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Modules in an n-way |nterleaved Menory
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ABSTRACT

In an n-way interleaved nmenory the effective bandw dth depends
on the average nunmber of concurrently active nodules. Using a node
for the nenD;y whi ch does not permit queueing on busy nodul es and which
assunes an infinite streamof calls on the nodul es, where the el enents
in the streamoccur with equal probability, the average nunber is a
conbinatorial quantity. Hellerman has previously approximated this
quantity by n0'56.

We show in this paper that the average nunber is asynptotically
equal tovfég---%. The method is due to Knuth and expresses the com

binatorial quantity in terns of the inconplete gamm function and its

derivati ves.
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1. | ntroduction

1.1 n-way interl eaved st.rage

To achieve a given storage capacity in a digital conputer, it is
possible to supply all storage in a single nodule or to spread it over
several nmodules so that nore than one access can take place at a tine.
Since in a 'typical' program successive accesses tend to be to
successi ve addresses, successive addresses are assigned to successive
modul es in a cyclic fashion. Such a nmenory with n nodules is said to

be n-way interleaved

1.2 Average nunber of active nodul es

The nunber of nodules that operate concurrently is the number of
active nodules and is a neasure of the speed-inprovenent over a single-
nodul e system  Assune that we have a. n-way interleaved nenory.

Assune further

1) an input stream of calls on the nmodul es where each el enent

of the streamis an integer in the range 1 through n

2) the elenents in the stream occur with equal probability.

3) the input streamis infinite so that the nmenory never idles

for lack of work.

4) the tine to inspect the input streamis zero or can be

overl apped with the access to the nodul es.

5) queuei ng of requests on busy nmodules is not pernmitted.
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With these assumptions Hellerman {i] has shown that the average

nunber of active nodules N is -
avg

n

N -
avg

k“(n-1):

K
k=1 (n-k) +n

Hellerman [1] has also suggested that a good approxination for

N is N =n0‘56 1<n=<1.45to within about 4%. The rest of this

avg avg

paper. is concerned with finding an asynptotic fornula for Nav . Ve

mn 1 -3
show t hat Navg: /—2—.— 3 ¢t O(n *),

2. As totic re ntati for N
ynp prescntation ave

2.1 Notation

For sinplicity of presentation, |et

Qn) = SR (1)
k 12(‘11‘-'k)3nk
. nd C )]
P(n,k n ,
Q (n) - E n, P n,klz (2)

.e., sumof a series where each termof Qn) is nultiplied by p(n,k).

2o
[ (n—k+1)2] n K+ )2 e
(n) - ; (n- + ) n.
Q kzzl n* (n-k):
(1]
Trivially Q(n) = Q(n)
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Al so Na‘.,g= % Q (n) (3)

2
k]
The procedure used is to find a relation between Q (n) and @(n)

and to use the asynptotic representation developed by Knuth [2] for Qn).

[ 7]

Before doing that we have to conpute Q(n) and other related quantities

in terns of the 'inconplete gamma function' and its derivatives (see bel ow).

[ k7]
2.2 Conputation of Q (n)
(n-k+1)2]
Sections 2.3 and 2.4 bel ow show how to conpute Q and
[n-k+1]
Q (n) in terms of the inconplete ganma function and its derivatives.
Then the fornula for
(k] n
Q(n) = can be found from
ZE: n—k) n
[k]_ [n-k+1] (1]
Q (m)+Q(n)  =(n+1)q (n) = (n+l)Q(n) ()
2
| [(n-er1)7] [ [k°]
Next, using fornmulas for Q(n) and Q (n), the formula for Q in

ternms of the inconplete gamma function and its derivatives can be found

from 5
[ (n-k+1)“] (K] [x]
Q (n) = (n° +2n+1)Q(n) -2(n+1)Q (n) + Q (n) (5)

[(n—k+1)2]
2.3 Conputation of Q (n)

2.3.1 Consider the series
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2 n-| n 5
> ‘ <
S, = 1 1%m-2+ B384 2 en? a M) L
2 - o1 (n-1)! n!
W know t hat
n+1
xex:x+x2+-3-+ PRI
5Tt oeees e
d X 3 2 6
£ =1+ =xT 4+ L.
Therefore clx(xe )=1+ 2x + X (6)
- 2 2
d d ,. x 2 2 3 2 n+l no
and E?[?'EE(Xe )] =17+ 27wz T o Hgm R

Therefore the above series

‘I
0n
1

fl—[xg—(xex)]

2 7 dx| dx Jx=n

]

en(1+3n+n2) 7)

Next, consider

n! n 2 n!'

n
n-1
=-ﬁ% [(1'12 + n-22+ .o %;:Tj:ng )t
Q%;(n+l)2 o )
[(n-k+1)2]
= Q (n) + Ry(n) (8)

wh n ! nk(n+k+1)2
ere R2(n) = Z T
k20

2.3.2 Conput ati on of Re(n)

Let vy(a,x) denote the 'inconplete gamm function' ; i.e.,
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Knuth [2] has shown that
X %2 xa+1 ‘Axa+2
ey (2,x) ==t a(a+l) T a A (at2) T (10)

Let & a, x) = xe y(a,x)

Xa+1 xa+2 xa+3
~a * a(a+l) * a@+l (at2) MENET; (11)
o ey Lo ot N
and %—)—{[x%gx\] =(~'=1;_1)2 LN gazzﬁlx atl -
oo - 53] - A

k20

2 n+k

Z L+k+1 )
& n(n+l)...(ntk)

n" (n-1)! Z(n+k+1) n" so that

1

Then Hg(n,n)

n+k
k’O
n! H, (n,n)
2 >
Ry(n) = —=—— (13
e " (1)1 )
From (11) we can find Hg(a,x) to be
He(a,x) = y(a,x)e" (1+3x+x2) + (3x+2x2)ex %; v(a,x)
2 x 32
+ x7 " s v(a,x) (14)

ox



so that from (13) and (14)

Re(n)=3%~e (1+3nkn2/[ v(e, nﬂ

j=]

B

2.4 Conputation of

(n-1)-. *

2
o (3n+2n ) {a v(a,x )J(n n)

2 2
| o

[n—k+1]

9 (n) _ Sn-k+1?n

(n-k)} aF )

wher e

=11 + n«2 + n2-3 +

From (6) above,

From (17),

n!
— e
n

n

(1+n)

S

n-1
n

'é'T ....+m'n+-b*0 (16)

1 = [%; xé;) xen = en(1+n) (17)

1
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s—
— 1
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n! nk n+k+1
Ry(n) = Z (n+1%45r )

k=0
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2.4.2 Conput ation of Rl(n)

o)
Let H, (a,x) = =5 G(a,x) =%}Z [xe™y(a,x)]

Then from (12),

1 =a'+]_ T.) a + a+2)
l(a,x) a * a(aa+l) o

E (a+k+1) x°
a(a+l),, (a+k

so t hat
n+k
H (n.n) - (n+k+1)n
1( sn) Z n(n+l)....(n+k )
n k
= n"(n-1)1 - }% inﬁﬂgi
n+k)!
k=
Therefore, n H,(n,n)

R(n):
1 ® 1)

From (11), we can find H, (a,x) to be

Hy(a,%) = & (1) y(a,2)] + %™ 2 y(a,x)

so that

Ry(n) _ate (1+n) [ ,mj + n!e’ n .
1 o n-1 2" (n-1): ox ”Y(ayj)- (n,n)

(19)

(20)

(21)
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2.3 Conputation of =— vy(ax) and —5 y(a,x)
ox dx“ L
From (9),
'g_i y(a, x) =xte® (22)
and
32 a-1 ~-x aa -2 -x
—z y(a, x) = -x e+ (a-l)x e (23)
X
Therefore
e} — -1 -n
= y(a,x)]l(n’n) = n"e (24)
and -
2 - -1 -
-2‘;-5 Y(ﬂ;x)] (n,n) ~ ( n-1)n" e e ( 25)
o [x]
2.6 Conputation of @ (n)
From (21) and (24) we have,
n! e” y(n,n)
R (n) = 2= (1) | byt| v o (26)
n
Then, from (18),
[n-k+1] , .n
Q(n) = &i_%_l.tn_). - Rl(n)
n

From (26),

n-1})!

[ n-Kk+l] ..n )
Q (n) =“-ne [1+n-Y“’“ (1-tn)] - B (27)
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Further, Knuth [2] has shown that,

) - 2% o[- 451 (20)

n
From (27), (28) and (4) we get,

[x] , n

Q (n) = === [1+n - %—Tﬁfin? (1+n) - (14n) + '("Tyr(:in‘) (1+n)]

Therefore Q (n) = n (29)

2.7 Conput ati on of NaW

From (24), (25) and (15) we get

' n
Rg(n) = nr.]ne (1+3n+n2)[yn_(_r; v 2n(1+n) (30)
Therefore from (8),
2
[ (n=k+1)“] v N
Q(n) - “;; (1+3040°) - R (n)

2n(1+n) (31)
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From (5), 31), (£9), and. (28) we obtain

[k2] 'n—k+1)2] , [x]

Q@ (n) - Qan) - (0% + 20 + 1) (n) + 2(n11) Q (n)
n -
n! e 2 2 v(n,n)
= 1+ 3n +1 1 en 1 1 S
= m IRy

2n (1+n) + 2n(L+n)

=<I"1Q n) (32)
From (3) and {32) finally we obtain

N = @n) — (33)

2.8 Asymptotic formula for N,

——t
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Knuth [2] has given the asymptotic formula for Qn) as

m 1 1 [ x I 1 [x -2
on) =[5 - 3712 JyZn T 1350 t 78 /Q. 3 * o(n ") (34)

Hence we obtain the desired asynptotic formula for Navg as:

fm SN ERE /J%' 1 2
=[5 m 1 1 5 - —~ -
N 2.5-3+ 231 an 7n 13%3 + sEgia ot o(n ) (35)

avg T

0.56

3.0 Compari son of Navg, n and the result conputed by the asynptotic

formul a

1 n '.l'fn r —— -l _TC_.
N 0.56 J7eint o 1T SRR 13m + §§8V on3

were calculated for values of n 2 through 50 on the HP 9100 progranmrbl e

cal cul ator. The results are summari zed bel ow

1. The maxi num percent error in the asynptotic result was
0.0713 at n=2.

2. The mnimum percent error in the asynptotic result was
0.00015 at n=50.

3. The percent error in the asynptotic result decreased
continuously with n.

4. The percent error and absolute error in the asynptotic
result were always |ess than the percent error and

absolute error in the enpirical forrmula for N respectively.
avg’
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