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SECTION 1

BACKGROUND

1.1. Introduction to the Problem.

In previous papers, 1/,2/ R. W. Cattle and R. S. Sacher have

discussed three algorithms for the solution of large-scale linear

complementarity problems. For a given matrix M F Rnxn and a given

vector qc R,n the linear complementarity problem is that of finding

a solution z to the system

q+Mz>O=

220

zT(q + Mz) = 0 .

The methods required that M be a tridiagonal, Minkowski matrix. This

I
means M = (mij) satisfies the following conditions:

L W mij $0 if ifj

~ (ii) mij = 0 if Ii-jl>l

L (iii) M has positive principal minors.

The three algorithms may be briefly described. Algorithm I is

a modification of the principal pivoting method [13]. Algorithm II is

a specialization of a method proposed by Chandrasekaran [9] and employs

I'R. W. Cottle and R. S. Sacher, "On the Solution of Large, Structured
Linear Complementarity Problems: I, lr Technical Report 73-4, Department
of Operations Research, Stanford University, 1973.

2'R S Sacher "On the Solution of Large, Structured Linear Complementarity
Problems: II:" Technical Report 73-5, Department of Operations Research,
Stanford University, 1973.
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LU factorizations. The algorithm is "adaptive" in the sense that each

iteration exploits the factorization associated with its predecessor.

Algorithm III is a modification of the point successive overrelaxation

technique.

In this paper, we consider the more general linear complementarity

problem in which the matrix ‘is no longer necessarily tridiagonal but may

be block tridiagonal. We still assume it to be Minkowski, however.

This means we may partition M into submatrices M
ij

(i, j = 1,2,...,m)

such that

(i> Mii is a Minkowski matrix of order ni = 1, 2, . . . , m,

(ii) M.. < 0 (elementwise) if i # j,
1J =

(iii) M has positive principal minors,

(iv) M.. =
iJ

0 if Ii-jl > 1.

(Matrices satisfying condition (iv) alone are known as block tridiagonal

matrices.) We also require that M be positive definite and the diag-

onal blocks, Mii, be symmetric and tridiagonal. (With this last assump-

tion, we may vastly increase the efficiency of the algorithm we propose

in Section 2.4 by incorporating the techniques described in the previously

cited paper by R. S. Sacher.)  Such matrices include block tridiagonal

Stieltjes matrices (see [58;p. 851) whose diagonal blocks are tridiagonal.

These occur frequently in the discretization of elliptic partial differential

equations. In fact, it is in this connection that an important application

of the linear complementarity  problem is discussed in Section 3.

The convergence of the algorithm we propose in Section 2.4

requires only that M be positive definite and that the diagonal blocks,



M
ii'

be symmetric. (That is, in proving convergence, we drop the

assumptions of block tridiagonal structure and nonpositive off-diagonal

entries.) The method is consequently stated in full generality.

1.2. Drawbacks of the Generalization of Algorithm I.

The success of Algorithms I and II for the tridiagonal case

suggests that they may be profitably applied to the block tridiagonal

case. The purpose of this section is to show why the benefits of those

techniques are lost in their extensions.

Consider first the modified principal pivoting algorithm. Certain

structural properties of the tableaux under principal pivoting when M

is block tridiagonal are analogous to those when M is a tridiagonal

matrix. Consequently, an immediate extension of Algorithm I

_ may create a prohibitive number of nonzero entries to be stored as

the algorithm progresses. The following two examples illustrate this

remark.

Example 1. In Figure 1, the lighter lines indicate the partition of M.

We assume that the matrix is block tridiagonal and Minkowski, Mii is

tridiagonal of order ni = n = 3 and the off-diagonal blocks are

diagonal matrices. The innermost block is M
33’

the pivot block. The

locations of possibly nonzero entries in the pivotal transform z are

indicated by the asterisk symbol. The main significance of this

example is that with the given pattern of zeroes, the principal block

pivot on M
33

may create complete fill-in within the dark border.

(For notational convenience, we refer to the entries outside the

3
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pi\.-ot block but inside the dark lines as the frame of the pivot,I n

this case, the frame is of width n.)

Example 2. Figure 2 portrays the effect of pivoting on the blocks

j?~~, Mb4' . . . , Mm-l,m-1 where m is odd. If m equals n, one can

easily show that even if (as in Algorithm I) we discard the transformed

tableau entries in columns where a pivot has occurred, the number of non-

zeroes which must be stored in the transformed tableau is (g (n-l) + l)n2

= 5 n3 _ 2 n2
2 2 . Compare this with the number of initial nonzero entries

in M, i.e., n(3n-2) + 2(n-1)n = 5n2 - 4n. (It is not uncommon [193

for n to equal 100 and thus to have an approximate increase in the

number of nonzeroes which must be stored from 50,000 to 2,500,000!)

6.3. Drawbacks of the Generalization of Algorithm II.

Recall that Algorithm II, the modification of Chandrasekaran's

method using factorization, requires the solution of a sequence of

systems of linear equations by LU decomposition. The order of the

final system solved is equal to the cardinality of the set of positive

z-variables in the solution to the linear complementarity  problem.

From [9], we know that if M.E Rpxp is a Minkowski matrix and if

q< 0, then the solution is the positive vector z = -M-'q Z Rp and

we are required to solve a linear system of order p. If we use the

example corresponding to Figure 1, we have p =mn. We would like

to factor M in a wa.y that exploits its structure and sparsity as

much as possible. If we were to view it as a band matrix of width n,

wr) would use LU or Cholesky (?tT) factorization since they both

5
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****** ****** ******
****** ****** *jc**Jc*
****** *SC**SC* ******

****** * *.** *.* ******
****** SC**SC** ******
****** ****** 3c**3c**

*** *** *** *** ***
*** *** SC** *** ***
*** **++ 3c** *** ***

*** *** -* * *
-)c** *** ***
*SC* *** ***

*** *** *** *** ***
*** *** *** *** 3c**
+i** * * - I t - * * * *** ***

*** **-x ***
*** *** ***
*** *** **SC

*** *** *+*

1 1 1 1 I:=I I::: I::r;l

Figure 2. Matrix z of Transformed Tableau After

Principal Pivots on M22, Mb4,...,Mm 1 m 1
9 -

(m = 7). Original Matrix is Block Trii

Diagonal and Minkowski.
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preserve the bandwidth [36]. Unfortunately, neither method of decom-

position will preserve the sparseness of the original data. This is

illustrated by the example in Figure 3 where the matrix M corres-

ponds to the finite difference equations representing the Laplace

equation: M..11
is tridiagonal with diagonal entries equal to 4 and

off-diagonal entries equal to -1; furthermore, M
i,i-1

and M
i,i+l

are negative identity matrices. Since the bandwidth of such a matrix

cannot be reduced any further, the Cholesky (ttT) factorization re-

quires storage for almost 7p"
21

2 2
=(m-2)n

i=2mn +mn-2n -n nonzero

matrix entries. For instance, if m =-n = 100, then the initial number

of nonzeroes in the matrix is approximately 5n2 = 50,000 while

2mn2 + mn - 2n2 - n is approximately 2,000,OOO. The LU factorization

needs nearly twice as much storage as the Cholesky factorization since

L, UT and 2 have idential patterns of nonzeroes, i.e., k? U
ij' ji

and

2ij are simultaneously nonzero or zero [36].

A third alternative for factorization is a special case of

methods known as group- or block-elimination [36, p. 591. Isaacson and

Keller [$I discuss one technique which is a highly efficient direct

method but which requires slightly more storage than the Cholesky

decomposition. Following their discussion, we seek a factorization of

the form

M = L U =

Al

B2 A2

B3 A3
. .

. .
. .

Bm *m

I1 cl

I2 C2
. .

. .. .
.

l 'm-1.

'rn

7
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-1-1 44 -1-1 -1-1
-1-1 -1-1 4 -14 -1 -1-1

-1-1 -1-1 4 -14 -1 -1-1
-1-1 _ -1 4 -1-1 4 -1_ -1-1

-1-1 -1-1 44 -1-1

-1-1 4 -14 -1
-1-1 -1 4 -1-1 4 -1

-1-1 -1 4 -1-1 4 -1
-1-1 -1 4 -1-1 4 -1

-1-1 -1 4-1 4t

i
i

L

Figure 3 . Example of a 'LAP" Matrix with m = 4, n = 5.
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where the identity matrices I. and the matrices A., B., and C
J 3 J j

are all of order n
j

(j = 1, 2, . . . , m). Consequently,

Al = Ml1

Bi = Mi i 1
J -

Ai = Mii - BiCi 1

and A-34'i= i i

i = 2, 3, . . . , m,

i = 2, 3, . . . , m,

i = 2, 3, . . . , m-l.

There are m-l matrices A
i

and m-l matrices C -f which may

each contain n
2

storage. Hence,

locations versus

factorization.

A I

nonzero entries. The Bi matrices need no additional

the block-LU decomposition requires 2mn2 - n2 storage

the 2mn2
2

+ mn - 2n - n required by Cholesky

In summary, extensions to both principal pivoting methods and

various factorization techniques are stymied by storage problems.

Similar difficulties in solving large systems of linear equations were

recognized by numerical analysts. These difficulties rekindled their

interest in iterative (versus direct) methods of solution--that is, in

determining techniques to accelerate the convergence of existing methods

and in developing new approaches. -In Section 2, some results in the

former category will provide motivation for the iterative technique

we propose for solving the linear complementarity problem (q,M) when

M -is a block tridiagonal, positive definite Minkowski matrix whose

diagonal blocks have symmetric tridiagonal structure.

9



SECTION 2

ALGORITHMS FOR THE BLOCK TRIDIAGONAL LINEAR COMPLEMENTARITY  PROBLEM

2.1. Introduction.

It is ironic that the algorithm we develop in this section

arises as a generalization of the least computationally attractive

method of Algorithm I, II and ILII. Yet the computational experience

reported in Section 4 demonstrates that this generalization is at

least competitive with, if not superior to, techniques currently

available [71, [191, [291, [451, [461, [471, [591 f o r  solving the

engineering application described in Section 3.

Because of the analogy of the proposed algorithm with relaxation

techniques for systems of linear equations, we open this section with

some remarks about these methods. For the remainder of the paper, we

will observe the following notational conventions. All vectors are

column vectors. By a slight abuse of notation, we let z = (z ,Z

denote the column vector z in Rn.

n 1 z >2"**' n

Similarly, if zi 5 R i and

c'=1 ni
= N, then we may let z = (zl,z2, . . . , z denote the column

m
)

vector z in RN . Finally, the algorithms to be described will

kgenerate a sequence of iterates z-, k = 1, 2, . . . , converging to a

solution. The value of Zk is determined by a specified transformation

k-l
on z . kTherefore the sequence z , k = 1, 2, . . . , is totally

determined by an initial vector Z0 k. We denote the sequence z ,

k = 1, 2, . . . , by {zk) and suppress its implicit dependence on Z0 .

10
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2.2. Point Successive Overrelaxation (SOR) Algorithm for Linear Systems.

The point successive overrelaxation algorithm for solving the

linear system Mz + q = 0, where M is an m X m matrix, is an

accelerated version of the earlier Gauss-Seidelmethod [58]. This

latter method generates a sequence of iterates Zk mER according

to the formula:

Zk+l * k+l
i =- ( z m..z. + c

k
J<iiJJ m z.. .

j>i 'JJ + qj)/mii

-i = 1, 2, . . . , m.

Each component of zk+l is recursively determined in terms of the

current values of the others. The recursion formula may be rewritten

in the following format in which LO = 1: Determine iZk+l

(i = l, 2, . . . , m) by

Zk+l Zk
i =i

+ (U(;lk+l - zk)
i i (1)

where mii'iOk+' + ( z m..Zk+' I- 2 m..zk
j<i 'JJ j>i 'JJ

+ qj�  = 0 l

1c

ii

-k+lWe interpret the term (zi - z!)1 as a direction in which to pro-

teed from the current value of kz i = z..1 The parameter cu is thus
.

thought of as a weighting factor to indicate how far to move in this

direction.

We have noted that in the Gauss-Seidel algorithm o =l. In

1950, young [613 and Frankel [25] simultaneously, but independently,

recognized the efficacy of using values of cu different from unity to

-
11
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gain faster convergence rates. The scalar cu is called the relaxati)n

parameter, and cu > 1 (U < 1) corresponds to overrelaxation (under-

relaxation). The method of Young and Frankel (using cu > 1) is

called the point successive overrelaxation algorithm.

The word "pointU in thr3 name of the method has an interesting

geometric origin. Suppose we are solving T,aplace's equation, 77 u = f,

over a rectangular region by ‘1 finite difference method. This first

requires forming a grid over the region. We then seek an approximation

to the unknown function u at the grid points only. This is achieved

by assigning a variable zi to each grid point (see Figure 4) and

obtaining, by well-known technique:s (see [24, p. l92]), a linear

system Mz+q=O. We defint the error at the i
th grid point to be

the absolute value of the difference between zi and the function u

evaluated at that grid point. If the grid is square and has n

points on a side, then the maximum of these errors is O(l/n2). When

the point SOR method is applied to the linear system, the algorithm

changes the value of only one variable zi at a time, i.e., only one

grid point is examined at a timct. Hence the WOY*d VpoinOw in the algo-

rith name.

2 -3. Block Successive Overrelaxation (SOR) Algorithm 'for Linear

Systems.

In certain situations, it is natural to consider simultaneously

changing the values of all variables associated with a coordinate line

of the grid points. Such methods are known as line- or block-iterative

techniques. The word 'block" refers to the fact that the variables

12
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Figure  4 . Grid for Finite Difference Equations
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which are simultaneously changed correspond to a diagonal block (or

principal submatrix) of the matrix M. Varga  [58, p. 961 indicates

that block methods are not new developments but may be traced back to

the work of Gerling [28] in 1843.

We again use the example of the finite difference discretization

of a differential equation over a rectangle. In the corresponding

linear system, Mz + q = 0, we conformably partition the vectors z

and q and the matrix M. We will view z as a direct sum of
11 .

vectors z = (z
1' z2, . . . ) 'm) where 1z r R .iL Thus

z = (z
11' z12,  . . . , zln

1
;z~~, z22,  ..i , z2n ; . . . zmln ). A corres-

2 m
ponding relabeling of the grid in Figure 4 is shown in Figure 5.

Finally, q = (91, 92, . . . 1 &) is similarly relabled and partitioned.

The corresponding changes in the recursion equation (1) may

now be stated. k+lRecursively determine the subvectors zi

(i = 1, 2, . . . , m) by

where

Zk+l  k -k+l
i

= z.
1

+ co(Zi - z;,

M ik+l.( 2 M..Z:+l. c Mijz;+'Li)=O*
ii i j<i '33 j>i

Varga [58,  p- 911 remarks that in the numerical solution of

many physical problems, the matrix M is endowed with properties which

guarantee that block SOR will converge to a solution faster than will

point SOR. In these applications, the matrix M is irreducible and

Stieltjes (i.e., symmetric Minkowski). Arms, Gates and Zondek [1]

state that if M is merely a Minkowski matrix, then block SOR still

has the advantage. For a more extensive treatment of successive

14
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overrelaxation techniques and their many variants, see [36],  [58],

[591, L-601  l

2.4. Algorithm IV: Modified Block Successive Overrelaxation Algorithm

for Linear Complementarity Problems.

Tne philosophy of generalizing point SOR to block SOR in order

to solve linear systems finds an analogue in generalizing Algorithm

11.1, the modified point SOR technique for linear complementarity

problems. In this section, we show that by restating Algorithm III,

a certain generalization suggests itself. In the following sections,

an analysis of the latter algorithm will illustrate three points.

First, under reasonable hypotheses, the sequence of iterates generated

by the algorithm will form a monotonically increasing or decreasing

sequence of vectors converging to the solution of the problem. (Under

these hypotheses, the results in [52] guarantee that a unique solution

exists.) Second, the method may be interpreted as a manifold sub-

optimization technique applied to a related quadratic programming

problem. Third, values of u) greater than unity may be used to

accelerate the convergence of the algorithm.

Recall Cryer's [219] description of the modified point SOR

algorithm for the linear complementarity problem (q,M) where ME Rmxm

is positive definite. The parameter e > 0 is chosen small enough

to-insure that the errors in the values of the z-variables are

sufficiently small. We shall make a slight modification in notation.

1 6
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Algorithm III (Modified Point SOR)

Step 0. Let z" = (zy, zg, . . . , zi) be an arbitrary nonnegative

m-vector and cut' (0,2). Set k - 0.

1 .Step Let *+'
k+l= -

i ( 2 m..z. + m z.+. . .
j<i 'JJ cj>i 'JJ gl> mii

i = 1, 2, . . . , m.

Let Zk+’ = maxlo, zk + LU($+' - zk)]
i i i i

Step 2. Define J = {i:zr+'> 0) U (i:z2fl = 0, (Mzk+' + q)i < 0).

If max I( Mzk+'
iEJ

+ q)il < E stop. An 'approximateIt  solution is

at hand. Otherwise , go to Step 1 with k replaced by k+l.

The algorithm is essentially the point SOR algorithm for linear systems

with the precaution that if a z-variable ever becomes negative, it is

. immediately set equal to zero. Cryer [19] gives a convergence proof

for Algorithm III under the assumption that M is symmetric and

positive definite. Historically, an identical modification of the

Gauss-Seidel method has appeared in several varied contexts, see

[53, PC [341.

Algorithm III may be viewed in a slightly different but

equivalent way for values of 0 > l_.ZZ

Proposition 1. If cu > 1, then Step 1 is equivalent to the following:=

step 1': (a) Let zk+'
i solve the linear complementarity problem

(q',M') G ( c mijzJ+l + c m..zk f gi7 m ) .
j<i j>i 'JJ ii

17



b) Let mk+' = max{G:G < wi
A

7- Z: + G( ikcl --: zF)>ol .

(c) Let zk+' = ~2 + m(ik+l
i i

I =

1, 2, . . . , m.- z:); i =

Proof. The analysis is divided into two cases:

k+l
m. .z + 7 m..zz

k

i 13 j j>i 'Jj

From (b) c.uk+'9 i equals

Steps 1 and 1' give the

Case 1. E,
J<

;k+l
i

= Sk+1
i'

+
P
. < 0.

co if and

same value

Consequently,

In this case

on the other k -k+lhand, that zi + w(zi -k
- 'i) < '7

only if k
z -k+l k
i + w(z. -zi) > 0,

for zk+l. SuppoIe, =
i

and therefore Step 1

sets Zk+l
i equal to zero. But max{O, z: f w(gk+' - k

i ~$1 = 0 if

and only if there is an W'<CU forwhich kz - -k+l
= i f co(z.

1 - zk) > 0

(resp. < 0) when z < CU'
i =

= (resp. G > cur). k+lIn this situation, wi

is chosen to be cu' in (b) and thus zk+l
i = 0 in (c) of Step 1'.

L--

t

I

L

Case 2.
L

z
k+l

m. .z + z
k

1J j m z.+
j<i j>i ijJ ?L

.>O.= ( 3 )c

L

Therefore, in Step 1 we have $+l k
-z <-zk

i i = Zk
i' i + w$+l

k+l
i- =z;, < 0

for all co > 1 and z= i is set equal to zero. In Step l',

equation (3) implies that -k+l -
z
i=

-k+l0 and that (zi - zk) = -zk.
1 1

Consequently, cu > 1 implies that the value of
= wF+' chosen in (b)

of Step 1' is unity and thus Zk+l
i is set equal to zero in (c). H

In Section 2.5, we show that Algorithm III with the Step 1'

substitution will converge for all cu 2 (0,2). Under this new

interpretation regarding the choice of the relaxation parameter at

18
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each iteration, a generalization of the preceding algorithm may be

proposed. By a slight change in notation, we shall pass from a point-

iterative to a block-iterative technique. We will use the notation

described in Section 2.3 on block SOR for linear systems. In particular,

M is partitioned into submatrices M
ij

(i, j = 1, 2, . . . , m) where

Mii is of order n., z = (z
1 p2P**, 'm) and q=(z

l�cl.p  l l .,$) where

Z .1 and q
i are II

i
-vectors. Algorithm III, with the substitution of

Step l', then forms the basis for the following generalization. We

refer to the new algorithm as the Modified Block SOR Algorithm for
- -

the linear complementarity problem (q,M) where M is positive

definite and Mii (i = 1, 2, . . . 7 m) is symmetric.

Algorithm IV (Modified Block SOR)

Step 0. Let z" = (z,O, O5’ l -* ?

0
zm) be an arbitrary nonnegative

vector and w C (0,2). Set k = 0 and i = 1 .

Step 1. Let Zk+l
i solve the linear complementarity problem

( z M..zk+' + c'
j<i 1J j j>i

Mijz; f gi' Mii,

zkStep 2. Let Uk+l = max{G:G < w
i

- -k+l
; 3 i +co(z

i - z;, > 0).=

Let zk+l = zk + ok+'(ik+'  zk)
i 1 i i -i'

3.Step If i=m , ‘$-O  to %?rJ 4 . Otherwise , return to Step 1 with

i replaced by i+l.

19
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Step 4d-2 Define J = {(i,j):(zF'l)j > 0 OX- ( i M k+l +
irZr > <03.

I-=1 gij

m
If max I( c. M

(i,j) i-z J r=l
zk+l + qi) 1 < E, stop. An approximate solution

ir r j
is at hand. Otherwise, return to Step 1 with k replaced by k+l

and i = 1.

!I!he differencesbetween this algorithm and block SOR for

linear systems are evident. In Step 1, we solve a linear complemen-

tarity problem (&M) instead of solving a linear system E f < = 0.

Also, the nonnegativity constraint of the complementarity problem is

-k+l khandled in Step 2 by requiring that movement in the direction (zi -zi)

be constrained to remain in the nonnegative orthant. In solving linear

systems, the nonnegativity restriction is absent and thus k+l
wi always

equals cu.

The computational bottleneck to the modified block SOR algorithm,

if one exists, will occur in Step 1 where linear complementarity

problems must be repeatedly solved. In general, if Mii is an

arbitrary positive definite matrix, then the standard methods for

solving (4i,~ii  >, ( e-g-9 the principal pivoting technique of Cattle

[13] or Lemke's method [38] may be used--possibly at the expense of

large core storage requiremehts and perhaps not particularly rapid

convergence.) However, if we apply the modified block SOR algorithm

to matrices whose diagonal blocks Mii are tridiagonal Stieltjes

matrices, then Algorithms I and II may be profitably applied to yield

an algorithm of high overall efficiency. An example of this type will

be discussed in Section 3.

20
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3 5*L. Convergence of Algorithm Iv .

It is natural to look at the corresponding problem of the

minimization of a quadratic function over the nonnegative orthant to

help demonstrate the convergence of the algorithm. We shall use a

method of proof similar to that of Cryer [20] and Schechter [53], [‘j&l.

If the matrix M is positive definite, then the Kuhn-Tucker conditions

for the problem

minimize f(z) = $ zTMz + qz

subject to z>o=

are the necessary and sufficient conditions which a global minumii

satisfies. If we further assume that M is symmetric, then the

Kuhn-Tucker conditions are equivalent to the linear complementarity

- problem (q,M).

The first result will show that the successive iterates {zk}

cause the sequence {f(z
k

)] to be strictly monotonically decreasing.

Theorem 1.

where p, x \E Rn, N-n
s,YE' 9 and x and y are arbitrary vectors.

Assume-that A is symmetric and positive definite. Let G solve

the linear complementarity problem (Hy + p,A) where H = (B+CT)/2.

Then f(x + cu(G-x),y) 5 f(x,y) for VU E (0,2). Furthermore,

Let

f(x,y) = $ (;I T (; ;)(;) + (p)T (")S Y

quality holds if and only if G = x.
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Proof. We examine the minimization of g(u) E f(u,y) over the non-

negative orthant. Rearranging terms, g(u) = $ uTAu + (Hy + P)~U + c

where c is a constant. Since A is symmetric and positive definite,

the minimizing vector G is the solution to the related linear com-

plementarity problem (Hy + p, A). For notational convenience, let

r=H;;+p.

i

/

We will assume that G # x. By a principal rearrangement of

A, we may further assume that G = (G,O), where K is the index set

t

I
I

(1, 2, . . . , k) and $ = (2
1� ���~ l

z2 - - ) > 0 Letting 3 be the

index set (k+l, k+2, . . . , n), the corresponding partitionings are

L r = irpr > and
K

A =

A
KK

1

.

A
ii?

7
( 7s 9 -x >.

E
We want to show that g(x) > g(v) for all v in the

open line segment V = (x, x + 2d). Noting that V may be rewritten

as {v:v = G + Ad, vh c (-l,l)I, we consider two cases h < 0 and
=

A > 0.

Case 1. A 5 (-l,O]. Since g is strictly convex, then for all

A E (-l,O],

id; + hd) < (1 - IAl) g(G) + IAl g(h)

= (1 - bl) g(G) + IAl g(x)
5 (1 - IN > idx

22
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g(G + Ad) < g(x) . (4)

Case 2. A E (0,l). Consider the Taylor series expansion

g(; + Ad) = g(x) + hdT(A; + r) + $ h2dTAd. By showing that dT(& f r) 2 0,

we may conclude that g(G + Ad) < g(G - hd) for all A E (0,l). But=

equation (4) shows g(G - Ad) < g(x) for all A E (0,l); thus

g(ii + hd) < g(x) for all A E (0,l) also.

Using the index set K and the corresponding partitionings

described above, we have

dT(Ax + r) =
dx T

( 8
%x

-X
K

A-
KK

1) (“) +(P)

= -xT(r - AE<r,, l

Now recall that 2 = (G,O) satisfies the system

(h 2)(F) + (_)~O, GT(Ax+r)=O.

23



Therefore AKKG + rK =I 0 and AZ< + rE 1 0. Substituting

in the latter of these two systems gives r-A A
-1

> 0.
zi;jK K$K=

Finally, we conclude the argument by noting that x > 0 implies
=

dT(Ax + r) < 0.= u

Theorem 1 means that we can use the function f to monitor

the progress of the algorithm. If we can guarantee that f is bounded

from below on the nonnegative orthant, then we will be assured that

the sequence of successive iterates -{zk) contain a convergent sub-

sequence. Positive definiteness of M is one sufficient condition

for the boundedness of f. A necessary condition is that M be co-

positive [313. For f is unbounded on the nonnegative orthant if

there is a nonnegative vector x for which xTMx is negative. Hence

Tf is bounded below on the nonnegative orthant only if x Mx is non-

negative for every nonnegative vector x.

Each iteration of the algorithm updates the m subvectors of

the vector zk (
k k= Z1' zt-p  l l l ☺ For future notational convenience,

let f:(v) = f(zF, z:, . . . , 55: 1, v, zF;f, Z2;,', .., ) Zk-').
m

Theorem 1 thus shows that ft(zF) < fF(zF-',
= with equality if and

only if
k

z
i

-= Zk-l
i ' Consequently- f(zk) 2 f(zk'l) with equality if

and only if zk = Zk-l . In the case of equality, we can prove that

Zk solves the linear complementarity problem.

.
Proposition 2. If the algorithm generates iterates zJ, j = 1,2,...,k

and -I = z , then zzk-1 k k
solves (%M).



Proof. From Step 2 of the algorithm, we see that
zk k-li = zi if and

-k k-l
only if zi = zi . Suppose we are solving for zki in Step 1.

We require

=w -
i c M. .zk + Miiz; + c M. .z.

k-l +
j<i'JJ j>i'JJ

gi > 0 and ;ziF = 0 .=

;k k-l
and z

k-l
Since i = zi = Zk , then

kw.' '
,1 c = wi 2 0

j < i
Mijz~ + Miiz~ f C

j > i
Mijz; + gi

This holds for all i = 1, 2, . . . , m; so zk solves

kTk
and (wi) z. = 0 .1

Finally, we prove that the sequence of iterates have a unique

limit z and that the limit solves WC

Proposition 3. If M is positive definite, then the sequence of

k
iterates {z 1 are contained in a compact set and hence contain a

convergent subsequence with limit z.

Proof. (Similar to irryer).  From Theorem 1, {f(zk)j is a monotonically

decreasing sequence. Since M is-positive definite and f is a

quadratic function, f is bounded from below and thus there is some

value to which
k

f(z ) converges as k -> ~0.

The set S = {xlf(x) < f(z'), x > 0) is compact. It is closed= ZZ

because f is continuous. Furthermore, S is bounded. Suppose

v. '7 S, i = 1, 2, . . . , and II IIv. -> 00 where lII II
is the Euclidean

I 1



1T
norm. In the quadratic function f(v) = 2 v Mv + qv, we may assume

that M is symmetric and has real eigenvalues. Let A, > 0 be the

smallest eigenvalue. Then, by the Fisher Minimax Theorem [4, p. 721

vTMv > ?i vTvi i= A IIv /!2; thusiii= 1 i
vpv Since

i
->w as i->m.

-
1T

the quadratic term 2 viMvi dominates the linear term qTvi as

I/v.Jl becomes large, we conclude that f(vi) -> 00 as i -> 03. But

this contradicts the assumption that f(vi) 5 f(z") < ~0 for all i.

Therefore the iterates (zk] are elements of a compact set

and have a convergent subsequence with some limit point z E s. I

Proposition 4. Using the notation develcped in the algorithm and

assuming that M is positive definite, then lim (zi-zi-k k-l) = 0

and lim (zk-zk-l)
k+m

= 0.
k+w

Proof. From the proof of Theorem 1, for any k and each i,

d;) = fk(?) -
1 1

d;)T (M
ii'i

-k + q.) -t! $ (d;)T Mii$

and

-fk(~k + ~dk) = -fk('k) - h(d~)T (Mii"2 + si) -t ~ '2(d~)T Miid~
i i i i Lli

k
where d.1 = ;k _ Zk-l

i i
. Adding these equations, we have

k k-l
fi( ‘i

I I

- $(iF + Ad!) = -(h+l)(dF)T (MiizF f gi) f i (l-'2)(dk)T Miidt

2 (l-h2)(d:)T M..dk
11 1

> o since h E (-1,l) .=

26



Recall that C$ is the scalar chosen in Step 2 of iteration k and

thus A has the value hk E ~~-1.
i i These values satisfy the following

bounds:

-l< min(O, w-1) < A: < us
= -l<l,

c-
c

i

L
L
L

for all k and all i. Therefore there is a scalar cx independent

of k and i for which 1 - (AF)2 >a>o.=

Since the {f(zk>] converge, also converge.

Therefore

- fr(z: + $dr)) = lim (fk(zk) - fk(zk"))
k+m i i i i = o

and also
lim (dl)TMiid:  = 0 .
k-m

Since Mii is positive definite, then lim d; = o
k+a

, i.e.,

lim (i: - zk-'
k+w

i ) = 0. Finally, lim (zk - zk-') = lim (1-hk)dk
k-+w i i k+w ii

= 0.

Proposition 5. Let I be the index set of a convergent subsequence

of the iterates {zk] generated by the algorithm. Assume the sub-

sequence converges to the vector z. Then Mz+q>O.
=

Proof. If the inequality does not hold, then there are integers i,

j and N and some 6 > 0 for which k > N and k E I implies
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( r:
t < i

MitZ~ + MiiZ2 + C
t>i

Mitz; + . < -6%L) j
However

(t ;iMit~;+l + M
ii igk+' + &Mit$+ q.) > 0 l

j =

Subtracting the second inequality from the first gives

( z
t i i

Z;+l) + Mii(zk - ik+')) < - 6 .i i 3

Since the terms in parentheses become arbitrarily close to zero, we

have a contradiction. 1

Proposition 6. Let I be the index set for the convergent subsequence

above. Then zT(Mz + q) = 0.

Proof. Suppose the contrary. Then there are integers i, j and N

and some 6 > 0 for which k > N and k E I implies that (z:)~ > 6

and

‘
( z 'it': + M,.z

k
+

t<i g-1 i

However

Mitz; + Mii$ + z Mitz;-') = o . (6)
t>i 3

Suppose (Qj > 0. Then dividing equation (6) by (gk)
ij and sub-

tracting the result from equation (5) gives

28
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cMllc. -
zk -k
i- 'i) + z Mi& - z;-'))~ > 6.

t > i

that I( when k>N'. If (?)j = 0 for all k > N'

when k c I, then I(;: - zF)j[ = (zF)j > g,

there is some k E I which is greater than

then the analysis in the preceding paragraph

follows. 1

a contradiction. If

N' for which @Jj > 0,

applies and a contradiction

As before, Proposition 5 leads to a contradiction. Alternatively,

-k
suppose (z.)

13
= 0. Pick N' > N sufficiently large to guarantee

In summary, these results show that the algorithm generates a

sequence of vectors {zk} belonging to a compact set S. Given any

convergent subsequence of {zk}, its limit point z solves the linear

complementarity problem h,M)*

Theorem 2. The entire sequence {zk] has a unique limit point z,

and z solves (q,M).

Proof. Since M has positive principal minors, the linear complemen-

tarity problem (q,M) has a unique solution (see [&I, [52]). Propo-

sitions 5 and 6 show that the limit of any convergent subsequence of

Tzk3 solves (q,M). Consequently, every convergent subsequence has

a-common (and hence unique) limit point z. Finally, the entire

ksequence {z ] converges to z since every convergent subsequence

does [49, P. 371. m
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2 .6. On the Monotonicity of the Iterates zk, k = 0, 1, 2, . . . .

If M is merely positive definite, one cannot conclude much

more about the sequence (z
k

) than that it converges to a solution

of the linear complementarity problem (q,M). However, if we further

assume that M is Minkowski and require that 0 < cu < 1, then a very=

interesting result obtains. We shall use the following characterization

of Minkowski matrices from [ 171.

Lemma 1. (Cottle and Veinott [17]). M is a Minkowski matrix if and

and only if the solution z
*

to the linear complementarity problem

Lemma 2. If M is Minkowski, ql< q2 and z: solves- - -

z* > z*.l= 2

Proof. By Lemma 1, z: is the vector minimum of

(q,M) is the unique vector minimum* of the polyhedral set

), then

Zi = {z:Mz + gi >O, z>O),i=1,2. But qlzq2 impliesthat= Z.Z

z1 c z2, so z; E z2. Therefore * > z*z1 = 2 l
I

Theorem 3. Let M be a knkowski-matrix having diagonal blocks Mii,

i = 1, 2, . . . , m. If cu E (O,l] and z" = 0, then zk+l > zk for=

all k = 0, 1, 2, . . . .

*
I.e., z* E Z and z*<z forall zEZ.=
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Proof. The proof is by induction. Assume M is partitioned into

submatrices M. ., i, j = 1, 2, . . .
1J

, m, and that q and Zk are

conformably partitioned (e.g., zk = (zk k1' z*J l ** 9 z;,,. Since

z1 > 0 = z" 0

zk+;

, we may assume that zk > zk-l >
l ** > z and

J 2 z; for j<i. Let ;k+l = = =
i solve the linear complementarity

problem

Since

I
( z M..z:+' + c
j<i 'JJ

M zk + gi' M. . .
j>i 1JJ )ii l

c M..zk+‘+ z
j<i 'JJ

M zk+qi< )j. . . M..zk + cj>i 'JJ ,=j<i 1Jj M..zk-' +
j>i 'JJ

q - J1

Lemma 2 implies that . > ik.;k+l
-

k:l - k'
Reca11 that 'i

-k-i-l= zi + W(Z. - zk) where
1 i UJE (0,ll.

k+lWe next show that zi > zr for all i and all k.
= Clearly,

0z
i = 0, so may assume for r < k. Therefore,=

Zk+l -k k
i

= &k+l
i + (l-m)z; > cuz= i + (l-uI)z; > UX i + (1-U)ZF = zk .

i I
i

Theorem 3 may be made more intuitive by examining a simple

case in which m = 2 and n
1=n2 =l* In Figure 6, we illustrate

the sequence {zk) generated by the algorithm when cu is equal to

one. The zigzagging which occurs causes slow convergence as we approach

the solution z*. This problem is mitigated when values of cu greater

than-one are used. However, in those cases, we lose the monotonicity

of the vectors {zk].

The next theorem shows that we can also approach z*
from

above.
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Figure 6. Path of' Algorithm IT/ with

CU=l,m=2,n =1
i '
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Theorem 4. Let M be a Minkowski matrix having diagonal blocks Mii,

i = 1, 2, . . . , m. Furthermore, let z* solve (q,M). If cu < (O,l],

Mz" + q > 0 and z" > z*, then zk+l < zk for all k = 0, 1, 2, . . .= = =

Proof. The proof is by induction. We shall assume that z" > zl> . . . > zk
= =.

and MzJ +q>O for j<k. We may further assume that zk > zk+l= = j= j

for j < i. Let ,:+l solve the linear complementarity problem

( c Mijz;+l + G' Then, by assumption
j<i jSi

Mijz; + giZ Mii>'

o < Mi& + t"=
j < i

Mijz; +- z' M..zk + cfi
j>i'JJ

<M..zk+ y
= 11 i

M..zk+' + ? M..zk + gi l

j<"i iJJ j3i 'JJ

-k+lThus, by Lemma 2, zi < zk and so
Zk+l k

< z= i = i' Furthermore,

M ik+’ + x M. .zcl + 7 M. .zk + CJ. > 0. (8)
ii i j<i '33 .

j>'i 'JJ =

k+l
Since zi is a convex combination of ;k+l

i
and kzi, equations (7

and (8) imply that

M zk+' + 7 M..zk+' + -'ii i j ~ i 'J J-
M zk + qi > 0 .. . .

j$i iJJ =

These arguments hold for all i = 1, 2, . . . , m. Since M. < 0
ij =

(componentwise) for i # j, Mzk+l +q>o. Consequently, zk 2 zk+l andZZ

Mzk+l + q > O  forall k. I=

Intuitively, one might guess that a tldualH version of Theorem 4

exists. For instance, 0 *if M and u) are as above, z < z , and z0
=
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is an element of the same cone but lies on the other side of the apex,

i.e., Mz
0

+ q < 0, then Zk < zk+l= = for all k = 0, 1, 2, . . . . How-

ever, Mz" i- q < 0 may imply that Z0= 2 0, an undesirable situation.-

A slight modification of these hypotheses will correct this problem.

Theorem 5. Let M be a Minkowski matrix having diagonal blocks Mii,

i = 1, 2, . . . , m. Furthermore, let z* solve (MO and assume that

implies
*
z , then

that

Zk <=

m
( ,F Mijz; +
jZ1 %t=

> co. If w E (O,l] and

,k+l for all k = 0, 1, 2, . . . .

Proof. The proof is by induction. We first establish that (~1)~ = o

implies that (z')
i t

= 0 for all r = 0, 1, 2, . . . . Since 0 < z"< z*,= =

we may assume that 0 4 zr < z*= for r = 0, 1, 2, . . . , k and

0 < zk+' < z* for j < i. Therefore= J =j

F M.-z:+' + v M..zt + gi > 7 M. z* + 5; M
j~i'JJ j~i 1JJ =j~i

1☺ j

Z* + gi l. . .

j:iiJJ

By Lemma 2, 0 < it+15 zr and consequently 0 < zk+l < z*= = i = i'

0 < zr < z* for all r = 0, 1, 2, . . . . and we have resolved= =

problem.

Next,

is known and

Thus,

our first

k+l k+l k+l k k
suppose 2 = (zl ,-z2 ,..., zi l,zi,zi+l'...'z~)

2 satisfies the hypotheses of the theorem. We may

k+l
determine zi by applying Algorithm III (modified point SOR) to the

linear complementarity  problem

(P,A) 3 ( ;i: MijzJ+' + hl MijzS + gi, M..) .
j7i j?i 11
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We let x0 = z: be the initial guess, xt = (xt, t
⌧2� l ** � �r,,

t ) be i;!lt>

successive iterates, and let x*= lim xt. (Note x
* = ;k+l '

shall demonstrate that if xt
t -jw i l

) w

satisfies the hypotheses, then x'+'

will also. Assume y s (xt+1 t+1 t t
1 , xz" Y . . .

, ⌧j-l�  ⌧j,⌧j+ly  l � l � t >⌧n

has been generated by the algorithm and satisfies the hypotheses. i

There are two cases.

Case 1. (z*)
i j = 0. Since p > C=

*
Mirzz + q, then x* < z* and

X0
r<i z i

x. = 0.
rl

Since
j

must also equal zero ,

for all t = 0, 1, 2, . . . .

we may assume that xi = 0

Case 2.

maxI0, xt

Then (Ay + P)~ < 0. But xt+l =
=

t tJ

- a(& + pJj? > xt.
= J

t;+i t+1,Furthermore, A(x1 ,x
t

2
,... , x+1

xj+l, xj+2y . . . , xn
i

) + p 5 0 since
j '

aij z<O for ifj.

k-i-1 * * k ( ;k+l

Zk

We may conclude that 6, = x <z,z
< Zk+l

=
i= i and thus

i= i . Since M

k+l
ij =< 0 (elementwise) for i # j, then

( z1 , zE+l, . . . , zk+l, Zk
i i+l' Zki+2'  l ** ' satisfies the

hypotheses. The rest follows by induction. 1

2.7. The Algorithm Interpreted as a Manifold Suboptimization Technique.

In this section , we shall transfer our attention from the

linear complementarity  problem to its related quadratic program. In

order to facilitate the following discussion, we create a more general
_ I

setting for the problem. We may view the function to be minimized as

one defined on the product space v= : v
i=] "

Consequently we have

z = (z 1, z2, . . . , zm) E V where zi C V
i*

Each zi will be
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m
restricted to the subset Ei c Vi; thus zEE= n: Ei. Let

i=l

{*,*); be the scalar product corresponding to V., and let M, be
1 lj

a

I

linear transformation from V. to vi. Then the function

(z) = f(z1, z,,, . . . , zm) mayjbe defined asLf

m n
f(z) = + 2 1 (zi, Mijzjji+

i=l jTfl

where gi Z V..1
In the case of Algorithm IV (Modified Block SOR),

Vi = Rni,
niXIll.

Ei = (x:x C Vi, x > O?, and M.. E R J. Recall that we
= 1J

assumed that the matrix M (having partitions Mij) is positive

definite and that the Mii are, furthermore, symmetric. With this

notation, we may state an algorithm for the minimization of f over E.

Algorithm V.

Step.
0

Let z = (zy, ~20, . . . , 0) E E and let u,C (0,2) be given.

Set k=O and i=l.

Step 1. Determine
;k+l

S Ei for which
i

k+l k+l
f(Zl 45

Zk+l ;k+l k
Y l **, YZ zk)i-1� i .i+ly**�y  m

< f(zk+l k+l k+l k
=I 1 'z2 Y l **, Zi-l' VYZ Zk)i+lY " 'Y m

for every v C E..
1
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Let zk+l T zk + ,ok+l(ik+l Zk)
i i i i -i'

Step 3. If i = n, go to Step 4. Otherwise return to Step 1 with

i replaced by i+l.

4.Step rs Zk+l It
reasonably" close to the solution?

If so, stop. Otherwise, return to Step 1 with k replaced by k+l

c
/
I
L

i
11-

and i = 1.

Notice that Steps 0, 1, 3 and 4 of Algorithm V are essentially

identical to the corresponding steps of Algorithm IV. For the problem

described above, the algorithms are, in fact, identical. In Step 1

L
of Algorithm V, we perform a constrained minimization of f on the

manifold of V d te ermined by using fixed values in El, E2, l l * Y Ei,1�

i

Ei+l' l ** ' Em and letting the minimization take place in Ei, the

constraint set in the space V..
1 This is equivalent to solving

minimize f;(u) = $ uTMiiu f ( 7 M. .zrcl + 7
j<"i 'JJ j>"i

M zk + s)* u
ijj '

subject to UC E..1
(9)

But M
ii

is a symmetric positive definite matrix by assumption. Hence
;k+l
i solves (9) if and only if ;k-+l

i
solves the linear complementarity

problem

( -
j7i

However, this is Step 1 of Al.gorithm  IV.
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k+lIf we let cu = 1, then oi = 1 and zk+l = ik+l for all
i i

k and all i. In this case, Algorithm V is a typical example of a

manifold suboptimization algorithm [63]. When cu is greater than 1,

we have an accelerated version of a manifold suboptimization technique.

The results of Section 2.5 apply and we have convergence for any value

of u) strictly between 0 and 2.

2.6. Related Manifold Suboptimization Techniques.

Methods similar to Algorithm V have appeared in the literature

on the minimization of functionals  on Hilbert spaces or reflexive

Banach spaces. J. Cea [8] treats the case in which the bilinear form

T(corresponding to our quadratic form u Mv) is continuous, symmetric

and coercive. The sets Ei, are closed convex subsets of V.. Under
1

these hypotheses, Cea proves that if cu = 1, then the zk, k = 1,2,...,

converge weakly to the solution.

A. Auslender [2] treats the case in which Vi and E
i

are

defined as above but where the gradient of f satisfies a uniform

Lipschitz condition on the closed, bounded, convex sets of V. If

Ei $ Vi, he requires wt' (O,l] for convergence of his algorithm.

In the unconstrained ease, i.e., Ei =-Vi, cu is permitted to assume

any value strictly between 0 and 2. If V is finite dimensional,

the Lipschitz condition on f is relaxed and replaced by a much

weaker condition.

R. Glowinski [30] uses the same hypotheses as Cea. However,

Glowinski's algorithm modifies Steps 1 and 2 as follows. He minimizes

f' over Vi instead of E
i in Step 1. In Step 2, he uses a fixed
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value of wi for i = 1, 2, . . . , m and guarantees that k+lz

by letting i = P.(zk + w (Zk+' - zk)) whereZk-t.1 i S Ei

1 i i i i P

Uorthogonal projection operator from
i

is the

Vi -to E.
1

corresponding to

the norm* induced by Miio" Glowinski states , without proof, that

if the oi 5 (0,2), i = 1, 2, . . . , m, then the iterates {zk]
converpe

strongly to the solution.

The research of J.-C. Miellou 1431 and of B. Martinet [42]

is also of related interest.

* lb.4 = (Miiv'v' where Co,*) is a scalar product .
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SECTION 3
APPLICATION--THE JOURNAL BEARING PROBLEM

3.1. Statement of the Problem.

A journal bearing consists of a rotating cylindrical shaft

(the journal) which is separated from a bearing surface by a film of

lubricating fluid. The journal and bearing are of length L and have

parallel longitudinal axes (of rotation). A typical journal bearing

is shown in Figure 7 as is an unfolding of the bearing surface into

the plane. A cross- section perpendicular to the axis of rotation is

depicted in Figure 8. The mathematical description of the system will

be stated using various coordinate systems as need dictates. A

description of the cross-section is most easily couched in polar

coordinates whereas a description of the entire journal bearing has a

more natural setting in rectangular coordinates.

We wish to know the distribution of pressure on the lubricating

film. An important underlying assumption of the model is that the

lubricating film is so thin that there is no variation in pressure

in the axial direction. Therefore (in Figure8), the pressure is

constant on the Hline" from the journal to the bearing for each value

of 8. Consequently, one may view the problem as the determination

of the pressure distribution on the lubricant of the bearing surface.

An initial understanding of the journal bearing model may be

obtained by first examining the cross-section of Figure 8. We shall

review Cryer's [19] description. The thickness* of the film

s-
I.e., depth, not viscosity.
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Free Boundary

Bearing

Surface Velocity = u

Rotation Velocity V = u/rD

Figure 7 . Side View and Exposed (i.e., Developed) View

of a Finite Length Jolnrnal Bearing
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is minimum at 0
min

where the angle 8 measures rotation about the

z-axis, the axis of rotation. In the case of a prtial bearing (one

which does not completely encase the journal) the lubricant flows out

at 8
T

and is replenished at 8
0.

In the case of a full bearing,

where 8T = so I- 27~~ the liquid which may have vaporized is assumed

to condense at 8
T

into its previous liquid state. (In the full

model of Figure 6, the lubricant can also flow out of both ends of

the journal bearing.) The thickness of the film is denoted by h(8,z);

it satisfies

h(@,z) > 0 ’ ’ [eO,eT]

ah
as<O

' ~ (Bmin"T) .

The pressure on the film can be expected to increase between 8 = e.

and e = 8
min and to decrease between 8 = emin and 8

TO
It is

assumed that when 0 = 8 f, the pressure becomes so low that the

lubricant vaporizes. The interface between the two boundaries of the

lubricant is called the free boundary (see [39]). In the finite
length bearing of Figure 7, the location of the free boundary depends

on the axial coordinate z and is denoted by e,(*). The pressure

is zero (i.e., atmosphere) along and beyond the free boundary 8. This

is discussed in more detail in Section 3.4. In Figure 9, we illustrate

the profile of the pressure distribution on the lubricant at the
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Figure 9. Isobars for Developed Bearing

-I-. With c = 0.8, D/L = 1
(Excerpted with Permission of -ti

Ins-Lit. Mech. Eng e P-I.& h1s er
l y from [41. )
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Cameron and 7ood [L]. This journal CetZririg has an eccentricity ratic

E = e/r equal to 0.8 and a bearlog diam&er-to-length ratio of D/L

equal to 1. The isobars (constant pressure contours) are given in

nondimensional units (103R3/$.Jr2)p. 'Die variable p is the pressure,

R is the bearing radius, p is the tiscosity  of the lubricant, LJ is

the surface velocity of the journal, r is the minimum clearance

between the bearing and the journal and e is the distance bet-geen

the two axes (see Figure 8).

3.2. The Re~jnolds Eq-iation

In 1886, Osborne Reynolds [&8] developed the now-classic

equation governing the mechanism of hydrodynamic lubrication by .ir:com-

pressible flui&. The equation, a special case of the more gene&ral

Navier-Stokes equation [45, p. $3, is deduced from seven essential

assumptions 0 n the physical properties of the system (see [45, p. 5;).

0)

(ii>

(iii)

0 1V

( 1V-

The dimensions are sufficiently large to justify ignoring the

curvature of the journal bearing when studying a small section

of it.

The pressure across the film (from the journal to the bearing)

is constant; i.e., ?3p,/3y = 0.

The fiow is laminar, i.e., there is no turbulence in the film.

There are no external forces acting on the film.

The fluid inertia is small ::ompared ta the viscous shear.

This means that the rotationa1 forces of the journal acting

on the lubricant are much larger than the natural tendency

(e.g., fluid gravity) of the fLuid to remain at rest.
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(vi) There is no slippage of the fluid at the bearing surfaces.

(vii) If u and w are the velocities of the fluid in the x- and

z-directions, respectively (see Figure 13),then all velocity

gradients are negligible compared to au/ay and aw/ay.

Pinkus and Sternlicht [45] note that in most practical cases,

the bearing is stationary and only the shaft is moving. In these cases,

the most general form of the Reynolds equation is

The variable p represents the density of the lubricant, p is the

absolute viscosity, and V
0

represents a velocity resulting from the

motion of the journal center. In the ensuing discussion of equation

( 0)1 ? we will postulate that V. - 0 and that p and ~1 are constants.

In order to gain a better understanding of the model of a

journal bearing of finite length, we first examine a simpler model.

By means of this special case, we may motivate the boundary conditions

for the problem of more general interest.

3 -3. A Limiting Case: The Infinite Length Full Journal Bearing.

If we suppose that the length L of the journal bearing is

infinite, certain further simplifications may be made. We may dis-

regard the effect of fluid flow from the ends of the bearing and

therefore ap/az, the pressure gradients in the axial direction, will

be zero.
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Obviously, an infinitely long journal bearing is a physical

impossibility and does not closely approximate the dimensions of those

used in practice. However, it does provide some understanding of' the

behavior of more realistic bearings. Some notable similarities between

the finite and infinite length models are the following. The infinite

case provides upper limits on both the pressure exerted on the fluid

film and on the loads which the film will support. Moreover, Pinkus

and Sternlicht [45, pp. 69-711 show that the solution to equation (10)

(which describes the finite length journal bearing) is a perturbation

to the solution of the infinite length journal bearing problem. The

perturbation involves adding the product of the solutions of two

differential equations of a single variable. (To the authors

knowledge, this realization has not borne fruit due to the difficulty

of solving the latter two differential equations.)

As Pinkus and Sternlicht indicate [45, p. 681, the difficulty

in obtaining satisfactory solutions for journal bearing problems lies

not only in solving a given formulation but in adequately defining the

boundary conditions for the formulation. For the remainder of the

paper, we shall assume e. = 0. In order to determine these boundary

conditions for the simpler model, we first recall that there is no

pressure variation in the axial direction. Consequently, it is

sufficient to examine an arbitrary cross-section perpendicular to the

axial direction (see Figure 8j. Generalization to the finite length

case (where, for a given 8, there is pressure variation in the axial

direction z) may then be thought of as the examination of a collection

of cross-sections along the z-axis, say at z = z1,~2,~3,...,zN, where
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--
the boundary conditions for the i

th
cross-section are analogous to

those for the infinite-length journal bearing model.

Replacing the variable x by R8, where 8 is in radians

and R is the bearing radius, and recalling that ap/az = 0, then

the Reynolds equation for an infinite journal bearing is

We may use full instead of partial derivatives because both p and h

are now functions of 8 alone. Furthermore, since 6pR is a constant,

a change of units is sometimes made to allow setting it equal to unity.

L-
In 1904, Sommerfeld obtained* the first solution to equation

(11); he addressed the full journal bearing case in which the boundary

I
s. values were P(0) = P(N = P,. He also assumed that both journal and

bearing were cylindrical and hence (h being a function of 8 only),

h(Q) = r(l + E cos 0) .

The parameter p, is the ambient (or atmospheric) pressure and is

usually set equal to zero. Sommerfeld's expression for the pressure

distribution was

P(0) = P, +
~~URC (2 + E: cos 0) sin 0

r
(2 + E2)(l + E cos e)2

Setting p, equal to zero, the graph of p(B) becomes

*
by a clever transformation of variables



The important thing to notice is that equation (12) yields

regions of high negative pressure. This model was unacceptable since

a lubricating fluid cannot support such high negative pressures and

still remain an incompressible fluid. The underlying problem was that

as 8 increased beyond emin = T, the width of the film increased

and consequently the pressure exerted on the film decreased. Eventually,

at 8 = ef, the pressure became so low that the tensile strength of

the fluid was overcome and the fluid vaporized. Since the Reynolds

equation only holds for incompressible lubricating fluids and the

region of the journal bearing beyond the free boundary, i.e., 8 > ef,

contained a compressible gaseous lubricant, it was no longer valid to

apply equation (11) over the region
(y%$ l

Thus, a different set of boundary conditions was needed to

provide a more realistic solution to the problem of determining both

the region (BO,Bf) in which the lubricant exists as a liquid

and the pressure P(Q) in that region. From the literature, one

infers that the boundary conditions commonly used today are due to

Swift [55]. They state that when the pressure falls to zero, the
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circumferential pressure gradient dp/de also falls to zero. In other

words,

.___

\

L-

( >i P(0) = 0

( >ii P(Qf) = 0

(iii) $$ (e,) = 0 .

Clearly, the pressure function p may be continuously extended on the

interval [Bf,eT] by setting it equal to zero on that interval. From

the results of Cryer [19], the free-boundary Bf occurs at the largest

value of 0 = 8 for which p is nonnegative on P,A '

Sommerfeld's technique for solving the differential equation

L.

\

with these boundary conditions is still applicable and yields the

following complex expression for p(8) in terms of another angle, $

L

\

6pUR t q-esinq-(
2+4q

4E sin e + e
2

PW =
-

sin \Ir cos 9 1

r2(l-e
232

) / 2(1 + e COS(jJf - 7-r) f

where

and JI
f

corresponds to 8
f*

\

03)
E

cos gf =
+ cos 8

i + E cos 8

The location of the free boundary 8, is not immediately

L... apparent from the original problem. However, the boundary condition

~(0~) = 0 yields an implicit formula for \Ir,.

&i&ff-d COSbf-7d - .gIf) + 2(4ff COS(~~-~T) - sin(q,+)= 0

The solution under these new boundary conditions has the following

graph.
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Notice that the regions of negative pressure found in the graph of

equation (12) do not appear in this graph. This is the principal

reason for using the boundary conditions of Swift.

3.4. The Use of Finite Difference Techniques.

Before leaving the case of the infinite length journal bearing,

we wish to discuss a situation where Somrnerfeld's technique does not

apply and where no other means of obtaining an exact solution is

currently known. An example of this might be one where the bearing

is not cylindrical and hence the width function h does not have

the common form h(B) = r(1 + e cos 63). In 1941, Christopherson [lo]

proposed a technique forsolving free boundary problems for journal

bearings by means of approximating the differential equation by finite

differences. Later, improvements on Christopherson's method were made

by Raimondi and Boyd [46] and by Gnanadoss and Osborne [29]. The

former solved the difference equations by modifying the Liebman

(or Gauss-Seidel) method, the latter by modifying successive over-

relaxation (SOR). In 1971, Cryer [19] analyzed the numerical aspects
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of Christopherson's algorithm with the SOR modification when applied

to the infinite journal bearing case. He proved that if

(i) n is the interval length on the approximation grid,

(ii> Pj = PLU> is the true value of the pressure at jA, i.e.,

at the j
th grid point, j = 1, 2, . . . , N,

(iii) Pj is the discrete approximation value at the jth grid point,

j = 1, 2, . . . , N, and

(iv) n is sufficiently small, then there is a K < 00 for which

maxlp. -
j '

PjI < Kn2

Furthermore, he showed that the boundary conditions (in particular,

the tlfree boundaryI')  cause this problem to be equivalent to a linear

complementarity problem (q,M). The matrix M corresponds to the

finite difference equations which are fully discussed in [19].

3 l 5* The Finite Length Journal Bearing Model and an Approximation.

A realistic mathematical model of a finite length journal bear-

ing has great potential for becoming very complicated. For instance,

the lubricant can be admitted through oil grooves to the bearing at

any angle and the larger the angle, the more pronounced is its effect

on the resulting pressure distribution. Further, the lubricant is

not always admitted at atmospheric (i.e., zero) pressure. These and

other factors contribute a significant complexity to the formulation.
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In our discussion of the finite length case, we shall treat

a fairly simple model, one in which the bearing is a full (as opposed

to partial) cylindrical bearing. Ambient pressure is taken to be

zero. As in the infinite length case, the lubricant that vaporizes

at the free boundary is assumed to condense along the line where 8 = 0.
The boundary conditions are a natural generalization of (i)-(iii) for

the infinite length case (see [29]). As indicated before, it is

easier to present the finite length case in rectangular coordinates.

Referring to the bearing surface of Figure 7, we shall let p(x,z)

represent the pressure on the lubricant along the bearing surface.

The boundary conditions are

( >i' P(O,Z) = 0 for all z,

( >ii ' p&D, z) = 0 for all z,

(iii)' for all x,

( >iv ' P(ef(z)'z) = 0 for all z, and

( >V 7 ?JZ (ef(z), Z) = 0
an

for all z,

where 8 f
is the free boundary, and 22 (e,(z), d6n

is the normal

derivative of p at (e,(z), z), i.e., the derivative of p in the

direction normal to the tangent of the free boundary Gf at (ef(Z),z).

(In the case of the infinite length journal bearing, the normal

derivative at ef becomes 2 (Of> = 0
.

as in (iii) of Section

3.3. >

-

Since even this relatively simple model of the finite length

journal bearing has eluded attempts to obtain a closed form solution

by analytic means, other avenues have been explored and have met with
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more success. These alternate methods have included electrolytic tank

models, d-c analogues and finite difference models (see [45]). It

is the last category to which Christopherson's method belongs.

To develop the discrete model, we shall first follow Pinkus

and Sternlicht [45, pp. 79-811 in deriving a five-point finite

difference approximation to the Reynolds equation. By a change of

variables, we first obtain a dimensionless version of equation (1).

Let G = x/D, 2 = z/L, G = h/2r, and 5 = (r2/pVR2)p where V is

the speed of the journal measured in revolutions per unit time. This

yields

Dropping the bars above the variables and referring to Figure 16, we

have the following finite difference representations.

04)

(h3 2) =
h3
i,j+l 2

h3
P* .-p. .l+l,J l?J

i+1/2,j AZ
- hi-l 2,j/

AZ

ah hi,J'+l 2
ax=

/ - hi,j-l/2
Ax

.

After rearranging terms, the evaluation of the equation at grid point
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Figure 10. Finite Difference Approximation
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(i,j) takes the form

W
ij =

q
ij

+ a.l,j,l'i,j-1 + a.
l,j,2'i-l,j + ai,j,3Pi,j

05)
+ a

i, j,4'i+l,j + 'i,j,5'i,j+l

where

a 3
i,j,l -- -hi,  j-l/2/(k)2J

a.i,j,2 = - (E)' h

. +h
a.

D 2 (h:+l,2,  3
3

( >1, j,3 = C
i-1/2 j)

2
(h' *+1/z + h3 a-1/2)

+ ljJ i,J

bd b3
2 J

a.l,j,4 = - (f)' h

a - -h3iA5 - i,j+l/2/(h)2 '

(h
c1

= 67- i -+12ihi/ ,j-l/2 >
.
J

and w
ij -

- 0 if the pressure at (i,j) satisfies the Reynolds equation.

If i - 1, 2, . . . , m and j = 1, 2, . . . , n, then the discretized

version of equation (1) is an (mn) X (mn) linear system. For each i, we

define the entries of the matrix M as
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r-n.l,j-n - %JW
m
i,j-1 = ak,R,2

m.bj = ak,j,3

m.1, j+l = "k&4

and

m.l,j+n = ak,R,5

m
i,r = o for all other r

blhere k-l is the largest integer not exceeding i/n and where

R = i-kn. In addition we let the subvector pi = (pil, p
i2' l ** f Pin >

and the vector p = (~1, p2, . . . , pm); we define the vector q

similarly.

The matrix M and corresponding vector q form the basis

i
for an approximation to the model of a finite length journal bearing

having a free boundary 8. As in the infinite length case, there is

an associated linear complementarity problem (q,M) whose equivalence

is illustrated by a synthesis of Christopherson's original application

[lo] of his method to the finite length journal bearing problem and

Cryer's later discussion [19] of the method and its application.

Intuitively, the complementarity problem arises as follows. Denote

the region where the lubricant exists in its liquid (vaporized) state

as the positive (zero) region. These appellations refer, of course,

to the pressure on the lubricant in those regions. In the positive

region, the Reynolds equation is required to be satisfied. Hence,

if the grid point (i,j) belongs to the positive region, then

W.
1J

= 0 and the discretized version, equation (15), becomes
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w =ij !L. . + m.J 1, j-nPj-n
+ m

i,j-l'j-1 + m. 3. + m.
193 J 1, j-l-lpj+l + mi, j+n'n= O*

On the other hand, if the grid point (i,j) belongs to the 'interior"

of the zero region, then the pressure variables associated with the

adjacent points (p.
l,j-n 9 P.l,j-19Pi,j+l' 'i,j+n

) have zero value.

Consequently, equation (15) becomes w
ij = q,

lj
= 6T(h

i,j+l/20hi,j-l/2  l
)/A

However, the location of the free boundary and the zero region requires

hi,j+1+,2 - hi,j-1/2, and hence wij, to be nonnegative. Summarizing,

we have a variable p..
1J

and an algebraic expression wij
associated

with the point (i,j) and related by w = Mp + q. If p.. is
1-J

positive, then w..
1J

equals zero and if p
ij

is zero, then w
ij

is

nonnegative, i.e., p and w satisfy the conditions of the linear

complementarity problem (q,M).

If the bearing is cylindrical in the example discussed above,

then h(x,z) is independent of z and consequently hi-1/2,j and

hi+l/2,j is independent of i. From this observation, we may draw

several conclusions about the matrix M.

(i> M is a symmetric block tridiagonal Minkowski matrix where

M nXh
ij
ER and i, j = 1, 2, . . . , m.

(ii) Mi+l i = Mi i+l =
9 t

aiI~ where .ai < 0 and i = 1, 2, l .= , m.

(iii) Mii is a tridiagonal matrix whose subdiagonal and superdiagonal

entries are identical and whose diagonal entries are identical.

With this structure, the Modified Block SORAlgorithm  may be brought

to bear on the journal bearing problem. The computational experience

reported in the next section demonstrate s the efficacy of this approach.
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SECTION 4
COMPUTATIONAL ASPECTS OF ALGORIl-!HM IV

L.1. Storage Requirements.

We first address the question of storage requirements for the

most general form of Algorithm IV. In this case, M is merely assumed

to be positive definite with symmetric diagonal blocks, Mii- The

matrix M is partitioned so that Mii is a square matrix of order n.1
for i = 1, 2, . . . , m. Then, for each i, there are, say, Ni non-

zero double precision matrix entries and ni double precision entries

for each of the subvectors gi and zi. If one uses sparse matrix

techniques to store the entries of M, additional storage demands are

made in the form of row and column index vectors. In the algorithm

k
itself, the updating of the solution vector iterate z.

1
requires

sufficient space to solve the complementarity problem

(y,M) = (gi + c M. .zlf+’ + 2 MijzJ, Mii). This means allocating
j<i ‘JJ j>i

space for a copy of 4 and z as well as any additional space re-

quired by the complementarity subroutine. Notice that it is not

necessary to have all the initial data constantly available in core.

For instance, it is sufficient to have the vector z, the subvector

97.., the submatrices M., for j = 1, 2, . . . , m and appropriate13

storage for solving G,M)  l

By restricting our attention to the block tridiagonal case

where Mii
is symmetric and tridiagonal and both Mi i+l and

9
Mi+l i

7
are diagonal matrices, we find certain economies in storage. Suppose

the diagonal blocks Mii are of order ni = n for i = 1, 2, . . . , m.
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Then, one can easily show that the storage required for M, z and

q is 6m.n + 4n - 2m - 2 (8-byte) words.

What further requirements does Step 1 impose? If Mii is

solved by Lemke's algorithm or the principal pivoting method, we need

approximately n2 more 8-byte words. If we further assume, as

above, that Mii is Minkowski, then Algorithms I-III are applicable.

Recall that Algorithms I-III preserve the sparsity of the data. Their

I
L-

L

additional requirements are approximately 40n, 60n and 40n bytes

of storage, respectively. Of course,-savings (of 8mn-8n bytes) are

achieved when M is symmetric and more dramatic savings occur when

M corresponds to the finite length journal bearing problem described

in Section 3.5. In the latter case, M has attributes (i)-(iii)

found on page 58.

These storage estimates represent the minimum necessary for

the algorithm. Computational refinements (e.g., reduction of multi-

plications by zero) make further storage demands in the manner of

sparse matrix techniques (i.e., in the form of index sets incorporated

into the computer program).

4.2. The Computer Codes. .

Three computer codes have been written for Algorithm IV, the

Block Modified SOR Algorithm. They differ from each other in the way

that each solves the subproblems found in Step 1. The programs are

written in IBM 360/370 Fortran Iv and use double precision (8-byte)

floating-point arithmetic.
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The matrix M is required to be symmetric, block tridiagonal,

and positive definite. Furthermore, the diagonal blocks Mii are

required to be tridiagonal Minkowski matrices and the off-diagonal

blocks Mi i+l and Mi+l i must be diagonal matrices. The "tri-
J 9

diagonalV  linear complementarity problems occurring in Step 1 are

solved by Algorithms I, II and III, respectively.

4.3. Computational Experience.

A computational study of the problem (q,M) was performed in

which we used two types of matrices M. The 'tJBV matrix corresponds

to equations (i-5)-(16),  the 5-point finite difference approximation
to the Reynolds equation arising in the free boundary problem for the

journal bearing problem. (The eccentricity E equals 0.8 and the

ratio D/L equals 1.) The %P' matrix corresponds to the five-point

difference approximation to Laplace's equation. (See Figure 3 for

an example.) In both cases, the diagonal blocks Mii are of order n

and m is set equal to n. Thus the matrix M is of order N = n'

When the JB matrix is used, the q-vector comes in two varieties. One

type corresponds to the finite difference equations for the journal

bearing. The other is a random vector in which the absolute values of

the components are chosen from a uniform distribution on [O,2] and

their sign is determined by the formula

w-dqj > =
+l

- 1

if

if j(mod a) > @
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where a and p are given constants. For instance, if 01 = 2C and

f3 = 10, then the q-vector has a repeating pattern of 11 positive and

9 negative entries. The LAP matrix is used only with the random q-

vectors described above.

Algorithm IV uses two parameters, a stopping criterion tolerance

E - 7and a relaxation parameter u). We have set E equal to 10 and for

each experiment, have determined (to within 0.02) the value cu of
exp

the parameter cu which minimizes the number of iterations to achieve

the desired level of error in the solution. (In one of the three codes,

we solve Step 1 by Algorithm III, the modified point SOR algorithm.

Algorithm III uses its own relaxation parameter cu' and for each

experiment, we have determined (to within 0.1) the value cur of
exp

the parameter cu' which minimizes the total solution time when

cU=U!
exp'

>

Finally, we shall use the following nomenclature for the

algorithms tested. Let BSORF, BSORP and BSORS denote the three

versions of the Modified Block SORAlgorithm  with the first solving

Step 1 by Algorithm I--the factorization method, the second by

Algorithm II--the modified principal pivoting method, and the third

by Algorithm III--the modified point SOR algorithm. Also, let PSOR

denote the Modified Point SOR Algorithm as coded for symmetric block

tridiagonal matrices for which Mii is a tridiagonal matrix and both

M and Mi,i-1 are diagonal matrices.i,i+l

The first experiment is a general comparison of the four

methods applied to a sample of each type of problem. The results are

summarized in Tables 1, 2 and 3. (The number of iterations of BSORF,

BSORP and BSORS is the same for each w.)
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n

15

31

63

G a B

-T -;;

8 16

16 32

I
CD
f=P

1.30

1.54

1.74

iter

18

37
78

("exp iter

CL2 15 4
1.24 18
1.22 18

ukxp

1.34

1.50

1.32

i t e r

22

33
21

Table 1.

BSORF
Data: JB matrix, JB q-vecto~

BSORP BSORS
see set 1

(Oexp set

-0.133 0.183 1.3 1.797
0.881 2.529 1.3
7.388

20.517
33.862 1.3 182.291

PSOR

"exp iter

1.58 T
1.76 87
1.88 179

Table 2.

BSORF

set

Data: JB matrix, random q-vector, n = 16

BSORP BSORS PsOR
see

0.183
0.249

0.216

set
wexp

1.36

1.52

1.56

iter

0.216

0.266

0.299

2.013 ,

2.995
2.961

26

36

39

Table 3: Data :
BSORF BSORP

LAP matrix, random q-vector, n = 16

BSORS
set set cu'

PSOR

o.j16
exP

set iter

0.316 1.1
uexp

2.329 1.46 --510.332 0.482 1.1
0.282 4.143

0.332
1.62

1'
43

*I 2.579 1.46 33

set

0.282

2.296

20.616

set

0.183

0.24P

0.266

set

0.216

O-299
0.232



One notices that BSORJ? is almost always uniformly faster and

BSORS uniformly slower than the others. Further comparison seems to

be very dependent on the sign configuration of the q-vector. From

the results of Section 3.5, we may deduce that the sign configuration

L

of the q-vector used in Table 1 is that the first n(n-1)/2 entries

are negative, the next n are zero (or negative if n is even) and

the remainder are positive. Here, we see a pronounced ordering of

convergence speed (as measured in seconds), especially as n increases.

From fastest to slowest, it is BSORF, PSOR, BSORP, and BSORS. In

contrast, the q-vectors used in Tables 2 and 3 have a large number of

reversals in their sign configurations. Furthermore, a significantly

larger fraction of the z-variables are positive in the experiments of

f\
L-

L-

Tables 2 and 3 than in Table 1. These two characteristics tend to be

levelling effects, i.e., the running times of BSORF, BSORP and PSOR

are nearly equal (as well as we can tell in light of the systematic

I\
error involved in measuring execution time in the multi-programming

environment of the IBM 360/91).

The second experiment dealt specifically with the hypothesis

that when the number of positive components of the solution vector was

small, then BSORF was considerably faster than PSOR and that as the

number of positive components increased, the running times became

equal. A LAP matrix was used with m and n equal to 30. A sequence

t
of constant vectors q were used in which the first 30t components

were -3 and the remaining POO-30t components were + 1. The results,

summarized in Table 4, support the hypothesis. Since the number of

positive components of the solution vector is at least as large as the
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number of negative entries in the q-vector (see [g]), this experiment

may serve as a guideline in the choice of an algorithm for a specific

problem.

Table 4. I%ta: LAP matrix, random q-vector, n = 30

wexp

1.08
1.26

1.40

1.58
1.66

1.72

1.74

l3SORF

iter

7
14

20
36
50
60

97

set

0.099
0.216

0.349

0.765
1.14-8

1.580

2.995

LoeXP
1.20

1.40

1.50

1.68

1.76
1.78
1.82

PSOR

iter

19
32
4-2

60

79
89
124

set

0.449

0.732
0.998
1.431

1.880

2.113
2 .g61

Ratio
PSOR/EEORF

iter set

2.714 4.535

2.286 3.389
2.100 2.860

1.667 1.871
1.580 1.638
1.483 1.337
1.278 0.989

No. pos.

z-compon.

60

118

174
346
480
610
900

(In this Table, the relaxation parameter w
exp

was determined to within

0.02 for both BSORF and PSOR.)

!The third experiment attempts to relate the solution time to n.

From Table 1, we find that a growth rate of order 3/2 holds between the

order of the matrix (i.e.,

t a (n2)3'2

n2) and the solution time for BSORF (i.e.,

). Doubling n -*increases the running time of BSORF, BSORP,

BSORS and SOR by a factor of about 8, 13.5, 9 and 7.5, respectively.

The results of further testing with random q-vectors are summarized in

Tables 5 and 6. !These approximately support the factors determined

from Table 5.



Table .5. Data: JB matrix, random q-vector

EiSORF

n a B

16 4 8
32 4 8
16 8 16 1.24 18 0.249

32 8 16 1.36 32 1.896
16 16 32 1.22 18 0.216
32 16 32 1.50 39 1.747

iter set
%Q - -

1.12 15 0.183
1.14 18 1.181

Table 6. Data: LAP matrix, random q-vector

EORF

n a B iter set
oexp - -

16 4 8 1.34 22 0.316
32 4 8 1.36 33 1.880
16 8 16 1.50 33 0.332
32 8 16 1.62 48 2.046

16 16 32 1.32 21 0.282
32 16. 32 1.72 67 2.346
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The fourth experiment demonstrates the sensitivity of the

Modified Block SOR Algorithm to the relaxation parameter CU. The test

problems used LAP matrices of order 1024 and random q-vectors. Since

the number of iterations is identical for ESORF, BSORP and BSORS, we

present the results only for BSORF. Summarized in Tables ‘;, 3 and 9,

this experiment indicates that the convergence is fairly robust, e.g.,

if U
exp

is the optimal value, then we still achieve good convergence

rates for CUE [CD
exp

- .2, cu
exp

+ .2].

Table 7 . I&ta: LAP matrix, random q-vector, n = 32, a = 4, p = 8

cu iter

1.10 59
1.20 47
1.30 37
1.32 35
1.34 33
1.36 33
1.38 33

BSOIU?
set cu

3.011 1.40
2.396 1.50
1.836 1.60
1.880 1.70
1.730 1.80
1.880 1.90
1.697

iter set

34 1.713
39 1.980
47 2.396
59 3.011
85 4.309

153 7.870

.

67

: -
t



5

i

f
b-

L
r
L

!

Table 8. Data: LAP matrix, random q-vector, n = 32, a = 8, p = 16

cu iter

1.10 >200

1.20 175
1.30 140
1.40 109
1.50 81
1.60 53

BSORF

set

mm

7.288
5.807
4.459
3.377
2.163

cu iter set- P

1.62 48 2.046
1.64 51 2.063
1.70 61 2.529
1.80 87 3.577
1.90 163 6.739

Table 9. Data: LAP matrix, random q-vector, n = 32, a = 16, p = 32
BSOF

co iter set

>200 - -
cu iter set

1.40 1.70 -F-- 2.612
1.50 174 5 0973 1.72 67 2.346
1.60 124 4.176 1.74 71 2.612
1.64 105 3.560 1.76 77 2.728
1.66 95 3.178 1.80 95 3.394
1.68 85 2.928 1.90 175 5 -923

The fifth experiment measures how much of the total solution

time is used by Step 1 alone. The results, reported in Table 10,

indicate that the subproblems use nearly one-third to one-half of the

total time. The times reported are somewhat inaccurate due to the

resolution of the timer (16 milliseconds). Despite this, the results

emphasize the importance of having a very efficient linear complementarity

algorithm for use in Step 1. Further investigation along these lines
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might study the dependence of the solution time on the partitioning of

the matrix, i.e., on the values of n1' 9’ l -� ., nm-

Table 10. Subproblem Solution Time vs. Total Solution Time

Matrix
Subproblem Time Total Time

n a ii! (4 bet>

JB

J-B

J-B

JB

J-B

LAP

LAP

LAP

31 nonrandom

63 nonrandom -

16 4 8
16 8 16
16 16 32
32 4 8
32 8 16

32 16 3 2

0.688 l-999
4.304 13 l 3%

0.208 0.448
0.176 0.416
0.304 0.644
1.409 3.178
1.664 3.807
1.792 4.808

The sixth experiment studies the possibility of accelerating

the convergence by varying the value of the relaxation parameter during

the progress of the algorithm. It is sometimes profitable when solving

systems of linear equations by overrelaxation methods to let z0

cl?-

= 0,

= 1 and cok = & for some fixed & and all k > 2. The intended
=

effect of this procedure is to reduce the variation in the components

of z
1

which would result if CU' were given a value greater than unity.

The overrelaxation technique then proceeds with some appropriately chosen

value* of the relaxation parameter. In applying this scheme to Algorithm

IV, we repeat the experiments reported in Tables l-3 and 5-9 and set

*
theoretically or empirically based
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G equal to the LU
exp

determined in those experiments. As a point

of interest, we also determine the value & = 6 that minimizes
exp

the number of iterations necessary to satisfy the convergence

1criterion when using w = 1. The results are summarized in Table 11.

They indicate that the scheme has a minor effect, if any. When there

is a change, it is usually a variation of one more iteration than

in the preceding experiments. (However, one test showed a decrease

of one iteration.)

Tfne eighth, and last, experiment studies another approach to

solvingthelinear complementarity problem (q,M). In Section 2.6,
we indicated that when M is a Minkowski matrix, then the solution

to kbM) is the unique vector minimum of the polyhedral set

{z:Mz+q>O, z>O].= = It is thus a simple exercise to show that the

- problem (q,M) is equivalent to the linear programming problem

Minimize cTz

subject to Mz > -q=

z>o.=

I for any strictly positive vector c.- Letting c be a vector of ones,

we solved the linear program with a production code LpMl [41] written

at the Systems Optimization Laboratory at Stanford University. The

data was a JR matrix of order 225 and the q-vector corresponded to the

journal bearing problem. The LPMl code took 4.93 seconds with most

of the time spent in the Phase I procedure. (Recall that ESORF

took ,133 seconds to solve (q,M).)
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Table iL Varying the Relaxation Parameter Using BSORF

Matrix CI B n
uexp

1.30
1.54
1.74
1.12

1.24

1.22
1.14
1.36
1.50

iter iter

JB * * 15
.* * 31
* ++ 63
4 8 16
8 16 16

16 32 16
4 8 32
8 16 32

16 32 32

18 19
37 38
78 79
15 - 15
18 19
18 21
18 18
32 33
39 40

k>2ZZ

'exp

1.30
1.54
1.74
1.12

1.24

1.26
1.14
1.38
1.50

iter

19
38
79
15
1-9
17
18
32
40

LAP 4 8 16 1.34 22 23 1.34 23
8 16 16 1.50 33 34 1.50 34

16 32 16 1.32 21 21 1.32 21

4 8 32 1.36 33 32 1.36 32
8 16 32 1.62 48 48 1.62 48

16 32 32 1.72 67 67 1.72 67

UJ = cuf”, uj
exp

cu =l

wk =W
exp'

k>2=

cu =l

ok &I
exp'

‘I* ” indicates that the q-vector corresponds to journal bearing data.

-71



.

L

L
tf
L

t

Next, we solved the dual problem using the same data. In this

case, the zero vector was a initially feasible point, thus no Phase I

was necessary. The solution time for LIT!41 solving the dual problem

was 4.09 seconds.

Since the matrix is block tridiagonal, it can be partitioned

so that the nonzero entries exhibit a l(staircaseV  structure. Under

this partitioning, the corresponding linear programming problem was

solved by the Ho-Manne nested decomposition algorithm [35], an algorithm

especially developed for problems with this structure. The running

time was 11.46 seconds. In all cases, the numerical accuracy was

comparable.

Further experimentation might investigate whether a reordering

of variables might reduce solution time. One possibility is the

so-called 'checkerboard" ordering.* Forsythe and Wasow [24, p-259]

have reported, however, that the (unpublished) work of M. R. Powers

has indicated the convergence of the SOR method for linear equations

may not be very sensitive to various orderings.

c

9.4. Choice of the Relaxation Parameter 0.

The problem of determining a- 'theoretically optimal' value of

w for the PSOR algorithm applied to tridiagonal Minkowski matrices

is discussed in Section 1.3. The setting was the application of over-

relaxation to systems of linear equations. We now review and extend

the key notation and results.

*
Also known as the flblack-white"  or "odd-even parity" ordering.
See [24, p. 2451.
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Most generally, an algorithm may be expressed in the operator

form zk+' = .CZ?zk where zk", zk E Rnm. If we let z* represent

the solution and ek = z* - zk be the error vector, then z* = 9z*

and ek+' = ZZek. We will let II-[/ b e any vector norm or its induced

matrix norm with usage dictating its meaning.

Since lim (l/ekl//l/eol[)l'k  < ~(-91, [58] where ~(2)
k+00

-0is the spectral radius of 55' and e =

vector, we want to minimize p(g)- In

applying successive overrelation to the

the operator 9 is formed as follows.

* 0Z - z is the initial error

the specific case where we are

linear system Mz + q = 0,

We write M = D - E - F where

of M (see [58, p. 881) andD and (E + F) is a regular splitting

let L = D-?E, U = D-?I?. (The splitting used depends on whether we

are doing point or block SOR. Since the operator 5? is dependent

on w and M, we express it as

9'(M) = (I - wL>-l [UN + (1-cu)L] .

When M is a tridiagonal or block tridiagonal Minkowski matrix,

it belongs to the class of consistently ordered 2-cyclic  matrices

[58, pp. gg-lol]. Consequently, the relaxation parameter c+, that

minimizes p(qJ can be uniquely specified in terms of B = L f U,

the Jacobi matrix associated with M. From a formula of Young [62 9

p. 1691, the optimal parameter value is

cub )(M = 2/o +m ).

73



As discussed in Section 1.3, one approach to theoretically

determining an "optima? value of w for Algorithm IV is to imitate

the procedure for systems of linear equations outlined above. This

*
is a plausible idea since if z solves (q,M), then for large enough

valyes of k, (Mzk + q)
*

i
will equal zero when z

i is positive. In

other words, after a number of iterations, Algorithm IV will appear

to act as a block SOR algorithm solving a subsystem of linear equations

extracted from the original problem. More specifically, let

N= E niJ s = Cl, 2, . . . , N), -T be an index set from $ and
i=l

T' be its complement. Also let MTT be the principal submatrix of

M corresponding to rows and columns j E T and let

S(z) = (i Es :zi > 0‘). The results of Cryer [20] are easily generalized

to form the basis of the conjecture that the optimal U) for Algorithm

IVis cuopt = %(MTT) where z* solves (q,M), w* = Mz?+ q and

T = s- s(w*).

In the case where M is a tridiagonal Minkowski matrix, the

theoretical estimate of u)
opt

is not supported very well by experi-

mental evidence [20]. However, when M is

the correlation between theory and practice

order to demonstrate this, we first need to

machinery.

a block tridiagonal matrix,

improves considerably. In

develop some technical

Recall that the expression for % requires the evaluation of

-p(B)  l In general, this is difficult to do theoretically. If the

matrix is symmetric, an approximation may be obtained by setting
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or by a variety of iterative methods (e.g., the power method [36,

p= 1471). In the special case of the LAP matrix, we can state o(B)

explicitly. We deal first with the Jacobi matrix B arising in the

PSOR algorithm, Algorithm III. We decompose M = D - E - F into a

diagonal matrix D and strictly lower and upper triangular matrices

E and F. The matrix M is partitioned the usual way into sub-

matrices M.
lj

for i, j = 1, 2, ..; , m so that M
ii

isnXn. We

will next determine p(k) where K = (1, 2, . . . , kn] for any

k = 1, 2, . . . , m. (Note that BKK is the Jacobi matrix associated

with the LAP matrix
%K).

.

Theorem 6. Let ~ be the matrix described above. Then

p(k) = $ (cos r/(k+l) + cos T/(n+l)>.

Proof. Define the s X s matrix TS = (tij) by tl2 = 1, ti i+l =
9

ti+l,i
= 1 for i = 2, 3, . . . , s-l, ts s 1 = 1, and t.. = 0

Y - 13
otherwise. Let Is be an s X s identity matrix. Recall that if

G and H are s1Xs2and s -Xs
3 4

matrices, then their tensor

product (or Kronecker product [32, pp. 97-981) P = G@ H is an

sls3 ' ??4
matrix of the form:
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P=

gllH g12H . . .
glS2H

. .

63 s lH gs gH -0. Q H
1 1 "lS2

It is easy to show that h
BK ,= 4%

= TK @ IN + IK @ TN . Let Q
S

be the orthogonal s X s matrix whose column vectors are the eigen-

vectors of TS and let LS be the diagonal matrix of eigenvalues;

thus T Q = Q L
ss ss*

The matrix Q =
?K @%N is orthogonal since

and
% are, hence QT$Q has the same eigenvalues as A

?K

%. (Note

that we have suppressed the explicit dependence of Q on K and N.)

Using the fact that (Gl @ G2)(G3 @ G4) = (GlG3) 8 (G2G4) for any

matrices, G
1 � l ** �

G4 one can show that QT%̂Q = 4( 8 $,J -+ $@LN'

But this is a KN X KN diagonal matrix with entries + h where

t l Y i

\
i 4

1
= 1, 2, . . . , k and Anj’ j = 1, 2, .*. , n are the diagonal

entries of
4c

and LN, respectively. From [33, p. 1541, we know

that h
rj

= 2 COS rj/(r+l) for j = 1, 2, . . . , r. Thus the spectral

radius of h is
?K

7rcos - 7T
k+l + cos -

n+l

and since ;k = 4%~ p(Ek) = $ (COS r/(k+l)+cos T/(n+l)). m

We now study the block Jacobi matrix associated with Algorithm

r-v. Let M=D-E- F where, again, M is a I&P matrix and
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-L =

and

0

%lo

M32

-U

1

0 Y D =

. .. .. .

Mm,m-1 0

0 52 1

0 M32 -
0 .

. . M
. m-1,m

0

Let B = -D-L(L + U) and BKK be the leading principal kn X kn

submatrix. The application of Young's formula for '"lb to block SOR

algorithms refer to
4m

, the Jacobi matrix associated with
%

.

The next result gives the spectral radius of these submatrices of B.

Theorem 7. Let
SK

be the matrix described above. Then

P(h) = COs(T/(k+l))/(2  - cos(7r/(n+l)).

Proof. Define the s X s matrix US = (u..) by uii = 4 for
iJ

i = 1, 2, . . . , s, u12 = -1, ui i+l = u.
Y i,i-1

= -1, us s 1 = -1 and
? -

U.
lj

= 0 otherwise. Let Vs = Ui' and Is be an s X s identity

matrix. Also let TS = 41, - Us. Finally, let PS (resp., $)

be the orthogonal s X s matrix whose column vectors are the eigenvectors
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I -
I
;

of TS (resp., Vs) and let Ls (rasp., C,) be the diagonal matrix

of eigenvalues. Thus, the matrix &=&1(sPN is orthogonal. 0%ain,

we have suppressed the dependence of Q on K and N.)

Notice that
?K

= TK% VN. Since BK and QTIfiQ have the

same eigenvalues, we can instead determine those of the latter matrix.

But QT~Q = I$@ CN, a diagonal matrix. Hence, the eigenvalues of

3s
are all possible products of the diagonal entries of

?K
and C

NY

say ($icnj] where i = 1, 2, . . . , k and j = 1, 2, . . . , n. AS

in Theorem 6, \. =
J

2 cos rj/(k+l) for j = 1, 2, . . . , k. Further-

more, Icnj? are the reciprocals of the eigenvalues of
uN'

there-

fore [33, p. 1541, cnj = l/(4 - 2 cos Tj/(n+l))  for j = 1, 2, . . . , n.

It then follows that

POQ = max cos(ti/(k+l))/(2  - cos(rrj/(n+l)))
l<i<=k

llj<n
= =

= cos(T/(k+l))/(2  - cos(r/(n+l))).

There are two problems in applying Theorem 6 or 7 to determine

w
opt'

The theorems both presuppose that one knows, a priori, the

index set T = S(z*) since T determines the linear subsystem

%..TZT + %
= 0 which is eventually solved. Furthermore, they both

assume that T = {l, 2, . . . , kn) for some 15 k <= m. (The theorems

remain true if K = {t+l, t+2, . . . , t+kn) for t = 0, n, '&,...,(m-1)n

and k = 1, 2, . . . , m.) From the Perron-Frobenius theory of non-

negative matrices, if T = (1, 2, . . . , kn, kn+l, . . . , kn+c] where

0 < k < n, then we can bound betweenZ7 XI %(%T) %(%T )1 1
and Um(%2T2)
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where Tl = cl, 2, . . . , kn) and T2 = {l, 2, . . . , (k+l)n). This

fact mitigates the second problem somewhat although it still leaves

the problem of determining Tl and T2'
One might be able to determine

Tl
and T2 during the progress of Algorithm III or IV by monitoring

s(zk) until it appears to stabilize at some index set. From [20],

we know that gross bounds for LU
opt

can be obtained by setting

Tl = 9(-q) and T2 = 9 . Our computational experience has shown

these latter bounds are not very useful unless Tl is a fairly large

index set in which case ) and cu (
b !P2T2)

are fairly close

together.

In order to illustrate the use of Theorems 6 and 7, we use

the data of the second experiment reported in Section 9.3. We let

Tl = cl, 2, l -. , 30t) and T2 = cl, 2, . . . , 30(k+l)] where

Cl, 2, l *a , 3Ok) $@ (z*)  5 T2. The results are summarized in

Table 12. For the FSOR algorithm, u+ = cu (
b %lTl

> and u = (M
2 % T2T2

>

is determined via Theorem 6. For the BSORF algorithm, these quantities

are calculated using the results of Theorem 7. In both cases, LU
exp

was determined (within 0.02) to be the empirically optimal value and

can be seen to be remarkably close to
w2 in most cases. (We would

expect ml 5 (“exp 2 “2. ) These results suggest that an adaptive

mechanism which sets ml= cu
1

and changes cu during the operation

of the algorithms could prove very worthwhile.
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Table 12. Theoretical Rounds for the Relaxation Parameters

1 2

2 4
3 6

6 12

9 17
12 22

30 30

*1

1.07
1.20

1.31
1.52
1.63
1.69
1.82

FSOR BSORF

"exp Y
1.00
1.07
1.17
1.39
1.51
1*59
1.75

1.20 1.20

1.40 1.40
1.52 1.50
1.69 1.68
1.75 1.76
1.79 1.78
1.82 1.82

1.07
1.26
1*39
1*59
1.67
1.71
1.75

c"exp

1.08
1.26
1.40

1.58
1.66
1.72
1.74

An alternate approach for estimating the optimal relaxation

parameter is suggested by some research of Garabedian [27]. In a study

of the point SOR method applied to linear systems derived from finite

difference approximations to partial differential equations, he proposed

an asymptotically good estimate for
% ( i.e., the estimate became

better as the mesh size on the region R of interest tended to zero).

He assumed that the mesh size was uniform and of width h and the

area of the closure of R was a. Garabedian then suggested using a

relaxation parameter cu = 2/(1 + 3.015(h2/a)1'2). For many shapes of

regions, he noted that in several numerical tests carried out by

Young, this choice of cu resulted in approximately a 20 percent decrease

in convergence rate from the optimal convergence rate. The remarkable

-success of this estimate lies in the simplicity of its application in

comparison with the application of Young's formula. This suggests

that a generalization to the block SOR method (and thence to
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Algorithm IV) could be worthwhile as future research. The authors

have not yet derived similar results for either the block SOR or

Modified Block SOR techniques.
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