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We use the central server model to extend Buzen's results on

balance and bottlenecks. We develop two measures which appear to

be useful for evaluating and improving computer system performance.

The first measure, called the balance index, is useful for balancing

requests to the peripheral processors. The second quantity, called

the sensitivity index, indicates which processing rates have the

most effect on overall system performance.

We define the capacity of a central server model as the maximum

throughput as we vary the peripheral processor probabilities. We

show that the reciprocal of the CPU utilization is a convex function

of the peripheral processor probabilities and that a necessary and

sufficient condition for the peripheral processor probabilities to *I

achieve capacity is that the balance indexes are equal for all periph-

eral processors. We give a method to calculate capacity using classi-

cal optimization techniques.

Finally, we consider the problem of balancing the processing

rates of the processors. Two conditions for "balance" are derived.

The first condition maximizes our uncertainty about the next state of

the system. This condition has several desirable properties con-

cerning throughput, utilizations, overlap, and resistance to changes

in job mix. The second condition is based on obtaining the most

throughput for a given cost.
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Measurement is an important tool for finding "bottlenecks" in

computer systems. Frequently measurement of a computer system begins

by measuring the utilizations of the central processor and I/O

channels. If these measurements show that the utilization of one of

the processors is substantially larger than the utilizations of the

other processors this suggests that the processor with the higher

utilization may be a bottleneck and may be degrading the performance

of the entire system. The intuitive idea of a bottleneck needs to

be made more precise. In order to do this, it is helpful to consider

how we can improve the performance of the system once the bottleneck(s)

have been identified. In general there may be several ways to improve

the performance of the system.

If the processor with the higher utilization is an I/O channel

one way to improve performance may be to balance the load on the

channels e.g. by shifting some of the load from the busy channel to

the other channels. This may be accomplished by moving system data

sets to different devices, changing the allocation algorithms for
a

auxiliary storage, moving one or more of the devices on the busy

channel to other channels, etc.

Another approach is to try to improve the scheduling of requests

at the busy processor in such a way as to reduce the average waiting

time at that processor. A third way is to replace some of the pro-

cessors or devices in the system with faster ones. The first method

is basically different from the other two. The first method involves

1
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changing the relative load on the various channels. The other methods

are concerned with trying to increase the effective processikg  rate

at a given server.

In this paper we use the central server model [Buzen, 1971A; Buzen,

1971B; Buzen, 19731 to study ways to evaluate and improve overall system

performance. In section 2 we consider the problem of balancing requests

to the peripheral processors. Sections 3 and 4 are concerned with chang-

ing the processing rates to optimize performance. In section 5 we give

formulas for computing the measures developed earlier. Finally, in sec-

tion 6 we give several examples of how the results might be used.

Fig. 1 is a diagram of the central server model. The reader is

referred to the papers by Buzen [1971A, 1971B, 19731 for a detailed dis-

cussion of the model. The following notation is used in this paper.

%
= service rate at the ith server

pi
= probability a job chooses the i th peripheral server

n = degree of multiprogramming

= utilization of the i
th

ui server

Li (n> = average queue length at the i
th

server

wi (n) = average waiting time at the i
th

server (flow time)

0, (4 = average queuing time at the ith server (waiting and not

being serviced)

T = throughput (jobs/second)

2
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Figure 1. The central server model
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2. Balancing Requests to Peripheral Processors

For a given central server model, holding the service rates

constant, there is a set of peripheral processor probabilities which

maximizes CPU utilization and throughput (jobs complated/unit time).

We will call the maximum throughput as the peripheral processor prob-

abilities are varied the capacity of the system. We say that the

requests to the peripheral processors are balanced if the peripheral

processor probabilities achieve capacity. In this section we develop

a quantity which tells us if the load on the peripheral processors is

balanced and if not gives us some information about how to change the

*probabilities to improve performance.

We can get an intuitive idea of the problem of balancing the

requests to the peripheral processors by considering the differential

of the reciprocal of CPUutilization  with respect to the peripheral

processor probabilities. .

Who) =
a Wuo) a (l/uo)

apl
dpl + . . . +

apm dPm 0)

We found it more convenient to work with l/u0 instead of u. becuase

the partials of l/u0 with respect to p
i

are positive whereas they are

negative for u Suppose
Who>

api '

a(l/u,)

0. aP
and suppose we change

j

Pi and P.
J

slightly so that the new values are p
i ' = pi + Ap and p '=

j

pj
- Ap, while'holding the other probabilities constant. Then for

small Ap



A(l/uo) =
a wuo) a Wo)

-ap AP (2)
i aP3

If Ap is positive the CPU utilization decreases and if Ap is negative

the CPU utilization increases. It appears that the quantities

a aho)

a Pi
give an indication of the relative saturation of the peripheral

processors. The larger
a Wo)

a Pi
the greater the relative saturation

of the ith device. We define

L
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a aho)
auO aT

bi =
api api

l/u0 = - u.

api
-I--

T (3)

as the balance index for the ith processor. The normalized quantity

bi is the relative change in system performance due to an incremental

change in pi. As (2) shows, transferring a small amount of load from

a device with a larger balance index to a device with a smaller

balance index improves performance whereas transferring a small amount

of load in the reverse direction degrades performance.

In what follows we derive two results which support and strengthen

our interpretation of b
i as a balance index. The results are based on

the fact that l/u0 is a convex function of the peripheral processor

probabilities which we will now prove. l/u0 can be expressed conveniently

in terms of the complete symmetric functions C,(x) (see Appendix).



Let f,(x) = c
c,(x)

n-1 (x)
and g,(p) = fn k, -,

(

pl 'rn. ..)
)

Then
0 5 <'

l/u0 = pogn(p) where n is the degree of multiprogramming. For a

derivation, see Buzen [1973] or Muntz and Baskett [1972]. In the fol-

lowing for convenience we drop the subscript n on fn(x) and g,(p).  The

equations are true for any fixed n.

Theorem 1: l/u0 is a convex function of the peripheral processor

probabilities.

Proof: From the definition of f(x), l/u0 I peg(p). Therefore it

is sufficient to show that g(p) is convex. Let p = (p
1' . . . , pm) and

P' = (Pi, . . . . pi) be two probability vectors and let X' = l-h,

O<h<1. In the Appendix we show that f(x) is convex. Therefore

gap + X’p’) = f (L, 'Pl + "'Pi hPm + "'Pi

0 5 '
. . . ,

'm >

= f
(

pl pi+ + h'+, A-- + A'- 'rn P'

5 5 s
. ..)

0 0

$-- + x'f
m m >

5 hf
(

1 pl 'rn
<' <'

. . . ,
L ) (

+ Vf 1 pi

C' iy'
PiI

l ...

lh, >

= hg(p) + x'g(p')



Hence g(p) and l/u0 are convex. It is interesting to note that u.

is neither convex nor concave as can be seen in Fig. 2.

Convex functions have the useful property that an unconstrained

local minimum is also a global minimum. A similar result holds when

the variables are constrained to be probability vectors.

Theorem 2: The relations

ALapibiPT=X all i such that pi > 0 (4)

L
2.Lapibi =-2x8 all i such that pi = 0 (5)

i

are necessary and sufficient conditions on the peripheral processor

probabilities to maximize CPU utilization and throughput.

Proof: From Theorem 4.4.1 in Gallager [1968] and the fact that

L

g(p) is convex it follows that (4) and (5) are necessary and sufficient

to maximize -g(p). Therefore they must be necessary and sufficient to

minimize g and to maximize u and T.
- 0

Theorem 2 states that a set of peripheral processor probabilities

achieve capacity if and only if the balance indexes for all channels with

non-zero probabilities are equal. This result agrees with our intuitive

interpretation of the balance index. Furthermore, it is useful if we

want to calculate the capacity for we know that we can use any method,

however sloppy, and if the method finds a set of probabilities which

satisfyconditions  (4) and (5) then they must achieve capacity.
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Figure 2. An example showing u. is neither convex nor concave



i-0

If a set of probabilities does not achieve capacity, the next

result gives some information about how to change the probabilities

to

be

if

improve performance. Let p = (p
1' l **9 Pm) and p' = (p'

1' l -*s Pm)

two probability vectors.

Theorem 3: g(p') - g(p) > c JUQ (p'm a(
- j--l apj j

- pj) and in particular

m
' bj (P) (PJ - pj) > 0 then u (p') < u (p)

J=l
0 0

Proof: From the definition of convexity

Xg(p') + (l-A)g(p) 2 g[Ap’ + (1-A)Pl O<h<l

Rearranging terms

g(p') - g(p) 3. gr
Xp' + (1-X)pJ - g(p)

a (6)

L

Since (6) is valid for all A, 0 < h < 1 we can pass to the limit, obtaining

.

g(p') - g(p) 2 dgDP ;A(l-qpJ j
h=O

P
m ac --k&Q (P' - Pj)
jq apj j

Theorem 3 strengthens our interpretation of the balance index. It

says that if we tltansfer load (not necessarily an incremental amount)

from a device which is less saturated to a device which is more saturated

9
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(i.e. from one with a smaller balance index to one with a larger index)

it will decrease the performance of the system. On the other hand, from

(2) we know that if we transfer an incremental amount in the direction

larger balance index to smaller balance index it will improve the per-

formance. If we transfer more than an incremental amount in the correct

direction we may "overshoot" and the change may either improve or degrade

the performance.

To summarize the results of this section, we have developed a

balance index which indicates the relative saturation of the peripheral

processors; the larger the balance index the greater the relative sat-

uration of the-‘processor. System capacity is achieved when and only

when all of the balance indexes are equal. If the probabilities are

changed so that the "average" balance index increases then the perfor-

mance will decrease. If the probabilities are changed an incremental

amount so that the average balance decreases then the performance will

increase. If the probabilities are changed more than an incremental

amount so that the average balance decreases the performance may either

improve or decrease.

10
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In the previous section we considered the problem of how to im-

prove system performance by changing the frequency of useage of the

different peripheral processors. As mentioned before, other approaches

to improving system performance are to buy faster devices or to try to

improve the scheduling of one or more servers to reduce average waiting

time.l The effect of these changes is to increase the processing rate

of the server,

If we are considering increasing the processing rate of a server

it would be useful to know which processor should receive attention in

order to give the most improvement in system performance. Buzen [1971A,
c

aT1971B] has proposed - as a measure of the extent to which the i
th

a%

server is creating a bottleneck. aTThe quantity r is basically a sen-
i

sitivity measure showing how sensitive system performance is to an incre-

mental change in the processing rate of the Ith server. If we intend to

improve performance by increasing the processing rate of one of the ser-

vers then aT
q

should give us an indication of which server will have

lSince the central server model assumes exponential service times
any scheduling algorithm which does not use information about process-
ing times will have the same average waiting time. Therefore the model
is not directly applicable to questions involving scheduling. However,
in actual systems the service times will not be exactly exponential and
information about latency on rotating storage devices and processing
times may be available. In this case a scheduling algorithm such as
shortest-latency-time-first may decrease the average waiting time.
When considering system performance measures such as utilization or
throughput this decrease in average waiting time can be modeled crudely
as an increase in processing rate. Thus the idea of sensitivity being
developed in this section may suggest where improved scheduling will
make the most improvement in system performance.

11
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the most effect. We suggest however that a normalized measure may be

more useful.

A normalized measure seems more appropriate because any change

we make in a system is most likely going to be relative e.g. we may

consider increasing the speed of a server by 20% or 50% etc. An

increase in processing rate of 10 operations/second for a processor

with p = 10 is not comparable to an increase of 10 operations/second

for a processor with P = 100. We define

aT
all,

si= T

%

OSi:m

as the sensitivity index for the I th server. si gives the relative

change in system performance for a small relative change in p i. The

sensitivity index is useful if we are considering changing processing

rates because we know that system performance is most sensitive to

the processing rates of the servers with larger values of si.
s

L
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4 . Designing a Balanced System

The word "balance" has another meaning, different from that of

section 2, which is often used in connection with computer systems.

If a component is very fast relative to the other components of the

system increasing its speed further has little effect on system

performance. In fact it might be possible to replace it with a

component which is considerably slower, and possibly cheaper, without

degrading system performance significantly. If possible, a designer

would like to choose the speeds of the components so that none are

faster than necessary and none are so slow that they significantly

degrade system performance. This idea is often expressed by saying

that the system should be "balanced." In this section we attempt to

make this concept of balance more precise.

.

A similar problem faces the manager of an installation. He may

be able to change the job mix and thereby the processing rates through

pricing, by varying the job scheduling algorithm, etc. As much as

possible, a manager would like to "match" the job mix to the hardware

to maximize throughput. The conditions for balance derived below shaJa_

how to change the job mix to improve performance.

From the above discussion we see that balancing a system involves

varying the processing rates in order to optimize performance. Thus

we have an optimization problem similar to the one discussed in sec-

tion 2. In section 2 we considered the problem of maximizing through-

put by varying the peripheral processor probabilities. Similarly one

way to approach the problem of balancing a system is to maximize

-
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throughput by changing the p's. However, there is one fundamental

difference in the two problems. As we varied the probabilities they

had to satisfy the constraint that c pi = 1. In the case of the p's

there is no obvious constraint. Maximizing the throughput over the

p's without any constraint doesn't make sense because we could always

increase throughput by increasing the F.c's. Two types of constraints

on the p's which are interesting are the following:

1.

2.

Keep the geometric mean of the p's constant.

Keep the total cost of the system constant.

We will consider the problems of maximizing the throughput subject to

each of the above constraints.

The geometric mean of the processing rates is

.

The set of configurations with the same geometric mean seems to cor-

respond closely to the pertubations we might consider intuitively to

determine if a system is balanced. For example if we are trying to
w

decide if a system is balanced we might see if we can increase the

throughput of the system by making the CPU say 10% faster and the

I/O devices 10% slower. Of course both the original and the modified

systems have approximately the same geometric means. This intuitive

approach to balance amounts to holding the geometric mean approxi-

mately constant and varying the p's to maximize throughput.

14
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The constraint that we keep the geometric mean constant can be

written as

In v. + pl In p1 + . . . + p
m In 'm = constant

Lagrange's conditions for a maximum of T subject to (8) are

aT
xq

PAi
%

or

si

p i =
constant

0

03)

(9)

L

m
where p, is taken to be 1. When (9)holds so = C si. In section 3

i=l
m

weshowthat C s =l.
i Therefore the conditions given by (9) yield

i=0

Ss 0
= .5 and si = e5pi, i # 0. If an actual system has so > .5 then

according to these conditions we will say it is CPU bound; if so < .5

it is I/O bound. It is interesting to note that the conditions given

by (9) are the same conditions derived for balancing the load to the

,
peripherals in section 2.

The conditions given by (9) can also be justified on the basis

of sensitivity. The conditions define a "center" point where the

system is not particulary sensitive to the processing rate of any

i 15
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single component. This allows for the most variation in processing

rates before some processor becomes saturated. When we design a system

i

i

L

L

we usually have only estimates of the p's and it seems reasonable to

design the system so that a small percentage error in the CPU rate or

the I/O rates would have about the same effect on throughput. Similarly,

the job mix will probably change over the life of the machine and again

it makes sense for the system to have approximately equal sensitivity to

changes in either CPU or I/O rates. Fig. 3 is a plot of the maximum

throughput as a function of p = geometric mean CPU time/geometric mean

I/O time, keeping the geometric mean of the processing rates constant.

The data displayed in Fig. 3 is for a system with four jobs and three

peripheral processors with pl = p2 = p3 = .333. The value of p which

gives the most throughput is given indirectly by (9). The graph shows

that the system has the best resistance to changes in job mix when the

conditions given by (9) are satisfied.

Managers are often concerned about making good utilization of

the hardware. This suggests maximizing some average of the utilizations.

For a given set of p's the conditions above maximize the geometric mean '

of-the utilizations

( p1 p2 1
u u0 1 u2 'rn 2. . . urn

>

The weighting in (10) may be reasonable in many cases. Suppose that

server I has a relatively large pi and relatively small utilization.

This means that the server must be relatively fast. Therefore a

16
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Figure 3, Maximum throughput holding the geometric mean of the processing rates constant (=l)



server with large frequency of useage and low utilization must be a

relatively fast server with low utilization, which is probably undesir-

able. Thus it seems more important to make good utilization of the

servers with larger p's.

Finally, we note that the conditions given by (9) maximize our

uncertainty about the next state of the system. The average entropy

of the service times is given by

U=l- 1 (
m

2 In Po + C pi In pi
i--l >

(11)

e The meaning of U requires some explanation. The entropy of a continuous

system is really infinite; it takes an infinite amount of information

to specify a real number with zero tolerance. However, since any physi-

cal measurement is limited in precision to some smallest discernible

interval At we can talk about the entropy per discernible interval of

t the corresponding discrete system. If we measure the values in multiples

of the smallest discernible interval (i.e. let At = 1) then the average

entropy per operation of the central server model is given by (11) with

units of nats per discernible interval [Beckman, 1967; Gallager, 19681.

The average entropy has an interesting interpretation in terms of an

i

L

equivalent form of the central server model. \

It is not difficult to show that the model in Fig. 1 is equivalent

to the model in Fig. 4 [Feller, 1966, pp. 54-541, where r
i-i

L Osifm. In this equivalent model a job is served by an exponential

.
18
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server at a rate r %
i' It then chooses with probability - to leave

5

%that server and with probability 1 - -
=i

to return for more service.

The total service time at the ith server is still exponentially dis-

tributed and the mean service rate is still pi. 1If we let ri = ~\t

where At is the smallest discernible time and measure all times in

units of At then the average amount of information per operation to

determine the next state of the system is given by (11). Thus if U

is large we are relatively uncertain about what the next state of the

system will be whereas if U is small we are relatively certain about

what the next state of the system will be. Therefore if the system is

balanced we would expect U to be relatively large; if the system is

either CPU bound or I/O bound U should be relatively small since there

is a high probability that the next state of a job will be at the

limiting server. The conditions given by (9) maximize the product of

the rate of completion of CPU and I/O operations and U or in other words

they maximize our uncertainty about the next state of the system.

. A system which satisfies the canditions  given by (9) is desirable

because it is not sensitive to errors in estimating job characteristics

or changes in the job mix. Also, since the conditions maximize the

geometric mean of the utilizations they will often yield an economical

system. However, if one component is much more expensive than the

others then a system which is I/O bound or CPU bound may be more eco-

nomical. One approach to getting the most throughput per dollar is to

hold the system cost constant and vary the p's to maximize throughput.

20



Suppose the cost of a processor is proportional to pa, a > 0. Then

holding the system cost constant is equivalent to the constraint.

=opo OL + cpla + e.. + cmpma = constant (12)

where the c's are arbitrary constants. Using Lagrange multipliers the

necessary conditions for maximum throughput are

si
- = constanta
cipi

(13)

21
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5. Computation of Balance, Sensivitity, and Capacity

Balance

In section 2 the balance index was defin'ed as

a(l/uo>

bi =
api

(l/u )
0

au
aT
api

T

.

After taking the derivative, the results can be expressed in several

equivalent forms each of which may be useful in some applications.
Let

A be the rate of completion of CPU and I/O operations = p
u0 0. We have

llism

bi =
Li (4 - Li(n-1)

pi

Li W
x Lib) -ui(")+l

pi

Q, W
W,(n) - -

ui

Wa)

(14b)

(14c)

.
x

X(n)

5
Li(n-1) + 1 - W

> %
Li(n-2) + 1 (14d)



Equation (14b) should be useful in calculating bi for actual systems

since all of the quantities involved (average queue length, utilization

and relative frequency) can be measured relatively easily. One might

expect that balancing requests to the peripheral processors to obtain

the best performance would result in equal average waiting times at

each server. Form (14~) is interesting because it shows that this is

not true. A similar result has been observed for open networks with

multiple servers [Schrage, 19721. Equation (14d) shows that bi remains

finite as pi + 0 and may be useful in calculating bi for small pis for

example if gradients are needed in an optimizing program.

Sensitivitv

Sensitivity is defined in Section 3 as

aT
L

L

i
L

1

api
Sip T Osism

%

Mfferentiation yields

% = Li(n) - Li(n-1)

Corresponding to the alternate forms for balance we have

Wa>

23
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Si = LiW -
Li W
-+1ui (n)

Q,(n)
w,(n) - -

%

= u,(n)
(
Li(n-1) + 1

)
- u+l)

(
Li(n-2) + 1

)

(lW

(15c)

(15d)

where p, is defined to be 1, Thus si = pibi for 1 ,< i 2 m. It is also

interesting to note that

This follows from Euler's theorem on homogeneous functions.

Capacity

It is unlikely that simple expressions for the probabilities which

achieve capacity exist. However a simple way to compute these probabil-

ities numerically has been found. Finding the capacity is basically the

problem of minimizing a convex function of m variables. Many numerical

methods for finding the unconstrained local minima of functions of

several variables have been studied [Brent, 19731. However, the algo-

rithms for unconstrained minima cannot be applied directly to find

capacity because of the constraints pi 1 0 and C p
i

= 1.

24



The constraint that pi 2 0 can be handled by assigning a large

positive value to the function whenever the minimization routine asks

to evaluate the function at negative arguments. The constraint that

1 Pi = 1 can be satisfied by minimizing the composite function

g(p) + (M(1 - C pill2 (16)

where M is some large number. 2The term (M(l-Cpi))  is sometimes referred

to as a penalty function. If the minimization algorithm finds a minimum

of (16) over the region where the components are non-negative then the

conditions

ag(P)

a Pi
= 2M2(1 - c p,) Pi ' 0

L

ag(P)

api
2 2M2(l - C pi) Pi = 0

must be satisfied. Also, the C pi must be approximately 1 because

piuo~02M2(l - c p,) =
pi"o~o si <, 1

or

OS1 -cPi<
1

Piuo~02M=

25



Therefore, by Theorem 2 the probabilities must achieve capacity.

Several linear constraints on subsets of the probabilities can be

handled in the same way.

26



6 . Applications

In this section we give several examples of how the definitions

and theory of the previous sections might be applied. Consider a

system with the parameters shown in Table 1. The system has a CPU

and three peripheral processors. The degree of multiprogramming

is 3. First consider balancing the load on the peripherals. In-

specting only the utilizations we might try to balance the load on

I the peripherals by transferring some of the load from server 1 to

server 2 or 3. However, from Theorem 3 we know that this would actu-

ally decrease performance since b
3

> bl and b2 > b
1

. Also, since the

balance indexes are not equal we know that we can improve the per-

formance, for example by increasing Pl and decreasing
p3 a small amount.

Using the method described in Section 5 we calculated the capacity of

this system. The probabilities which achieve capacity are shown in

Table 2. At capacity the CPU utilization is 57.2%. Thus the maximum

increase in CPU utilization that can be obtained by balancing the

requests to the peripherals is 5% (a relative improvement of 9.6%).

Based on this knowledge we can decide whether or not the potential

gain is worth the effort.

Table 1 is an example where the processor with the highest utili-

. zation does not have the largest value of bi (in fact it has the

smallest value of bi). In this case we saw that moving load away from

the server with the highest utilization will decrease performance.

Tables 3 and 4 show examples where the processor with the highest

utilization does have the largest value of bi. In these cases moving
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-- Table 1

An example where the processor with highest utilization does
not have largest b

i'

i 5 pi 3 bi si Li
0 ' 6.5 - .522 - .270 .800

1 4 .667 .566 .469 .313 .895

2 1.5 .2 ,452 1.044 .209 .654

3 1 .133 .452 1.566 .208 .654

t ’

L

i

L
L

Table 2

An example with probabilities chosen to achieve capacity.

i 5 pi 3 bi % Li

0 6.5 - c572 - .300 .943

1 4 .865 .804 .704 .609 1.608

2 1.5 .109 .271 .704 .077 .344

3

1
.026 .097 .704 .018 .105
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Table 3

An example where the processor with the highest utilization
has the largest bi.

i 5 pi 5 bi si Li
0 6.5 - .358 - .130 .485

1 4 l 333 .194 .151 .050 .228

2 1.5 l 333 .517 .753 .251 .801

3 1 .333 ,775 1.708 .569 1.485

Table 4

Another example where the processor with highest utilization
has the largest bi.

i
% pi ui bi % Li

0 6.5 - .563 - .267 .942

1 4 .950 .868 ,749 .712 1.902

2 1,s .030 ,073 .348 .OlO .078

3 1 .020 C-073 .522 .OlO .078



L

L

1

1

1

L

load away from the server with the highest utilization can improve

performance. Thus one must be careful in interpreting measurements

if only utilizations are available.

Finally, while constructing the examples for this section we

observed that although the probabilities which achieve capacity are

often substantially different from the probabilities which give equal

utilizations and the resulting queue lengths and utilizations are

considerably different (compare Tables 2 and 5)) the difference in

throughput is frequently relatively small.

Next consider changing the processing rates. For the system

shown in Table 2, if we want to improve the scheduling of one of the

processors, processor 1 should be considered since s 1 is relatively

large.

Looking at theutilizations in Table 1 it is not obvious whether

the system is CPU bound, I/O bound, or balanced. The conditions given

by (9) tell us that the system is 110 bound (so < .5). This means

simply that changes in the I/O rate have more effect on overall per-

formance than changes in the CPU rate. This suggests that the CPU

may be unnecessarily fast and that a slower CPU or faster I/O devices

may give more throughput per dollar. Also, the fact that the system

is I/O bound shows that throughput can probably be increased by +

changing the job mix to decrease the I/O time per job and increase

the CPU time per job. A pricing schedule which makes I/O time rela-

tively expensive and CPU time relatively cheap might be appropriate.
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Table 5

An example with probabilities chosen to give equal
utilizations.

i % pi ui % Li

0 6.5 - a500 - .250 .75

1 4 .615 .500 .406 .250 .75

2 1.5 .231 .500 1.083 ,250 .75

3 1 .154 .500 1.625 .250 l 75

An important problem which has not been addressed in this paper

is the question of how much main memory we should have. To help answer

this question we can compute the capacity of the system for several

values of n, the degree of multiprogramming, as shown in Fig. 5. The

processing rates used in this exampe are p. = 6.5, ).I
1

= 4.0, p
2

= 1.5

ad u 3
= 1.0. Fig. 5 shows that as n is increased the marginal return

- decreases. The utilization of the processors at capacity for each value

of n are shown in Table 6. As n increases the utilizations approach

equality [Baskett, 19731. However, they approach equality fairly slowly.
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Table 6

Processor utilizations at capacity.

n U
0 ul u2 u3

1 .381 .619

2 .499 .767

3 .572 .804

4 .629 .817

5 .673 .832

6 .708 .846

7 .736 .858

8 .760 .869

9 a779 .878

10 .796 .886

11 .810 .894

12 .823 .900

13 .834 .906

14 .843 .911

15 .852 .915

16 .860 .920

17 .867 .923

18 .873 .927

19 .879 .933

20 .884 .933

0

.114

.271

.391

.476

.539

.588

.628

.661

.687

.710

.730

.748

.764

.777

.787

.799

.809

.807

.826

0

.ooo

.097

.231

.332

.410

.472

.522

.563

.598

.626

.653

.675

.693

.712

,727

.741

.754

.766

.775
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7. Conclusions

I

IL

.

L

We have used the central server model to develop two quantities,

the balance index and sensitivity, which appear to be useful for

evaluating and improving computer system performance. The balance

index is useful for balancing requests to peripheral processors.

Sensitivity indicates which processing rates have the most effect on

overall system performance. Many of the results can be extended

directly to general exponential networks of queues [Muntz, 19721.

We have shown that the balance index is a measure of the rela-

tive saturation of a processor. Specifically, shifting load from a

processor with a smaller balance index to a processor with a larger

balance index decreases performance. Throughput is maximized when

all of the balance indexes are equal and we call the maximum through-

put the capacity of the system. Capacity should be a useful concept

because it gives a convenient upper bound on the performance of a

configuration.

Two conditions for balancing processing rates were derived. The

first condition maximizes our uncertainty about the next state of the

system. This condition tends to give the most overlap of resource

utilization and it shows us how to change the job mix to increase

throughput. Also, it may suggest which processors are unnecessarily

fast, if any. The second approach, used to derive (13), can be used

to determine optimum processing rates based directly on actual cost

functions.
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APPENDIX

AN INEQUALITY CONCERNING SYMMETRIC FUNCTIONS

Let al,...,a and bm 1 ,...,b, be non-negative real numbers. Let

En(a) denote the n
th

elementary symmetric function of a
1
,...,a and

m

let Cn(a) denote the n th
complete symmetric function of a

1
,...,a

m'

the formal definitions being

En(a) = c il im

il+...+im=n al l **am

ifI or 1

C,(a) = c % im

il+...+im=n al l Oearn

i

:

i

(1)

(2)

IL
E 'in
n (a+b) > E

- n
""(a) + E

n
1'n(b) (3)

.

The following inequalities have been proved by Whitely [1958] and others:

C l'n(a+b)
n 5 C ""(a)

n + C l/"(b)
n

These inequalities are equivalent to the statements that En
""(a)

is concave and Cn ""(a) is convex. Marcus and Lopes [1957] show that
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En (a+W E,(a) En W
E&a+b) ' Engl(a) + $.&b) (5)

which is equivalent to the statement that the ratio E,(a)/E, ,(a) is

concave. In this paper we prove the following related inequality.

Theorem:' c

cn (a+W Cn (4 C,(b)
Cn,l(a+b) ' Cnwl(a> ' CnWl(b) (6)

This inequality is equivalent to the statement that the ratio

Cn(a)/Cnwl (a) is convex. The proof given in this paper is similar to

the proof of (4) by Whitely [1958]. The proof uses the classical theory

of maxima and minima, together with induction on m and n.

Let the operator 6, applicable to forms in m variables a
1
,...,a

m
be defined by

m
e= c a

j=l aaj

The e]ffect of 8 on C,(a) is easily evaluated, as follows.

Lemma 1: [Whitely, 19581

ecn (a) = (m+n-1) Cnwl (a)

(7)

(8)
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Proof:

-

1
L
L
fL
L

a
aa f+i> = c i.a

il i.-1

j il+...+i =n J '
. ..a J . ..aim

j m
m

5 im'  (ij+l> al . ..a
m

il+. . . +im=n-1

Summation over j from 1 to m gives (8) since m

' 3+'
= n-l-h

j=l

Let

fn(a>  = c
cn (a)

n-1 (a)

The effect of 8 on f,(a) can be determined using Lemma 1.

Lemma 2:

efn (a> s m+n-1 - (m+n-2)
fn (a)

fn-1 (a)

Proof: Differentiating (10)

C

j$ f,(a) =

n-l (a) j$ Cn (4 - CnW $ Cngl (4
j j

J rCn-l(a)12

(9)

(10)

(11)

L
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Summing over j and using Lemma 1 we get

m
c $- p = m+n-1 - (nr+n-2)

C,(a) Cn 2 (a)

j=l J Cn-l (a) q1 (a)

which is equivalent to (11).

We also require a result for the effect of an operator similar to

8 when the summation over j in (7) is incomplete. In the following

paragraphs we prove several lemmas which lead to the required result

Lemma 6.

Lemma3: [Whitely, 19621

i

L
‘nca) 2 fn-l (a>

t

with equality only if m = 1.

In section 6 of the paper referenced, Whitely shows that

L cn2/c c
n-l n+l L 1 which is equivalent to (12).

L

Let

Lj(n) = $ c 5 ij 'm

n il+

ijal . ..aj . ..a.

. ..+im=n

(12)

(13)

In applications concerning queuing networks Lj has the interpretation

of average queue length.
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Lemma 4:

Lj (n) - L
j
(n-1) 2 0, n 2 1

Proof: The proof is by induction. For n = 1 we have

Lj (1) - Lj(0) = + - 020

Ca
j-1 j

In general, for n 2 1

Lj(n)Cn xc

"j
,_,(Lj(n-l)+l)

Thus

C
Lj (4 = + aj(Lj(n-l)+l)

n

(14)

(15)

06)

and

Lj (4
L (n-l) + 1

- Lj (n-1) = acl P L.(n-2) + 1

fn - f
' )

07)
n-l

i

1 my the inductive hypothesis and Lemma 3 the right hand side of (17)

must be non-negative.
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Lemma 5:

a
aa f,(a)  2 1 -

fn (a)

j fn-1 (a)

Proof:

a
ZT fnx

j C2
n-l

It is not difficult to show that

i
i

a
X ‘n =

b)‘nLj

3 “j

Substituting (20) in (19)

L

a C
Tfn =

n-lCnLj  (n) - C Cn

5

n-lLj  tn-l)
2

"j'n-1

.X 1a fn(Lj(n) - Lj(n-l)J

j

08)

(19)

(20)

(21)\

or
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a,
aa. n

-+-=
n

L (Lj (4 - Lj (n-1))
aj

Using (16) in (22)

(22)

aa. *n
-+X

fn n-l
(23)

Subtracting

Lf
2-2~ + 0 1

fn ( fn n-l >

= Lj(n-l) _ Lj (n-2)

fn
f (24)
n-l

. By Lemmas 3 and 4 the right hand side of 24 must be non-negative and

we have

a _

( 1 1- - - -
fn fn-l )

IO (25)

which is equiealent to (18)
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Lemma 6:

i

m
c 2aa !nca)

j=s+l j
2 m+n-s-l - (m+n-s-2)

fn (4

fn-1 (a) '
1 S s 5 m-l (26)

Proof: From Lemma 5

Lf fn
aa

5
n "- f

n-l

Summing (27)

S

jfl aaj
-efn-.(,- &)? 0

Therefore

m
ef,(a> - C 7$- f

j=s+l j n
-s(l- +-)? 0

m
c a,

j=S+l aaj n
s efn(a>

-+ 5) ,

= m-1-s - (m-h-2-S) fn
f
n-l

(27)
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Proof of the theorem

We use a double induction on m and n. The inequality (6) holds

(with equality) for all m if n =I 1 and for all n if m = 1 . We shall

prove that it holds for a particular pair m,n (m 2 2, n 2 2) provided

that it holds for all pairs m',n with m' < m and all pairs m n'
9 with

n' < n.

Let al, . . . , a
m' bl' . . ..bm be variables which are subject to the

conditions

fn(al+bl,-.,a  +b ) = 1
m m (28)

These conditions define a closed set of points in 2m dimensional space.

i

The set of points is also bounded for if C
Cn (a+W

, b+W
= 1 then

Cn (a+b)

[Cl(a+b)Jnwl
< 1 and since [Cl(a)ln s n!Cn(a) this implies that

L

$ [Cl (a+b) I”

&(a+b)]"-l
< 1 or Cl(a+b) < n! Therefore the function

f,(a) + f,(b) (29)

has an absolute minimum in the set defined by (28) [Kaplan, 19521.
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Let M denote the minimum of (29) subject to the above conditions.

It suffices to prove that M 2 1, since this implies (6) by conditions

of homogenenity.

Suppose first that the minimum is obtained at a point for which

aI>0 ,...,am>O, bl>O,...,b ~0.
m This point cannot be a singular point on

the surface for by Euler's theorem on homogeneous functions we have

m
C a a f (a+b) + y b -?- f (a+b) = f (a+b) = 1

iat1 i aai n j=l j abj n n (30)

so that the first partial derivatives cannot all vanish. Hence

1 ’
L

i

iL

1.

Lagrange's relations for a local extremal of (29) subject to (28) are

applicable. They are:

fn(a+b) = 0

.

$- f,(b) - h $-
j j

fn(a+b) = 0

where X is an undetermined multiplier. Hence

(31)

& f,(b) * X $-
j j

fn(a+M 02)
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c

We combine these relations in two different ways. First we multiply

(31) by ai and (32) by b
j

and sum for i and j from 1 to m. By Euler's

theorem on homogeneous functions we obtain

f,(a) + f,(b) = Xfn(a+b) (33)

By (28) and the definition of M, this implies X = M. Secondly we sum

over i in (31) and use the result of Lemma 2, in the two forms

= m-h-1 - (m+n-2)
fn (4

fn-1 (a)

fn(a+W = b-1 - (m-k-2)
fn (a+b)

fn-l (a+b)

! We obtain

fn (a)
m-1 - (m+n-2)

f&a) = A

fn b+W
*-1 - (m+n-2) fnel(a+b)

>
(34)

Similarly from (32)

m+n-1 - (m-In-2)
fn 6)

fn-l(b)

fn Ca+W

mtn-l - (m4n-2) fnwl(a+b) (35)
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Now suppose A = M < 1. Then (34) yields

m+n-1 - (m-In-2)
fn (a+W

fn l(a+b) ' m+n-1 - (mfn-2) f
fn (4
n-1 (a)

Rearranging

Similarly from (35)

I

!
Adding  (36) and (37)

f
fJa)m l(a+b)

n,l(d < -
fn (a+b)

f
fn(Wfn ++b)

n-Jb> < -
fn (a+b)

i

f
fn-l(a) + f,-l (b) <

n lb+b)(fn(a)
-

+ f,(b)>

$(a+b)

L Using (33) in (38)

fn-l(a) + fn,l (b)

fn-l (a+W <A<1

But by the inductive hypothesis with n' = n-l

(36)

(37)

(38)

(39)

fn,l(a+b) L &(a) + fnml (b)
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i

1
i

L

Hence (39) is a contradiction and we must have X = M 2 1.

Suppose next that the minimum of (29) subject to (28) is attained

at a point at which one or more of a1 ,...,amb, 1 ,...,b, is 0. We can

suppose that ai and bi are not both 0 for any i, for in that case the

result would follow from the inductive hypothesis with m' < m. Thus

without loss of generality we can suppose the minimum point has

al = . . . = aq = 0, btil = . . . - bm = 0,

where q 2 r, and has all the other ai and b
3

positive.

The minimum M is also the minimum of the function

f (an q+l ,--,a,) + fn(bl,-,br)

of m-q+r variables, subject to

fn(bl,...,b ,a +bq q+l q+ls~-+,+l,-4m) = 1

(40)

(41)

with dll the variables non-negative. These conditions define a closed

and bounded set of points in a space of m-q+r dimensions. The minimal

point is again a non-singular point on the surface (41), for the rela-

tion (30) remains valid if i is summed from q+l to m and!j is summed

from 1 to r.

Hence Lagrange's conditions for an extremal of (40) subject to

(41) are applicable. They again give (31) and (32) except that i and
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j are limited to the ranges i > q and j I r. The deduction (33) remains

valid, on the understanding that a denotes the set a
q+l

****s a and b
m

denotes the set b
1
,...,b

r*
We again have h = M.

Summation over i from q+l to m in (31) gives

m m
c a f (a) = h

i--q+1 aa, n
C _a f (a+b)

i=q+l aa, n
(42)

where fn(a+b) now denotes the function on the left of (41). By Lemma 2

applied to f (an q+l'*.* ,am) we have

L

L

m
C A- f (a) = m-qfn-1

i=q+l aa, n
- (m-q+n-2) f

fn (4

n-1 (a)

By Lemma 6 applied to the function on the left of (41) we have

m
c W-L

i=q+l aai
fn(a+b) 5 m-q+n-1 - (m-q+n-2)

m(a+w

fn-l (a+W

Combining (42), (43), and (44) we get

m-q+n-1 - (m-q+n-2)
fn (a)

fn-l(4 ' I

X
(
m-q+n-1 -(m-q+n-2) f

fn (a+W

n-l b+b) >

(43)

(44)

(45)
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This corresponds to equation (34) with the constants modified and

inequality in place of equality. Similarly the inequality analogous

to (35) holds. Proceeding as before we again reach the contradiction

(39) and therefore we must have A = M 2 1.
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