SEL-73-039

Partially Self-Checking Circuits and Their
Use in Performing Logical Operations

by
John F Wakerly

August 1973

Technical R%%ort No. 50; ISSUED IN JULY 1974AS
COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT NO. 420.

This research was performed while
Mr. Wakerly was a Fannie and John
Hertz Foundation Fellow; it was
a lso partially supported by Na tiona |

~ Science Foundation Grant GJ-27527,

BIGITAL SYSTEMS LABORATORY
ITANF0RD ELZITRDNILS 1RBORATORIES

JTANFIRD HNYERSITY - STANFORD, (ALIFARNIIG

ey

r-

SEL 73-039

PARTI ALLY SELF- CHECKI NG Cl RCUI TS

AND THEIR USE I'N PERFORM NG LOG CAL OPERATI ONS

by

John F. Wakerly

August 1973

Technical Report no. 50

DI G TAL SYSTEMS LABORATORY
Dept. of Electrical Engineering Dept. of Conputer Science
Stanford University

Stanford, California

This research was perforned while M. Wkerly was a Fannie and John
Hertz Foundation Fellow, it was also partially supported by National
Science Foundation Gant GJ-27527.

r

r r r— r

r— r— r r

r— r—

r—

ABSTRACT

A new class of circuits called partially self-checking
circuits is described. These circuits have one node of opera-
tion called secure node in which they have the properties of
totally self-checking circuits; that is, every fault is tested
during nornmal operation and no fault can cause an undetected
error. They also have an insecure mbde of operation with the
property that any fault which affects a result in insecure node
is tested by some input in secure node; however, undetected errors
may occur in insecure node. One application of these circuits is
in the arithmetic and logic unit of a conputer with data encoded
in an error-detecting code. Wile there is no code sinpler than
duplication which detects single errors in logical operations
such as AND and OR, it is shown that there exist partially self-
checking networks to perform these operations. A conmmercially
avail able MSI chip, the 74181 4-bit ALU, can be used in a par-
tially self-checking network to performarithmetic and | ogica

oper ati ons.

ii

TABLE OF CONTENTS

| NTRODUCTI ON .

SELF- CHECKING CIRCU TS

TOTALLY SELF- CHECKI NG NETWORKS

PARTI ALLY SELF- CHECKI NG NETWORKS .

4.1 Type 1 Networks .

4.2 Type 2 Network8 .

4.3 Type 3 Networks .

VERIFICATION OF SELF- CHECKI NG PROPERTI ES .
5.1 Faul t-secureness .

5.2 Self-testing .

A PARTI ALLY SELF- CHECKING NETWORK FOR ARI THMETI C
AND LOG CAL OPERATI ONS .

OTHER APPLI CATI ONS .
CONCLUSI ONS .

REFERENCES.

Page

10
13
14
19
22
27
27

28

31
38
39

40

r r

r—

Figure
1.1

2.1

iii

LI ST OF FI GURES

Sel f-checking circuit © .

Self-testing circuit

Faul t-secure circuit

Exanmpl es of self-testing and fault-secureness .
Totally sel f-checking bus driver

Total ly sel f-checking network .

Totally self-checking bus switch

Type 1 partially self-checking network

Partially self-checking parity-checked bus driver.
Totally self-checking checker for separate codes
Type 2 partially self-checking network .

Type 3 partially self-checking network .

Bit slice to performany logic function of two
variabl es . e e

Partially self-checking ALU using 74181 4-bit
AlU chips

Page

11
11
13

15

19
21

23

32

37

r— r-r— r r— r—

r—

—

r—

r—

Tabl e
6.1

6.2

LI ST OF TABLES

Functions performed by the circuit of Fig. 6.1 .

Fault tests for the circuit of Fig. 6.1

Page
33

34

r’r'"a

ACKNOWLEDGMENT

The aut hor expresses appreciation for the hel pful suggestions
and advice of Professor Edward J. McC uskey during the course of
this work, and for the support of the Fannie and John Hertz

Foundat i on.

PR —

r—

— r—

—

—

1. 1 NTRODUCTI ON

One approach to error detection in fault-tolerant conputers is
through the use of self-checking circuits, explored by Carter and
Schneider [1] and al so by Anderson [2]. As suggested by Fig. 1.1 the
output of a self-checking circuit is encoded in some error-detecting code
so that faults may be detected by a checker which nonitors the output
and signals the appearance of a non-code word. A self-checking circuit
has properties of "self-testing" and "fault-secureness" introduced in [1]

and fornmally defined by Anderson [2].

Definition Al: A circuit is self-testing if, for every fault from a

prescribed set, the circuit produces a non-code space

output for at |east one code space input.

Definition A2: A circuit is fault-secure if, for every fault froma

prescribed set, the circuit never produces an incorrect

code space output for code space inputs.

Anderson's definitions inply the existence of a "code space" from
which normal inputs are drawn, and for which the circuit is both self-
testing and fault-secure. This facilitates his definition of a "totally
self-checking circuit,” a circuit which is both self-testing and fault-
secure. Actually, a circuit may be self-testing for the set of norma
code space inputs, but fault-secure for only a subset. In this report
we forrmulate a theory of self-checking circuits that are self-testing for

an input set N and fault-secure for a subset I of N. |f | equals N, the

, ® sel f - checki ng ° coded
inputs ¢ circuit s out put s
————
" -9 00 !
———s-5i gnal upon appearance
of non-code word
Fig. 1.1 Self-checking circuit
circuit is totally self-checking as described in [2].1f | is the nul

set, we have a circuit which is only self-testing and not at all fault-
secure, such as the self-testing decoder described by Carter et. al. [3].
If I is a non-null proper subset of N, then we have a "partially self-
checking circuit," as described in this report.

Due to the fact that no code short of duplication can be used to
check the |ogical operations AND and OR [4], any totally self-checking
circuit for these operations nust use a form of duplication. For exanple,

" the JPL STAR conputer uses duplicate logic units [5], while a processor
designed by Mnteiro and Rao duplicates the AND operation and uses a conbi-
nation of AND and arithmetic operations to perform the other |ogica
operations in a self-checking manner [6]. However, we will show how
partially self-checking circuits using inexpensive codes may be used to
perform | ogical operations. These circuits have one node of operation in
which they are fault-secure, and another node, perforning |ogical opera-

tions, in which they are not.

2. SELF-CHECKING CIRCU TS

Throughout this paper we will consider a conbinational circuit to
produce an output vector Z(i,f) which is a function of an input vector
i and a fault f in the circuit. For our purposes a fault is a malfunc-
tion which is manifested as one or nore lines in a circuit stuck at a

logic value of 0 or 1. For exanple, we have the single fault <b/C> ("line

b stuck-at-0") and the nultiple fault <a/1,b/|, d/ &. The absence of
a malfunction is called the null fault and denoted by X. An error
occurs when an incorrect value appears at the output of a circuit because

of a fault. Associated with a circuit is an output code space S, a

checker may nonitor the output of the circuit and produce an indication

when an output not in S appears. There is a set of normal inputs N

those inputs which occur periodically during fault-free operations of
the system The fault-free output function Z(i,A) is a mapping fromN
intoS. W wll also associate with a circuit tw fault sets, Ft and

Fs, which are used in the definitions bel ow

Definition: Acircuit is self-testing for a fault set F, if for every

fin Ft there is an input i in N such that Z(i,f) is not

in S

The definition of self-testing is illustrated in Fig. 2.1. |n this

definition, an input i for which zZ¢i,f) is not in Sis called a test

for f. The set F of faults which are tested during normal operation is

called the tested fault set.

Definition: A circuit is fault-secure for an input set | and a fault

set FS if for any i in 1l and for any f in Fs either

Z(i,f) = Z(i,A) € Sor Z(i,f) £ S

Fig. 2.2 illustrates the above definition. The set | is called the

secure input set. W will always assume that | is a subset of the nornal

input set N. Athough the circuit may be fault-secure for some inputs
outside of N, these inputs are not of interest since they do do occur
in normal operation.

The set F above is called the secure fault set. W will always assume

for conveni ence that FS is a subset of the tested fault set Ft. For sup-
pose there is a fault f in FS which is not in F. . Then there is no input
among all the normal inputs for which an erroneous output is produced in
the presence of £, and the fault is not an interesting one to consider.

(However, nmultiple faults including f as a conponent may be of interest.)

The properties of self-testing and fault-secureness are illustrated
in Fig. 2.3. This figure shows the set of all faults and its subsets F
and Fs, the set of all input vectors and its subsets N and |, and the set
of all output vectors and its subset S. In the absence of faults, inputs
from N produce outputs in S, as shown by the behavior in il' i, and i3
Self-testing is shown by noting that for each of the faults fl,fz, and g
in F, there is atest in N (il' igs and i1 respectively). Fault-secureness
is illustrated by the behavior of Z(iz,f) for various f. In the presence

of a fault from Fs, the output is either correct (Z(iz’fz)) or it is a
non- code word (Z(iz,fl)). However, faults outside of FS may produce
erroneous code word outputs (Z(iz,f3)). Crcuits which are self-testing
and fault-secure for sone sets of inputs and faults are self-checking.

cem——
[} []
any i € N e fault-free e Z(i,\) € S
[[J
—————
EE—
[[]
some 1 EN o any fault in F, o Z(i,f) £ 8
° [J
e ——
Fig. 2.1 Self-testing circuit
® .
any i €1 o fault-free . Z(i,A) € S
[] []
—————
° o
any i €I e any fault in F, e Z(i,f) = Z(i,A\) € S
° ¢ or z(i,f) ¢ S
_———#; e —————————

Fig. 2.2 Fault-secure circuit

{all faults]

i 2(1,,5)) (al

[all input vectors) out put vectors]

e
S
\I
\\‘ /
"~ ZGi,,f |
\\Z(iz,fl) .
} Z(iq,)\) _—_Ad
i
3
Z(is,fz)]

Fig. 2.3 Exanples of self-testing and fault-secureness

Definition: A conbinational circuit with normal input set N and output

code space S is self-checking if it is self-testing for a

fault set Ft and fault-secure for an input set | and fault

set F .
S

For a self-checking circuit to be of any val ue, F and FS shoul d be
reasonable fault sets, containing say all the single stuck-at faults

During nornal operation of a self-checking circuit, all reasonable
faults are detected because of the self-testing property. In addition,
fault-secureness guarantees there is no undetected erroneous output when

inputs are froml. If | is equal to N, then the circuit is "totally

sel f-checking."

Definition; A totally self-checking circuit is a self-checking circuit

for which the set | of secure inputs equals the set N of

nornmal inputs.

In a totally self-checking circuit, no fault in F_ can cause an

undetected error for any normal input to the circuit. At the other
extrene are circuits for which there is no non-null choice of | for

which the circuit is fault-secure.

Definition: A self-testing circuit is a self-checking circuit for which

) . *
the set | of secure inputs is the null set.

An exanple of a self-testing circuit is the self-testing decoder of

Carter et. al. [3]. For any input to this circuit there is a single

*Cbviously self-testing circuits may also be defined w thout reference
to self-checking circuits. However, this definition is included for
consi stency and conpl et eness

stuck-at fault which will cause an erroneous code word output, and thus
| nust be the null set.
Between the two extremes of self-testing and totally self-checking

circuits are partially self-checking circuits.

Definition: A partially self-checking circuit is a self-checking circuit

for which the set | of secure inputs is a non-null proper

subset of the set N of normal inputs.

When inputs to a self-checking circuit are froml, the circuit is
said to operate in secure node. A totally self-checking circuit always
operates in secure node. \Wen inputs are fromthe set I' = N-1, the

circuit operates in insecure node. A self-testing circuit always oper-

ates in insecure node. A partially self-checking circuit operates
sonmetines in one node, sonetines in the other.

The effectiveness of totally and of partially self-checking circuits
may now be conpared. Wth a totally self-checking circuit, any output
which is in the code space is correct if no faults outside of FS occur,
and any fault in FS is detected by the first error it produces. If
only faults from F_ occur, no erroneous results may be transnmitted.

In secure node, a partially self-checking circuit has these sane desirable
properties. But in insecure node, erroneous results my be transmitted.

The |ikelihood of an undetected error in insecure node is propor-
tional to the frequency of operation in this node. If this node is
infrequent, chances are that a fault will be detected in secure node
before any result in insecure node is affected. Even when a solid fault

produces an undetected error in insecure node, it will soon be detected

in secure node. At this point a software rollback schene m ght be used
to erase the effect of possible undetected errors.

Unfortunately, there is still..a chance in insecure nmbde of trans-
mtting errors caused by short transient faults that are never detected.
Al though this possibility is very small, it may be sufficient to rule
out the use of partially self-checking circuits in highly critical
applications where ultra-reliability is required and the chance of tran-
sients is high. But for less critical applications, partially self-
checking circuits can provide a good deal of |owcost error detection in
areas where corresponding totally self-checking circuits are much nore
expensive. In particular, we will show networks for |ogical operations
which are partially self-checking, but first we introduce a nodel of

totally self-checking networks.

- 10 -

3. TOTALLY SELF- CHECKI NG Cl RCUI TS AND NETWORKS

In dealing with totally self-checking circuits we will mention
only the set N of normal inputs because the set | of secure inputs is
the sane. A trivial example of a totally self-checking circuit is a
bus driver for n-bit parity-encoded operands, illustrated in Fig. 3.1
The circuit consists sinply of n identical bus driver gates (one-input
AND gates), one for each output bit. The output code space S and the
normal input set N both equal the set of all even-parity n-bit vectors.
The circuit is fault-secure for all single faults, since a single fault
causes either no error for a particular input, or a distance-one change
in the output producing an odd-parity vector. The circuit is also self-
testing for all stuck-at faults which affect less than n bits, since for
any such fault there is an even-parity input vector which produces an
odd-parity output in the presence of the fault. A checker which produces
a signal when an odd-parity vector appears may be used to nmonitor the
output of the circuit, as suggested by Fig. 1.1. Actually, we would
like the checker also to be totally self-checking so that a fault in the
checker also produces an error indication. This leads us to the concept
of totally self-checking networks.

Anderson gives the nodel of Fig. 3.2 of a totally self-checking net-

work consisting of a functional circuit and a checker which are both
totally self-checking [2]. In terms of the notation presented here, the
functional circuit has a fault-free output function which is a surjection

froma normal input set Nf onto an output code space Sf, while the checker

r—

-

r— r

- 11 -

Fig. 3.1 Totally self-checking bus driver

r ————— - e eEs Gl CEN NS GES AES o= G S G CENT GE) CEED I WEP GEP THED TSR CGED IR GED e
'
| -
:‘ totally .
i nputs : gel1f-cnedking
€ Nf Vo functional | : outputs € Sf
: ¢ circuit | H
i | |
\ I nputs
I E NC
: o 00
| totally
| self-checking
: checker
|
|
L o e e SaRMSESL] L
error
i ndi cat or

Fig. 3.2 Totally self-checking network

- 12 -

%
has a normal input set Nc = 8, and an output code space Sc = {<01>,<10>}.

£

The fault-free output function of the checker is a code disjoint nmapping,

that is, it always maps non-code inputs into non-code outputs. Wth
these constraints it is easy to show that the network itself is totally
sel f-checking (for exanple, see Thm 3.2 of [2]). The normal input set
of the network is NP while its output code space is Sc The secure and
tested fault sets of the network are the unions of the corresponding
fault sets of the functional circuit and the checker.

A sinmple exanple of a totally self-checking network enploys the
totally self-checking n-bit bus driver of Fig. 3.1 and an n-1-bit odd
parity generator. The odd parity over n-1 bits together with a wire

connected to the remaining bit conprise the required two-output totally

sel f-checking parity checker.

*The checker nust have two lines encoded in this manner, for a fault
sticking a single error indicator line at the "good" val ue woul d never
be detected.

r S

r—-

r—

r—

rr— rm— r—

- 13 -
4. PARTIALLY SELF- CHECKI NG NETWORKS

The use of and notivation for.partially self-checking circuits is
best given by an exanple. Suppose we have a machine with buses A B,
and T that carry data encoded in a single error detecting code S. Fig.
4.1 shows one bit slice of a bus switch which can transfer either A or
Bto T. This circuit is replicated once for each bit to be switched.
The |ines <5, 8,> are set to 01> to transfer Ato T and to <10> to
transfer B. A checker may then nonitor the T bus with the appearance of
a non-code word signaling an error. The reader can easily verify that
the circuit is fault-secure for all stuck-at faults which affect only a
single bit slice, and self-testing for all stuck-at faults which affect
fewer than all the bit slices. Thus the circuit is totally self-checking
when used as a bus switch in this manner.

Looking at the circuit of Fig. 4.1 we notice that it may also be
used to conpute the logical OR of A and B by setting <6,5,> to <1>.
Unfortunately, the result in general will not be valid because the encod-

ing of the logical OR of two operands does not in general equal the

O
—~

—T

Fig. 4.1 Totally self-checking bus swtch

- 14 -

| ogical OR of their encodings unless the encoding is at least complete
duplication [4]. Suppose however that the encoding is a separate code,
that is, a code with a separate data part and check synbol. Then the OR
of the data parts will be correct; only the check synbol output will be
wong. W can then calculate a new check symbol based on the data out-
put of the circuit and utilize the re-encoded output. This is a practical
scheme only if it can be inplemented in a self-checking manner at |ow
cost. In the remainder of this section we show nodels of partially self-

checking networks which fulfill that requirenent.

4.1 Type 1 Networks

The simplest partially self-checking network is the type 1 nodel,
shown in Fig. 4.2. It consists of a totally self-checking functional
circuit with a fault-free output function which is a nmapping from a
normal input set Nf onto an output code space Sf; a totally self-checking
checker with normal input set NC =8, and output code space S, =
{<01>,<10>}; and two control gates and the control |eads cl and o
The vector <c,c > may be set to <01> to enable the output of the checker,
or to <10> to force the error indicator output to <10> ("good").

The output code space of the network is just Sc. However, the
normal input set of the network consists of vectors of the form <c1coi>
where cl and ¢, are the control gate inputs and i is the functional

0

circuit input. Wen functional circuit inputs from Nf are expected,

- 15 -

r
| |
| |
7 totally . |

s fo | s | es, .

t r ¢ circuit ¢ T
| |
I inputs }
I €N |
! col :
| L 4 |
l \ /!
| totally 1
| sel f - checki ng |
| - checker |
| |
I |
| out put s |
) E S |
! ¢ |
| |
| t
| . |

1 | |
t |

0 i a | b df |e |
[|
| (\“/) |
| |
| c f |
Lo - = = = oo oo S

error indicator

Fig. 4.2 Type 1 partially self-checking network

- 16 -

< c0> is set to «01> and the network is logically equivalent to the
totally self-checking network of Fig. 3.2. However, when inputs not in

N_ are expected <c

" > may be set to <10> to disable the checker.

1%
It is straightforward to show that the network of Fig. 4.2 is

partially self-checking when used in the manner described above. Let
Fa be the set of all single stuck-at faults on the control gates. That
is,

F, = la/0, a/1, v/o, b/1, c/0, ¢/1, d/0, d/1, e/0, e/1, £/0, £/1}
Then the secure and tested fault sets of the network contain Fa as well
as the corresponding fault sets of the functional circuit and checker.

The secure input set of the network is I wher e

1= {<c1coi> y (€ c> = <01>) A (ieNf)}.

In insecure node, the network has inputs fromthe set I'n, where

t — 3 —_
1= {<c1c01> [< cp> = <10>}.
Thus the normal input set of the network is N = InUIr'l'

Theorem 4.1: A type 1 network, described above and illustrated in

Fig. 4.2, is partially self-checking.

Proof : In secure node, that is, with inputs fromln, the network is
clearly self-testing and fault-secure for faults from the
appropriate fault sets of the functional circuit and checker.
It follows that the network is also self-testing with inputs
from N si nce NnDIn. Thus we need only show self-testing and

faul t-secureness for faults from Fa'

r— r—

e - e

r

:<clc

- 17 -

(a) (self-testing) Al faults except <a/1> and <d/0> are
tested by sone input froann, since a and d have the
values 1 and 0 respectively during such operation, and
both Os and |I's nust be transnitted through the paths
<be> and <ef>. This is true because each checker output
takes on both values 0 and 1. The faults <a/1> and <d/0>
are each detected by some i nput fron1|h, since one of these
faul ts changes the correct error indicator output of <10>
to a non-code word. Thus all faults in F are tested by
some input in Nn = In U Ié.

(b) (fault-secureness) It is clear that a single fault from
Fa causes at nost a distance one change in the error indi-
cator output, producing either the correct output or a

non- code word. "

An exanple of a type 1 partially self-checking network is the n-bit
parity checked bus driver shown in Fig. 4.3. The totally self-checking
functional circuit here is the n-bit bus driver of Fig. 3.1, while the
totally self-checking checker consists of an n-1-bit even-parity generator
and an inverter eonmected t0 the remaining data bit. The control vector
o> is set to <01> when even-parity operands are to be transmtted,
and to 0> for vectors of unknown parity.

The useful ness of type 1 networks is linmted since in insecure node
they do not re-encode the functional circuit output. W notice in the
exanple of Fig. 4.3 that the correct parity output is always available

fromthe parity generator at line p, and could be utilized at essentially

zero cost. Type 2 networks are a fornalization of this idea

- 18 -

N |
! |
L \ |
) : ' /1 \ G
f
|
L ~
1 . |
| . 1
| ° |
| ‘]
\ t
n-2 |) \
| |
|
| \ | e
N
I, .|
functi onal r-I--{-|--—-————- il
circuit [~ S
: o o o ;
| I
! I
| |
: o o ® :
| 1L I
| L — |
| ‘ ’ |
|:7 |
' |
Ll e - — I 4
checker
P
Cl‘
o

error indicator

Fig. 4.3 Partially self-checking parity-checked bus driver

- 19 -

4.2 Type 2 Networks

If the output code space of a self-checking circuit is a separate
code, a checker can consist of an equality checker which conpares the
check symbol output of the circuit with a new check symbol generated
on the basis of the data output of the circuit, as suggested by Fig. 4. 4.
The followi ng | enma shows that such a checker is totally self-checking

if the equality checker is

Lenma: Let the code words <cd> in a separate error-detecting code S
consist of a data part d and a check symbol ¢ such that ¢ = C(d).
Then a network consisting of a check generator G which conputes
C(d) and a totally self-checking equality checker which conpares
the output of G and check synmbols c is a totally self-checking

checker for code words <ecd> in S

check synbol data part
[3 BN J o e o o o o
L ’
\ 7
\ check synbol /

\\\\ generator ////

LH oo e
totally 4 ,

sel f - checki ng
equal ity
checker

|

error indicator

Fig. 4.4 Totally self-checking checker for separate codes

- 20 -

Proof: The normal input set of the network is S, while the output code
space of the network is the output code space of the equality
checker. Let Fg be the set of all check generator faults which
produce an incorrect generator output for at |east one network
input in S, Cearly faults outside of F;have no effect on the
network. The reader can easily verify that the network is
self-testing and fault-secure for faults in Fg as well as for
faults in the tested and secure fault sets of the equality

checker. The tested and secure fault sets of the network are .

the appropriate unions of the above sets. .

The proof of the above |emma depends primarily on the existence of
.a totally self-checking equality checker for _k-bit check synmbols c. If
the k-bit vectors do not take on all 2k possi bl e values then a checker
m ght not exist. However, if the k-bit vectors do take on all values
then we are assured of the existence of a totally self-checking equality
checker regardless of the value of k [2].

A type 2 network, shown in Fig. 4.5, is a type 1 partially self-
‘checking networ k which uses the totally sel f-checking checker for separate
codes described above, and which has a re-encoded functional circuit out-
put-derived from the check generator. The input sets, fault sets, and
out put code space of a type 2 network are the same as those of the
corresponding type 1 network. Thus ignoring the re-encoded functiona
circuit output, a type 2 network is merely a type 1 network with nore

detail specified, and hence is partially self-checking. However, it

does have a re-encoded functional circuit output available, and the

rr— r rm r—— r—

—

r— r—

e

- 21 -

r-—r——"""*"~"""™""™"">""™"™""™""""""“=""™"~>"™"™"™"™"™77 7

| |

| |

‘ f

T e data ,data

o totally e part | part
inputs | e sel f - checki ng
€N, | o functiona

‘ circuit e check

' > e synbol

: function

' eeo o ‘ ogtgyt

| b i

| check |

| synbol

| gener at or

| i i |

| L o] |

: totally i

| ¢ sel f - checki ng | Check

i i equality j synbol

| checker |

] |

| |

\ |

! |

! |

| |

| |

1 !

' t

| [

| |

| |

Y USSR PR S -

error indicator

Fig. 4.5 Type 2 partially self-checking network

- 22 -

appearance of a non-code word here is reflected by the checker output,
since the checker function is a code disjoint mapping. These results

are sumarized in the follow ng theorem..

Theorem 4.2: A type 2 network, described above and illustrated in
Fig. 4.5 is partially self-checking. Furthernmore, in
the absence of faults, the re-encoded functional circuit
output is always a code word; the appearance of a non-
code word because of a fault is reflected by a non-code

out put of the checker.

4.3 Type 3 Networks

A noticeabl e di sadvantage of type 2 networks is that the functional
circuit output is delayed by the re-encoding process using the check
generator. In a totally self-checking or type 1 partially self-checking
network the total delay is that of the functional circuit alone, while
in atype 2 network it is the sum of the functional circuit and check
generator del ays. In insecure node the re-encoding process will always
introduce some delay, but a type 3 network reduces the delay in secure
mode to two gate del ays.

A type 3 network, illustrated in Fig. 4.6, consists of a totally
sel f-checking functional circuit and equality checker, a check generator,
and control gates to switch either the functional circuit check synbol
output or check generator output to the network output. The equality

checker compares the network check synbol output with the generated

ylowmiau Bu qoays-J8s Ajerlsed ¢ adhl 9 614

J0Jed Ipul J0lid

| It A R TTT
| _ _ .
| > 19)93Y2 !
_ ° K11 enbs ° _
_ ° Bu 1yo8yo -} |8S ° |
A1e101 !
} |
_ |
_
_ \ Hl&n __
_ - |
_ -3, '
_ ! < |
v @
™ _ _ {
N _ . !
| . | 9 _ 10 1€ Jauah |
_ N loquAs [
| e yoayo / {
|
| |
I \# \ e o o i
-1 N) ,
| 8 , r “
[oquUAS| _-xc (
LRET LI i
A T o —
%93Y2 1IN0 19
| /Illlt 0o Y [euo 11oun | “ . mz 3
] d= 4 Bu 1qo8yo -} |8s o “ sindu |
jred | 1axed K11e101 |
eep | B IRp +I4IIIII
f |
|
e i e e e e e e e e e et e e e e = e e e e J
iiod o d 4 o4 4 e d J o4 cnd A 4

- 24 -

check synbol. \hen < c0> equal s V1> (secure node), the network is

logically equivalent to a totally self-checking network; when <c,cp>
equal s <10> (insecure node), the functional circuit is re-encoded

and the equality checker conpares the generated check symbol with itself,
producing a "good" output.

The normal input set, secure input set, and output code space of
atype 3 network are simlar to those of type 1 and 2 partially self-
checking networks. If Fa is the set of all single faults on the contro
gates, except the faults <ai/1>, then the secure and tested fault sets

of the network are the union of Fa and the appropriate fault sets of

. . . %
the functional circuit and checker.

-Theorem 4.3: A type 3 network, described above and illustrated in Fig

4.6, is partially self-checking.

Proof: The problemis simlar to Thm 4.1, and reduces to show ng that
the network is self-testing and fault-secure for faults in Fa‘
As in Thm 4.1, self-testing is proved by showing that there is
a test for every fault in Fa in either secure or insecure node
Faul t -secureness follows from the observation that a fault in
Fa either has no effect on the check synbol output, or changes
the check synmbol output causing an error indication by the equal -

ity checker. B

*Here the "checker" is the combination of the check generator and totally
sel f-checking equality checker, as in type 2 networks.

r—

r—

r—

I r r r r

r-

- 25 -

Al t hough type 3 networks avoid the delay of re-encoding the func-
tional circuit output in secure node, they have sone disadvantages.
First, they require nore control gates than a type 2 network, with a
corresponding increase in cost. Second, they have a set of single stuck-
at faults for which the network is not generally self-testing or fault-
secure, nanely the faults <ai/1>. If the network is not self-testing
for faults <bi/1>,then these faults nmust be tested periodically by some
manual , software, or firmware nethod

In a specific inmplementation of a type 3 network, self-testing and
fault-secureness for <ai/1> will depend on timing in the network and in the
circuits following it. For exanple, suppose the type 3 network perforns
an operation which sets lines bj’ dh' and ej to 1. Suppose that the
next operation sets line dj to 0. Depending on the timng and contro
sequence used, line bj may becone 0 some tinme after |ine d.J does. Thus
l'ine ej is erroneously held at logic value 1 until the check generator
"catches up." To the circuit receiving the output of the type 3 network
the effect is simlar to that of intermttent stuck-at-l fault on line eﬁ

On the other hand, if the output of the check generator always has the

value O between operations, then the problem outlined above does not occur.

A sinple exanple of a partially self-checking network uses the bus
switch circuit of Fig. 4.1 in a type 2 or type 3 configuration nodel ed

after Fig. 4.2 or Fig. 4.6. This network could be used in a CPU as a
bus switch and also to performthe logical OR operation. In a machi ne

in which data was encoded in an arithnetic code, the other |ogica

- 26 -

operations could be performed using a conbination of the OR operation
and totally self-checking arithmetic operations [6]. However, we will
later show a totally self-checking functional circuit which can be used
in a partially self-checking network to perform all Iogical operations.
But first we nust indicate how to verify the self-checking properties

of non-trivial circuits.

r—

r.rm— r—— r—

r

- 27 -

5. VERIFI CATION OF SELF-CHECKI NG PROPERTI ES

In this section we will show how to verify the self-checking

properties of a class of circuits defined bel ow

Definition: A bit-sliced circuit is a nultiple-output comnbinational

circuit in which each output bit is conputed by an indepen-

dent subcircuit, called a bit slice.

The bus switch discussed earlier is a bit-sliced circuit, with a
bit slice shown-in Fig. 4.1.

To show that a circuit is self-checking, we nust show that it is
self-testing for a fault set F, and fault-secure for a set FS.

t

5.1 Fault-secureness

Faul t - secureness of bit-sliced circuits is particularly easy to

show, as is evidenced by the followi ng theorem

Theorem 5.1: Let S be an error-detecting code of distance two or nore.
Let a bit-sliced circuit have a fault-free output function
Z(i,)) which is a nmapping froman input set | into S. Let
F be the set of all faults that affect only a single bit
slice. Then the circuit is fault-secure for inputs in |

and faults in Fs.

Proof: Any fault f in E affects only a single bit slice, and therefore

only a single output bit. For a particular input vector i if

- 28 -

the fault does not change this output bit then Z(i,f) =
Z(i,\) €S, if it does change it then the output is distance
one away froma code word in S and Z(i,f) is not in S because

S is a distance-two code. |

In practice, the normal input set N of a totally self-checking
functional circuit may be chosen as the largest set for which the out-
put function is a mapping from N onto a distance-two code S; due to
Thm 5.1 the circuit will be fault-secure for these inputs. [If there
are inputs outside of N which will be used in normal operation, but
whi ch produce outputs outside of S, these are the inputs for which the

checker is disabled in a partially self-checking network.

5.2 Self-testing

Wi le fault-secureness is easy to show, self-testing for all single
stuck-at faults is not a general property of bit-sliced circuits and
depends on the design of the circuit and the exact conposition of N
However, we shall see in the follow ng devel opnent that we can deter-
mne self-testing for an entire circuit by considering only individual

bit slices.

Definition: The set of active input combinations to a bit slice Biin

a bit-sliced circuit is the set C, = {c]c is the input

of B, for sonme circuit input in N}.

- 29 -

Definition: Let a bit slice B, realize the single output function

Zi(c’f)‘ Then the set of testable faults of the bit
slice is the set
Fi = (f | (f affects only Bq)

A (Ecec, s.t. Z,(c,f) = Z_(c,\))}.
1 1 1

Theorem 5.2: A bit-sliced circuit with distance-two output code S is

self-testing for the fault set Fo = U ET
i

Proof: For any fault f in any Fos there is an input c in Ci and a
corresponding circuit input i' in N such that z (c,) :'E;?ETIT.
Furthernore, no other ouput bit is affected by f. Thus the
circuit output z¢(i',f) is distance one fromz(i',)) € S and
therefore not in S. So the circuit is self-testing for any
fault in any Fi, and hence it is self-testing for any fault in

= . a
Ft P Fi

Due to Thm 5.2 we may prove self-testing of a bit-sliced circuit by
considering each bit slice separately. The problem is further reduced
in many cases because the bit slices Bi are identical, as are the sets
of active input conbinations Ci' The problemis then that of showi ng
- that the set FB of testable faults for the standard bit slice contains
all reasonable faults. The standard set Cq of active input conbinations
is determined by inspection of NN In the remainder of this section we
suggest how to deternine FB for a bit slice, given a structural specifi-

cation of the circuit and CB.

The probl em of deternining FB can be attacked using any method of

- 30 -

finding which faults in a circuit are detected by a particular test.

Such a method woul d be used to find the set of faults detected by each
active input combination to a bit slice, and the union of these sets
woul d be the tested fault set for the bit slice. Exanples of existing

met hods of finding faults detected by a test are Roth's "test-detect" [7]
and Armstrong's deductive method [8]. Another nethod, described in [9],
enpl oys Reese's gate equival ent nodel (GEM [10]. In this method, the
CEM of a bit slice is derived, and tested faults are determined by assign-
ing input literals the values they receive in active input conbinations.
This nethod was used to generate Table 6.2 in the next section.

An alternative approach to verifying the self-testing property is
to fix F, as some known fault set and then prove that all faults in that
set are tested by some active input conbination. This could be done
using conventional test generation techniques, generating tests for each
fault until a test which is also an active input conbination is found
such a procedure would be rather inefficient. However, Wkerly and
McCl uskey [11] give a Karnaugh map nethod which can be used to verify
that any particular test set detects all single stuck-at faults in a
general single-output network. The nethod requires deriving the GEM of
the network, mapping the Pl-sets or Sl-sets [10], marking the active
i nput conbinations, and visually checking for "growth" and "existence"
tests. The nethod can also be used to deternmine which faults are
detected by a particular test and was used by the author to verify the

correctness of Table 6.2 in the next section.

r

r—

re

- 31 -

6. A PARTIALLY SELF- CHECKI NG NETWORK FOR ARI THVETI C AND LOG CAL
OPERATI ONS

The circuit of Fig. 6.1 can be used to performall 16 Bool ean
functions of two input variables Ai and B, by appropriately setting
the control input vector <8,8,8,5,>- The circuit may be replicated
to forma bit-sliced functional circuit to perform any of these opera-
tions on two input vectors A and B. For each value of j = <8,8,8,5,>,
Table 6.1 gives fJ,(A,B).

If input vectors A and B are encoded in a distance-two error
detecting code' S, and if a function fJ.(A, B) preserves* this encoding,
then according to Thm 5.1 the functional circuit is fault-secure.

The secure fault set of the circuit contains all faults which affect

only a single bit slice, and the secure input set is

S.S_AB> | (<S,S,5.8 > = j) A (4,B € 8)}.

Iy = [<858,8,5 3°2°1%

If the encoding is preserved by fJ.(A,B) for a nunber of j, say J€ J,
l..

g 3

0 self-testing for

then the secure input set of the circuit is |

@ & I
n M <

Due to Thm 5.2, the functional circuit is al
certain faults when the function fJ. (A,B) preserves the encoding of

A and B. Assuming that input bits Ai and B, take on all four possible
conbi nations and that the function fj (A,B) is code-preserving, Table
6.2 shows which single stuck-at faults in a bit slice are tested by

sel ected functions. (The table includes only one menber from each

class of structurally equivalent faults.)

*A function fJ,(A,B) preserves Sif ABE€ S inplies fj(A,B) € S

- 32 -

B3
—\ P4
__/l
Q
2
A3
A2
———\ P3
B, —'/
6
e D
[o f—. i
B5

Fig. 6.1 Bit slice to performany logic function of two variables

e

- 33 -

TABLE 6.1

j = 8,8,8 8, £, (4,B) Jj = 8,8,88, £, (4,B)
0000 A 1000 A+B
0001 A+B 1001 A®B
0010 A-B 1010 B
0011 0 1011 A*B
0100 A'B 1100 1
0101 B 1101 A+B
0110 A®B 1110 A+B
0111 A'B 1111 A
Table 6.1: Functions performed by the circuit

of Fig. 6.1

For exanple, suppose A and B are vectors from an error-detecting
code S consisting of all even parity n-bit vectors where n is even.
The code S is preserved by the operations A® B, 4@ B, A B, &, B, 0,
and 1. Inspection of Table 6.2 reveals that all single stuck-at
faults in a bit slice are detected by A ® B and A® B or by A B, A,
and B. |If the normal input set of the functional circuit contains any
such set of code-preserving operations which tests all faults in each
bit slice, then the circuit is self-testing. The circuit is also

fault-secure for code-preserving operations and hence it is totally

sel f - checki ng.

- 34 -

TABLE 6.2
stuck-at-0
fJ_ (A,B) A A B B S, S1 s, 8, P, P, Py P,
0 X X X X
1 X X X X
A®B X X X X X X X X
A®B X X X X X X X
A X X X x x X X X X
B X X X X X X
A X X
B X x X X X X
stuck-at - |
fj (A,B) A A, A, B B B, B B, By S, 8, S5, 8§,
0 X X
1 X X
A®B X X X X X X X X
A®B X X x x X X X
A x x X
B X x x X X X
A X X X X X
B X X X X X X

Table 6.2: Fault tests for the circuit of Fig. 6.1

- 35 -

Since the bit-sliced functional circuit of Fig. 6.1 is totally
sel f-checking when used in the manner described above, it can be
employed in a partially self-checking network which re-encodes the
output for those functions which are not code-preserving. For exanple
we can use the circuit in a partially self-checking two-input univer-
sal logic unit in a machine whose data is parity-encoded as described
above. The function selection vector <Saszslsd> and t he checker
enabl e control <c,c> coul d be- supplied by a mcroprogramed contro
unit. (Checking the control is discussed in [12].) The logic unit
woul d operate in secure node for the code-preserving operations and
in insecure node for the non-code-preserving operations such as AND
and OR

Four copies of the bit slice of Fig. 6.1 are used along with
sone carry logic in an existing MSI chip, the 74181 4-bit arithnetic
and logic unit [13,14]. In this chip, the logic functions of Table
6.1 are performed when a control lead Mis set to 1 to disable inter-
nal carries. Wen Mis set to 0, internal carries are enabled and the
unit performs arithnetic operations.

Because of its carry logic the 74181 is not a bit-sliced circuit.
However, if the input operands A and B are encoded in a distance-two
arithnetic error-detecting code, then the output is a code word for
the addition and subtraction operations. A single stuck-at fault
causes an error with arithmetic weight at nost one, producing a non-
code word. Thus it is possible to show that for code-preserving

operations the circuit is fault-secure for all single faults. *

*Except faults on control leads S, 5%, S,, S., and M which occur before
these leads fan out to the indivigual bit slices.

- 36 -

When used to performaddition and subtraction on data in an
arithmetic code the 74181 is self-testing for faults which affect the
carry logic. Faults in the logic unit bit slices (Fig. 6.1) are
also tested. Wth carries disabled (M), logic unit operations are
performed and faults are tested by code-preserving operations accord-
ing to Table 6.2. Code-preserving operations are A and B for any
arithnetic code, and also A B, 0, and 1 for the | ow cost codes [15].
Wth carries enabled (MO, arithmetic operations are perforned
During addition and subtraction the A ® B and A @ B functions of the
logic unit are used, and the corresponding faults indicated in Table
6.2 are tested. Thus the 74181 is self-testing for all single faults
provided that the followi ng occur in normal operation: (a) either
addition or subtraction to test the carry logic; (b) any conbination
of addition, subtraction, and code-preserving logic unit operations
which tests all logic unit faults; and (c) at least one arithnetic
and one logic unit operation to test the carry-enabling circuitry.

Under the conditions outlined above, the 74181 4-bit ALU is
- self-testing and fault-secure when used to perform code-preserving
operations on data in an arithnetic code; hence it is totally self-
checking. Fig. 6.2 shows an inplenentation using 74181's in a
totally self-checking arithmetic and logic unit for 16-bit operands
with 4-bit check symbols in a |owcost residue code [15]. Addition
here is in the |'s-conplenent system addition in the 2's-complement
systemrequires additional circuitry to correct the check synmbol when

a carry out of the high order data bit position occurs [15]. The

- 37 -

functional circuit can be enployed in a partially self-checking network

whi ch perfornms non-code-preserving operations in insecure node.

T T T T
di5.12 1.8 474 d3 o
co 74181 c,h co 74181 ci co 74181 ci co 74181 ci"
L
A B A B A B A B
d5-12 4512 11-8 du-sl I7-4 %7-4 l 93-0 Y3-0
T
ﬂa-o
c 74181 ¢
o i
AC BC
3-0 3-0
MS_.S.S.S

37210

Fig. 6.2 Partially self-checking ALU using 74181 4-bit ALU chips

- 38 -

7. OTHER APPLI CATI ONS

An existing use of the partially self-checking concept is in
arithmetic processors for addition, subtraction, and iterative
algorithnms such as nultiplication and division. |[f data is encoded
in an arithnetic code, then the adder circuit is self-testing and
fault-secure for the addition and subtraction operations. However,
during iterative operations the checker may be disabled until the

end to increase speed, and undetected errors due to repeated use

faults [15] can occgr. Thus the arithnmetic processor is partially
sel f-checking, operating in secure nmode for addition and subtraction
and in insecure nmode for the iterative algorithns.

Any totally self-checking functional circuit may be incorpora-
ted in a partially self-checking network. Such a network is useful
if in addition to secure node the functional circuit has a useful node

of operation in which the output is not a code word.

- 39 -

8. CONCLUSI ON

Several techniques are available for providing fault-detection
in fault-tolerant conmputers. In sinple systens duplication and
mat ching mght be the nost inexpensive nmethod because it requires the
| east control circuitry and the least design effort. However, in
systens with a large nunmber of fast registers which nust be checked
or in systems which are to be made as small as possible for LS
i mpl enentation, the use of error-detecting codes is the nbst inexpen-
sive neans of fault-detection. Unfortunately, there is no sinple code
for checking logical operations such as AND and OR and previous sys-
tems using coding have resorted to duplication for these operations.
In this report we have devel oped a theory of partially self-checking
circuits, and shown how partially self-checking networks may be used
to perform | ogical operations. The use of partially self-checking
networks is a lowcost method of performing these operations in
systens enploying error-detecting codes for checking arithmetic and

data transfer operations.

9.

[1]

[2]

(3]

(4]

[5]

(6]

L-71

[8]

[9]

[10]

[11]

[12]

- 40 -

REFERENCES

Carter, W C, and P. R Schneider, "Design of dynamically
checked conputers,” IFIP 68;' vol. 2. Edinburg, Scotland,
pp. 878-883, Aug. 1968.

Anderson, D. A, "Design of self-checking digital networks
using coding techniques," Coordinated Sci. Lab., Univ.
[l11inois, Ubana, Rep. R-527, Sept. 1971.

Carter, W C., K A Duke, and D. C. Jessep, "A sinple self-
testing decoder checking circuit," |EEE Trans. Conput.,
vol. c¢c-20, pp. 1413-1414, Nov. 1971.

Peterson, W W, and M 0. Rabin, "On codes for checking
| ogi cal operations," |IBM Journal, vol. 3, pp. 163-168, Apr.
1959.

Avizienis, A, et. al., "The STAR (self-testing and repairing)
conputer: An investigation of the theory and practice of fault-
tol erant conputer design," |EEE Trans. Comput., vol. C- 20,

pp. 1312-1321, Nov. 1971.

Rao, T. R N, and P. Mnteiro, "A residue checker for arith-
netic and |ogical operations," Dig. 1972 Int'l. Symp. Fault-
Tol erant Conputing, pp. 8-13, June 1972.

Roth, J. P. et. al., "Progranmed algorithnms to conpute tests
to detect and distinguish between failures in logic circuits,”
| EEE Trans. Electron. Conput., vol. EC 16, pp. 567-580, OCct.

1967.

Arnmstrong, D. B., "A deductive method for simulating faults in
| ogic networks," IEEE Trans. Conput., vol. C 21, pp. 464-471,
May 1972.

Wakerly, J. F., "A nethod of finding faults detected by tests
using the GEM" Dig. Syst. Lab., Stanford,Calif., Tech. Note 31,
August 1973.

Reese, R D., and E. J. MCuskey, "A gate equivalent nodel for
conmbi national logic network analysis," Dig. 1973 Int'l. Synp.
Faul t - Tol erant Conputing, June 1973.

Vakerly, J. F., and E J. MCuskey, "A graphical nethod of
identifying fault tests in conbinational |ogic networks," Dig.
Syst. Lab., Stanford,Calif., Tech. Rep. 66, August 1973.

Wakerly, J. F. "Lowcost error detection techniques for snall
conputers,” Dig. Syst. Lab., Stanford,Calif., Tech. Rep. 51,

Sept. 1973.

- 41 -

[13] Fairchild 9341/54181, 74181 data sheet.
[14] Signetics S54181/N74181 data sheet.
[15] Avizienis, A, "Arithmetic codes: Cost and effectiveness

studies for applications in digitai‘ systens design," 1EEE Trans.
Comput., vol. C 20, pp. 1322-1331, Nov. 1971.

