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ABSTRACT

Ve use the central server nodel to extend Buzen's results on
bal ance and bottlenecks. W develop two neasures which appear to
be useful for evaluating and inproving conputer system perfornmance.
The first measure, called the balance index, is useful for bal ancing
requests to the peripheral processors. The second quantity, called
the sensitivity index, indicates which processing rates have the
most effect on overall system performance

W define the capacity of a central server nmodel as the maxi num
t hroughput as we vary the peripheral processor probabilities. W
show that the reciprocal of the CPU utilization is a convex function
of the peripheral processor probabilities and that a necessary and
sufficient condition for the peripheral processor probabilities to
achieve capacity is that the bal ance indexes are equal for all periph-
eral processors. W give a nethod to cal culate capacity using classi-
cal optimzation techniques.

Finally, we consider the problem of bal ancing the processing
rates of the processors. Two conditions for "balance" are derived
The first condition maxim zes our uncertainty about the next state of
the system This condition has several desirable properties con-
cerning throughput, utilizations, overlap, and resistance to changes
injob mx. The second condition is based on obtaining the nost

throughput for a given cost.
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1.  Introduction

Measurement is an inportant tool for finding "bottlenecks" in
conputer systems. Frequently neasurenent of a conputer system begins
by neasuring the utilizations of the central processor and 1/0
channels. If these measurements show that the utilization of one of
the processors is substantially larger than the utilizations of the
ot her processors this suggests that the processor wth the higher
utilization may be a bottleneck and may be degrading the performance
of the entire system The intuitive idea of a bottleneck needs to
be made nmore precise. In order to do this, it is helpful to consider
how we can inprove the performance of the systemonce the bottleneck(s)
have been identified. In general there may be several ways to inprove
the performance of the system

If the processor with the higher utilization is an |/0O channe
one way to inprove performance may be to bal ance the [oad on the
channels e.g. by shifting sone of the |oad fromthe busy channel to
the other channels. This may be acconplished by noving system data
sets to different devices, changing the allocation algorithns for
auxiliary storage, moving one or nore of the devices on the busy
channel to other channels, etc

Anot her approach is to try to inprove the scheduling of requests
at the busy processor in such a way as to reduce the average waiting
time at that processor. A third way is to replace sonme of the pro-
cessors or devices in the systemwth faster ones. The first nethod

Is basically different fromthe other two. The first nethod invol ves



changing the relative load on the various channels. The other nethods
are concerned with trying to increase the effective processing rate
at a given server.

In this paper we use the central server nodel [Buzen, 19714; Buzen
1971B; Buzen, 1973] to study ways to evaluate and inprove overall system
performance. In section 2 we consider the problem of bal ancing requests
to the peripheral processors. Sections 3 and 4 are concerned w th chang-
ing the processing rates to optimze performance. In section 5 we give
formulas for conputing the neasures devel oped earlier. Finally, in sec-
tion 6 we give several exanples of how the results mght be used.

Fig. 1 is a diagramof the central server nodel. The reader is

referred to the papers by Buzen [1971A, 1971B, 1973] for a detailed dis-

cussion of the nodel. The follow ng notation is used in this paper
My = service rate at the ith server
Py = probability a job chooses the ith peripheral server
n = degree of multiprogramm ng
u, = utilization of the ith server
L, (n) = average queue length at the ith server
Wi(n) = average waiting time at the ith server (flow tine)

th server (waiting and not

Q; (n) = average queuing tine at the i
bei ng serviced)

T = throughput (] obs/second)
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Figure 1. The central server nodel
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2. Balancing Requests to Peripheral Processors

For a given central server nodel, holding the service rates
constant, there is a set of peripheral processor probabilities which
maxi m zes CPU utilization and throughput (jobs conplated/unit tine).
W will call the maxi num throughput as the peripheral processor prob-
abilities are varied the capacity of the system W say that the
requests to the peripheral processors are balanced if the peripheral
processor probabilities achieve capacity. In this section we devel op
a quantity which tells us if the load on the peripheral processors is
bal anced and if not gives us some information about how to change the
*probabilities to inprove performance.

W can get an intuitive idea of the problem of balancing the
requests to the peripheral processors by considering the differential
of the reciprocal of CPU utilization With respect to the peripheral

processor probabilities.

8(1/uo) 8(l/uo)

dpl+...+ pom (1)

W found it nore convenient to work with 1/u0 i nstead of u, becuase
the partials of 1/uo with respect to p, are positive whereas they are

3(1/u ) 9(1/u )

negative for u,- Suppose T > T and suppose we change

Pi and pJ slightly so that the new val ues are P, "=pi + Ap and pj'=

pj - Ap, while'holding the other probabilities constant. Then for

smal | Ap



3(1/u) 3(1/u))
2 ° ) AP (2)

1G/ug) z( %®j %,

If Ap is positive the CPU utilization decreases and if Ap is negative

the CPU utilization increases. It appears that the quantities
3(1/uo)
D give an indication of the relative saturation of the periphera
i
] (lluo)
processors. The |arger ) the greater the relative saturation
i

of the ith device. W define

3(1/uo) auo 9T
b = a,; = - —a—p-i - - E,_i_
i 1/u u T 3)
o [o}
th

as the balance index for the i~ processor. The nornalized quantity
b, is the relative change in system performance due to an increnmenta
change in Py As (2) shows, transferring a small amount of |oad from
a device with a larger balance index to a device with a snaller
bal ance index inproves performance whereas transferring a small anount
of load in the reverse direction degrades perfornance.

In what follows we derive two results which support and strengthen
our interpretation of bi as a balance index. The results are based on
the fact that 1/uo is a convex function of the peripheral processor

probabilities which we will now prove. 1/u° can be expressed conveniently

interms of the conplete symetric functions Cn(x) (see Appendix).



Cn (x) pl P

— 1 m
Let f£ = d = - — — 1
, X & and g (p) fn< T ) " ) Then

1/uo = uogn(p) where n is the degree of nultiprogranmng. For a

derivation, see Buzen [1973] or Muntz and Baskett [1972]. In the fol-
| owi ng for convenience we drop the subscript n on fn(x) and gn(p).The

equations are true for any fixed n.

Theorem 1: 1/u0 is a convex function of the peripheral processor

probabilities.

Proof: Fromthe definition of f(x), 1/u_=ug(). Therefore it
is sufficient to show that g(p) is convex. Let p = (p1| o pm) and
p' = (py» ... p;) be two probability vectors and let A" =|-h
0 <A <1. In the Appendix we show that f(x) is convex. Therefore

A l' | L 1]
gp + A'p") = f (1_ u M)

P P P P
= f (xl— + A%—, =+ AL ) A2+ ;\'_m)
Ho LS| sl Hm *m
1 p p p' p|
< Af(u—-, _1.’ ’ _Pl) + )\'f(l , .._1_, o s _m_)
o M1 m o M1 M

Ag(p) + A'g(p')
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Hence g(p) and 1/u0 are convex. It is interesting to note that u,
i's neither convex nor concave as can be seen in Fig. 2.

Convex functions have the useful property that an unconstrai ned
local mninumis also a global mnimum A sinmilar result holds when
the variables are constrained to be probability vectors.

Theorem 2:  The relations

b, = —= =) all i such that pi>0 (4)

> A all i such that P = 0 (5)

are necessary and sufficient conditions on the peripheral processor
probabilities to maximze CPU utilization and throughput.

Proof: From Theorem 4.4.1 in Gallager [1968] and the fact that
g(p) is convex it follows that (4) and (5) are necessary and sufficient
to maximze -g(p). Therefore they nust be necessary and sufficient to
mnimze g and to maxinm ze u and T.

_ Theorem 2 states that a set of peripheral processor probabilities
achieve capacity if and only if the balance indexes for all channels with
non-zero probabilities are equal. This result agrees with our intuitive
interpretation of the balance index. Furthernore, it is useful if we
want to calculate the capacity for we know that we can use any nethod,
however sloppy, and if the nethod finds a set of probabilities which

satisfy conditions (4) and (5) then they nust achieve capacity.
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I'f a set of probabilities does not achieve capacity, ipe next
result gives sone information about how to change the probabilities
to inprove performance. Let p = (p1| L 40 Pm) and p' = (pll‘ . -*g pl;)

be two probability vectors.

. ' ] . . .
Theorem 3: g(p') - 9(p) > = _gﬂpl (p} - pj) and in particul ar
=1 Py
m
it ' o '
S0 (P @)= pi) > 0 then U (p) < u @)

Proof: Fromthe definition of convexity

Ag(p') + (1-2)g(p) 2 glrp' + (1-2)p] 0<a<1

Rearranging terns

g(pv) - g(p) > .&IAP' + Q'Aa)P] - g( p) (6)

Since (6) is valid for all A, 0<x< 1 we can pass to the limt, obtaining

g(e') - g(p) zéﬂép'—%uzm
A=0

m
- ¢ 28EL (py- P
=1 s

Theorem 3 strengthens our interpretation of the balance index. It
says that if we transfer | 0ad (not necessarily an incremental anount)

froma device which is |ess saturated to a device which is nore saturated



e

(i.e. fromone with a smaller balance index to one with a |arger index)
it will decrease the performance of the system (n the other hand, from
(2) we know that if we transfer an increnental amount in the direction
| arger bal ance index to smaller balance index it will inprove the per-
formance. If we transfer nmore than an increnental anount in the correct
direction we nay "overshoot" and the change may either inprove or degrade
the performance.

To sunmarize the results of this section, we have devel oped a
bal ance index which indicates the relative saturation of the periphera
processors; the larger the balance index the greater the relative sat-
uration of the-‘processor. System capacity is achieved when and only
when al | of the balance indexes are equal. |f the probabilities are
changed so that the "average" bal ance index increases then the perfor-
mance will decrease. If the probabilities are changed an increnental
amount so that the average bal ance decreases then the performance will
increase. If the probabilities are changed nore than an increnenta
amount so that the average bal ance decreases the performance may either

i mprove or decrease

10
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3. Sensitivity

In the previous section we considered the problemof howto im
prove system performance by changing the frequency of useage of the
different peripheral processors. As nentioned before, other approaches
to inmproving system performance are to buy faster devices or to try to
i nprove the scheduling of one or nore servers to reduce average waiting
time.! The effect of these changes is to increase the processing rate
of the server.

If we are considering increasing the processing rate of a server
it would be useful to know which processor should receive attention in
order to give the nost inprovement in system performance. Buzen [1971A,

1971B} has proposed gf— as a nmeasure of the extent to which the ith
i

server is creating a bottleneck. The quantity %%— is basically a sen-
i

sitivity measure show ng how sensitive system perfornmance is to an incre-

mental change in the processing rate of the 1th server. If we intend to

i nprove performance by increasing the processing rate of one of the ser-

] . A . . .
vers then 2 shoul d give us an indication of which server will have

aui

Isince the central server model assumes exponential service timnes
any schedul ing al gorithm which does not use information about process-
ing times will have the sane average waiting tine. Therefore the nodel
is not directly applicable to questions involving scheduling. However,
in actual systens the service times will not be exactly exponential and
i nformation about |atency on rotating storage devices and processing
times may be available. In this case a scheduling algorithmsuch as
shortest-latency-time-first may decrease the average waiting tinme.

Wien consi dering system performance nmeasures such as utilization or

t hroughput this decrease in average waiting tine can be nodel ed crudely
as an increase in processing rate. Thus the idea of sensitivity being
devel oped in this section may suggest where inproved scheduling wll
make the most inprovement in system performance.

11



the nmost effect. W suggest however that a nornalized neasure nay be
nore useful .

A normal i zed neasure seens nore appropriate because any change
we nake in a systemis nost likely going to be relative e.g. we may
consi der increasing the speed of a server by 20% or 50% etc. An
increase in processing rate of 10 operations/second for a processor
with u= 10 is not conparable to an increase of 10 operations/second

for a processor with uw = 100. W define

Qi
tlra' 1:'»—3
e

as the sensitivity index for the gth server. si gives the relative
change in system performance for a small relative change in M The
sensitivity index is useful if we are considering changing processing
rates because we know that system performance is nost sensitive to

the processing rates of the servers with larger values of s -

12



4. Designing a Balanced System

The word "bal ance" has another neaning, different fromthat of
section 2, which is often used in connection with conputer systens.

If a conponent is very fast relative to the other conponents of the
systemincreasing its speed further has little effect on system
performance. In fact it mght be possible to replace it with a
conponent which is considerably slower, and possibly cheaper, w thout
degradi ng system performance significantly. If possible, a designer
woul d I'ike to choose the speeds of the conponents so that none are
faster than necessary and none are so slow that they significantly
degrade system performance. This idea is often expressed by saying
that the systemshould be "balanced.” In this section we attenpt to
make this concept of bal ance nore precise.

A sinilar problemfaces the manager of an installation. He nay
be able to change the job mx and thereby the processing rates through
pricing, by varying the job scheduling algorithm etc. As much as
possible, a manager would like to "match" the job mx to the hardware
to maximze throughput. The conditions for balance derived bel ow show

how to change the job nmix to inprove perfornmance.

From the above discussion we see that bal ancing a systeminvol ves
varying the processing rates in order to optinize perfornmance. Thus
we have an optimzation problemsimlar to the one discussed in sec-
tion 2 In section 2 we considered the problem of maxim zing through-
put by varying the peripheral processor probabilities. Simlarly one

way to approach the problem of balancing a systemis to maxim ze

13



t hroughput by changing the u's. However, there is one fundanental
difference in the two problems. As we varied the probabilities they
had to satisfy the constraint that & Py = 1. In the case of the u's
there is no obvious constraint. Maximzing the throughput over the
u's wWithout any constraint doesn't nake sense because we coul d al ways
i ncrease throughput by increasing the u's. Two types of constraints
on the u's which are interesting are the follow ng:

1. Keep the geonetric mean of the u's constant.

2. Keep the total cost of the system constant.
W will consider the problems of maximzing the throughput subject to
each of the above constraints

The geonetric nean of the processing rates is

1

P P )

1 m\) 2
(uoul see Mo ) (7

The set of configurations with the same geonetric nean seens to cor-
respond closely to the pertubations we might consider intuitively to
determne if a systemis balanced. For exanple if we are trying to
decide if a systemis balanced we mght see if we can increase the

t hroughput of the system by making the CPU say 10% faster and the
|/ O devices 10% slower. O course both the original and the nodified
systens have approximately the same geonetric neans. This intuitive
approach to bal ance amobunts to hol ding the geonetric mean approxi -

mat el y constant and varying the u's to maxi mze throughput.

14
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The constraint that we keep the geonetric nean constant can be

witten as

Iny +pp o+ 4 Py 1n w = constant (8)

Lagrange's conditions for a maximumof T subject to (8) are

aT Py
O A— = 0
¥y My
or
s
: const ant
i = (9
. m -
wher e P, 1S taken to be 1. \Wen (9)hol ds s, = Isl. In section 3
i=1
m
weshowt hat I S = 1. Therefore the conditions given by (9) yield
i=0
S and s; = 5Py, 1 # 0. If an actual system has s > .5 t hen

according to these conditions we will say it is CPU bound; if s, <5

it is1/Obound. It is interesting to note that the conditions given

by (9) are the sane conditions derived for balancing the load to the

peripherals in section 2.

The conditions given by (9) can also be justified on the basis

of sensitivity. The conditions define a "center" point where the

systemis not particulary Sensitive to the processing rate of any

15
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single conmponent. This allows for the nost variation in processing
rates before some processor becones saturated. \When we design a system
we usually have only estimates of the u's and it seens reasonable to
design the systemso that a small percentage error in the CPU rate or
the /O rates woul d have about the same effect on throughput. Sinmlarly,
the job mx wll probably change over the |ife of the machine and again
It makes sense for the systemto have approximately equal sensitivity to
changes in either CPU or I/O rates. Fig. 3is a plot of the maxinum

t hroughput as a function of p = geonetric mean CPU time/geonetric nean
/O time, keeping the geometric mean of the processing rates constant.
The data displayed in Fig. 3 is for a systemwth four jobs and three

peripheral processors wth Py = Py = Py = .333. The value of p which

2
gives the nost throughput is given indirectly by (9). The graph shows
that the system has the best resistance to changes in job mx when the
conditions given by (9) are satisfied.

Managers are often concerned about mnaking good utilization of
the hardware. This suggests maxi m zing some average of the utilizations.
For a given set of p's the conditions above maximze the geometric nean

of-the wutilizations

P, P 1
1 2 P 5
(“dJl U w m) 2 (10)

The weighting in (10) may be reasonable in many cases. Suppose that
server 1 has a relatively large p, and relatively small utilization.

This neans that the server nust be relatively fast. Therefore a

16
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server with large frequency of useage and |low utilization nust be a
relatively fast server with low utilization, which is probably undesir-
able. Thus it seens nore inportant to make good utilization of the
servers with larger p's.

Finally, we note that the conditions given by (9) maxim ze our
uncertainty about the next state of the system The average entropy

of the service tines is given by

1 m
U=1-7(1nuo+2pilnu) (11)
1=1 1

The neaning of U requires sone explanation. The entropy of a continuous
systemis really infinite; it takes an infinite amount of infornation
to specify a real nunmber with zero tolerance. However, since any physi-
cal nmeasurenent is limted in precision to some snallest discernible
interval At we can talk about the entropy per discernible interval of
the corresponding discrete system |f we measure the values in multiples
of the smallest discernible interval (i.e. let At = 1) then the average
entropy per operation of the central server nodel is given by (11) wth
units of nats per discernible interval [Beckman, 1967; Gallager, 1968].
The average entropy has an interesting interpretation in terms of an
equivalent form of the central server nodel

It is not difficult to showthat the nodel in Fig. 1 is equivalent

to the nodel in Fig. 4 [Feller, 1966, pp. 54-54], where ry > wy

0<41i<m, Inthis equivalent nodel a job is served by an exponentia

18
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H
- server at a rate My It then chooses with probability ;i-to | eave

i
. C Wy
that server and with probability 1 - = to return for nore service.
i
The total service time at the ith server is still exponentially dis-
tributed and the nean service rate is still My If we |et T, = %E

where At is the smallest discernible time and neasure all tines in
units of At then the average anount of information per operation to
determ ne the next state of the systemis given by (11). Thus if U
is large we are relatively uncertain about what the next state of the
systemwi |l be whereas if Uis small we are relatively certain about
what the next state of the systemw |l be. Therefore if the systemis
L bal anced we woul d expect Uto be relatively large; if the systemis
L ei ther CPU bound or 1/0 bound U should be relatively small since there
is a high probability that the next state of a job will be at the
L limting server. The conditions given by (9) maximze the product of
the rate of conpletion of CPU and I/0O operations and U or in other words
- t hey maxi m ze our uncertainty about the next state of the system
A system which satisfies the conditions given by (9) is desirable
because it is not sensitive to errors in estimating job characteristics
or changes in the job mx. A'so, since the conditions nmaximze the
geonetric mean of the utilizations they will often yield an econom ca
system  However, if one conponent is much nore expensive than the
others then a systemwhich is /0 bound or CPU bound may be nore eco-
nom cal. One approach to getting the most throughput per dollar is to

hol d the system cost constant and vary the u's to maxi m ze throughput.

20



Suppose the cost of a processor is proportional to u*,a>0 Then

hol di ng the system cost constant is equivalent to the constraint.
s ] a a
= 12
e, toegHp teeete const ant 12)

where the ¢'s are arbitrary constants. Using Lagrange multipliers the

necessary conditions for maxi num throughput are

i -, = constant (13)
Ci¥y

21



5. Conput ation of Balance, Sensivitity, and Capacity

Bal ance

In section 2 the bal ance index was defined as

9(1/u .
__5__21_ du, T
bi = lp—i = o api = - api
( /uo) u T

After taking the derivative, tne results can be expressed in severa

equi val ent forns each of which may be useful in sone applications

Let
X be the rate of conpletion of CPU and 1/0 ti =
np operations uouo. Ve have
l1sic<nm
b . Li(@) - L, (n-1)
i pi (143)
Li(n)
. Li(n) - ui(n) +1
1
Py (14b)
- Q; (n)
A() | W(n) - o ) (L4c)

= )g_nl ( Li(n"l) + ) - A n-l

™ (Li(n-Z) + 1) (144)

22
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Equation (14b) shoul d be useful in calculating by for actual systens

since all of the quantities involved (average queue length, utilization
and relative frequency) can be neasured relatively easily. e i ght
expect that bal ancing requests to the peripheral processors to obtain
the best performance would result in equal average waiting tines at
each server. Form (l4c) is interesting because it shows that this is
not true. A sinmilar result has been observed for open networks wth

multiple servers [Schrage, 1972]. Equation (14d) shows that b, remains
finite as p; > 0 and may be useful in calculating by for small py» for

exanple if gradients are needed in an optim zing program

Sensitivitv

Sensitivity is defined in Section 3 as

aT
3u1
8; = 1-— 0<sigm
1
Mferentiation yields
8, = Li(n) - Li(n—l) (15a)

Corresponding to the alternate forns for bal ance we have

23



L, (n)
8, = Li(n) - a—i—(?)— + 1 (15b)

Q, (n)
i ) (15¢)

= pyjA(n) (Wi(n) - u

= u, (n) (Li(n-n + 1) - u; (n-1) (Li(n-Z) + 1) (15d)

wher e P, is defined to be 1. Thus s; = Pyby for 1 <i sm It is also

interesting to note that

This follows fromEuler's theoremon honogeneous functions.

Capaci ty
It is unlikely that sinple expressions for the probabilities which

achi eve capacity exist. However a sinple way to conpute these probabil -
ities nunerically has been found. Finding the capacity is basically the
probl em of minimzing a convex function of mvariables. Many nunerica
met hods for finding the unconstrained |ocal mnim of functions of
several variables have been studied [Brent, 1973]. However, the al go-
rithms for unconstrained mnim cannot be applied directly to find

capacity because of the constraints Py 2 0 and I pi = 1.

24
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The constraint that p, > 0 can be handled by assigning a large

positive value to the function whenever the mnimzation routine asks

to evaluate the function at negative arguments. The constraint that

Ip =1can be satisfied by mnimzing the conposite function

g(p) + (M - 1 p)))? (16)

where Mis sone |arge nunber. Tpe tern1(M(1-zpi))2is sometines referred

to as a penalty function. |f the nmininization algorithmfinds a mini num

of (16) over the region where the conponents are non-negative then the

condi tions

3g (
'gaffi_)' = (1 - Ip)) Pi >0
9g(p) > 2M%(1 - I pi) P =0

api

must be satisfied. Aso, the r pi nust be approximately 1 because

2 - - ag (p)
pinuOZM (l z p’) = piuouo —%;L = si <\ 1

or

0s1-% S S—
pi ) pinMOZM

25
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Therefore, by Theorem 2 the probabilities nust achieve capacity.

Several linear constraints on subsets of the probabilities can be

handled in the sane way.
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6. Applications

In this section we give several exanples of how the definitions
and theory of the previous sections night be applied. Consider a
systemw th the paraneters shown in Table 1. The systemhas a CPU
and three peripheral processors. The degree of multiprogrami ng
is 3. First consider balancing the load on the peripherals. In-
specting only the utilizations we mght try to balance the |oad on
the peripherals by transferring sone of the load fromserver 1 to
server 2or 3. However, from Theorem 3we know that this would actu-
ally decrease performance since b3 > by and b, > bl‘ Also, since the
bal ance indexes are not equal we know that we can inprove the per-
formance, for exanple by increasing p| and decreasing Py 2 smal | amount
Using the method described in Section 5we calculated the capacity of
this system The probabilities which achieve capacity are shown in
Table 2. At capacity the CPU utilization is 57.2%. Thus the nmaxi num
increase in CPU utilization that can be obtained by bal ancing the
requests to the peripherals is 5% (a relative inprovenent of 9.6%.
Based on this know edge we can deci de whether or not the potentia
gain is worth the effort.

Table 1 is an exanple where the processor with the highest utili-
zation does not have the l|argest value of by (in fact it has the
smal lest value of hi). In this case we saw that noving |oad away from
the server with the highest utilization will decrease perfornmance.
Tabl es 3 and 4 show exanpl es where the processor with the highest

utilization does have the largest value of bi. In these cases noving
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Table 1

An exanpl e where the processor with highest utilization does

not have |argest bi.

i
pi Py u, bi s, Li
0 6.5 - .522 .270 . 800
1 4 .667 .566 .469 .313 .895
2 1.5 2 452 1.044 .209 .654
3 1 .133 452 1.566 .208 .654
Table 2

An exanple with probabilities chosen to achieve capacity.

i

Hy Py uy by 8y Ly
0 6. 5 - 3572 0300 0943
1 4 . 865 . 804 . 704 .609 1. 608
2 1.5 .109 271 . 704 .077 344
3 1 .026 .097 .704 .018 .105
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Table 3

An exanpl e where the processor with the highest utilization
has the |argest b

i
My Py Yy by 51 Ly
0 6.5 - .358 - .130 485
1 4 3% .194 .151 .050 .228
2 1.5 " 333 .517 .753 .251 .801
3 1 .333 .775 1.708 .569 1. 485
Table 4

Anot her exanpl e where the processor with highest utilization
has the |argest b,

My Py Yy by 84 Ly
0 6.5 - .563 - .267 .942
1 4 .950 .868 749 .712 1.902
) 1.5 .030 .073 .348 .010 .078
3 1 .020 .073 .522 .010 .078
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| oad away fromthe server with the highest utilization can inprove
performance.  Thus one nust be careful in interpreting neasurenents
ifonly utilizations are available.

Finally, while constructing the exanples for this section we
observed that although the probabilities which achieve capacity are
often substantially different fromthe probabilities which give equa
utilizations and the resulting queue lengths and utilizations are
considerably different (conpare Tables 2 and 5), the difference in
throughput is frequently relatively small.

Next consider changing the processing rates. For the system
shown in Table 2, if we want to inprove the scheduling of one of the

processors, processor 1 should be considered since s. is relatively

1
| ar ge

Looking at theutilizations in Table 1 it is not obvious whether
the systemis CPU bound, 1/0 bound, or balanced. The conditions given
by (9) tell us that the systemis 1/0 bound (so <.,5). This means
sinply that changes in the I/Orate have nore effect on overall per-
formance than changes in the CPU rate. This suggests that the CPU
may be unnecessarily fast and that a slower CPU or faster 1/0O devices
may give nore throughput per dollar. Aso, the fact that the system
is I/0 bound shows that throughput can probably be increased by
changing the job mx to decrease the /O time per job and increase

the CPU time per job. A pricing schedul e which nakes I/Otine rela-

tively expensive and CPU tinme relatively cheap m ght be appropriate.
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Table 5

An exanple with probabilities chosen to give equa

utilizations.
i ui pi ui bi si Li
0 6.5 - .500 - .250 .75
1 4 .615 .500 .406 .250 .75
2 1.5 .231 .500 1.083 .250 .75
3 1 .154 .500 1.625 .250 07

An inportant problem which has not been addressed in this paper
is the question of how nuch main menory we should have. To hel p answer
this question we can conpute the capacity of the systemfor severa
values of n, the degree of multiprogrammng, as shown in Fig. 5. The

processing rates used in this exanpe are M = 6.5, by o= 4.0, M, = 1.5
and yu, = 1.0. Fig. 5 shows that as n is increased the marginal return

- decreases. The utilization of the processors at capacity for each val ue
of n are shown in Table 6. As n increases the utilizations approach

equal ity [Baskett, 1973]. However, they approach equality fairly slowy.
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Table 6

Processor utilizations at capacity.

n U0 ul u2 u3
1 .381 .619 0 0
2 .499 .767 114 .000
3 .572 . 804 .271 .097
4 .629 .817 .391 .231
5 .673 . 832 .476 .332
6 .708 . 846 .539 .410
7 .736 .858 .588 472
8 .760 .869 .628 .522
9 .779 .878 .661 .563
10 .796 . 886 .687 .598
11 .810 . 894 .710 .626
12 .823 .900 .730 .653
13 . 834 .906 .748 .675
14 . 843 .911 .764 .693
15 .852 .915 777 .712
16 . 860 .920 .787 .727
17 .867 .923 .799 .741
18 .873 .927 . 809 .754
19 . 879 .933 .807 .766
20 . 884 .933 .826 .775
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7. Concl usi ons

W have used the central server nodel to develop two quantities,
the balance index and sensitivity, which appear to be useful for
eval uating and inproving conputer system perfornmance. The bal ance
index is useful for balancing requests to peripheral processors.
Sensitivity indicates which processing rates have the nost effect on
overal | system performance. Many of the results can be extended
directly to general exponential networks of queues [Mintz, 1972].

& have shown that the balance index is a measure of the rela-
tive saturation of a processor. Specifically, shifting load froma
processor with a smaller balance index to a processor with a |arger
bal ance index decreases performance. Throughput is maxim zed when
all of the balance indexes are equal and we call the maxi num through-
put the capacity of the system Capacity should be a useful concept
because it gives a convenient upper bound on the performance of a
configuration.

Two conditions for balancing processing rates were derived. The
first condition maximzes our uncertainty about the next state of the
system This condition tends to give the nost overlap of resource
utilization and it shows us how to change the job mx to increase
throughput. Also, it may suggest which processors are unnecessarily
fast, if any. The second approach, used to derive (13), can be used
to determ ne optinum processing rates based directly on actual cost

functions.
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APPENDI X
AN | NEQUALI TY CONCERNI NG SYMVETRI C FUNCTI ONS

Let S ERRREL and bl""’bm be non-negative real nunbers. Let

E(a) denote the n'N ¢ enentary symetric function of a

18y and
let ¢ (a) denote the nth conpl ete symmetric function of a, LA
the formal definitions being
il im
E (a) = X a 1
1;4...41 =n 1O ran W
i=0or 1
il im
C (a) = z
n(® L4, 4 =g 1O Cam @)
l * o 0 m
1,50
j-—

The follow ng inequalities have been proved by Witely [1958] and ot hers:

1/
B, () 2E "(a) + E VR 3)

cl/
n

1 "
n(a.+b) < Cn /n(a) + Cn|/ (b) 4)

These inequalities are equivalent to the statements that Enl/n(a)

: 1
i's concave and C, /n(a) 1s convex. Marcus and Lopes [1957) show t hat
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E (atb) E (a) E_(b)
e 2wt ormy (5
n-1 n_l(a) En_l(b)

which is equivalent to the statement that the ratio En(a)/En ,(a) is

concave. |n this paper we prove the follow ng related inequality.

Theorem'

Cn(a+b) C (a) c (b)
T @ fom t 6)
n-1 n-1 (a) Cn_l (b)

This inequality is equivalent to the statenent that the ratio
C,(a/c _,(a) is convex. The proof given in this paper is simlar to
the proof of (4) by Witely [1958]. The proof uses the classical theory

of mexima and mning, together with induction on mand n.

Let the operator 6, applicable to forns in mvariables 2 a
T Tm
be defined by
m
)
b= I —
7
j=1 23 (7)
The effect of 6 on C (a) is easily evaluated, as follows.
Lemma 1. [Wiitely, 1958]
6c (a) = (min-1) C,-1 (@ (8)
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Pr oof :

%a, @ = Z iJall.
J i.+...+41i_ =n
1 m
i1 j'm
= (i +
( j 1) a . T..a
il+. C +im=n—1
Summation over j from1 to mgives (8) since M

Let

i +l = n-l-h
j=1 1

The effect of ¢ on f,(a) can be determned using Lenmma 1.

Lemma 2:

£ (a)
f )

efn (a) = mn-1 - (m+n-2)
n-1 (a

Proof: Differentiating (10)

3
Cn-l (a) 2a. Cn (a) - c:n(a)

]
da. Cn-l
1

d
da fn(a) = ] -
3 [c,_; (2]
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Sunming over j and using Lenmma 1 we get

m C(a) ¢ . ¢(
z 3-:— £ (a) = min-1 - (win-2) L n-g ()
j=1 7] 1 (3 ¢ @

which is equivalent to (11).
W also require aresult for the effect of an operator sinmlar to

g When the summation over j in (7) is inconplete. |, the fol | owi ng

par agraphs we prove several |emas which lead to the required result

Lemma 6.

Lemma 3: [Witely, 1962]
fn(a) < fn—l (a) (12)

L> with equality only if m= 1.

In section 6 of the paper referenced, Witely shows that

2 . . .
- ¢, /Cn_lcn+l 2 1 which is equivalent to (12).
- Let
i i i
L,(n) = — 1 3 m
j( ) Cn I ijal ) ..a:l . a (13)
i+ ..+l =n
1 n

I'n applications concerning queuing networks LJ has the interpretation

of average queue |ength.
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Lemma 4:
LJ (n) - Lj (n-1) 20, nx1 (14)
Proof:  The proof is by induction. For n = 1 we have
L 21
j(l)-Lj(0)= = - 020
Za
I=1 ]
In general, for n>1
Lj (n)Cn
CT = in,_l(LJ (n-1)+1) (15)
Thus
Cn-—l
Lj (n) - Cn a:j (Lj (n-1)+1) (16)
and
L ,(n-l) +1 L.(n-2) +1
Lj (n) - Lj (n-1) = a.'l (‘Jf— - —f—) a7
n n-|
L

By the inductive hypothesis and Lenma 3 the right hand side of (17)

nust be non-negati ve.
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Lemma 5:
a f (a
2a, fh(@ 21 - J‘)_
3 £ 12 (18)
Pr oof :
3
33— C - -9
2 ¢ _ n-1 3a n Cn da Cn-l
Joa n i
J C2 (19)
n-1
[t is not difficult to show that
C L
3 3 (20)
Substituting (20) in (19)
C .CL, (n)~- ,
J a C2
J n-1

|
= == f (L, (n) - L;(n-1))
3 n'y . (21)

or
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da, n 1
—-l—fn = = (Lj (n) - LJ (n-1)) (22)
Using (16) in (22)
I
da, n L ,(n-1) +1 L.(n-2) +1
—— - J_f__ - _jf— (23)
n n n-|
Subtracting %— - from both sides of (23)
n n-1
2 ¢
d3a, 'n . (}_ i 1 )= Li(n-l) Ly (n-2) ”
f f f f
n n n-| n n-|

By Letmas 3 and 4 the right hand side of 24 nust be non-negative and

we have

a
da fn
()
n n n-1

which is equivalent to (18)
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Lenma 6:
21 — f (a) | ( 2) fn(a)
a) < mrn-s-1 - (m#n-s- _n
j=s+1 %35 T B faey @7
Proof: From Lemma 5
f
0 n
—f 2 1-
F) n =
aj fn-r
Sunmi ng (27)
S i fn
I —f -sgf{1 -~ >30
j=1 %3 @ < n-1
Therefore

or

m £

I ——f < 6f(a)-sf1- —B
J=8+l 8aj n n-1
= mtn-l-g - (Mh-2-5) n

42
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Proof of the theorem

\\& use a doubl e induction on mand n. The inequa“ty (6) hol ds
(with equality) for all mif n=1and for all nif m=1 s sha|
prove that it holds for a particular pair mn (m2 2, n2 2) provided

that it holds for all pairs m",n With m'< mand all pairs m’n' With

n' < n.
Let a.,...,a_, b.,. . .,b be variables which are subject to the
1 m "1 m
condi tions
fn(a1+bl,...,arhl-bn) =1 (28)

alzo,. .o ,amzo, b.20,... ,bmzo

1

These conditions define a closed set of points in 2m di mensi onal space.

. . . C (atb)
The set of points is also bounded for if Cn—(ﬂ) = 1 then
a
n-.

Cn (a+b)

i n ' . . .
[cl(a+b)]n“1 <1 and since [Cl(a)] < n.Cn(a) this inplies that

2, [¢, (a+b) 1"

[C. (atb)]™~L <1l or C (atb) < nl  Therefore the function
C, (2

fn(a) + f,(h) (29)

has an absolute minimumin the set defined by (28) [Kaplan, 1952].
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Let M denote the mnimum of (29) subject to the above conditions.
It suffices to prove that M2 1, since this inplies (6) by conditions

of honogenenity.

Suppose first that the mninumis obtained at a point for which

3;>0,...,a >0, bl>0""’bnfo' This point cannot be a singular point on

the surface for by Euler's theorem on honogeneous functions we have

m m
9 9
I a, — f (atb) + I —_— = =
1=1 i Bai n(a ) j=t]). ] a}f:j (%+b) f %a*—b) 1 (30)

so that the first partial derivatives cannot all vanish. ...,

Lagrange's relations for a local extremal of (29) subject to (28) are

applicable. They are:

2 o, 8
7y @ - Say fu(at) = 0

3 ]
'53; fn(b) - A a); fn(a+b) =0

where A is an undetermned nultiplier. pepce

) d
a—a;‘ fn(a) = ) Sa. fn(a+b) (31)

1

2t (b =22
ab, ab. I, (atb) (32)
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Ve conbine these relations in two different ways. First we nultiply

(31) by a, and (32) by bj and sumfor i and j from1 tom gy Eyer's

t heorem on honogeneous functions we obtain
f,(a) + fn(b) = )«fn(a+b) (33)

By (28) and the definition of M this inplies A = M secondly we sum

over 1 in (31) and use the result of Lemma 2, in the two forns

; 2 ¢ = min (mtn-2) f“(a)
1=1 934 n(@) = mo-l @
P S £ (atb 2) o &)
—_— -+ = -1 - -
Lo atb) = whn-1 - (Mmk-2) D)
V¢ obtain
wn-1 - (min-2 n fn )
m ) fn-]_(a) =2 | mn-1 - (mtn-2) fn-l(a+b)> (34)
Simlarly from (32)
mn-1 - (w+n-2) SO A i (&)
- - m — = - - -
fn—l(b) mn-1 (m+n-2) fn-l(a+b) (35)

45



Now suppose A = M< 1. Then (34) vyields

mn-1 - (m+n-2 £y (a*b) £ (a)
min-2) W > mn-1 - (m¥n-2) .E—n )
n-1

Rear rangi ng

fg(a)fn_l(a+b)

fn—l(a)

fn (atdb) (36)
Simlarly from (35)
f (b)f _,(atb
fae1® 2 ) fp-1 (240
n £ (atd) (37)

Adding(36) and (37)

fheq (a+b) (£,(a) + £_(b))
£_(atb) (38)

fpp(@ + £, () <
Using (33) in (38)

fip(@ + £, ®
f -] (ab) <A<l (39)

But by the inductive hypothesis with n' = n-|

fa1(ath) s £ (a) + £ 4 (b)
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Hence (39) is a contradiction and we must have » = M> 1.
Suppose next that the mnimmof (29) subject to (28) is attained

at a point at which one or nore of A, A, bl,...,bmis 0. W can

suppose that a, and b, are not both 0 for any i, for in that case the

i
result would follow fromthe inductive hypothesis with m <m  Thys

wi thout | oss of generality we can suppose the mninum point has

where q <r, and has all the other a; and b3 posi tive.

The m nimum M is al so the mni mum of the function

fn(aq_'_l ,...,am) + fn(bl""’br) (40)

of maq+r variables, subject to

b

£ q'%+l+ q+l""’ar+1""’am) =1 (41)

1,.'l’b

with all the variables non-negative. These conditions define a closed
and bounded set of points in a space of mqg+r dinensions. The nininal
point is again a non-singular point on the surface (41), for the rela-
tion (30) remains valid if i is sumed fromg+l to m and jis sunmmed
from1l to r.

Hence Lagrange's conditions for an extremal of (40) subject to

(41) are applicable. They again give (31) and (32) except that i and
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j are limted to the ranges i >q and | <.

The deduction (33) renains

valid, on the understanding that a denotes the set
aq+l,...,am and b

denotes the set b_,....b ., W again have » = M
1 r

Sunmation over i fromqg+l tomin (31) gives

m m )
I —f (a) =r & —f (a+h) 42
i=q+l aai n i=q+l aai n ( )

wher e fn(a+b) now denotes the function on the left of (41). By Lenma 2

applied to fn(aq+l,...,am) we have

m
3 £ (a)
I —f (a) = m-q¢+n-1 - (m-q+n-2) —2——
1=q+1 Bai n (m~q 2) fn_l (a) (43)

By Letma 6 applied to the function on the left of (41) we have

Ig] 3 ¢ (+b) ( fn(a+b)
5— f (atb) < m-q+n-1 - (m~q+n-2) —2
i=q+1 331 n q 4 ) fn—l (atb) (44)
Conbi ning (42), (43), and (44) we get
£ (a)
m-qin-1 - (M Qg+n-2) fn—( <
n-1 a)
fn (a+b)
A | m-q+n-1 -(m-q+n-2) T (at0) (45)
n-1
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This corresponds to equation (34) with the constants nodified and

inequality in place of equality. gpilarly the inequality anal ogous

to (35) holds. Proceeding as before we again reach the contradiction

(39) and therefore we nust have A= Mz 1.
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