
SEL-73-039

Partially Self-Checking Circuits and Their

Use in Performing Logical Operations

bY

John F. Wakerly

August 1973

Technical Re
f

ort No. 50 ; ISSUED IN JULY 1974 AS

COMPUTER SC1 NCE DEPARTMENT TECHNICAL REPORT NO. 420.

- This research was performed while
Mr. Wakerly was a Fannie and John
Hertz Foundation Fellow; it was
a Iso pa rtia I ly supported by Na tiona I

1 Science Foundation Grant GJ-27527.

I

t

I

i

.:
I
L

bY

John F. Wakerly

SEL 73-039

PARTIALLY SELF-CHECKING CIRCUITS

AND THEIR USE IN PERFORMING LOGICAL OPERATIONS

August 1973

t

i Technical Report no. 50

DIGITAL SYSTEMS LABORATORY

Dept. of Electrical Engineering Dept. of Computer Science

Stanford University

Stanford, California

This research was performed while Mr. Wakerly was a Fannie and John
Hertz Foundation Fellow; it was also partially supported by National
Science Foundation Grant GJ-27527.

L
ABSTRACI'

A new class of circuits called partially self-checking

L
c
L
!
L
L
L
P

i

i

,

i

-

circuits is described. These circuits have one mode of opera-

tion called secure mode in which they have the properties of

totally self-checking circuits; that is, every fault is tested

during normal operation and no fault can cause an undetected

error. They also have an insecure mode of operation with the

property that any fault which affects a result in insecure mode

is tested by some input in secure mode; however, undetected errors

may occur in insecure mode. One application of these circuits is

in the arithmetic and logic unit of a computer with data encoded

in an error-detecting code. While there is no code simpler than

duplication which detects single errors in logical operations

such as AND and OR, it is shown that there exist partially self-

checking networks to perform these operations. A commercially

available MS1 chip, the 74181 4-bit ALU, can be used in a par-

tially self-checking network to perform arithmetic and logical

operations.

L

t
L

I

ii

TABLE OF CONTENTS

6. A PARTIALLY SELF-CHECKING NETWORK FOR ARITHMETIC
AND LOGICAL OPERATIONS

7. OTHER APPLICATIONS

8. CONCLUSIONS .

9. R E F E R E N C E S .

1. INTRODUCTION ',

2. SELF-CHECKING CIRCUITS

3. TOTALLY SELF-CHECKING NETWORKS

4. PARTIALLY SELF-CHECKING NETWORKS 13

4.1 Type 1 Networks 14

4.2 Type 2 Network8 19

4.3 Type 3 Networks 22

5. VERIFiCATION OF SELF-CHECKING PROPERTIES 27

5.1 Fault-secureness 27

5.2 Self-testing 28

Page

1

3

10

31

38

39

40

iii

LIST OF FIGURES

t

i

Figure

1.1 Self-checking circuit ‘; . ,

2.1 Self-testing circuit

2.2 Fault-secure circuit 5

2.3 Examples of self-testing and fault-secureness . . 6

3.1 Totally self-checking bus driver 11

3.2 Totally self-checking network 11

L

4.1 Totally self-checking bus switch

4.2 Type 1 partially self-checking network

4.3 Partially self-checking parity-checked bus driver.
L

4.4 Totally self-checking checker for separate codes .

4.5 Type 2 partially self-checking network 21

4.6 Type 3 partially self-checking network 23

6.1 Bit slice to perform any logic function of two
variables .

6.2 Partially self-checking ALU using 74181 4-bit
ALUchips .,

Page

2

5

13

15

18

19

32

37

f ’
e

6
i

!

i

i

L

iL

/
L

i
i
i

iv

LIST OF TABLES

Table Page

6.1 Functions performed by the circuit of Fig. 6.1 . . 33

6.2 Fault tests for the circuit of Fig. 6.1 34

L

r

L

ACKNOWLEDMENT

L

The author expresses appreciation for the helpful suggestions

and advice of Professor Edward"J. McCluskey during the course of

this work, and for the support of the Fannie and John Hertz

Foundation.

L

!
.’

c
L
L
L
rt
1
c

1

L

L
i
L

I

L

/
L

i

i

-l-

1. INTRODUCTION

One approach to error detection in fault-tolerant computers is

through the use of self-checking circuits, explored by Carter and

Schneider [l] and also by Anderson [2]. As suggested by Fig. 1.1, the

output of a self-checking circuit is encoded in some error-detecting code

so that faults may be detected by a checker which monitors the output

and signals the appearance of a non-code word. A self-checking circuit

has properties of "self-testing" and "fault-secureness" introduced in [l]

and formally defined by Anderson [2].

Definition Al: A circuit is self-testing if, for every fault from a

prescribed set, the circuit produces a non-code space

output for at least one code space input.

Definition A2: A circuit is fault-secure if, for every fault from a

prescribed set, the circuit never produces an incorrect

code space output for code space inputs.

Anderson's definitions imply the existence of a "code spacetl from

which normal inputs are drawn, and for which the circuit is both self-

- testing and fault-secure. This facilitates his definition of a "totally

self-checking circuit," a circuit which is both self-testing and fault-

secure. Actually, a circuit may be self-testing for the set of normal

code space inputs, but fault-secure for only a subset. In this report

we formulate a theory of self-checking circuits that are self-testing for

an input set N and fault-secure for a subset I of N. If I equals N, the

i

- 2 -

4 w
a self-checking 0 coded

inputs 0 00 circuit 0 outputs
w w

J

-4 0 a

checker

signal upon appearance
of non-code word

Fig. 1.1 Self-checking circuit

circuit is totally.self-checking as described in [2]. If I is the null

set, we have a circuit which is only self-testing and not at all fault-

secure, such as the self-testing decoder described by Carter et. al. [3].

If I is a non-null proper subset of N, then we have a "partially self-

checking circuit," as described in this report.

Due to the fact that no code short of duplication can be used to

check the logical operations AND and OR [4], any totally self-checking

circuit for these operations must use a form of duplication. For example,

- the JPL STAR computer uses duplicate logic units [5], while a processor

designed by Monteiro and Rao duplicates the AND operation and uses a combi-

nation of AND and arithmetic operations to perform the other logical

operations in a self-checking manner [6]. However, we will show how

partially self-checking circuits using inexpensive codes may be used to

perform logical operations. These circuits have one mode of operation in

which they are fault-secure, and another mode, performing logical opera-

tions, in which they are not.

- 3 -

2. SELF-CHECKING CIRCUITS

L

Throughout this paper we will consider a combinational circuit to

produce an output vector Z(i,f) which is a function of an input vector

i and a fault f in the circuit. For our purposes a fault is a malfunc-

tion which is manifested as one or more lines in a circuit stuck at a

logic value of 0 or 1. For example, we have the single fault <b/O> ("line

b stuck-at-o") and the multiple fault Q/l, b/l, d/O>. The absence of

a malfunction is called the null fault and denoted by A. An error

occurs when an incorrect value appears at the output of a circuit because-=.

of a fault. Associated with a circuit is an output code space S; a

checker may monitor the output of the circuit and produce an indication

when an output not in S appears. There is a set of normal inputs N,

those inputs which occur periodically during fault-free operations of

the system. The fault-free output function Z(i,A) is a mapping from N

into S. We will also associate with a circuit two fault sets, Ft and

F
S’

which are used in the definitions below.

Definition: A circuit is self-testing for a fault set Ft if for every

f in Ft there is an input i in N such that Z(i,f) is not

in S.

The definition of self-testing is illustrated in Fig. 2.1. In this

definition, an input i for which Z(i,f) is not in S is called a test

for f. The set Ft of faults which are tested during normal operation is

called the tested fault set.

-4-

Definition: A circuit is fault-secure for an input set I and a fault

set Fs if for any i in I and for any f in Fs either

Z(i 3) = Z(i,h) E S or Z(i,f) j!L S.

Fig. 2.2 illustrates the above definition. The set I is called the

secure input set. We will always assume that I is a subset of the normal

input set N. Although the circuit may be fault-secure for some inputs

outside of N, these inputs are not of interest since they do do occur

in normal operation.

The set Fs above is called the secure fault set. We will always assume

for convenience that Fs is a subset of the tested fault set Ft*
For sup-

pose there is a fault f in Fs which is not in Ft. Then there is no input-

among all the normal inputs for which an erroneous output is produced in

the presence of f, and the fault is not an interesting one to consider.

(However, multiple faults including f as a component may be of interest.)-

The properties of self-testing and fault-secureness are illustrated

in Fig. 2.3. This figure shows the set of all faults and its subsets Ft

and F
S’

the set of all input vectors and its subsets N and I, and the set

e
of all output vectors and its subset S. In the absence of faults, inputs

from N produce outputs in S, as shown by the behavior in i
1' i2 t and i

3'

Self-testing is shown by noting that for each of the faults fl, f2, and f3

in Ft there is a test in N (i
1' i3, and i 1 respectively). Fault-secureness

is illustrated by the behavior of Z(i2,f) for various f. In the presence

of a fault from Fs, the output is either correct (Z(i2,f2)) or it is a

non-code word (Z(i2,fl)). However, faults outside of Fs may produce

erroneous code word outputs (Z(i 2�f3)l l Circuits which are self-testing

and fault-secure for some sets of inputs and faults are self-checking.

c -5-

l

any i E N l
l
*

fault-free
l

0 Z(i,A) E S
a

. .

i

L

i

L

L

some
l 0

icN l any fault in Ft 0 Z(i,f) f! S
l 0

t

Fig. 2.1 Self-testing circuit

/ C’

0 l

any i E I 0 fault-free l Z&A) E S
l l

/

anyiE1 l any fault in F
S

= Z&h) f S

or Z(i,f) j! S

Fig. 2.2 Fault-secure circuit

I

-6-

all faults]

Ft FS

]

. .
fl"

f3e
f2e

-

[all input vectors)
Z(+fl) I (all output vectors]

I

-=. Zti .fl -TT

Fig. 2.3 Examples of self-testing and fault-secureness

L -7-

L

c

L

i

L

L

L-

I

L

L

L

L

L

L

L

L

Definition: A combinational circuit with normal input set N and output

code space S is self-checking if it is self-testing for a

fault set Ft and fault-secure for an input set I and fault

set F .
S

For a self-checking circuit to be of any value, Ft and Fs should be

reasonable fault sets, containing say all the single stuck-at faults.

During normal operation of a self-checking circuit, all reasonable

faults are detected because of the self-testing property. In addition,

fault-secureness guarantees there is no undetected erroneous output when

inputs are from I. If I is equal to N, then the circuit is "totally

self-checking."

Definition; A totally self-checking circuit is a self-checking circuit

for which the set I of secure inputs equals the set N of

normal inputs.

In a totally self-checking circuit, no fault in Fs can cause an

undetected error for any normal input to the circuit. At the other

extreme are circuits for which there is no non-null choice of I for

which the circuit is fault-secure.

Definition: A self-testing circuit is a self-checking circuit for which

the set I of secure inputs is the null set.
*

An example of a self-testing circuit is the self-testing decoder of

Carter et. al. r31.. For any input to this circuit there is a single

*Obviously self-testing circuits may also be defined without reference
to self-checking circuits. However, this definition is included for
consistency and completeness.

-8-

stuck-at fault which will cause an erroneous code word output, and thus

I must be the null set.

Between the two extremes of self-testing and totally self-checking

circuits are partially self-checking circuits.

Definition: A partially self-checking circuit is a self-checking circuit

for which the set I of secure inputs is a non-null proper

subset of the set N of normal inputs.

When inputs to a self-checking circuit are from I, the circuit is

said to operate in secure mode. A totally self-checking circuit always
--.

operates in secure mode. When inputs are from the set I' = N - I, the

circuit operates in insecure mode. A self-testing circuit always oper-

ates in insecure mode. A partially self-checking circuit operates

sometimes in one mode, sometimes in the other.

The effectiveness of totally and of partially self-checking circuits

may now be compared. With a totally self-checking circuit, any output

which is in the code space is correct if no faults outside of F
S

occur,

and any fault in F is detected by the first error it produces. Ifa S

only faults from FS occur, no erroneous results may be transmitted.

In secure mode, a partially self-checking circuit has these same desirable

properties. But in insecure mode, erroneous results may be transmitted.

The likelihood of an undetected error in insecure mode is propor-

tional to the frequency of operation in this mode. If this mode is

infrequent, chances are that a fault will be detected in secure mode

before any result in insecure mode is affected. Even when a solid fault

produces an undetected error in insecure mode, it will soon be detected

P”

t

-9-

L

L

L

L

L

in secure mode. At this point a software rollback scheme might be used

to erase the effect of possible undetected errors.

Unfortunately, there is still..a chance in insecure mode of trans-

mitting errors caused by short transient faults that are never detected.

Although this possibility is very small, it may be sufficient to rule

out the use of partially self-checking circuits in highly critical

applications where ultra-reliability is required and the chance of tran-

sients is high. But for less critical applications, partially self-

checking circuits can provide a good deal of low-cost error detection in

areas where corresponding totally self-checking circuits are much more

expensive. In particular, we will show networks for logical operations

which are partially self-checking, but first we introduce a model of

totally self-checking networks.

L

c

- 10 -

3. TOTALLY SELF-CHECKING CIRCUITS AND NETWORKS

In dealing with totally self-checking circuits we will mention

only the set N of normal inputs because the set I of secure inputs is

the same. A trivial example of a totally self-checking circuit is a

bus driver for n-bit parity-encoded operands, illustrated in Fig. 3.1.

The circuit consists simply of n identical bus driver gates (one-input

AND gates), one for each output bit. The output code space S and the

normal input set N both equal the set of all even-parity n-bit vectors.

The circuit is fault-secure for all single faults, since a single fault-=.

causes either no error for a particular input, or a distance-one change

in the output producing an odd-parity vector. The circuit is also self-

testing for all stuck-at faults which affect less than n bits, since for

any such fault there is an even-parity input vector which produces an

odd-parity output in the presence of the fault. A checker which produces

a signal when an odd-parity vector appears may be used to monitor the

output of the circuit, as suggested by Fig. 1.1. Actually, we would

e like the checker also to be totally self-checking so that a fault in the

checker also produces an error indication. This leads us to the concept

of totally self-checking networks.

Anderson gives the model of Fig. 3.2 of a totally self-checking net-

work consisting of a functional circuit and a checker which are both

totally self-checking [2]. In terms of the notation presented here, the

functional circuit has a fault-free output function which is a surjection

from a normal input set Nf onto an output code space S
f'

while the checker

- 11 -

i

i

i

L

i

i

h

i

an-l IAn-l

--.

Fig. 3.1 Totally self-checking bus driver

I-

---w-w----------- ------------

1

t I

inputs i f

I

selr-cnecaing

E Nf
funcl' - I a

I .
I

C&Tcxllr;

I
I I

l

I
totally

. d -L - -.-* -- - I - i
outputs E Sf

I
I

:ional
---1 L I 0 I

t 1 I
I
I
I
I
I
I
I
I
I
I

l I
inputs t
E N I

C
I

checker
/

I

outputs E s I
C--we-- - - - - - - - A

I

error
indicator

Fig. 3.2 Totally self-checking network

l

- 12 -

= Sf and an output code space SC = (dol>,aO>).
*

has a normal input set NC

The fault-free output function of the checker is a code disjoint mapping,

that is, it always maps non-code inputs into non-code outputs. With-.

these constraints it is easy to show that the network itself is totally

self-checking (for example, see Thm. 3.2 of [2]). The normal input set

of the network is N
f'

while its output code space is S . The secure and
C

tested fault sets of the network are the unions of the corresponding

fault sets of the functional circuit and the checker.

A simple example of a totally self-checking network employs the

totally self-checking n-bit bus driver of Fig. 3.1 and an e-bit odd

parity generator. The odd parity over n-l bits together with a wire

connected to the remaining bit comprise the required two-output totally

self-checking parity checker.

*The checker must have two lines encoded in this manner, for a fault
sticking a single error indicator line at the "good" value would never
be detected. #

i

r

i

i
L

I

t

L

f
i

:I
L

i
L.

i

i

- 13 -

4. PARTIALLY SELF-CHECKING NETWORKS

The use of and motivation for.partially self-checking circuits is

best given by an example. Suppose we have a machine with buses A, B,

and T that carry data encoded in a single error detecting code S. Fig.

4.1 shows one bit slice of a bus switch which can transfer either A or

B to T. This circuit is replicated once for each bit to be switched.

The lines (slso> are set to 41, to transfer A to T and to ClO> to

transfer B. A checker may then monitor the T bus with the appearance of

a non-code word signaling an error. The reader can easily verify that

the circuit is fault-secure for all stuck-at faults which affect only a

single bit slice, and self-testing for all stuck-at faults which affect

fewer than all the bit slices. Thus the circuit is totally self-checking

when used as a bus switch in this manner.

Looking at the circuit of Fig. 4.1 we notice that it may also be

used to compute the logical OR of A and B by setting <slso> to al,.

Unfortunately, the result in general will not be valid because the encod-

ing of the logical OR of two operands does not in general equal the

T
i

Fig. 4.1 Totally self-checking bus switch

I

- 14 -

logical OR of their encodings unless the encoding is at least complete

duplication [4]. Suppose however that the encoding is a separate code,

that is, a code with a separate data part and check symbol. Then the OR

of the data parts will be correct; only the check symbol output will be

wrong. We can then calculate a new check symbol based on the data out-

put of the circuit and utilize the re-encoded output. This is a practical

scheme only if it can be implemented in a self-checking manner at low

cost. In the remainder of this section we show models of partially self-

checking networks which fulfill that requirement.--.

4.1 Type 1 Networks

The simplest partially self-checking network is the type 1 model,

shown in Fig. 4.2. It consists of a totally self-checking functional

circuit with a fault-free output function which is a mapping from a

normal input set N S
f

onto an output code space
f
; a totally self-checking

checker with normal input set N
C

= Sf and output code space SC =

{aOl>,ClO>); and two control gates and the control leads cl and co.

The vector elco> may be set to aDl> to enable the output of the checker,

or to ClO> to force the error indicator output to ClO> ("good").

The output code space of the network is just SC. However, the

normal input set of the network consists of vectors of the form <G c1 0i>

where cl and co are the control gate inputs and i is the functional

circuit input. When functional circuit inputs from Nf are expected,

c

L

L

L

*

- 15 -

r ----------------------------- 7
I I. .

r 1L I
I - totally I

inputs I . self-checking a

I .

I

ENf I:
functional 0 outputs E Sf I

circuit 0 I
I _ I
I -*

7

I
I

I i nnilta I

\
totally

self-checking
checker

/
I

I L
I
I
I
I
I
I
I

c1 I
t

cO I
I
I
I

outputs
E S

C

b d

t

e

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I- I C f

L - - - - - - - - - L - - - - - - - - - - - - - I - - - - - J

error indicator

Fig. 4.2 Type 1 partially self-checking network

I

- 16 -

elco> is set to 81> and the network is logically equivalent to the

totally self-checking network of Fig. 3.2. However, when inputs not in

Nf are expected <clco> may be set to Cl07 to disable the checker.
-.

It is straightforward to show that the network of Fig. 4.2 is

partially self-checking when used in the manner described above. Let

Fa be the set of all single stuck-at faults on the control gates. That

is,

Fa = b/O, a/L b/O, b/L c/O, c/L d/O, d/L e/O, e/l, f/O, f/l]

Then the secure and tested fault sets of the network contain F as well
a

as the corresponding fault sets of the functional circuit and checker.

The secure input set of the network is In, where

In = (cClcoi> 1 (&lco> =) A (iGNf)).

In insecure mode, the network has inputs from the set I',
n

1; = (<clcoi> 1 e1c07 = 4073.

Thus the normal input set of the network is Nn - In U In.

Theorem 4.1: A type 1 network, described above and illustrated in

Fig. 4.2, is partially self-checking.

Proof: In secure mode, that is, with inputs from In, the network is

clearly self-testing and fault-secure for faults from the

appropriate fault sets of the functional circuit and checker.

It follows that the network is also self-testing with inputs

from Nn since N,31 .
n

Thus we need only show self-testing and

fault-secureness for faults from Fa.

L
L

- 17 -

F
e

1
I
I

I

L

1
i someinputinN =InUI'.

n n

L

1

(a) (self-testing) All faults except <a/l7 and <d/O> are

tested by some input from In, since a and d have the

values 1 and 0 respectively during such operation, and

both O's and l's must be transmitted through the paths

627 and <ef>. This is true because each checker output

takes on both values 0 and 1. The faults <a/l> and a/O7

are each detected by sOme input from I', since one of these
n

faults changes the correct error indicator output of Cl07

to a non-code word. Thus all faults in Fa are tested by

(b) (fault-secureness) It is clear that a single fault from

Fa causes at most a distance one change in the error indi-

cator output, producing either the correct output or a

non-code word. I:

1 An example of a type 1 partially self-checking network is the n-bit

parity checked bus driver shown in Fig. 4.3. The totally self-checking

functional circuit here is the n-bit bus driver of Fig. 3.1, while the
-

totally self-checking checker consists of an n-l-bit even-parity generator

and an invert-er eonmeted to the remaining data bit. The control vector

.cC1c07 is set to a)17 when even-parity operands are to be transmitted,

and to Cl07 for vectors of unknown parity.

The usefulness of type 1 networks is limited since in insecure mode

they do not re-encode the functional circuit output. We notice in the

i
i

example of Fig. 4.3 that the correct parity output is always available

from the parity generator at line E, and could be utilized at essentially

zero cost. Type 2 networks are a formalization of this idea.

- 18 -

al A1

I 0 I 0

I 0 I 0

I 0 I 0

I I
I t

a A
n-2 I I n-2

I I
I I
I I

a
n-l I I

I I

I ,!-Mm----

functional
circuit

7

I
I
I
I

I.-I)---- -.--we- 1

checker

P

error indicator

A
n-l

Fig. 4.3 Partially self-checking parity-checked bus driver

- 19 -

4.2 Type 2 Networks

L

i

L

L

L

L

If the output code space of a self-checking circuit is a separate. .

code, a checker can consist of an equality checker which compares the

check symbol output of the circuit with a new check symbol generated

on the basis of the data output of the circuit, as suggested by Fig. 4.4.

The following lemma shows that such a checker is totally self-checking

if the equality checker is.

Lemma: Let the code words <cd> in a separate error-detecting code S

consist of a data part d and a check symbol c such that c = C(d).

Then a network consisting of a check generator G which computes

C(d) and a totally self-checking equality checker which compares

the output of G and check symbols s is a totally self-checking

checker for code words <cd> in S.

check symbol data part
.

0.0 0.~0..

check symbol

0.0
4 .

self-checking
equality

P checker <

I I
error indicator

Fig. 4.4 Totally self-checking checker for separate codes

- 20 -

Proof: The normal input set of the network is S, while the output code

space of the network is the output code space of the equality

checker. Let Fg be the set of all check generator faults which

produce an incorrect generator output for at least one network

input in S. Clearly faults outside of F have no effect on the
Et

network. The reader can easily verify that the network is

self-testing and fault-secure for faults in F , as well as for
45

faults in the tested and secure fault sets of the equality

checker. The tested and secure fault sets of the network are .

the appropriate unions of the above sets. l

The proof of the above lemma depends primarily on the existence of

.a totally self-checking equality checker for k-bit check symbols c. If-

the k-bit vectors do not take on all 2k possible values then a checker

might not exist. However, if the k-bit vectors do take on all values

then we are assured of the existence of a totally self-checking equality

checker regardless of the value of 5 [Z].

A type 2 network, shown in Fig. 4.5, is a type 1 partially self-

checking network which uses the totally self-checking checker for separate

codes described above, and which has a re-encoded functional circuit out-

put-derived from the check generator. The input sets, fault sets, and

output code space of a type 2 network are the same as those of the

corresponding type 1 network. Thus ignoring the re-encoded functional

circuit output, a type 2 network is merely a type 1 network with more

detail specified, and hence is partially self-checking. However, it

does have a re-encoded functional circuit output available, and the

- 21 -

r
-a----v---w-------e------w---

1
I I
I

I

t l data
I
I data

I . totally l part I part
inputs 1 l self-checking I v

ENf IO functional 4

I circuit l check
l symbol

I

I

I

I
I
I
I
I

I

I
t
t
1
t
t
I
t
t

I

I
I

function

0.0
output

?
check
symbol

generator
/

I

totally
self-checking

equality
checker

I check
1 symbol

error indicator

Fig. 4.5 Type 2 partially self-checking network

- 22 -

appearance of a non-code word here is reflected by the checker output,

since the checker function is a code disjoint mapping. These results

are summarized in the following theorem...

Theorem 4.2: A type 2 network, described above and illustrated in

Fig. 4.5, is partially self-checking. Furthermore, in

the absence of faults, the re-encoded functional circuit

output is always a code word; the appearance of a non-

code word because of a fault is reflected by a non-code

output of the checker.

4.3 Type 3 Networks

A noticeable disadvantage of type 2 networks is that the functional

circuit output is delayed by the re-encoding process using the check

generator. In a totally self-checking or type 1 partially self-checking

network the total delay is that of the functional circuit alone, while

in a type 2 network it is the sum of the functional circuit and check

generator delays.

introduce some delay, but a type 3 network reduces the delay in secure

In insecure mode the re-aencoding process will always

mode to two gate delays.

A type 3 network, illustrated in Fig. 4.6, consists of a totally

self-checking functional circuit and equality checker, a check generator,

and control gates to switch either the functional circuit check symbol

output or check generator output to the network output. The equality

checker compares the network check symbol output with the generated

I
-

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
a
-
-
-
-
-

-
-
-
a
-
-
-
-
-
-
-
-
-
-

-
-
-
-

-
a
-

l

I I

I

I

t
o
t
a
l
l
y

s
e
l
f
-
c
h
e
c
k
i
n
g

f
u
n
c
t
i
o
n
a
l

c
i
r
c
u
i
t

0
d
a
t
a

'
d
a
t
a

0
pa

rt
'
p
a
r
t

I
T

I
i
n
p
u
t
s

E
Nf

I
=

I
l

I
I

0

I

c
h
e
c
k

0
s
y
m
b
o
l

I

s
y
m
b
o
l

I
\

g
e
n
e
r
a
t
o
r

/

I i I I I I I I I I

J
d
k
-
l

I
. 4

I
t
o
t
a
l
l
y

0
s
e
l
f
-
c
h
e
c
k
i
n
g

0
0

e
q
u
a
l
i
t
y

0
*

I
c
h
e
c
k
e
r

I I I I I
c
h
e
c
k

I s
y
m
b
o
l

I I I I I I I I I I I I I I I 1 I I I I I

e
r
r
o
r

i
n
d
i
c
a
t
o
r

F
i
g
.

4
.
6

T
y
p
e

3

p
a
r
t
i
a
l
l
y

s
e
l
f
-
c
h
e
c
k
i
n
g

n
e
t
w
o
r
k

- 24 -

check symbol. When *lcO> equals a>17 (secure mode), the network is

logically equivalent to a totally self-checking network; when <clcO>

equals 40, (insecure mode), the functional circuit is re-encoded

and the equality checker compares the generated check symbol with itself,

producing a "good" output.

The normal input set, secure input set, and output code space of

a type 3 network are similar to those of type 1 and 2 partially self-

checking networks. If Fa is the set of all single faults on the control

gates, except the faults <ai/l>, then the secure and tested fault sets

of the network are the union of F
a

and the appropriate fault sets of

*
the functional circuit and checker.

-Theorem 4.3: A type 3 network, described above and illustrated in Fig.

4.6, is partially self-checking.

Proof: The problem is similar to Thm 4.1, and reduces to showing that

the network is self-testing and fault-secure for faults in Fa.

As in Thm 4.1, self-testing is proved by showing that there is

a test for every fault in F in either secure or insecure mode.
a

Fault-secureness follows from the observation that a fault in

Fa either has no effect on the check symbol output, or changes

the check symbol output causing an error indication by the equal-

ity checker. I

*Here the ,Ichecker" is the combination of the check generator and totally
self-checking equality checker, as in type 2 networks.

- 25 -

Although type 3 networks avoid the delay of re-encoding the func-

I,

L

I
L

i

L

i -

i

L

i.

i

tional circuit output in secure mode, they have some disadvantages.

First, they require more control gates than a type 2 network, with a

corresponding increase in cost. Second, they have a set of single stuck-

at faults for which the network is not generally self-testing or fault-

secure, namely the faults ai/l>. If the network is not self-testing

for faults -Gi/l>, then these faults must be tested periodically by some

manual, software, or firmware method.

In a specific implementation of a type 3 network, self-testing and

fault-securene-ss for <ai/ will depend on timing in the network and in the

circuits following it. For example, suppose the type 3 network performs

an operation which sets lines b., d,, and e
j

to 1.
J 3

Suppose that the

next operation sets line d
3

to 0. Depending on the timing and control

sequence used, line bj may become 0 some time after line d. does. Thus
J

line e
j

is erroneously held at logic value 1 until the check generator

"catches up." To the circuit receiving the output of the type 3 network,

the effect is similar to that of intermittent stuck-at-l fault on line e..
3

On the other hand, if the output of the check generator always has the

value 0 between operations, then the problem outlined above does not occur.

A simple example of a partially self-checking network uses the bus

switch circuit of Fig. 4.1 in a type 2 or type 3 configuration modeled

after Fig. 4.2 or Fig. 4.6. This network could be used in a CPU as a

bus switch and also to perform the logical OR operation. In a machine

in which data was encoded in an arithmetic code, the other logical

I:. .

- 26 -

operations could be performed using a combination of the OR operation

and totally self-checking arithmetic operations 161. However, we will

later show a totally self-checking functional circuit which can be used

in a partially self-checking network to perform all logical operations.

But first we must indicate how to verify the self-checking properties

of non-trivial circuits.

- 27 -

L 5. VERIFICATION OF SELF-CHECKING PROPERTIES

L
L
L
I

L.

!

L

i

t

In this section we will show how to verify the self-checking

properties of a class of circuits defined below.

Definition: A bit-sliced circuit is a multiple-output combinational

circuit in which each output bit is computed by an indepen-

dent subcircuit, called a bit slice.

The bus switch discussed earlier is a bit-sliced circuit, with a

bit slice shownin Fig. 4.1.

To show that a circuit is self-checking, we must show that it is

self-testing for a fault set F
t

and fault-secure for a set F
SO

5.1 Fault-secureness

i
L

Fault-secureness of bit-sliced circuits is particularly easy to

show, as is evidenced by the following theorem.

1

i - Theorem 5.1: Iet S be an error-detecting code of distance two or more.

/

i
Let a bit-sliced circuit have a fault-free output function

Z(i,X) which is a mapping from an input set I into S. Let

i Fs be the set of all faults that affect only a single bit

slice. Then the circuit is fault-secure for inputs in I

L and faults in F
S*

/
i Proof: Any fault f in Fs affects only a single bit slice, and therefore

i

only a single output bit. For a particular input vector i if-

i

- 28 -

the fault does not change this output bit then Z(i,f) =

Z(i,h) E S; if it does change it then the output is distance

one away from a code word in S and Z(i,f) is not in S because

S is a distance-two code. I

In practice, the normal input set N of a totally self-checking

functional circuit may be chosen as the largest set for which the out-

put function is a mapping from N onto a distance-two code S; due to

Thm. 5.1 the circuit will be fault-secure for these inputs. If there

are inputs outside of N which will be used in normal operation, but

which produce outputs outside of S, these are the inputs for which the

checker is disabled in a partially self-checking network.

5.2 Self-testing

While fault-secureness is easy to show, self-testing for all single

stuck-at faults is not a general property of bit-sliced circuits and

depends on the design of the circuit and the exact composition of N.

However, we shall see in the following development that we can deter-

mine self-testing for an entire circuit by considering only individual

bit slices.

Definition: The set of active input combinations to a bit slice Bi in

a bit-sliced circuit is the set Ci = (c 1 c is the input

of Bi for some circuit input in N}.

r”

t

- 29 -

Definition: Let a bit slice Bi realize the single output function

Zi(C'fL Then the set of testable faults of the bit

slice is the set . .

Fi = (f 1 (f affects only B,)
1

L

L

L.

L

A @CCCi S.-t. Zi(C,f) = Zi(C,X))].

Theorem 5.2: A bit-sliced circuit with distance-two output code S is

self-testing for the fault set F =u F..
til

Proof: For any fault f in any Fi, there is an input c in Ci and a

corresponding circuit input i' in N such that Zi(c,f) = Zi(c,A).

Furthermore, no other ouput bit is affected by f. Thus the

circuit output Z(i' ,f) is distance one from Z(i',x) E S and

therefore not in S. So the circuit is self-testing for any

fault in any Fi, and hence it is self-testing for any fault in

Ft
=UF

i*
I

i

Due to Thm 5.2 we may prove self-testing of a bit-sliced circuit by

considering each bit slice separately. The problem is further reduced
-

in many cases because the bit slices B
i

are identical, as are the sets

of active input combinations C
i

. The problem is then that of showing

- that the set F
B

of testable faults for the standard bit slice contains

all reasonable faults. The standard set CB of active input combinations

is determined by inspection of N. In the remainder of this section we

suggest how to determine FB for a bit slice , given a structural specifi-

cation of the circuit and C
B.

The problem of determining FB can be attacked using any method of

- 30 -

finding which faults in a circuit are detected by a particular test.

Such a method would be used to find the set of faults detected by each

active input combination to a bit slice, and the union of these sets

would be the tested fault set for the bit slice. Examples of existing

methods of finding faults detected by a test are Roth's "test-detect" [7]

and Armstrong's deductive method [B]. Another method, described in [9],

employs Reese's gate equivalent model (GEM) [lo]. In this method, the

GEM of a bit slice is derived, and tested faults are determined by assign-

ing input literals the values they receive in active input combinations.

This method was used to generate Table 6.2 in the next section.

An alternative approach to verifying the self-testing property is

to fix FB as some known fault set and then prove that all faults in that

. set are tested by some active input combination. This could be done

using conventional test generation techniques , generating tests for each

fault until a test which is also an active input combination is found;

such a procedure would be rather inefficient. However, Wakerly and

McCluskey [ll] give a Karnaugh map method which can be used to verify

that any particular test set detects all single stuck-at faults in a

general single-output network. The method requires deriving the GEM of

the network, mapping the PI-sets or SI-sets [lo], marking the active

input combinations, and visually checking for "growth" and "existence"

tests. The method can also be used to determine which faults are

detected by a particular test and was used by the author to verify the

correctness of Table 6.2 in the next section.

- 31 -
t

L
P
i
:
I,

L
I

L

i

c

i

6. A PARTIALLY SELF-CHECKING NETWORK FOR ARITHMETIC AND LOGICAL
OPERATIONS

The circuit of Fig. 6.1 can be“used to perform all 16 Boolean

functions of two input variables Ai and Bi by appropriately setting

the control input vector 4S3S2SlSo>. The circuit may be replicated

to form a bit-sliced functional circuit to perform any of these opera-

tions on two input vectors A and B. For each value of j = <s3S2SlSo>,

Table 6.1 gives fj(A,B).

If input vectors A and B are encoded in a distance-two error

-=. *
detecting code S, and if a function f.(A,B) preserves this encoding,

3

then according to Thm 5.1 the functional circuit is fault-secure.

The secure fault set of the circuit contains all faults which affect

only a single bit slice, and the secure input set is

I =
3

(<s3s2SlSOA~> 1 ws3s2s1so~ = j) A (A$ E S)l-

i

i

iL

i

If the encoding is preserved by fj(A,B) for a number of 2, say j E J,

then the secure input set of the circuit is I = U I..
jEJ J

Due to Thm 5.2, the functional circuit is also self-testing for

certain faults when the function fj(A,B) preserves the encoding of

A and B. Assuming that input bits A
i
and Bi take on all four possible

combinations and that the function fj(A,B) is code-preserving, Table

6.2 shows which single stuck-at faults in a bit slice are tested by

selected functions. (The table includes only one member from each

class of structurally equivalent faults.)

*A function f.(A,B) preserves S if A,B E S implies fj(A,B) E S.
3

i

r

- 32 -

s2 -

s1 -

so -

Fig. 6.1 Bit slice to perform any logic function of two variables

- 33 -

TABLIZ 6.1

j = s3s2s1so

L

i

c
,
i

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

=,o 1 1 0

0 1 1 1

fj (A,@ j. . = s3s2s1so

x 1 0 0 0

A+B 1 0 0 1

LB 1 0 1 0

0 1 0 1 1

A’B 1 1 0 0

ii 1 1 0 1

A@B 1 1 1 0

AZ 1 1 1 1

fj C&B)

;;i+B

AOB

B

A*B

1

A+i

A+B

A

Table 6.1: Functions performed by the circuit
of Fig. 6.1

L

i

i

i

i

For example, suppose A and B are vectors from an error-detecting

code S consisting of all even parity n-bit vectors where n is even.

The code S is preserved by the operations A @ B, A @ B, A, B, A, B, 0,

and 1. Inspection of Table 6.2 reveals that all single stuck-at

faults in a bit slice are detected by A 0 B and A 3 B or by A, B, A,

and 5. If the normal input set of the functional circuit contains any

such set of code-preserving operations which tests all faults in each

bit slice, then the circuit is self-testing. The circuit is also

fault-secure for code-preserving operations and hence it is totally

self-checking.

i

- 34 -

TABLE 6.2

stuck-at-0

fj (A,@

0

1

AQB

fj (A,B)

0

1

AQBe

AQB

A

B

x

ii

AmB

A A2

x x

X

x x

X

A Al B B4 So S
1

x x

xx xx X

xx x X

X x x

x x X

x x

x x

A3 B B1

X

X x x

X

X

x x

S2” s3

x x

X

X

x x

X

X X X

stuck-at-l

P
1

P2 P
3 p4

x x

x x

x x

X X

x x x x

X X

B3 B4

X

X

x x

X

B5 B6 '0

X

x x x

X X

X

X

X

x x

X

x x

X X

X X

x x x

x x

Table 6.2: Fault tests for the circuit of Fig. 6.1

c

i

- 35 -

Since the bit-sliced functional circuit of Fig. 6.1 is totally

L’ self-checking when used in the manner described above, it can be

employed in a partially self-checking network which re-encodes the

output for those functions which are not code-preserving. For example,

we can use the circuit in a partially self-checking two-input univer-

sal logic unit in a machine whose data is parity-encoded as described

L- above. The function selection vector cS3S2SlSo> and the checker

L

enable control <clco) could be. supplied by a microprogrammed control

unit. (Checking the control is discussed in [12].) The logic unit

would operate in secure mode for the code-preserving operations and
--

in insecure mode for the non-code-preserving operations such as AND

L and OR.

Four copies of the bit slice of Fig. 6.1 are used along with

some carry logic in an existing MS1 chip, the 74181 4-bit arithmetic

and logic unit [13,14]. In this chip, the logic functions of Table

6.1 are performed when a control lead M is set to 1 to disable inter-

nal carries. When M is set to 0, internal carries are enabled and the

unit performs arithmetic operations.

Because of its carry logic the 74181 is not a bit-sliced circuit.

However, if the input operands A and B are encoded in a distance-two

arithmetic error-detecting code, then the output is a code word for

the addition and subtraction operations. A single stuck-at fault

causes an error with arithmetic weight at most one, producing a non-

L
code word. Thus it is possible to show that for code-preserving

*
operations the circuit is fault-secure for all single faults.

*Except faults on control leads S
si
, S , S , S , and M which occur before

these leads fan out to the indivi ua12bit1sli!?es.

- 36 -

When used to perform addition and subtraction on data in an

arithmetic code the 74181 is self-testing for faults which affect the

carry logic. Faults in the logic unit b,it slices (Fig. 6.1) are

also tested. With carries disabled (M=l), logic unit operations are

performed and faults are tested by code-preserving operations accord-

ing to Table 6.2. Code-preserving operations are A and B for any

arithmetic code, and also A,- B, 0, and 1 for the low-cost codes [15].

With carries enabled (M=O), arithmetic operations are performed.

During addition and subtraction the A Q B and A @ B functions of the

logic unit are used, and the corresponding faults indicated in Table

6.2 are tested. Thus the 74181 is self-testing for all single faults.

provided that the following occur in normal operation: (a) either

addition or subtraction to test the carry logic; (b) any combination

of addition, subtraction, and code-preserving logic unit operations

which tests all logic unit faults; and (c) at least one arithmetic

and one logic unit operation to test the carry-enabling circuitry.

Under the conditions outlined above, the 74181 4-bit ALU is

- self-testing and fault-secure when used to perform code-preserving

operations on data in an arithmetic code; hence it is totally self-

checking. Fig. 6.2 shows an implementation using 74181's in a

totally self-checking arithmetic and logic unit for 16-bit operands

with 4-bit check symbols in a low-cost residue code [15]. Addition

here is in the l's-complement system; addition in the 2's-complement

system requires additional circuitry to correct the check symbol when

a carry out of the high order data bit position occurs [15]. The

- 37 -

functional circuit can be employed in a partially self-checking network

which performs non-code-preserving operations in insecure mode.

Td
15-12

T
d
11-8

Td
7-4

T
d3-0

n

Co 74181 ci

Ad Bd15-12 15-12

-co 74181 ci-

J

MS3S2SlS0

Fig. 6.2 Partially self-checking ALU using 74181 4-bit ALU chips

- 38 -

7. OTHER APPLICATIONS

An existing use of the partially self-checking concept is in
. .

arithmetic processors for addition, subtraction, and iterative

algorithms such as multiplication and division. If data is encoded

in an arithmetic code, then the adder circuit is self-testing and

fault-secure for the addition and subtraction operations. However,

during iterative operations the checker may be disabled until the

end to increase speed, and undetected errors due to repeated use

faults [15] can occur. Thus the arithmetic processor is partially
---.

self-checking, operating in secure mode for addition and subtraction

and in insecure mode for the iterative algorithms.

Any totally self-checking functional circuit may be incorpora-

ted in a partially self-checking network. Such a network is useful

if in addition to secure mode the functional circuit has a useful mode

of operation in which the output is not a code word.

L

-

- 39 -

8. CONCLUSION

i

L

L

Several techniques are available for providing fault-detection

in fault-tolerant computers. In simple systems duplication and

matching might be the most inexpensive method because it requires the

least control circuitry and the least design effort. However, in

systems with a large number of fast registers which must be checked,

or in systems which are to be made as small as possible for LSI

implementation, the use of error-detecting codes is the most inexpen-

sive means of fault-detection. Unfortunately, there is no simple code

for checking logical operations such as AND and OR, and previous sys-

tems using coding have resorted to duplication for these operations.

In this report we have developed a theory of partially self-checking

circuits, and shown how partially self-checking networks may be used

to perform logical operations. The use of partially self-checking

networks is a low-cost method of performing these operations in

systems employing error-detecting codes for checking arithmetic and

data transfer operations.

L

L

9. mFERENCES

- 40 -

Cl1

r21

C3l

r41

L-51

bl

L-71

b1
L

i

c.

bl

ho1

Cl11

Cl21

Carter, W. C., and P. R. Schneider, "Design of dynamically
checked computers," IFIP 68;' vol. 2. Edinburg, Scotland,
pp. 878-883, Aug. 1968.

Anderson, D. A., "Design of self-checking digital networks
using coding techniques," Coordinated Sci. Lab., Univ.
Illinois, Urbana, Rep. R-527, Sept. 1971.

Carter, W. C., K. A. Duke, and D. C. Jessep, "A simple self-
testing decoder checking circuit," IEEE Trans. Comput.,
vol. c-20, pp. 1413-1414, Nov. 1971.

Peterson, W. W., and M. 0. Rabin, "On codes for checking
logical operations," IBM Journal, vol. 3, pp. 163-168, Apr.
1959.

Avizienis, A., et. al., "The STAR (self-testing and repairing)
computer: An investigation of the theory and practice of fault-
tolerant computer design," IEEE Trans. Camput., vol. C-20,
PP. 1312-1321, Nov. 1971.

Rae, T. R. N., and P. Monteiro, "A residue checker for arith-
metic and logical operations," Dig. 1972 Int'l. Symp. Fault-
Tolerant Computing, pp. 8-13, June 1972.

Roth, J. P. et. al., "Programmed algorithms to compute tests
to detect and distinguish between failures in logic circuits,"
IEEE Trans. Electron. Comput., vol. EC-16, pp. 567-580, Oct.
1967.

Armstrong, D. B., "A deductive method for simulating faults in
logic networks," IEEE Trans. Comput., vol. C-21, pp. 464-471,
May 1972.

Wakerly, J. F., "A method of finding faults detected by tests
using the GEM," Dig. Syst. Lab., Stanford,Calif., Tech. Note 31,
August 1973.

Reese, R. D., and E. J. McCluskey, "A gate equivalent model for
combinational logic network analysis," Dig. 1973 Int'l. Symp.
Fault-Tolerant Computing, June 1973.

Wakerly, J. F., and E. J. McCluskey, "A graphical method of
identifying fault tests in combinational logic networks," Dig.
Syst. Lab., Stanford,Calif., Tech. Rep. 66, August 1973.

Wakerly, J. F. "Low-cost error detection techniques for small
computers," Dig. Syst. Lab., Stanford,Calif., Tech. Rep. 51 9
Sept. 1973.

- 41 -

[13] Fairchild 9341/54181, 74181 data sheet.

[14] Signetics S54181/N74181 data sheet.

[15] Avizienis, A., "Arithmetic codes: Cost and effectiveneds
studies for applications in digitai‘ systems design," IEEE Trans.
Comput., vol. C-20, pp. 1322-1331, NOV. 1971.

