Asymptotic Representation of the Average Number of Active Modules in an n-way-Interl ived Memory

 byGururaj S. Rao

Technical Note No. 41

April 1974

Digital Systems Laboratory
Department of Electrical Engineering
Stanford University
Stanford, California

This work was supported under the Scheme of 'N fional Scholarships for study Abroad', Ministry of Education, Govermacnt of India and by the National Seience Foundation under Grant GJ $1+1903$.

Asymptotic Representation of the Average Number of Active Modules in an n-way Interleaved Memory

 ..by Gururaj S. Rao

ABSTRACT

In an n-way interleaved memory the effective bandwidth depends on the average number of concurrently active modules. Using a model for the memory which does not permit queueing on busy modules and which assumes an infinite stream of calls on the modules, where the elements in the stream occur with equal probability, the average number is a combinatorial quantity. Hellerman has previously approximated this quantity by $n^{0.56}$

We show in this paper that the average number is asymptotically equal to $\sqrt{\frac{\pi n}{2}}-\frac{1}{3}$. The method is due to Knuth and expresses the combinatorial quantity in terms of the incomplete gamma function and its derivatives.

Key words and key phrases

Interleaved memory systems, modular memory systems, memory performance analysis, memory accessing, incomplete gamma function. CR Categories

$$
6.34,5.39
$$

1.1 n-way interleaved sterageTo achieve a given storage capacity in a digital computer, it ispossible to supply all storage in a single module or to spread it overseveral modules so that more than one access can take place at a time.Since in a 'typical' program, successive accesses tend to be tosuccessive addresses, successive addresses are assigned to successivemodules in a cyclic fashion. Such a memory with n modules is said tobe n-way interleaved.
1.2 Average number of active modules
The number of modules that operate concurrently is the number of
active modules and is a measure of the speed-improvement over a single-
module system. Assume that we have a: n-way interleaved memory.
Assume further:

1) an input stream of calls on the modules where each elementof the stream is an integer in the range 1 through n.
2) the elements in the stream occur with equal probability.
3) the input stream is infinite so that the memory never idlesfor lack of work.4) the time to inspect the input stream is zero or can beoverlapped with the access to the modules.
4) queueing of requests on busy modules is not permitted.
With these assumptions Hellerman [1] has shown that the average
number of active modules $\mathrm{N}_{\mathbf{a v g}}$ is
$N_{a v g}=\sum_{k=1}^{n} \frac{k^{2}(n-1)!}{(n-k)!n^{k}}$
Hellerman [1] has also suggested that a good approximation for
$N_{\text {avg }}$ is $N_{\text {avg }}=n^{0.56} 1 \leq n \leq 45$ to within about 4%. The rest of this
paper. is concerned with finding an asymptotic formula for $\mathrm{Navg}^{\text {a }}$. We
show that $N_{\text {avg }}=\sqrt{\frac{\pi n}{2}}-\frac{1}{3}+\hat{O}\left(\mathrm{n}^{-\frac{1}{2}}\right)$.
2. Asymptotic representation for N avg

2.1 Notation

For simplicity of presentation, let

$$
\begin{equation*}
Q(n) \quad=\sum_{k=1}^{n} \frac{n!}{(n-k)!n^{k}} \tag{1}
\end{equation*}
$$

. nd

$$
\begin{equation*}
Q^{[P(n, k)]}(n)=\sum_{k=1}^{n} \frac{n!P(n, k)}{(n-k): n^{k}} \tag{2}
\end{equation*}
$$

.e., sum of a series where each term of $Q(n)$ is multiplied by $P(n, k)$.
$\because . g$.

$$
Q(n)^{\left.(n-k+1)^{2}\right]}=\sum_{k=1}^{n} \frac{(n-k+1)^{2} n!}{n^{k}(n-k):}
$$

Trivially
$[1]$
$Q(n)=Q(n)$

$$
\begin{equation*}
N_{\text {avg }}=\frac{1}{n} Q \underset{(n)}{\left[\mathbf{k}^{2}\right]} \tag{3}
\end{equation*}
$$

The procedure used is to find a relation between $\left[\begin{array}{c}\left.\mathbf{k}^{2}\right] \\ (n)\end{array}\right.$ and $Q(n)$ and to use the asymptotic representation developed by Knuth [2] for $Q(n)$. $\left[k^{2}\right]$ Before doing that we have to compute $Q^{[n)}$ and other related quantities in terms of the 'incomplete gamma function' and its derivatives (see below).
2.2 Computation of $Q\left[\begin{array}{c}\mathbf{k}^{2} \\ (n)\end{array}\right.$

Sections 2.3 and 2.4 below show how to compute $Q\left[(n-k+1)^{2}\right]$ and $[\mathrm{n}-\mathrm{k}+1]$
Q (\mathbf{n}) in terms of the incomplete gamma function and its derivatives.
Then the formula for

$$
Q(n)=\sum_{k=1}^{[k]} \frac{k n!}{(n-k)!n^{k}} \quad \text { can be found from }
$$

$$
Q^{[k]}(n)+Q(n)=(n+1) Q(n)=(n+1) Q(n)
$$

 terms of the incomplete gamma function and its derivatives can be found from

$$
\begin{align*}
& {\left[(n-k+1)^{2}\right]} \tag{5}\\
& Q(n)
\end{align*}=\left(n^{2}+2 n+1\right) Q(n)-2(n+1) Q(n)+Q^{\left[k^{[}\right]}(n)
$$

$$
\left[(n-k+1)^{2}\right]
$$

2.3 Computation of Q (n)

23 [(n-k+1) $\left.{ }^{2}\right]$

$$
s_{2}=1 \cdot 1^{2}+n \cdot 2^{2}+\frac{n^{2}}{2!} \cdot 3^{2}+\ldots+\frac{n^{n-1}}{(n-1)!} \cdot n^{2}+\frac{n^{n}}{n!} \cdot(n+1)^{2}+\ldots . . .
$$

We know that

$$
x e^{x}=x+x^{2}+\frac{x^{3}}{2!}+\ldots .+\frac{x^{n+1}}{n!}+
$$

Therefore

$$
\begin{equation*}
\frac{d}{d x}\left(x e^{x}\right)=1+2 x+\frac{3}{2!} x^{2}+\ldots \ldots \tag{6}
\end{equation*}
$$

and $\quad \frac{d}{d x}\left[x \cdot \frac{d}{d x}\left(x e^{x}\right)\right]=1^{2}+2^{2} \cdot 3^{2} 2!2+\frac{(n+1)^{2}}{n!} x^{n}+\ldots$.

Therefore the above series

$$
\begin{align*}
S_{2} & =\frac{d}{d x}\left[x \frac{d}{d x}\left(x e^{x}\right)\right]_{x=n} \\
& =e^{n}\left(1+3 n+n^{2}\right) \tag{7}
\end{align*}
$$

Next, consider

$$
\begin{align*}
\frac{n!}{n^{n}} e^{n}\left(1+3 n+n^{2}\right)= & \frac{n!}{n^{n}} \cdot S_{2} \text { from (7) } \\
= & \frac{n!}{n^{n}}\left[\left(1 \cdot 1^{2}+n \cdot 2^{2}+\cdots \cdot \cdot \frac{n^{n-1}}{\left.(n-1)!n^{2}\right)+}\right.\right. \\
& \left.\left(\frac{n^{n}}{n!}(n+1)^{2}+\ldots . .\right)\right] \\
= & Q(n) \\
& {\left[(n-k+1)^{2}\right]+R_{2}(n) } \tag{8}
\end{align*}
$$

where $R_{2}(n)=\sum_{k \geq 0} \frac{n!n^{k}(n+k+1)^{2}}{n+k!}$

2.3.2 Computation of $R_{2}(n)$

Let $\gamma(a, x)$ denote the 'incomplete gamma function' ; i.e.,

$$
Y(a, x)=\int_{0}^{-5-} e^{-t} t^{a-1} d t
$$

Knuth [2] has shown that

$$
\begin{equation*}
e^{x} \gamma(a, x)=\frac{x^{a}}{a}+\frac{x^{a+1}}{a(a+1)}+\frac{{ }^{a} x^{a+2}}{a+1(a+2)}+\ldots * * ' \tag{10}
\end{equation*}
$$

Let $G(a, x)=x e^{x} \gamma(a, x)$

$$
\begin{equation*}
=\frac{x^{a+1}}{a}+\frac{x^{a+2}}{a(a+1)}+\frac{x^{a+3}}{a(a+1(a+2)}+.1 * * \tag{11}
\end{equation*}
$$

Then $\frac{0}{\partial x} G(a, x) \quad \frac{(a+1) x^{a}}{a}+\frac{(a+2) x^{a+1}}{a a+1)}+\ldots$.
and $\frac{a}{\partial x}\left[x \frac{\partial G}{\partial x}\right]^{-}=\frac{(a+1)^{2}}{a} x^{a}+\frac{(a+2)^{2} x^{a+1}}{a(a+1)}$
Let $H_{2}(a, x)=\frac{\partial}{\partial x}\left[x \frac{\partial G}{\partial x}\right]=\sum_{k \geq 0} \frac{(a+k+1)^{2} x^{a+k}}{a(a+1) \ldots(a+k)}$

Then $H_{2}(n, n)=\sum_{k \geq 0} \frac{(n+k+1)^{2} n^{n+k}}{n(n+1) \ldots(n+k)}$

$$
=n^{n}(n-1)!\sum_{k \geq 0} \frac{(n+k+1)^{2} n^{k}}{(n+k)!} \quad \text { so that }
$$

$$
\begin{equation*}
R_{2}(n)=\frac{n!H_{2}(n, n)}{n^{n}(n-1)!} \tag{3}
\end{equation*}
$$

From (11) we can find $H_{2}(a, x)$ to be

$$
\begin{align*}
H_{2}(a, x) & =\gamma(a, x) e^{x}\left(1+3 x+x^{2}\right)+\left(3 x+2 x^{2}\right) e^{x} \frac{\partial}{\partial x} \gamma(a, x) \\
& +x^{2} e^{x} \frac{\partial^{2}}{\partial x^{2}} \gamma(a, x) \tag{14}
\end{align*}
$$

so that from (13) and (14)

$$
\begin{align*}
R_{2}(n)= & \frac{n!}{n} e^{n}\left(1+3 n+n^{2}\right)\left[\frac{\gamma(n, n)}{(n-1):}\right]+ \\
& \frac{n!}{n^{n}} e^{n} \frac{\left(3 n+2 n^{2}\right)}{(n-1)!}\left[\frac{\partial^{\prime}}{\partial x} \gamma(a, x)\right](n, n)+ \\
& \frac{n!}{n^{n}} e^{n} \frac{n^{2}}{(n-1)!}\left[\frac{\partial^{2}}{\partial x^{2}} \gamma(a, x)\right](n, n) \tag{15}
\end{align*}
$$

2.4.1 Let $S_{1}=1 \cdot 1+n \cdot 2+\frac{n^{2}}{2!} \cdot 3+\ldots+\frac{n^{n-1}}{(n-1)!} \cdot n+. b * 0$

From (17) ,

$$
\begin{align*}
\frac{n!}{n^{n}} e^{n}(1+n)= & \\
& =\frac{n!}{n^{n}}\left[\left(1 \cdot 1-t n \cdot 2+\ldots \ldots \frac{n^{n-1}}{(n-1) ?}\right)+\left(\frac{n^{n}}{n!}(n+1) \cdot\right)\right] \\
& =Q(n)+R_{1}(n)
\end{align*}
$$

where

$$
R_{1}(n)=\sum_{k \geq 0} \frac{n!n^{k}(n+k+1)}{(n+k)!}
$$

$$
\text { 2.4.2 Computation of } R_{1}(n)\left(a-1 ~ L e t ~ H_{1}(a, x)=\frac{\partial}{\partial x} G(a, x)=\frac{\partial}{\partial x}\left[\operatorname{xe}^{x} \gamma(a, x)\right]\right.
$$

Then from (12),

$$
\begin{aligned}
H_{1}(a, x) & =\frac{a^{\prime}+1}{\left.a^{+}\right)} x^{a}+\frac{(a+2)}{a(a a+1)} x \\
& =\sum_{k \geq 0} \frac{(a+k+1) x^{a+k}}{a(a+1) \ldots(a+k}
\end{aligned}
$$

so that

$$
\begin{aligned}
H_{1}(n, n) & =\sum_{k \geq 0} \frac{(n+k+1) n^{n+k}}{n(n+1) \cdots(n+k)} \\
& =n^{n}(n-1)!\cdot \sum_{k \geq 0} \frac{(n+k+1) n^{k}}{(n+k)!}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
R_{1}(n)=\frac{n!H_{1}(n, n)}{n^{n}(n-1)!} \tag{19}
\end{equation*}
$$

From (11), we can find $H_{1}(a, x)$ to be

$$
\begin{equation*}
H_{1}(a, x)=e^{x}(1+x)[\gamma(a, x)]+x e^{x} \frac{\partial}{\partial x} \gamma(a, x) \tag{20}
\end{equation*}
$$

so that

$$
\begin{equation*}
R_{1}(n)=\frac{\partial^{2}: e^{n}(1+n)}{n^{n}}\left[\frac{\gamma(n, r n)}{(n-1)!}\right]+\frac{n!e^{n} n}{n^{n}(n-1):} \quad \overline{\partial x}[\gamma(a, x)(n, n) \tag{21}
\end{equation*}
$$

2.3 Computation of $\frac{\partial}{\partial x} \gamma(a, x)$ and $\frac{\partial^{2}}{\partial x^{2}} \gamma(a, x)$

From (9) ,

$$
\begin{equation*}
\frac{\partial}{\partial x} y(a, x)=x^{a-1} e^{-x} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} y(a, x)=-x^{a-1} e^{-x}+(a-1) x^{a-2} e^{-x} \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\partial}{\partial x} \gamma(a, x) \prod_{(n, n)}=n^{n-1} e^{-n} \tag{24}
\end{equation*}
$$

and

$$
\left.\frac{\partial^{2}}{\partial x^{2}} \gamma(a, x)\right]_{(n, n)}=(n-1) n^{n-2} e^{-n}-n^{n-1} e^{-n}(25)
$$

2.6 Computation of $Q(n)$

From (21) and (24) we have,

$$
\begin{equation*}
R_{1}(n)=\frac{n!e^{n}}{n}(1+n)\left[\frac{\gamma(n, n)}{(n-1)!}\right]+\ldots \tag{26}
\end{equation*}
$$

Then, from (18),

$$
Q(n)=\frac{n!e^{n}(1+n)}{n^{n}}-R_{1}(n)
$$

From (26),

$$
\begin{equation*}
Q(n)^{[n-k+1]}=\frac{n: \cdot e^{n}}{n^{n}}\left[1+n-\frac{\gamma(n, n)}{(n-1)!}(1-t n)\right]-n \tag{27}
\end{equation*}
$$

Further, Knuth [2] has shown that,

$$
\begin{equation*}
Q(n)=\frac{n!}{n^{n}} e^{n}\left[1-\frac{\gamma(n, n)}{(n-1)!}\right] \tag{28}
\end{equation*}
$$

From (27), (28) and (4) we get,

$$
Q(n)=\frac{n!e^{n}}{n^{n}}\left[1+n-\frac{\gamma(n, n)}{(n-1)!}(1+n)-(1+n)+\frac{\gamma(n, n)}{(n-1)!}(1+n)\right]
$$

$$
+n
$$

Therefore

$$
\begin{equation*}
Q(n)=n \tag{29}
\end{equation*}
$$

2.7 Computation of $\mathrm{N}_{\text {avF }}$

From (24), (25) and (15) we get

$$
\begin{equation*}
R_{2}(n)=\frac{n!e^{n}}{n^{n}}\left(1+3 n+n^{2}\right)\left[\frac{\gamma(n, n}{(n-1)!}+2 n(1+n)\right. \tag{30}
\end{equation*}
$$

Therefore from (8),

$$
\begin{aligned}
{\left[(n-k+1)^{2}\right] } & =\frac{n: e^{n}}{n^{n}}\left(1+3 n+n^{2}\right)-R_{2}(n) \\
& =\frac{n!e^{n}}{n^{n}}\left(1+3 n+n^{2}\right)\left[1-\frac{Y(n, n)}{(n-1)!}\right]-
\end{aligned}
$$

$$
\begin{equation*}
2 n(1+n) \tag{31}
\end{equation*}
$$

From (y), 31), (ay), and. (28) we obtain

$$
\begin{align*}
& \left.Q\left(k^{{ }^{\prime}}\right]=(n-k+1)^{2}\right] \quad-\left(n^{2}+2 n+1\right) Q(n)+2(n+1) Q(n) \\
& \left.=\frac{n!e^{n}}{n^{n}} 1+3 n+n^{2} \quad i^{2} \quad 2 n \quad 1\right)\left[\left.1 \quad \frac{\gamma(n, n)}{(n-1)!} \right\rvert\,\right. \\
& 2 n(1+n)+2 n(1+n) \\
& =\frac{n!e^{n}}{n^{n}}\left[1 \quad \frac{\gamma(n, n)}{(n-1)!}\right] n \\
& =n Q n \text {) } \tag{32}
\end{align*}
$$

From (3) and (32) finally we obtain

$$
\begin{equation*}
\left.N_{\mathrm{avg}}=Q_{1}^{\prime} \mathrm{n}\right) \tag{33}
\end{equation*}
$$

2. 8 Asymptotic formula for N avg

Knuth [2] has given the asymptotic formula for $Q(n)$ as

$$
\begin{equation*}
Q(n)=\sqrt{\frac{\pi n}{2}}-\frac{1}{3}+\frac{1}{12} \sqrt{\frac{\pi}{2 n}}-\frac{4}{135 n}+\frac{1}{288} \sqrt{\frac{\pi}{2 \cdot n^{3}}}+\mathcal{O}\left(n^{-2}\right) \tag{34}
\end{equation*}
$$

Hence we obtain the desired asymptotic formula for $\mathrm{N}_{\text {avg }}$ as:

$$
\begin{equation*}
N_{\mathrm{avg}}=\sqrt{\frac{\pi n}{2}} \frac{\pi n}{2}-\frac{1}{2}+\frac{1}{12} \frac{1}{3} 1 \sqrt{\frac{\pi}{2 n} \frac{\pi}{2 n}}-\frac{1}{135 n}+\frac{1}{288} \sqrt{\frac{\pi}{2 n^{3}}} \cdot \frac{\pi}{2 n^{3}}+\mathcal{O}\left(n^{-2}\right) \tag{35}
\end{equation*}
$$

3.0 Comparison of $\mathrm{N}_{\text {avg }}, \mathrm{n}^{0.56}$ and the result computed by the asymptotic
formula
were calculated for values of $n 2$ through 50 on the HP 9100 programmable calculator. The results are summarized below:

1. The maximum percent error in the asymptotic result was 0.0713 at $\mathfrak{n}=2$.
2. The minimum percent error in the asymptotic result was 0.00015 at $n=50$.
3. The percent error in the asymptotic result decreased continuously with n.
4. The percent error and absolute error in the asymptotic result were always less than the percent error and absolute error in the empirical formula for N avg, respectively.

Acknowledgements

I am grateful to Prof. Harold S. Stone for suggesting theproblem and it is my pleasure to acknowledge his guidance,suggestions and encouragement while I was working on this problem.Prof. Stone and Dr. T.C. Chen read the manuscript critical3.y andmade corrections; I am grateful to them. Prof. Donald E. Knuthpointed out the relation between the problem solved here andanother problem which arose in connection with the study of Randomnumbers, epidemics etc. The solution to the latter are listed inthe references [3] through [6].[1] Hellerman, H., Digital Computer System Principles, 2nd Ed., McGraw-Hill, New York, 1973, p. 245.
[2] Knuth, D. E., The Art of Computer Programming - Vol. I: Fundamental Algorithms, 2nd Ed., Addison-Wesley, Reading, Mass., 1973, PP. 112-117.
[3] Knuth, D. E., The Art of Computer Programming - Vol. II: Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1969, p. 454 (Answer to problem 3.1.12).
[4] Harris, Bo, Annals of Mathematical Statistics, Vol. 31 (1960), pp. 1045-1062.
[5] Sobol, I. M., Theory of Probability and Its Applications, Vol. y (1964), pp.333-338.
[6] Knuth, DoE。, and Rao, GoSo, Activity in an Interleaved Memory, Submitted for publication to the IEEETC.

