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In an n-way interleaved memory the effective bandwidth depends

on the average number of concurrently active modules. Using a model
-=.

for the memory which does not permit queueing on busy modules and which

assumes an infinite stream of calls on the modules, where the elements

in the stream occur with equal probability, the average number is a

combinatorial quantity. Hellerman has previously approximated  this

quantity by n
0.76 .

We show in this paper that the average number is asymptotically

I

L

equal to
Tin

J
-2 - t .

3
The method is due to Knuth and expresses the com-

binatorial quantity in terms of the incomplete gamma function and its

derivatives.
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1. Introduction

1.1 n-way interleaved stl.rage
. .

To achieve a given storage capacity in a digital computer, it is

possible to supply all storage in a single module or to spread it over

several modules so that more than one access can take place at a time.

L
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Since in a 'typical' program, successive accesses tend to be to

successive addresses, successive addresses are assigned to successive

modules in a cyclic fashion. Such a memory with n modules is said to

be n-way interleaved.

1.2 Average number of active modules--- ---

The number of modules that operate concurrently is the number of

active modules and is a measure of the speed-improvement over a single-

module system. Assume that we have 8.1 n-way interleaved memory.

Assume further:

1) an input stream of calls on the modules where each element

of the stream is an integer in the range 1 through n.

2) the elements in the stream occur with equal probability.

3) the input stream is infinite so that the memory never idles

for lack of work.

4) the time to inspect the input stream is zero or can be

overlapped with the access to the modules.

>) queueing of requests on busy modules is not permitted.
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With these assumptions HelXezmm [EJ &as &mm that the average

number of active modules N iS
aw

.

n
N -.
avg = c

k2(n-l)!

k&l (n-k) I nk

Hellerman [l] has also suggested that a good approximation for

N is N we- - *. .- .=n
aw aw

1 5 n I: 43 to within about 4%. The rest of this

paper.is concerned with finding an asymptotic formula for N
avg'

We

show that N -
avg -

-

L

2. Asymptotic representation  for NavE

L

2.1 Notation

For simplicity of presentation, let

.

. nd

Q(n) = 2 n'
k=l (*k)!nk

( >1

(2)

.e., sum of a series where each term of Q(n) is multiplied by P(n,k).

.3. Ez*

I

[ (n-k+1)2] n 2
Q (n) z

c
(n-k+l) n!

k=l nk (n-k):

Trivially
Cl1

Q(n) = Q(ll>
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Also
[: k21

N . = $ Q (n)
aw

The procedure used is to find a relation between Q (n) and Q(n)

and to use the asymptotic representation developed by Knuth [2] for Q(n).

c k21
Before doing that we have to compute Q (n) and other related quantities

in terms of the 'incomplete gamma function' and its derivatives (see below).

2.2
[ k4

Computation of Q (n)
'3-

c [(n-k+l)']
Sections 2.3 and 2.4 below show how to compute Q (n) and

[n-k+11
Q (n) in -terms of the incomplete gamma function and its derivatives.

Then the formula for

c 1
Q ;n) =

Cd_ [n-k+11

n

c
kn!

k 1= (n-k)hk

c I1

can be found from

Q (n> + Q (n> = (n+l)Q (n) = (n+l)Q(n) (4)

[(n-k+l)*] c 1k II 1k2
Next, using formulas for Q (n) and Q (n), the formula for Q in

terms of the incomplete gamma function and its derivatives can be found

from
[(n-k+l)2] c 1

Q (n) (n2 +zn+l)Q(n) -2(n+l)Q ;n)
L- 1k2

z + Q (n> (7)

2.3 Computation of Q (n)

2.3.1 Consider the series
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= 1 12+n*22+ n2--e 32 + . . . .
n-l

-Z-an
2

s2 l

+ c*(n+1)2+ . . . . .

2! (n-l)! n!

We know that

2 3
..n+l

X
= x + x  +&+.... :

X
xe +

2. n�. l ***

Therefore &(xex) = 1 + 2x +-&XT + . . . .
. (6)

and = l2 + 22 32 2
l ⌧+-*⌧ + . . . . . +

21
-i.Ef xn + . . . . .

n!

Therefore the above series

-=.
s2

d= y&
[
x~bex~;x~n

= en(l+3n+n2)

Next, consider

G en(l+3n+n2) nb:S2 from (7)=-
n n

=g [(1*12 + n-2*+ . . . -&,n2 > +
.

n

($( >, n+l 2+ . . . . . )I.

[(n-k+1)21
= Q (n) + Q4

where R2(n) = c n
: nk(n+k-+l)*

n+k 1
k;20

2.3.2 Computation of R2(n)

Let y(a,x) denote the 'incomplete gamma function' ; i.e.,

(7) /

(8)
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Y (a+> =
/

e
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Knuth [2] has shown that

a+2

eXY (a,4 =$+$I&+ "x
a a+1 (al-21

+
l .**'

Let G(a,x) = xexy(a,x)

a+P a+2
X ,a+3

=-+-$Tq+ ( +
a a a+1 (a+21 l '**

Then a (a+l)xa + (a+2)xa+l + ....
g&4 = a a a+l)

a i3G
and as; x5[ J~ = (a+l)2 xa

a
+*, + l . . .

Let H2(a,x) = gx =

Then H2(n,n) =

so that

s
R&d =

n! H2(n,n)

nn (n-l)!

From (11) we can find H2(a,x) to be

H2b,x) = y(a,x)ex (1+3x+x2) + (3x+2x2)ex  -& y(a,x)

+ x2 ex a
2

-2 Yb.94
3X

(9)

( 0)1

( >11

( 2)1

( 3)1

( 4)1



so that from (13) and (14.)

c

2\ Yb-vR&4 “h en (l+Wf-n 1 (n-m +=- [ 1.n

t 2
2.i.e n n
n

n 4

a2
n-l 1 ax2

y(a9x) (n,n)1

2.4 Computation of Q (n)

-=.

2.4.1 Let Sl an+ l b*o

From (6) above,

s1 = [ 1$(xe") x-n = en(l+n)
_ -

- (12)

( 6)1

nr en(l+n) =
nn

K

n-l n
nl=
nn

1-l -t no2 + ,.... n
n

(n-l)?
n' ( n+l . . .. ) )I

[n-k+111

= Q (n) + Rl(") (18)

where

Rl(n) t c **

lj0



2.4.2 Computation of Rl(n)

Let HlhX) =& G(a,x) =& [xexy(a,x)]

Then from (12),

H1 (alx) = (a+l> xa + a+2)a+l+
a -5-7a a+1 x . . . . .

SO that

HI b-v>
-=. =@%g&,

Therefore,

Rl(") =
n: Hl(n,n)

nn (n-l):

From (ll), we can find Hl(a,x) to be

H+x) = ex(l+x)[y(a,x)]  + xex & Ybv4
so that

( 9)1

(20)

. R1(“) = n! en(l+n)ifj
n

n k-d

(n9 n, + n! en n
n-l I

2 (n-1): Z y(a7x) (n,n)[ 1 (21)
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2.3 Computation of axa Y( a,x) and
a2
-;1 YhX)
ax

From (P), -.

& y(a,x) = xa-' ewx (22)

and

a2-2 y(a,x) = -x a-l -x a-2 -x
e +,(a&)x e (23)

ax

Therefore

and

-& y(a,x) (n,n) = nn’Vn1 (24)

a2
-2 YhX
3X

;I (n,n) = ( n-l)nnm2eMn- nn-l,-n( 27)

DJ
2.6 Computation of‘& (n)

From (21) and (24) we have,

Rl(n) = G (l+n)
n

Then, from (IS),

Cn-k+13  = * _
Q (n>

R
n 1

(n)

n

From (26),

[n-k+l] n, n

Q b') = + [lin - VW, (1-tn)] - n
n

(27)
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Further, Knuth [2] has shown that,

@n) =$ en [l- -i;]

. .

From (279, (28) and (4) we get,

Jyi) = 7: [l+n - --&@J$ (l+n) - (l+n) + w (l+n)]

+ n

Therefore
c 1
Q Fn) = n

2.7 Computation of Nave

From (24), (23) and (l>) we get

R2(n) = G (l+3n+n2) Y b-v>
n [ 17m + 2n(l+n)

Therefore from (8),

[(ni.k+1)'3

Q (n)
n!e

n
=-

n
(1+3n+n2) - R2(n)

n

n! e
n

=-
n

(l+3n+d2)
n

[l-g+] -

(28)

(29)

2n(l+n) (31)
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Knuth [2] has given the asymptotic formula for Q(n) as

Hence we obtain the desired asymptotic formula for N as:
avg

N f  2g-+T2 5 1 J- T2i  - 4 + 1=avg 133n 288 /-- 3 + O(nm2>

(34)

(39

3.0 Comparison of NaVg, n0.26
and the result computed by the asymptotic

formula

N
avg' n

0.36, and $ m 1
r-7 2 3

+ 1
12

r- fi 4 1

n
2n

-
ljfjn

+
338
f
2

were calculated for values of n 2 through 30 on the HP 9100 programmable

calculator. The results are summarized below:

1. The maximum percent error in the asymptotic result was

0.0713 at n=2.

2. The minimum percent error in the asymptotic result was

0.00012 at n+jO.

3. The percent error in the asymptotic result decreased

continuously with n.

4. The percent error and absolute error in the asymptotic

result were always less than the percent error and

absolute error in the empirical formula for N
avg'

respectively.

L.

L
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problem and it is my pleasure to aclrnowlcdgc his guidance,
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Prof. Stone and Dr. T.C. Chcn read the maxascript critica13.y and
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