O .

Proof

n = no and we noted above that to

get to this arc at all, n,>4.

This must be an entry assumption for

treesort . Move it to arc 1.

Analysis of second loop:

iktl= ik
-1 .

n is invariant in loop.

Assertions for call to siftup , with arguments 1 and i substituted

for parameters i and n .

10 (1) l<l<i True ; i > 2 at this point.- - -

(2) V 1 < .f! _< no,M[l] # w Entry condition for treesort , see-
arc 5.

(5) l_<isno True; i>2,il=n=no,and i-
is monotonically decreasing.

(6) 2xi <Imax- True because i 5 no , and

2Xn() L *ma is entry condition

for treesort (see arc 5).

11 [See analysis of exchange , below.]

12 Imin 5 i-l True. 2 _<i , Imin < 0 .

also 2<1max
Move to arc 1, as an entry condition.-

22

c

Ib-

/

h

Termination of loops.

Since each loop has a

terminates if it generates

conditions for treesort

Assertions for exchange

AZ-C Assertion

2 IL 5 y)

ML11 f w

3 IL L no

l_<isno
--.

Mb] /= w

4 l<i_<no-

t+w

Conclusion

monotonically decreasing variable, i , each

no semantic errors, i.e., if the entry

are satisfied.

(as called from node J in treesort).

Proof

True. no 2 2 to get to this call at all.

Entry condition for treesort .

True.

True, 2<i_<no- within the treesort

loop.

Entry condition for treesort .

True.

Defined in node C.

We have now proven treesort to be free of semantic errors and

infinite loops if executed on the machine described and if the following
e

assertions are true on entry:

(1) V 1 <f _<n,,M[1] f w- from arc 5

C2) 2xn0 <'ma-t~- from arc 5

(3) 2 < Imax- largest constant

The second assertion is a hidden restriction which will prevent the proper

execution of the algorithm on large arrays on a machine with larger

addresses than integers (such as a large PDP-11 or a 360 with half-word

integers). Note in passing that sif'tup has the entry condition that

lgf-) Y but treesort does not require 15 no . A quick examination

23

of treesort shows that it works quite properly in this degenerate

case, skipping both loops and returning.

The only difficult parts in the morass of detailed proofs were:

(a) the proof that i is monotonically increasing in the main loop
-.

of siftup , in which we used the overly-stringent assumption that

i>l;and (b) the proof at arc 8 of sif'tup that 1 < j+ls no ,-

which used global information about the behavior of n inside the loop.

APPEUDIX: Clean termination of treesort on CDC 6600.

Because comparisons may generate overflow, the following additional

assertions are required:
-=.

Node Assertion Proof

(These proofs assume the additional constraint

that Imin , Imax , Rmin , and Rma are

symmetrical about zero, i.e., that

I =
min -Ima Y Rmin = -Rma 0)

siftup

E Imin < n-j 5 Imax- j and n are both ,>l (from node C),

and the difference of two numbers with

the same sign cannot overflow.

F

G

I

Imin- -<n-j < Imax Same.

R,.,,;- 5 M[j+ll-Mb 1 Cannot be proved without a restriction like
llL.LlI -

Vl_<! Ino Rmini2 _<M[P] <Rmaxf2-
< 'max-

or

This is an additional entry restriction

on treesort . This subtraction may

also generate an underflow if M[j+l] and
.

M[j] are very small and almost equal.

%l
in 5 Mb l - c o p y See node G above.

< Rmax-

f

L-

it

c
i

L

i

II-t

L

I

L

.

Node Assertion

treesort

D Imin 5 i-2 < Imax-

H Im-jn L Ii-2 5 Imax-=_

Proof

On arc 3: IminG <i<Imax+2 from

node C, so the assertion is true if

Im;n 5 (Imin+2)-2 , i.e., if I
m-jn 5 O3 l

Although not very interesting, this is a

valid entry restriction on treesort .

A more interesting one would be n > 2 .

On arc 7: since i > 1 at this point,

the assertion is true because of our

initial assumption that Imin < 0 .

On arc 8: since i = n , this becomes

the entry condition Imin < n-2 .

On arc 13: since i > 1 at this point,

the assertion is always true.

Conclusion

treesort will terminate cleanly on a CDC 6600 if the following

additional restrictions are true on entry:

4 (1) V i,j such that 1 < i < n
- -0 and 1 < j <n- - 0'

Rmin ,< Mb-1 -M☯jl ,< Rma⌧ l

I TWO sufficient forms of this are:

V1_<l+o , Rminf2 _<M[l] _<Rmaxf2

and

Vl<f -<no , 0 <MCI] <R- - - max '

(2) Imin <n-2 and Imin ,< -3 .-

25

Acknowledment

Don Knuth suggested the shortcut for proving loop termination.

References

[l] Floyd, R. W., "Algorithm 245, TREESORT3," Corm. ACM 7 (Dec. 1964),

701.
.

[2] London, R. L., "Certification of Algorithm 245," Comm. ACM 13

(June 1970), 371-

[3] Redish, K. A.,k "Comment on London's Certification of Algorithm 245,"

Corn. ACM, January 1971, pp. 50-51.

26

c
r 1)ITERYIL PROCtbURP TO CALCULATE THE ROTATION CORRESPCNDINC TC

ie n frltlt prnclicnl algorithm for in-plneo Borting and one with
Bufiicicnt complexity 80 thnt its corrcctneas is not immediately
appnrcnt, ite we w lbo cxclmplc is more than an abetract exercise.
It is att cxnmple of considcrnblc practicnl imporlan~c.

99
JFi

310 IffOG .Eo. O*J GI) TO 930

WmM n 00~50*1~1. + IPP/OOJ.~21
920 c - p/now

5 = OIOW~
GO TO RLtWNrf 31O~~40~3601

510 c - 1.
5 l 0.

now n 0.

cc) TO RttwM*01~*340*3601
Em

Outline of TIWILSOI~T ,9 and method o/ proof. The algorithm is
mod c n s i l y followed if the urray ia vicwcd 08 a b i n a r y t r e e .
Mlk+ 2) is the parent of M[h], 2 _r’ k ,< n. I n o t h e r w o r d s t h e
children of I!![J] nre nf(2jjl nnd M{‘Lj+l) provided one or b o t h
o f the f*lJiltlrcn exist.

-.
‘1’11~ f i rst pnrt. of the algorithtn pcrmlltcg the M nrr:ly s o t h a t

for 2 HC~IWIII of the nrrny, cnch pnrcttt is lnrgcr than both of the
children (one child if the second dots not exist). En~h call of t h e
aux i l i a ry ~~rocctlurc: siftup Cttl:1rKfas the scgt&nt by calr<inc flrle

more pnrcttt to dominate its children. The sccvond part of the
algorithtn WCS siji?q to mnkc the parents larger over the whole
array, exchanges Ml] with the lnst clement and repcsts on an
arrny one element shorter. The above statements arc motivation
and not part of the formal proof.

(Xl< TT I:ICATION OF ALGORITHlM 245 [Ml]
TI‘\kZI*X)RT 3 [Robert W. Floyd, Comm. ACM 7 (Dec.

i!t~iU, 7011: PROOF OF’ A L G O R I T H M S - A N E W
I\TSI) 01.’ CFXTIFIC~~ION

1b~r11 1,. LOA I)O~ * (Recd. 27 l?eb. 19G9 and 8 Jan. 1970)
Cornputor Sciences Department and Mathematics Re-

xxc11 I ‘enter, University of Wisconsin, Madison, WI
,-m)G

That TREESORT S is correct is proved in three parts. First
the procedure siflup is shown to perform as it is fortnnll_v &fined
below. Then the body of TREESORT 3, which uses sijtup in two
ways, is shown to sort the array into rsccnding order. (The proof
of the procedure ezchunge is omitted.) The proofs are b\- a method
described in 13, 4, 7): assertions concerning the progress of the
computation are made between lines of code, and the proof con-
sists of demonstrating that each assertion is true each time con-
trol reaches that assertion, under the assutnption that, the previ-
ously cncountcred assertions arc true. Finally tcrminntion of the
algorithm is shown separately.

* This work was supported by NSF Grant GP-7069 and the
.lI:rt hcnl:Lt its 1tesc:rrch Center , US Army under Contract
s ~rlntJrr 1).121-i:! I-.IlLO-D-%2.

xHSl’1: I(“I‘. Thr ccrtificatinn of an algorithm can take the form
of :I prollt’ that the algorithm is correct. As an illustrative but
i)r.kc I iI II c-s:\rnplc, Algorithm 245, TREh’SORT J for sorting an
‘11 r.11’. is proved correct.

The lines of the original algorithm have been n~trnbcred s~rd the
assertions, in the form of program comtnents, are nutnbered cor-
respondingly. The numbers are used only to refer to code and to
assertions axd hn.ve no other signifirancc. One extra begin-end
pa i r hns been inserted into the body of TREESORT 3 in order
that the control points of two assert ions Cl.1 and 4.1) co\~id be dis-
tinguished. In siftup the assertions 10.1 nnd 10.2 express the cor-
rect result; in the! body of TREESORT S the! nsscrtious 9.3 and
9.4 do likewise.

li I .j \\‘~~I:115 AND PJIRASES: proof of algorithms, debugging,
rertiftr:rt ion, mctntheory, sorting, in-place sorting
(‘II CATEGORIIS: 4.42, 4.49, 5.24, 5.31

N

*f’crj, tiru/ron of algorithms by proof. Since suitable techniques
now csist for proving thr rorrcctness of many algorithms [for

Dcfini(ion of siJltcp a?c(l ncJhhO?L W e ncJW d(tfincc formally t h e
procedure siflup(i,n), where n is a formal p:ir.zmc?ter and not the
length of the array iii. Let .4(s) denote the set of inequalities
di[k+-23) 2 !lf[k] f o r 2~ < k 5 n. (I f s> 72~2, then A (6) is A vncu-
ous statement.) If A(i+l) holds before the call of sifttcp(i,n)
and if 1 5 i 5 n _< nrray size, then :lfter sijtup(i,nI:

(1) A (i) holds;
(2) the segment of the nrrny .IT[i] throucrh !f[nl IS pc~rtnlltcd;

and

e.u:lmplc, :5-71, it is possible and appropriate to certify algorithms
with a proof of corrcctnp.qs. This certification would be in addi-
tion trl, or in m:ln\. c:lses instead of, the usual certification. Certi-

Tt. doas not mnt tcr whcl her ~11 users of 211 nlgorithtn will wish
, $4 , nr t)c ahle to, verify a sorllctimcls lengthy proof. One is not
rpquircti to Rcccpt n proof before us ing the algorithm any more
thr$n onr! i s cxpccted tn rertm t h e cert.ification tests. I n b o t h

refer ‘(:
A H rtn ck:tJnplc of 3 cert if ication by p r o o f , the a l g o r i t h m

TNRI?,SORT 3 121 is proved to perform properly its elnimcd task
,,i ~r)rt tng an arrrly Af[l:n) into aRcending order, Thia algorithm
hnh iwcr~ prcvioltsly ccrtifiarl [I], b u t i n t h a t c e r t i f i c a t i o n , f o r
example, no arrays of odd lengt,h wet-c tested. 8inm TREESORT 3

Co& anrl assertions for siftup.
0 proccdr~rc* siftvp(i, n,); VCI~IIC i , n; integer i, n ;
1 begin red copy; integer j;

c,olnmcII I
1.1: 1 ,< i0 = i < n 5 m-my 3irc
1.2: A (iofl)
1.3: M =: p(M*);

Valume 13 / Number 6 / June, 1970 Cowwwniaatianr al the ACM 371

5
4L

L

L

i.
b-

L

-

L

L-

L

c

27

I

2 COp!i := .lf[i];
3 loop: j :== 2 X i;

c4mlllrelrt
3.1: i 5 Iz
3.2: 2i = j
3.3: i = i0 or i 1 2i0
3:r: 411 = p(MO) w i t h M(iJ := copy
3 . 5 : .t (i0) or (i = ifi md A(i,+l))
3.6: Jf[i+ 21 > copy or i = i0

3 . 7 : .If[i+Zl 1 U[ij or i = i0;

4 if j _< tt then
5 begin if j < n then
6a begin if Jf[.j+l] > iliLj] then
6b j := j + 1 e&;

comment
6.1: i = j + 2

7
8n

6.2: 2i 5 j 2 n
t-i.3: i = i0 o r i 2 2i0
ii..!: .If = p(,llo) w i t h Mii] := COPY
6.5: -4 (io) or (i = in and A(io+l))
GA: .lf(iS2] > copy o r i = i0
6.7: .lf[is2] 2 Jf(i] o r i = i0
6.8: (2 i < n a n d Mu] = max(M[2i], M[2i+l])) o r

(2i = n a n d Mb] = M[n])
G.9: .lf[i] 2 JfLj] o r i = ir;

if Mb] > cop,y then
beg in .If(i] := Mb];

comment

8b

8.1: i = i0 or i 2 2i0 --,
8.2: 2i 2 j 5 n
8.3: :lllj+2] = M[i] = Mu] > copy
8.4: Jf[is2] 2 Mb] o r i = i0
8.5: Al = I with Mb] := copg
8.6 : A (io) ;

i := j;

comment
8.7: i 2 2io
8.8: i = j < n
8.9: M[is2] > copy
8.10: Jf[i+2] 1 M[i]
8.11: 111 = p(M00) with M[i] := copy
8.12: A (io) ;

8c go to loop end
9 cud ;

comment
9.1: MbJ 5 copy if reached from 7 or

?i = j > n if reached from 4;
10 M[i] := copy;

comment
10.1: Al = P (MO)
10.2 : A (z-o) ;

1 1 end sijtup; _

Ver$cution of-/h asscrlions of #up. Reasons for the truth of
cncli :rsscrl ion follow:
1.1-1.2: Assllm~)tiorv3 for using sijfup.
1.3: p is the identity permutation.
3.1-3.7: If reached from 2,

3.1: 1.1.
3.2: 3.
3.3, 3.5-3.7: i = i~ by 1.1. 3.5 also requires 1.2.
3.4: 1.3 and 2.

If reached from 8, respectively, 8.8, 3, 8.7, 8.11, 8.12,
8.9 and 8.10.

6.1: At3.2 j = 2i and by Gb, j might be 2i + 1. i - j-r2 in either
case.

6.2: After 4, j < n. j is altered from 3.1 to 6.2 only at Sb. Before
6b, j < n by 5. IIcnce j ,< n at 6.2.2i s j by 6.1.

6.347: 3.3-3.7, respectively.

312 Communicatione of the ACM

28

6.8: If 4 is t r u e and 5 is f&e, j = 2i = n (using 3.2j 80 the
second clause of 6.8 holds. If 4 is true and 5 is true, then
a t Ga, 2 i -= j < n (ueiug 3 . 2) so MLj+l] = M[2i+l) i s
dcfincd. Now at 6.8, j = 2i or j = 2i+l. In either c:~c,
by 6a and Gb, the first clause of 6.8 holds.

6.9: B y 6 . 5 i # io gives A($. 2io 2 2i 5 j 2 n by 6.3 a n d 6.2.
IIonce A (io) and 6.1 give M[i] = Mlj+Z] 2 Jib].

8.1: 6.3.
8.2: 6.2.
8.3: i = j+2 by6.1, M[i] = Mb] by $a and Mb] > copy by 7.
8.4: 6.7 nnd 6.9.
8.5:.. 6 . 4 rcquircs that M(i] b e replaced l)y copy. S i n c e ,\l[i] =

Ai[j] by Sn, M[j] may cqrrnlly wcli be rcplnccd with Copy.
8.1 and 8.2 give i0 2 i 2 7~ so that the change to hf at 8a
is in the segment M[io] through nf[n].

8.6: By 83 and if 6.8 (first clause) holds, M[i] 1 M[2i] and .Il[i] 2
M(Zi+l]. By 8% and if 6.8 (second clause) holds, JZji] =
Afti] = M[n] = iIf[2i] aud M[2i+l] does uot exist for this
call of sijlup. A(io+L) holds at 6.5 since A(&) implies
A(io+l). I f i = io , A(io+l) and the relations atjovc on
M[i] g i v e A (id. If i # io , then 8a, 8.4, A(&) at 6.5 ar;d
the relations above on M[i] give A (id at 8.6.

8.7: 8b, 8.1 and 8.2.
8.8: 8b and 8.2.
8.9: 8b and 83.
8.10: At 8.6, 2io 5 j s n by 8.1 and 8.2. Hence by 8.6, M&2] 1

Mb]. Use 8b on icl[j+B] 2 Mlj].
8.11: 8b and 8.5.
8.12: 8.6.
9.1: 9.1 ig reached only if 7 is false or if 4 is false. 2i = j by 3.2.
10.1-10.2: If reached from 7,

10.1: 6.4 and 10. (6.2 and G.3 give i0 < i _< n ensuring
the change to M at 10 is in the segment Jf[L]
through ‘11 [n].)

10.2: By 10, 9.1, G.2 and 6.8, M[i] = cupy 2 .I&] 2
M[2i] and, if M[2i+l] esists, .Ifij] 2 Jf[2i+l]. If
i = io , 10.2 follows as in 8.6. Ii i # io , 6.G and
10 give df [is21 > copy = M[i]. A (io) at 6.5 now
gives A (io) at 10.2.

If reached from 4,
10.1: 3.4 and 10. (3.1 and 3.3 give io ,< i 5 n.)
10.2: 2i > n means no relations in A(&) of the

form M[i] 2 . -0 . If i = i0 , 3.5 gives 10.2. If
i # io , 3.6 and 10 give M[it2] > copy = M[i].
A (io) at 3.5 now gives 10.2.

Code and assertions for ihe bodg of TREESORT S.
0 integer i;

comment
0.1: A(n+2+1);

1 for i := n+2 step -1 until 2 do
& beg in

comment
2.1: A (i+l)
2.2: Assumptions of sijhp satisfied;

3 sijhdp(i,n);
oommcnt

3.1: A(i);
& end;

comment
4 . 1 : M[p] < M[p+l] fo r n + 1 5 p 5 n - 1
4.2: A (2), i.e. M[k+2] 2 M[k] for 4 5 k 5 n;

5 for i := n etep -1 until 2 do
6 beg in

comment
6 . 1 : M[p] 5 M[p+l] for i + 1 ,< p s n - 1
6.2: M[k+2] 1 M[k] for 4 5 k < i
6.3: M[i+l] 2 M[r] for 1 6 t < i
6.4: Aseumptiontr of at;flup satisfied;

Volume 13 / Number 6 / June, 1970

7 3ijhp (1 ,i);
oIllIncllt

8.1: ,1![;] 2 Jf[t] for 1 < r < i - 1
8 . 2 : M[p] ,< M[p+l] for i 5 p 5 n - 1
S .3 : ,lf[k+2] 2 M[k] for 4 < L < i - 1 ;

9 end ;
-.

cornmeut
0 . 1 : Jf[p] 2 .11[p+l] for 2 2 p 5 n - 1
9.2: .lf(2] 2 M[l]
9 . 3 : df ip] 5 X[p+l] for 1 < p 5 n - 1, i.e. M is fully

ordered
9.4: di is a permutation of jl0;

Irerijiuztion of the assertions for the body of TREESORT S.
I<e.a.sons for the truth of each assertion follow:
0.1: Vacuous st:rtemcnt since 2(ns2+1) > n.
2.1: If re;rchcd from 0.1, by 1 substitute i = n+2 in 0.1.

If rc:lrlicd from 3.1, by 1 substitute i = i + 1 in 3.1 to ac-
count for the change in i from 3.1 to 2.1.

2.2: 2.1, the bound on i implied by 1 and the array size being n.
3.1: 2.1 and the definition of sijlup(i, n).
4.1: Vacuous statement. --.
4 .2: I f n 2 4, 3 is esecuted; h e n c e 3 . 1 w i t h i = 2. If n 5 3,

vacuous statement.
6.1-6.3: If reached from 4.1,

G.1-6.2: By 5 substitute i = n in 4.1 and 4.2.
6.3: Vscuous statement for i = n.

If reached from 8.1, by 5 substitute i = i + 1 in 8.2,
8.3 and S.l, respectively.

G.-l: 5 and 6.2, i.e. A (2) for the subarray M[l:i].
i.1: G.l and (3) of siftup.
7.2: 6.2 and (1) of siftup.
7.3: 7.2 noting that fil[l] = M[kt2] if k = 2 and using the transi-

tivity of 2.
7.4: VCICUOUS for i = n. Otherwise 6.3 for the appropriate t since

by (3) of siflup, nl[l] at 7.3 is one of the M[r], 1 5 r I i,
at 6.3.

8.1: 7.3 with the changes caused by 8 (only M[l] and M[i] are
altered by 8). b

8.;: By 8 substitute M[i] for nl[l] in 7.4; then 7.1 also holds for
p = i.

8.3: 7.2 exclllding only the one or two relations M(l] 2 . . l , and
the one relation . + * 2 nf[i].

9.1-9.3: If n 2 2, 8 is executed;

. . 9.1: 8.2 with i = 2.

. 9.2: 8.1 with i = 2.
9.3: !,.l :llr~l 9.2.

I’rnr?f c?/ trrminntion of TREESORT S. Provided sijlup and ex-
chrlngc rc~rrninntc, it is clenr that TREESORT 9 terminates. Note
t h:lt c:lch parnnlcttcr of siftup is called by value so that i is not
c*h:lngccl in ? he I~otly of the for loops.

‘1’hc prorrbclrlrc crrcknge ccrtninly terminates. In sijlup the only
po<.sit,ility for an rlnending loop is from 3 to 8b and back to 3.
Note that nil rattnngcs to i (only at 8b) and to j (only at 3 and Gb)
o(*cur ilr this loop and that on each cycle of thisSloop both i and j
are chnngcd. By the teet at 4, it is sufflcicnt to ehow that j strictly
irlrrcrrsrg in value. i 2 1 means 2i > i. At 8b, j = i < 2i while at
3,j = 2i, i.e. j(at 3) = 2i > i = j(at 8b). Hence each setting to j

Volume 13 /.lWumber 6 / June, 1970

at-3 strictly increascs the valuo of j. The only other setting to j
(at (ib), if made, eimilarly increwca the value of j.

REFI~:IIEN(:ES:
1. ABILAMS, 1’. S. Certification of Algorithm 245. C’omm. ACM 8

(July 1965), 445.
2. FI,c)YI), 11. W. Algorilhm 245, ‘I‘ttl~~ESOl1’1‘ 3. Co7nm. ACM 7

(Ih!O. Km), 701.
3 . FLOYD, II. W . AnnigtrilbK nrcr,tlilqzfl to I)ro~rrlnr?r. l’roc. of a

Symposium in Appliccl M:rthc!nl:rtic*s, \‘ol 1 0 \I:\t hcbtn:rt i1.d. . .
A~pccts of Computer Scicncc, ,J. ‘I’. %hw:rrtz (Ifgl.), Amcrit:an
Mnth. Society, I’rovidcncc, 11. I., 1%7, pp. 19-X.

4. KNUTII, I). IX. The Art of Computer Programming, I’of. l-
Fundumentul Algorithms. Addison-Wesley, I’Lcading, Xass.,
1968, Sec. 1.2.1.

5. MCCARTHY, J. A basis for a mathematical theory of computa-
tion. In Computer Programming and Formal Systems, I’. Braf-
fort and I). Hirschberg (Eds.), North Holland, Amsterdam,
19G3, pp. 33-70.

6. MCCARTHY , J., AND PAINTER, J. A. Correctness of a compiler
for arithmetic expressions. Proc. of a Symposium in Applied
Mathematics, Vol. X&-Mathematical Aspects of Computer
Science, J. T. Schwartz (Ed.), American Alath. Society,
Providence, It. I., 19G7, pp. 33-41.

7. NAUR, P. Proof of algorithms by general snapshots. I.-IT 6
(1966), 31S316.

REMARK ON ALGORITHM 201 [Ml]
SHELLSORT [J. Boothroyd, Comm. ACM 6 (Aug. 19631,

4451
J. P. C HANDLER AND W. C. HARRISON* (Recd. 19 Sept.

1969)
Department of Physics, Florida State University, Talla-

hassee, FL 32306

* This work was supported in part by .4EC Contract No. :1T-
(40-l)-3509. Computational costs were supported in part by
National Science Foundation Grant GJ 3G7 to the Florida St ate
University Computing Center.

KEY WORDS AND PHRASES: sorting, minimal storage sort-
ing, digital computer sorting
CR CATEGORIES: 5.31

Hibbnrd [l] hns co&d this mcthncl in n wny that in(‘rc:t>l*s ttle
RpCrfI sifykilic*nrrtly. 111 S11151,1,$011’1’, Pri(*lb st 1lp8 of v:1(*tl :%iFl ~‘IIII-
t4iHls of ,rlif:f*c!:;sivc* t)!iir tiwripn. ‘I‘lw nbotlilic*:lt iorh rc*tbl:ic~c*:; (*,II.tl ,c*L
of n p0ir swnps by one “xxvc,” n - 1 rnov(*~, nml 011v ill. c*rI icpli.

Table I gives timing information for ALQOL, I'm~n lx, awl
COMPASS (assembly language) versions of S;NELLL,‘IORT and the

TABLE I. SOIWINCI TIMES IN SECOIWS FOR 10,000 RANDOMLY

ORDERED NUMBERS ON THE CDC G-IO0 CVMPUTER
- -

Algodhm Sowrcr Lonpogr

ALGOL FORTRAN COMPASS

SHELLSORT 53.40 7.1s 2.3s
SHELLSORT 36.56 5.98 1.87

Communications of the A01 373

29

PROVING CLEAN TERMINATION OF COMPUTER PROGRAMS

i
i

L

e

UC-

Richard L. Sites

Computer Science Department

Stanford University

Stanford, California 94305

Abstract

This paper presents a system for proving that a computer program

contains no semantic errors and no infinite loops, and hence that it always

terminates cleanly. This work differs from other work on verification

of program co_rrectness in two important ways: (1) it deals explicitly

with the finite limitations of real machines, and (2) it does not

examine what the program accomplishes; no description of the correctness

properties of the program is required. A recent ALGOL program for

computing medians is used as a running example.

L

Keywords and Phrases: proof of termination, proof of correctness

i

L CR Categories: 5.24

c

1

Much of the theoretical work in verifying program correctness has

concentrated on theorem proving techniques, formal language schemata,

formal logic, program synthesis, and program equivalence. A common

theme in this work is the process of describing a program by a set of

assertions, and then inductively proving that the assertions are true.

In such an approach, the assertions (or at least the important ones)

are usually supplied by a human, then the verification system tries to

prove them. At the successful conclusion of this process, the program

has been proved to do exactly what the assertions describe [Floyd],

[King], [Good].

One of the drawbacks of this approach is that it takes a lot of

effort to create the proper assertions -- to find assertions which

describe both what the program actually does and what it is intended

to do. It is easy to write down assertions which loosely describe what

the program does, but which happen to fail in degenerate cases (such as

the first time through a loop, or a normally positive variable starting

out exactly zero); it is also easy to write down assertions which do

not fully describe the intended functioning of the program, so that the

- program may be carefully proved to work as the assertions describe, but

it still would contain "bugs" in actual use. For example, the correctness

of-a program to sort elements 1 through n of an array A might be

described with a final assertion like this:

Vl_<e<n-1 ,- A[!] _<A[!+11 .

While this is a perfectly reasonable description of the intended function

of the sort program, the following program can also be rigorously shown

to work as the assertion describes:

2

IL

4
t

i

d
f
L

1
c-

i
L

iI

6-

,
L
i
t

i

L
4
l-
,
l-

G
I
IL

/
c-

:

i

L

for i := 1 until n do

A[il := 37;

Another problem with programs that have been proved correct is that

the proof applies only to ideal machines whose numbers have unlimited

precision and range. When run on real, finite, computers, such ;?rograms

may deliver improper results even after they have been rigorously

certified (see for example [Sites]).

Large "real-world" programs (such as a compiler) are usually

developed to the point that they appear to go through all the right

motions, that they basically work, and then the program enters a shakedown

period during which many test cases are run and perhaps new users are

allowed to te the program. The purpose of this shakedown is to eliminate

most anomalies and to improve the confidence level that the program is

working properly.

The rest of this paper describes a system to make this shakedown

process more rigorous and to detect errors due to the finite limitations

of real machines. Programs exhibit bugs in one of two ways: they produce

incorrect results, or they terminate abnormally. Correct results are

sometimes hard to describe rigorously (although there is a high payoff

in describing simple consistency checks), but abnormal termination can

be more precisely specified. In fact, we have no good notation for

describing what it means for a complicated program to be correct; many

data processing concepts, such as "this compiler produces correct object

code", have no simple rigorous form. A system which tries to prove that

a program will always terminate normally could be quite useful for

increasing confidence in the proper functioning of a large program. The

system would say nothing about what the program does (i.e., sort an array);

1
I
L

3

instead, such a system would report that whatever the program does, it

terminates cleanly. The system would verify that the program contains

no semantic errors or infinite loops -- no overflows, out-of-range

subscripts, references to null or undefined pointers, etc.

While proving that a program terminates is in general an unsolvable

problem, most real programs are intended to terminate and have good

reasons for doing so. Therefore, it is reasonable to expect that

automatic means could be used to prove termination of many useful

programs.

TO make this concept more specific, let us consider a version of

a nontrivial program written by R. L. Rives-t [Rive& and Floyd]. This

example will be used throughout the paper to illustrate the techniques

presented. See Program on next page.

To prove that this program terminates cleanly, it is necessary to

prove, for example, that line 19 produces no overflow; that in line 26, .

i is defined and in the proper subscript range for X ; and that the

loop at lines 28-29 terminates (without a bad subscript).

This paper discusses many of the issues in creating a mechanical

proof that Rives-t's program terminates cleanly. It does not, however,

go into much detail about theorem proving techniques, or about the specific

theorems of Rivest's program. It will not deal with the recursive call

to select at line 17; essentially, the discussion below will only treat

the functioning of select when r-a ,< 600 l The dotted paths on the flow

graph below are intended to indicate that as an inexpensive byproduct of

the techniques presented here, scme cases of recursion can be shown to

terminate by treating the recursive call as an assignment to the parameters

and a branch to the beginning of the program. Of course, treating the

call as a branch does not deal with what happens when the call returns.

4

1.
52:
4.
5.
6.
7.
8.
90
10.
-l-l

procedure select(X,Q,r,k); value &r,k* array X0
comment 9select will rearraxhe values of xr+ SO that

-- ‘-L - --LX[k] contains the (k-1+1)& smallest value.
-1 L i 5 k implies X[i] <X[k] aI

k ,< i-5 r implies X[i] >Xrkl' Id
I;begin integer n, i, j,‘f

while m-p L n a-
s id' e1J 9 9 J rr> ;t

begin
if r-R > 600 then

begin -
.

G.
n := r-0+1;
i := k-f; '-s--s

☺-3 l

14.
15=
16.
17 l

18.
19.
20.
21.
22.
23.
24.

S := entier(0.5 * exp(2*ln(n)/3))e
sd :=
11 := max(I, k - is-s/n + sd)=

entier(0.5 * sqrt(ln(n)*s*(n&n) * sign(i-n/2))
;

~~lect(X,lI,rr,k)
:= min(r, k + (n-i)*s/n + id);

end;
i :I+ 1;.

if X[r] <t then
exchmge(X[rl, ~[a]);

while X[i] <t do
i := i + 1; -

while X[j] >t da
j :=j -I;-

if i < j then
begin -
exchange(XCiJ, X[jJ);
i := i + 1;

2%
26.
27 l

28.
29.
30.
31.
32.
33.
34.

P:

j := j - 1;

go&P
end:

37*
38.

if x[mj = t then

39.
exchange(-m

4Q.
else begin

j := j + 1;
4l-.
42:.
43 l

44.
45.
46.
4-L
48.

exchange(X
end;
j_<k

--i j
k i-j

then
+;
then

if

if
r := j - l

end
end select

1, XCjl)

CJL xCrJ)

Program

5

This paper will not deal with lines ~-16 because they involve floating-

point numbers, which the prototype system is not prepared to handle,

and for which exposure to overflow, underflow, and division by zero

are much harder to avoid than for integers.

In summary, proofs of clean termination are useful for several

reasons:

(1)

(2)

(3)

(4)

(5)

I.

This technique may be economically applicable to a larger set of

programs than more exacting proofs of correctness.

Machines are better than humans at mechanically examining

degenerate cases; it is difficult to create correctness assertions

which are tru'e in all cases including the degenerate ones.

By examining programs run on real machines, with finite precision

and finite-range arithmetic, the system deals with a source of

bugs which other correctness techniques don't address at all.

If the program cannot be proved to terminate cleanly, then the

proof process should detail which parts of the program will always

terminate and which may not, thus focusing the user's attention on

the complicated, error-prone, or interesting part of a program.

For programs like operating system subsystems, it is often desirable

that the program always return control to the operating system, even

if it sometimes gives incorrect results.

Flow Graph Processing

Let us now take Rives-t's program and apply to it a mechanical

process which is often able to prove clean termination. We start by

viewing the program as a flow graph (Figure 1).

6

i

4

a-

cF
n := . . .

i := . . .

S a-.- . . .

sd := . . .

.- . . .

rr := . . .

- 1
I
I
I
I
I
I
I
I
I
I
I
I

0
y/

\ I---
i := a+1

j := r-l
4

t := X[k]

Xikl := x[a]

1X[l], := t]

c

exchange(X[r],Xb I)
&

Figure 1. The flow graph for Rivest’s program

7

nl I / I

.L
0w3 := j-1

t

exchange(x[i19X[jl)I

:= i+l

j := j-1
,

.
1 J := j+l I exchange(X[~l,~[j I)

excha.we(x[j l,x[rl)
I 4

F x A

9
I :I j+l

Figure 1 continued.
7

8

L

L

In order to make analysis of the loops more manageable, the flow

graph is modified according to the following set of rules.

First, we perform interval analysis [Allen a,b], [Allen and Cocke],

Cocke], [Cocke and Schwartz] on the flow graph, and do any necessary

node splitting so that every loop has a single entry node. The point of

forcing all loops to have a single entry node is to avoid situations

like the one in Figure 2a.

Figure 2a. Flow graph which needs node splitting.

where it is impossible to determine the state of the program when entering

node B without having first examined the state of the program when

leaving node B . Node splitting produces the modified graph in Figure 2b,

L

Figure 2b. Same graph after node splitting.

in which the loop now has a single entry node, C .

When applied to Figure 1, interval analysis leads to successive

reductions as shown in Figure 3. No node splitting is required.

9

Node Acfl

l I

Nodes
I

C
,-I

thru

K

I
I

Nodes

L andM
l

I

I Ir - m
vJ_

Nodes

C

thru

K

V

Nodes

r -m
1

Node A

1. dql I

I *

Node B 1

l I
I

I

I- *

I I

Nodes 1

I

C I
thru 1 I

I '

Z I
? I
t 1

I
- -

L m- J

Figure 3. Interval analysis of Rives-b's program.

10

i
t

I

Second, at the head of each interval which is a loop, we add a

"loophead" node and reroute all the latchback arcs (arcs which branch

back to the head of the interval) and initial entry arcs through this

new node. The loophead node gives us a convenient place to attach

loop induction information and loop termination assertions. This

step generates four loophead nodes in our example, see Figure 4.

(For simplicity, we shall henceforth ignore the dotted arcs, which

correspond to the recursion.)

‘L

L

11

Procedure

select(X,L,r,k)

1

exchange(X[i],X[L])

Figure 4. Flow graph after interval analysis and insertion

of "loophead" nodes. Double lines are loop exit arcs.

12

4

I
L

I

I

I

I

I

I

I

. I

I

I

e

I.

.

I.

I

L

r
I
I
I
I

r
I
I
I
I-I --.

I
r
I

I 1
I I

I L

I
I
L

- -

- - -

-’ w ‘4
--v

Figure 4 continued.

I
I
I
I
I
I
I
I
I
I
I
I

Third, in order to separate information related to the issue of

loop termination, we in general need to modify each loop so that every

path around the loop goes through a test which can exit the loop. We

make a separate, contained, loop out of any paths which do not exit

directly, as in Figure 5. There are no paths around the loops in Rivest's

program which require this modification.

Y 4t \)
loophead #l

*

exit

I----- d
4
exit

5a. The paths of this flow graph are !$I. The paths of this flow graph

are described by the regular are described the regular

expression (A(B+~DE))*A~D expression ((AB)*AcDE)*(AB)*NX

Figure 5. Example of forcing each path around a loop to

go through an exit test.

14

;..’

i

r CL
.‘.:*

1
I
f .

i

i
t
t

1
II
b-

t

L

L

In generating loop termination assertions, we will essentially be

stating that "for some k , an exit path is taken on the k-th iteration

of the loop". It is convenient for the gen.eration of such assertions

to have loops in which the exit tests are near the top of the loop.

Specifically, if there are embedded loops, function calls, or complicated

calculations between the loophead node and the various tests which exit

the loop, then it will be hard to describe the values of the program

variables at the test node in terms of their values at the loophead node.

Therefore, our fourth modification is to attempt to permute the nodes in

the loop so that all exit tests occur immediately after the loophead

node. Our modified flow graph for select now looks like Figure 7, with

copies of loops 3 and 4, and loop 2 permuted.

This modification cannot always be done, as the third exmple

in Figure 6 shows. However, all LOOPS with exactly one immediate

exit arc can be successfilly permuted. The effect of these last two

modifications is put the programs in nested e format. For another

method to accomplish this transformation, see [Ashcroft and Manna].

15

I&. .
l

loophead
4

*
regular expression = (AEZD) AX

EXAMPLE 6a. Transform this to 6b.

regular expression = AB(CDAB)*C

EXAMPLE 6b. Leading test form of 6a.

e%itexit exitexit

EXAMPLE 6c. Cannot move both tests
to top of outer loop.

Figure 6. Examples of permuting loops' to create leading tests.

16

lL
loophead #l

I

L'
HiI <t5%F M'

i := -7i+l

(loop-

AIL6uLc (* ~"low graph of select aft
format, with l-permuted.er forcing into nested WH

r

With the flow graph put in the desired form, we are now ready

for the work of creating and proving assertions about clean termination.

. .

II. Semantic Error Assertions

We start by attaching assertions to the arcs of the flow graph

stating that all operations in the subsequent node are well-defined and

that no semantic errors are generated. This is essentially an operation-

driven process of inserting assertions on all incaming arcs of a node,

specifying exactly what conditions must be true for the contained operations

to execute cleanly. Typical assertions are:--.

Operation Assertion generated

i+j i # UJ A j k u A Imin ,< i+j A i+j 5 Imax , where

UJ stands for "undefined", Imin is the smallest

representable integer in the machine on which the

program will execute, and Imax is the largest

representable integer.

A[il

i := j

i { cu A AL 5 i A i 5 Au , where Al is the lower

bound for legal subscripts of A and Au is the

upper bound.

j+J-

See Figure 8 for an example of this assertion synthesis process. Note

that if a node has many incoming arcs, the same set of assertions will

be attached to each arc. A detailed example of assertion generation

appears in [Sites].

If all the assertions generated at this stage are proved to be true,

then the program contains no semantic errors, i.e., it does not "blow up"

during execution, perhaps with a run-time error message.

18

r{CJJA i#cuA

Imin 5 r-1 A r-1

Imin
5 600 A 600

<-

< Imax

1 Amax

Figure 8. Ex;unple of assertion generation.

I
c In most cazes, the generation is quite simple, but some complications

L

arise in handling procedure calls:

r
(i) Arguments passed to value parameters of a procedure are

L treated like the right-hand side of an assignment -- the argument

expression must be defined and must not generate semantic errors when

c

it is evaluated at the point of call.

L
(ii) Procedures with name parameters must be handled strictly

e according to the copy rule, making a unique copy of the procedure for

. each call and logically inserting the body of the procedure instead of

that call. This is the only way to properly reflect the side effects

which can result from tricky use of name parameters. It is also a

reason that Algol 60 recursion is hard to analyze mechanically.

(iii) Procedures with array arguments have the problem that the

procedure does not specify the legal lower and upper bounds for

the subscripts. Either of two strategies can be adopted for generating

and proving assertions about-subscripts in the proper range: symbolic

19

names (like Al and Au) can be used in all the assertions, and the

proof techniques can push back to the entry point of the procedure any

assertions (restrictions) which must be true on entry in order to avoid

subscript range errors; alternately, the_progremmer can supply an extra

statement to the proof system, describing the bounds for each array. The

first strategy is equivalent to asking, What are the necessary array

bound conditions for this procedure to always terminate cleanly?" The

second strategy is equivalent to saying, "Here are the conditions which

will always be true when the procedure is called; are they sufficient to

guarantee clean termination?"

If the programmer has definite assumptions about ranges of array

bounds in his mind, then it is best to state them to the proof system.

Failure to do so forces the system to try to synthesize the equivalent

information, a process which may well fail.

In the assertions and proofs which follow, it will be assumed that

the proof system has been told that X[lo:ro] is the declaration for

array X , where Lo equals the value of 1 upon entry to select ,

and r0 equals the value of r upon entry. This binding allows the

- subscript range assertions to be independent of the fact that the

variables 1 and r change value as the program executes.

20

\

i-

i

L

III. Loop Termination Assertions

Loop termination assertions are harder to generate than semantic

error assertions because the goal is much more abstract. For semantic

errors, the assertions generated are a straightforward function of the

language definition and compiler/computer implementation restrictions.

For loop termination, however, synthesizing the proper assertion may well

be harder than proving it true.

Loop termination can be approached on a wide variety of levels of

abstraction. One extreme is to assert that control passes through each

loophead node a finite number of times. However, such a statement

cbesn't lend itself to direct proof. Another extreme is to require all

loops to be FOR loops or DO loops in which the step and limit are

evaluated exactly once and the iteration variable cannot be changed

inside the loop. Such loops terminate by definition (if a zero step is

prevented). In between these extremes are some useful strategies.

One strategy is to use the taking of an exit branch as a goalto

drive the assertion generation. For any loop, asserting that it terminates

is equivalent to asserting that 3k > 1 such that on the k-th iteration-
*

of the loop, cne of the sets of tests leading to an exit arc will be

true. Given the form of loops with leading tests that we have specified,

itis easy to generate such an assertion mechanically.

I

Figure p. Example flow graph for discussion of loop

termination assertions.

.

22

Using the notation ik to mean the value of variable i at the

loophead node on the k-th iteration of the loop, the termination

assertion for Figure 9 is:

3k >1 s.t. (2xik >nk) V-
Q

t
L

1

i

(2 x ik <nk A 2xik ->nk A sL2 xikl ,< 'k> v

(2x ik Lnk A 2xik <nk A Mk[2 x ik+ll 5 'k) .

This expression was derived by substituting for j its value in terms

of the values of the program variables at the top of the loop. Note

that depending upon the path taken, this value is either 2 xi-. k
or

2xik+l .

While an assertion such as the one above can be generated from any

loop described in Section II, it is in general an unsolvable problem to

prove that the assertion is true. However, a small variety of techniques

based on monotonic variables, finite sets, and search loops can prove

the termination of most loops encountered in practical programs.

Also, this strategy of generating a 3k . . . assertion sometimes

e allows a proof system to state that a loop definitely never terminates.

For instance, if the statement i := j were accidently left out of the

example loop above, then it can be shown that all variables in the

assertion are invariant within the loop. Thus, the existential

quantifier can be dropped, and the remaining assertion states that the

program exits the loop on the first iteration. If this assertion is true,

the loop terminates immediately; if it is false, the loop never terminates.

Another strategy is to use the existence of a monotonic variable

which does not overflow as a goalto drive the assertion generation. If

23

a loop contains a monotonically increasing or decreasing variable which

never overflows when it is updated, then the variable takes on a finite

number of values, so the loop terminates. Assertions specifying no

overflow are already generated by the semantic error assertion mechanism,-.

so if a monotonic variable is found inside a loop, no other assertions

are needed: if the existing "no overflow" assertions are true, then the

loop terminates.

This simple strategy is beautiful when it works, but of course it

won't always work. For example, if the assertions are not true and an

overflow may occur, the proof system may not be able to state directly

that the program has an infinite loop. Also, if no monotonic variables

are found, this strategy doesn't suggest anything else to try.

Using the first strategy, we generate the following loop termination

assertions for Rivest's modified program:

Loop #l

Loop #3’

Loop #4’

e Loop #2

Loop #3

- Loo-P #4

3k > 1 s.t.- (rk-lk < 0) v (rk-ak > 600)

3k > 1 s.t.- Xk[ik] ztk

3k ,> 1 sot. X,[j,] -<tk

3k >l s.t. ik ,> jk

3k > 1 s.t.- Xk[ik] ->tk

3k 21 s.t. X,[j,] stk l

Using the second strategy, we find that in loops 3', hl, 2, 3,

and 4 there are monotonic variables. We are going to be in trouble

later, however trying to prove that, at node M , i := i+l does not

overflow. In 100p 1, we have another problem. Neither a nor r are

24

i

C

L-

s,L

CL

monotonic, but their difference r-l is strictly decreasing. Using

the second strategy, it is not clear how to discover that r-1 is a

relevant expression.
-.

IV. Proofs of Assertions

We now order the nodes in the modified flow graph according to the

following rules.

(1) Logically reduce each loop in the program to a single node (a loop

is the set, of nodes in an interval, plus the loophead node, minus

all nodes in the interval which have no path leading back to the

loophead node).

(2) Topologically sort the nodes in the reduced graph, using the

(directed) arcs as the ordering.

(3) For each node in the reduced graph which represents a loop,

topologically sort the nodes within the loop, ignoring all

latchback arcs, then insert those nodes in the main topological

ordering as a single group, so that all nodes in the loop precede

any nodes which followed the loop in the reduced ordering.

(4 Apply step 3 until all loops have been expanded (see Figure 101 .

i

L

25

(1) reduced graph

K

%stop

(2) Ordering: ABDCEF (loop) K

(3) Ordering within (loop)

GHIJ

(4) Final ordering

ABDCEF GHIJ K

Figure 10. Example of node ordering.

26

The proof mechanism will visit the nodes of the graph in the order

specified above. At each node, it will attempt to prove all assertions

on all incoming arcs. The order specified has a few fairly obvious

properties: (1) Except for loophead nodes, whenever a node is visited

by the proof mechanism, all predecessor nodes will have been visited.

(2) For loophead nodes, all initial entry predecessor nodes will have

.9
1i-
Q

been visited. (3) If a predecessor node is inside a loop, all nodes

in that loop will have been visited. (4) The question "Is node X

inside loop N ?" can be answered with a simple range test.

If a program consists of many non-recursive procedures, we process

the innermost Procedure first, so that each procedure will have been

completely processed before any calls to it are encountered.
i-

We will process nodes in the modified flow graph of select

(Figures 7 and 1) in the order:

AE3 (loop 1) D

or AB CEF'HIJK L'M' N'O' RR LM NO STUVWXYZ Di

The processing at each node visited will be discussed in terms of

the model in Figure 11.
a

IL

Given 1 /-Given 2

Assertions 1 Assertions 2

I Node

'- -resulting known information

L

i

c

I
L

Figure 11. Model node for assertion proofs.s

27
c*
i

I.

If the node being visited is not a loophead node, we try to prove

the assertions on each incoming arc, using the "given" information

attached to the same arc (the arc leaving the START node has empty

"given" information attached to it). More precisely, we try to prove

the theorems

Given 1 3 Assertions 1

Given 2 'z> Assertions 2 .

If the node being visited is a loophead, we try to prove the assertions

on just the initial entry (non-latchback) arc(s).

If any assertion cannot be proved conclusively true, then a message

is printed for the--user.

To catch mistakes or state restrictions as early in the program as

possible, we try to move assertions which cannot be proven true back

toward the entry point of the procedure. This is purely an optional

step, in which we try to help the user by moving unproved assertions

to the earliest place in his program that he is likely to want to insert

a fix for the bug. We do this movement by taking an assertion and

attempting to "pass it through" the preceding node, attaching the

- (possibly modified) assertion to each incoming arc, as shown in

Figure 12.

assert i+2 < 20 assert i+2 < 20

i := i+2
c

- a s s e r t

1

i < 20 ul

Figure 12. Passing an unproved assertion back through a node.

28

Sometimes, it will not be possible to move an assertion because the

operations inside the node are not reversible (e, or perhaps a

procedure call). When pushing an unproved assertion through a loophead

node, we don't attach it to any latchback arcs, since then the assertion

would be pushed around the inside of the loop forever. In general, it

is not useful to push an assertion back through a loop which modifies

any of the variables in the assertion, as in Figure 13.

L

assert k < 20

Figure 13. The unproved assertion cannot be pushed back usefully.

If we are visiting a loophead node, the processing is more

complicated. Our model node now looks like the one in Figure 14.

.

29

initial
entry
arcs

loop termination
assertion

-.
<- latchback

arcs

exit arcs

Figure 14. Model node for loophead processing.

First, we process all assertions on the initial entry arcs as

described above. Then we set all program variables to dummy symbolic

values, say i=i
0 '

j=j,, x=x0, and visit all the nodes in

- the loop body, propagating and merging the "given" information based on

these symbolic values, but not proving any assertions. We do not follow

the exit arcs, and we stop when the given information has been established

for all latchback arcs. (The given information on a latchback arc might

be something like i = i,+l A i 5 11 .)

We then feed the initial entry conditions and the once-around-the-loop

symbolic expressions on the latchback arcs to an induction routine that

tries to synthesize a range or set of values which each program variable

takes on at the loophead node. In this induction routine, particular

30

I,
-

L

i

care should be given to detecting variables which are invariant within

the loop, and those which are monotonic. We attach the induced ranges

and relationships as "given" information on the arc leaving the loophead

node. Using this information, we take a second pass over the body of

the loop, processing it in the normal way. Note that a loop nested n

levels deep will be processed a total of 2n times.

After visiting a node and handling the assertions on its incoming

arcs, our next step is to create the resulting "given" information to

attach to the exit arc(s). This information consists of all input arc

given information, plus all input assertions (since if we leave the

node cleanly, &the input assertions must have been true), modified

by any assignments which occur inside the node. If the node being

visited is a test, we add the relation or its negation to the true

and false exit arcs respectively.

If two or more incoming arcs specify different "given" conditions,

we take the most encompassing information, i.e., if one incoming arc

specifies i>lO, and another i >ll , we use i>lO. Whenever- - -

information is lost by this merging process, we mark the resulting item
e

(the examples below use an asterisk) so that if later it becomes

significant whether i is exactly equal to 10 , we will know that there

: is a possibly useful refinement to the information i > lo* .-

V. Application of Proof Process to Rivest's Program

Referring back to Figure 7, we find that the modified flow graph

for select consists of loops nested three deep, as shown in Figure 15.

31

loop 1

(l o o p)-.

(T&T=}

Figure 15. Structure of loop nesting in e.

- We begin the first pass over loop lby attaching the symbolic

values

- r=r0 t a= lo '
k=ko , i=io , j=j, , t=tO

and x = x0

to the arc between the loophead #l node and node C . On this first pass,

we will analyze the nodes inside loop 1 and develop induction expressions

relating the values of all variables after one iteration through the

loop to their values at the beginning of that iteration; the symbols

32

<-

ro☺ lo, l . do
represent these initial values. Following the process

given in Section IV, we visit (in order) nodes C , E, F' , and H ,

developing the following information on the arc entering node I

(refer back to Figure 1 for the exact content of the nodes involved):

r = r. A P=Io A k=ko A t=tO A X=X0 A

i = lo+1 A

j = rod A

0 < rod0 < 600-

One of the biases in our processing should be to reflect relationships in

terms of initial values at the top of the loop; thus we write 0 < rO-fO

instead of 0-c r-1 , the latter signifying the values of r and I at

the arc to which the relation is attached. If, say, r is changed, the

relation 0 < r-L may no longer be true, while 0 < ro-PO still would be.

After processing node I , we attach the following information to

the arc leading to node J :

r =ro A I=Pg A k=ko A

i = lo+1 A

j = rO-1 A

0 < rod0 < 600 A-

X[kgl = Xo[“ol A

HI0

xhl

= Xo[ko] = t

= x,[ml for m{ko,lo .

To develop the relations about X , we needed to examine two sub-cases in

node I : (i) k. # lo , and (ii) k. = PO . In order to keep the

size of the information attached to the arcs manageable (and hence to

33

keep the complexity of the proofs using this information manageable),

our information developent algorithms must be biased toward mimicking

the human trait of finding useful lemmas which are true for as many

different cases as possible. In analyziqg the assignments in node I)

we should notice that the degenerate case k. = a0 does not upset any

of the relationships from the general case: the relations above are a

true and complete description of the effect of executing node I , even

when we substitute " k. " for " PO " in all relations, so after this

-I*checking we find no need to distinguish the degenerate case.

In processing nodes J and K , we have to examine the degenerate

cases r. = k. and_ lo = k. (r. cannot equal to
because 0 < ro-PO ;

if we fail to use this fact on the first pass through loop 1, it gets

much harder to keep track of all the assignments to elements of X).

On the true exit from node J , we attach the lemma:

X[r,] < t A t = X[fo]

(which is true independent of the relationships between lo ' r. and k. >,

and the more detailed information

(r. f k. A Xohol < Xobol) v (r. = k. A Xo[fol < Xo[kol) l

a

After the exchange in node J , the lemma becomes:

X[to] <t A t = X[r,] .

On the false exit from node J , we attach the lemma

t = x[rol A t 5 X[r,] .

*
f If the third assignment had been X[1] := t+l , we would have the

following relationships, which do distinguish the two cases:

(k. + lo A Xkol = Xo[Sol A t = Xo[kol A X[l,l = Xo[kol+l)

v Cko = Lo A t = Xo[ko] A X[ko] = Xo[ko]+l) l

In the second case, X[ko] f Xo[lo] .

34

Moving on to the loophead #3' node in Figure 7, we have to merge

the information on the two initial entry arcs. In particular, we merge

the two relationships

X[f,] <t A t = X[r,] -.

X[r,] > t A t = X[l,3-

into

where the asterisk indicates that a refinement of the information is

available by considering the incoming paths seaprately. This crucial

fact will allow us to prove that the while loops on i and j

(3% 4% 3, and 4) all terminate, and do so without producing a
%.

subscript-out-of-range error.

The remainder of the processing will only be sketched.

In loop 3’, i takes on the set of values [ro+l, ao+2, to+3, l **] .
Included in this set is r. , since 0 < r -I

0 0 implies lo+1 5 r. .

Therefore, the loop termination assertion for loop 3’,

3k > 1 sot. Xk[ik] >t- - k' is at worst true when i reaches
r. l

Thus loop 3’ terminates, and included in the information on the exit

arc are the relations:

PO+1 < i _< r. A-

X[i] > t .-

: Similarly, loop 4' terminates with the following included in its

exit information:

lo _< j 5 ro-1 A

x[j] <t A-

to+1 < i 5 r. A-

WI 2% A #

x[!,l 5 t ,< Xh,l*

35

The first pass through loop 2 establishes that i is strictly

increasing and that j is strictly decreasing. This monotonicity means

that the test i < j will eventually be false, so loop 2 terminates

if loops 3 and 4 do. The second pass through loop 2 combines this

information with the exit conditions from loop 4' and with the truth

of the test i < j to establish that the exchange in node Q never

changes X[a,] or X[r,] . Thus, the relation XCn,] St sX[r,]*

is invariant in loop 2, so on the second pass through loop 2, loops 3

and 4 can be shown to terminate.

For our present purposes, the only interesting thing about nodes S

thru Z is that either or both of the assignments

a -- j+l.-

r := j-1

are done in the context

Thus, the quantity r-1 is strictly smaller than ro-&o after one

iteration of loop 1, proving the termination condition for loop 1

3k >l s.t. rk-ak 5 0 . This completes the first pass of processing-
e
loop 1.

On the second pass through loop 1, the initial values of r and L

and the pseudo-declaration for X (discussed in Section II(iii) above)

are used to prove all the semantic error assertions in the loop. These

assertions deal mostly with subscript range errors, overflow errors,

and undefined variable errors. The proofs of all these are quite

easy, given the information on the bounded ranges of i,Lr, and 1

gathered on pass 1.

36

t

t

i

VI. Conclusion

We have explored a structured collection of techniques for

mechanically proving that a program terminates cleanly. We then

applied these techniques to the proof of clean termination of a

non-trivial program, suppressing most of the detailed processing which

would be done by an actual computer implementation of such a system.

--.

L

37

I
e

References

-

t

c

L-

i

c
i

i

c

L-

z

“s
L

[Allen a]. Allen, F. E., "Control Flow Analysis," Proceedings of a

Symposium on Computer Optimization, SIGPLAN Notices, July 1970.

[Allen b]. Allen, F. E., "A Basis for Program Optimization,"

IBM Research Report RC 3138, 'I?.. J. Watson Research Center,

Yorktown Heights, N. Y., November 1970, pp. 3-6.

[Allen and Cocke]. Allen, F. E., and Cocke, J., "Graph-Theoretic

Constructs for Program Control Flow Analysis," IBM Research

Report RC 3923, T. J. Watson Research Center, Yorktown Heights,

N. Y., JULY 1972, p. 28 ff.

[Ashcroft and Manna]. Ashcroft, E., and Manna, Z., "The Translation

of ‘GO To' Programs to 'While' Programs," Information Processing 71,

North-Holland Publishing Company, 1972, pp. 250-255.

[Cocke]. LCocke, J., "On Certain Graph-Theoretic Properties of Programs,"

IBM Research Report RC 3391, T. J. Watson Research Center,

Yorktown Heights, N. Y., June 1971.

[Cocke and Schwartz]. Cocke, J., and Schwartz, J. T., "Z%grmfng

Languages and Their Compilers: Preliminary Notes," Coura,nt

Institute of Mathematical Sciences, New York University, New York,

N. Y., April 1970, pp. 442-461.

[Floyd]. Floyd, R. W., "Assigning Meanings to Programs," Proceedings

of a Symposium on Applied Mathematics, American Mathematical

Society, Volume 19, 1967, pp. 19-32.

[Good]. Good, D. I., "Toward a Man-Machine System for Proving Program

Correctness," (Ph.D. Thesis at University of Wisconsin), Texas

University Computation Center TSN-11, Austin, Texas, June 1970.

[King]. King, J. C., "A Program Verifier," (Ph.D. Thesis),

Carnegie-Mellon University, Pittsburg, Pennsylvania, September 1969,

255 PP. Clearinghouse # ~~699248.

[Rivest and Floyd]. Rivest, R. L., and Floyd, R. W., "Bounds on the

Expected Time for Median Computations," Combinatorial Algorithms,

ed. by Randall Rustin, Algorithms Press, 1973, pp. 69-76.

[Sites]. Sites, R. L.,' "Certification of Algorithm 245 TREESORT3:

Proof of Clean Termination -- A New Kind of Partial Certification,"

Companion paper in this report.

38

