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SECTION 1
BACKGROUND

1.1 I ntroduction +“o the Problem

In previous papers, 1,2/ R W Cottle and R S. Sacher have

di scussed three algorithnms for the solution of |arge-scale Iinear

compl ementarity problens. For a given matrix Me RU® and a given

vector a ¢ RY,the linear conplenentarity problemis that of finding

a solution z to the system

q+MzZO
z>0
ZT(q+le) =0 .

The methods required that Mbe a tridiagonal, Mnkowski matrix. This
neans M= (mij) satisfies the follow ng conditions:
(i) m,

(i) m,

0 if i#3j

A

0 if |i-j] >1
(iii) Mhas positive principal mnors.

The three algorithms may be briefly described. Algorithml is
a nodification of the principal pivoting nmethod [13]. Algorithm Il is

a specialization of a method proposed by Chandrasekaran [9] and enpl oys

l/R. W Cottle and R S. Sacher, "On the Solution of Large, Structured
Li near Conpl ementarity Problems: |, " Technical Report 73-k, Department
of Qperations Research, Stanford University, 1973.

2R s Sachexz, "On the Solution of Large, Structured Linear Conplenentarity
Probl ems: 1I," Technical Report 735 Department of Operations Research,
Stanford University, 1973
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LU factorizations. The algorithmis "adaptive" in the sense that each
iteration exploits the factorization associated with its predecessor.
Algorithm Il is a modification of the point successive overrelaxation
t echni que
In this paper, we consider the nore general linear conplenentarity

problemin which the matrix ‘is no |onger necessarily tridiagonal but may
be block tridiagonal. W still assume it to be M nkowski, however.
This means we may partition Minto subnatrices |\/|Ij (i, j =12,...,m)
such that

(1) M, is a Mnkowski matrix of order =12 ...,m

(ii) Mlj < 0 (elementwise) if i #]j,
(iii) M has positive principal mnors,

(iv) th =0 if Ji-j| > 1.

(Matrices satisfying condition (iv) alone are known as block tridiagonal

matrices.) W also require that M be positive definite and the diag-
onal bl ocks, M5 be symmetric and tridiagonal. (Wth this |ast assunp-
tion, we may vastly increase the efficiency of the algorithm we propose
in Section 2.4 by incorporating the techniques described in the previously
cited paper by R S. sacher.) Such matrices include block tridiagona
Stieltjes matrices (see [58, p.85) whose diagonal blocks are tridiagonal
These occur frequently in the discretization of elliptic partial differentia
equations. In fact, it is in this connection that an inportant application
of the linear complementarity problemis discussed in Section 3.

The convergence of the algorithm we propose in Section 2.4

requires only that M be positive definite and that the diagonal blocks,
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Mi' be symmetric. (That is, in proving convergence, we drop the
assunptions of block tridiagonal structure and nonpositive off-diagona

entries.) The method is consequently stated in full generality.

1.2. Drawbacks of the Generalization of A gorithml.

The success of Algorithnms | and Il for the tridiagonal case
suggests that they may be profitably applied to the block tridiagona
case. The purpose of this section is to show why the benefits of those
techniques are lost in their extensions.

Consider first the nmodified principal pivoting algorithm Certain
structural properties of the tableaux under principal pivoting when M
is block tridiagonal are analogous to those when Mis a tridiagonal
matrix. Consequently, an immediate extension of Algorithm I
may create a prohibitive number of nonzero entries to be stored as
the algorithm progresses. The following two exanples illustrate this

remark.

Exanple 1. In Figure 1, the [ighter lines indicate the partition of M
W assume that the matrix is block tridiagonal and M nkowski, M, IS
tridiagonal of order n, =n =3 and the off-diagonal blocks are

di agonal matrices. The innermost block is N%s, the pivot block. The
| ocations of possibly nonzero entries in the pivotal transform M are
indicated by the asterisk symbol. The main significance of this
exanple is that with the given pattern of zeroes, the principal block

pi vot on N%s may create conplete fill-in within the dark border

(For notational convenience, we refer to the entries outside the
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bivot block but inside the dark lines as the frame of the pivot, n

this case, the frame is of width n.)

Exanple 2. Figure 2 portrays the effect of pivoting on the blocks

Mooy My, - v 0 Mg where m is odd. If mequals n, one can
,m-

easily show that even if (as in AlgorithmIl) we discard the transforned

tabl eau entries in colums where a pivot has occurred, the nunber of non-

2

zeroes which nust be stored in the transformed tableau is (_25_ (n-1) + 1)n
= 22 no - —g- n2‘ Compare this with the nunber of initial nonzero entries
inM i.e., n(3-2) + 2(n-1)n = 5n2 -4n. (It is not unconmmon [19]

for n to equal 100 and thus to have an approximate increase in the

number of nonzeroes which nust be stored from 50,000 to 2,500,000!)

6.3. Drawbacks of the Generalization of AlgorithmIl.

Recal | that Algorithm Il, the nodification of Chandrasekaran's
met hod using factorization, requires the solution of a sequence of
systems of linear equations by LU deconposition. The order of the
final system solved is equal to the cardinality of the set of positive
z-variables in the solution to the linear complementarity problem
From[9], we know that if M R®® is a Mnkowski matrix and if
qa< 0, then the solution is the positive vector z = -M'lq <’ and
we are required to solve a linear systemof order p. |If we use the
exanpl e corresponding to Figure 1, we have p =mn. W would like
to factor Min a way that exploits its structure and sparsity as
much as possible. If we were to viewit as a band matrix of width n,
AT)

we woul d use LU or Chol esky (ﬁL factorization since they both
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preserve the bandwi dth [36]. Unfortunately, neither nethod of decom
position will preserve the sparseness of the original data. This is
illustrated by the exanple in Figure 3 where the matrix M corres-
ponds to the finite difference equations representing the Laplace

equat i on: Ml‘l is tridiagonal with diagonal entries equal to L and

of f-diagonal entries equal to -1; furthernore, M . and M |
1,i+1

I,1-1
are negative identity matrices. Since the bandwidth of such a matrix

cannot be reduced any further, the Chol esky (ﬁfT) factorization re-

quires storage for al nost Efli(mz)n i -2m® +m - 2n° - n nonzero

matrix entries. For instance, if m =n = 100, then the initial nunber

of nonzeroes in the matrix is approximtely 5r12 = 50,000 while

2 2 , . N
2omn + MM - 2n” - n is approximately 2,000,000. The LU factorization

needs nearly tw ce as nuch storage as the Chol esky factorization since

L, v’ and T have idential patterns of nonzeroes, i.e., £ ., u. and

it
Zij are sinultaneously nonzero or zero [3%6].
A third alternative for factorization is a special case of

met hods known as group- or bl ock-elinination [36, p. 59]. Isaacson and

Kel I er [36] discuss one technique which is a highly efficient direct
method but which requires slightly nmore storage than the Chol esky

deconposition. Following their discussion, we seek a factorization of

the form
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where the identity matrices |.J and the matrices Ad gy and Cj

are all of order nj (j =1, 2, ..., n. Consequently,
A]_ = Mll Cl - AllMlQ
B1 = Ml,i-l I =2, 3 , m,
Al :Mn-BiCil =23 > M,
and o aThw -2, 3. .., ml
1 1 1

There are ml nmatrices A& and m| matrices Ci whi ch nay
each contain n2 nonzero entries. The B, matrices need no additiona
storage. Hence, the bl ock-LU deconposition requires 2mn2-n2 storage
| ocations versus the 2mn2 +m - 2n2 - n required by Chol esky
factorization.

In sunmary, extensions to both principal pivoting nethods and
various factorization techniques are stymed by storage problens.

Simlar difficulties in solving large systens of |inear equations were
recogni zed by numerical analysts. These difficulties rekindled their
interest in iterative (versus direct) methods of solution--that is, in
determning techniques to accelerate the convergence of existing nethods
and in devel opi ng new approaches. In Section 2, sonme results in the
former category will provide notivation for the iterative technique

we propose for solving the |inear complementarity problem (g, M when
M-is a bl ock tridiagonal, positive definite Mnkowski matrix whose

di agonal blocks have symetric tridiagonal structure.



SECTION 2
ALGORI THVS FOCR THE BLOCK TRI DI AGONAL LI NEAR COMPLEMENTARITY PROBLEM

2.1. | ntroducti on.

It is ironic that the algorithmwe develop in this section
arises as a generalization of the |east conputationally attractive
method of AlgorithmI, Il and III. Yet the conputational experience
reported in Section 4 denmonstrates that this generalization is at
| east conpetitive with, if not superior to, techniques currently
available [7], [19], [29], [45], [46], [47],[59] f o r solving the
engi neering application described in Section 3.

Because of the analogy of the proposed algorithmwth relaxation
techniques for systems of linear equations, we open this section with
sone remarks about these nethods. For the remainder of the paper, we

will observe the followi ng notational conventions. Al vectors are

colum vectors. By a slight abuse of notation, we let z = (Z].’ZE""’Zn)
n,
denote the columm vector z in R'. Sinilarly, if z, € R*' and

Zfi“:l n, =N then we my let z = ( : Zm) denote the col um

21’22’ .
— vector z in R Fi nally, the algorithms to be described will

generate a sequence of iterates z,,kk =1 2 . . ., converging to a

B solution. The value of z* is deternined by a specified transformation

on zk'l. Therefore the sequence z ,kk =1 2, . . ., istotally

determned by an initial vector z° Ve denote the sequence z k,

— k=12 ..., by {zk} and suppress its inplicit dependence on 20

10




2.2. Point Successive Overrelaxation (SOR) Al gorithm for Linear Systens.

The point successive overrelaxation algorithm for solving the

linear systemM + g = 0, where Mis an mX m nmatrix, is an

accel erated version of the earlier Gauss-Seidel method [58]. This

latter method generates a sequence of iterates Zk e’ accordi ng
to the formil a:
k+1 3 k+1
z. =- ; m m, z, +
i =1, 2 , o

K+l . . .
Each component of z**1 i recursively deternined in terms of the

current values of the others. The recursion formila my be rewitten

inthe following format in which @ = 11 poternine 25t
i

(=212 ...,mhby

k+1 k -k+1  k

= + -

z, zg a)(zl_. ZT') (1)
wher e miiilfl + 2 m, .Z}.ﬁl + Z m. -Zl? q.) .

j<i T g>i 9 J

H =}z h K
W interpret the term}(zi - 241) as a direction in which to pro-

ceed fromthe current value of ; = zk
| Y

thought of as a weighting factor to indicate how far to nmove in this

The parameter « is thus

direction.

V¢ have noted that in the Gauss-Seidel algorithmo _; |,

1950, young [61] and Frankel [25] simul taneously, but independently,

recogni zed the efficacy of using values of o different fromunity to

11



gain faster convergence rates. The scalar o 1S called the_relaxaticn

paraneter, and « > 1 (o < 1) corresponds to overrel axation (under-

relaxation). The nethod of Young and Frankel (using @ > 1) is

- called the point successive overrelaxation algorithm

The word "point" in the nane of the nethod has an interesting
geonetric origin. Suppose we are solving Taplace's equation, Fu - f,
over a rectangular region by - finite difference method. This first
requires forming a grid over the region. Ve then seek an approximation
- to the unknown function u at the grid points only. This is achieved
by assigning a variable Z; to each grid point (see Figure %) and
obtaining, by well-known techniques (see [2k, p. 192]), = |i near
system Mz + q = 0. W definc the error_at the U grid point to be
t he absolute value of the difference between Zy and the function u

evaluated at that grid point. |If the grid is square and has n

points on a side, then the maxi mum of these errors is o(l/nz). When

- the point SOR nmethod is applied to the linear system the algorithm
A changes the value of only one variable Z, at atime, i.e., only one
- grid point is examined at a time. Hence the word "point” in the algo-
rithm nane.
;,.,
;. 2 .3. Block Successive Overrelaxation (SOR) Algorithm 'for Linear
Syst ens.

In certain situations, it is natural to consider sinultaneously
changing the values of all variables associated with a coordinate |ine

of the grid points. Such nethods are known as line- or block-iterative

_ techniques. The word 'block" refers to the fact that the variables

12
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whi ch are sinmultaneously changed correspond to a diagonal block (or
principal submatrix) of the matrix M Varga[58, p. 96] indicates

that block methods are not new devel opnents but may be traced back to

the work of Gerling [28] in 1843.

W again use the exanple of the finite difference discretization
of a differential equation over a rectangle. |n the corresponding
linear system M + g = 0, we conformably partition the vectors z
and g and the matrix M W wll view z as a direct sum of
vectors z = (Zl' Toy o e zm) wher e 2, € Rnl. Thus

z = (z z

. . corres=-
nn ) A
m

11" z12, e, Zlnl"ZEl’ 222, cee ZQn;Z' Co
ponding relabeling of the grid in Figure 4 is shown in Figure 5.

Finally, q = (ql, Qs .. ,qm) is simlarly relabled and partitioned.

- The correspondi ng changes in the recursion equation (1) may

now be stated. Recursively determine the subvectors zli{+l
(i =1, 2, ..., mby
k+1 _ Kk =l k
- zo " o=zp + oz - z, ) (2)
|
. -k+1 k+1 k
. M. .z, +q)=0.

| wher e Mgz *( /2 M5 T §i 1573 %)

; j<i J
Varga [58, p. 91] remarks that in the nunerical solution of
many physical problems, the matrix Mis endowed with properties which
guarantee that block SOR will converge to a solution faster than wll
point SOR  In these applications, the matrix Mis irreducible and
Stieltjes (i.e., symmtric Mnkowski). Arns, Gates and Zondek [1]
' state that if Mis nerely a Mnkowski matrix, then block SOR still

has the advantage. For a nore extensive treatnent of successive

14
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overrel axation techniques and their many variants, see [%6],[58],

(591, [60] .

ok, AgorithmIV: Mdified Bl ock Successive Overrelaxation A gorithm

for Linear Complementarity Probl ens.

The phil osophy of generalizing point SOR to block SOR in order
to solve linear systens finds an analogue in generalizing A gorithm

111, the nodified point SOR technique for |inear conplementarity

problens. In this section, we show that by restating AlgorithmIIl,
a certain generalization suggests itself. In the follow ng sections,
an analysis of the latter algorithmw !l illustrate three points.

First, under reasonable hypotheses, the sequence of iterates generated
by the algorithmwll form a nonotonically increasing or decreasing
sequence of vectors converging to the solution of the problem  (Under
these hypotheses, the results in [52] guarantee that a unique solution
exi sts.) Second, the nethod may be interpreted as a manifold sub-
optim zation technique applied to a related quadratic progranm ng
problem  Third, values of o greater than unity may be used to
accel erate the convergence of the algorithm

Recal | Cryer's [20] description of the nodified point SOR
algorithm for the linear conplenentarity problem (g,M where M€ g
is positive definite. The parameter e > 0 is chosen small enough
to-insure that the errors in the values of the z-variables are

sufficiently small. W shall nmake a slight modification in notation.

16



Algorithm 111 (Mdified Point SOR

0O_,0 © 0 : :
‘. Step 0. Let z~ = (zl, Zgy o - zm) be an arbitrary nonnegative
mvector and o€ (0,2). Set k = 0.

~k+1 k+1
\ —
Step . Let 20 =-( 2 m, .z, 2yom, Lz + )/
[ ,j<il‘]‘] i>1 13 3 ql i1
| = 1, 2, , M
Let i zk+l = max[0, Zk + w('z\i§+l - Zk)]

i

{i:zlf-l > 0) U {i:zlz.fﬂ' =0, (Mz]&+1 + q)i < 0}.

Step 2. Define J
+ . .
[f  max I(Mzk Ty q)i| < ¢ stop. An "approximate" solution is
i€ g

at hand. Qherwise, go to Step 1 with k replaced by k+1.

The algorithmis essentially the point SOR algorithm for |inear systems
with the precaution that if a z-variable ever becomes negative, it is
imredi ately set equal to zero. Cryer [19] gives a convergence proof
for Algorithm 1l under the assunption that Mis symetric and

positive definite. Hstorically, an identical nodification of the

Gauss- Sei del method has appeared in several varied contexts, see

[51, [26], [3L].
Algorithm Il may be viewed in a slightly different but

equivalent way for values of w > 1.

Proposition 1. If o > 1, then Step 1 is equivalent to the follow ng:

-k+

L} l .
step 1':  (a) Let 2, solve the linear complementarity problem

(q",M")=(}

m 2t L B Wz + o, m )
L j < J

1{(] 3>1 1 Il

17
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Let @ [ = max{wn < o, e - zl,{) > 0}
+ - T 1 1 -
k+1 k -
(c) Let 2y o=z 4 a)(zi.,ﬁl - zli{); i=1 2 ..., n

Proof. The analysis is divided into two cases:

Case 1. J’§i ml_J_ij+l .\ j é"i mijzlfj +q, <0. Consequently,

E?ﬁl = 2?1. From (b) a>|}.§+l equals o if and only if z? + w(El.{fl-lzkf
In this case Steps 1 and 1' give the gane val ue for i z},{+l, Suppose,
on the other hand, that ZE + w(zli”l - éli() < 0, and therefore Step 1
sets z?ﬂ equal to zero. But max{o0, zli{ + w(%lfﬂ -z?)} =0 if

and only if there is an ' « & for which zl,( + 50(2}1”1 - Zk) >0
= i 4/ =

(resp. <0) when o < o' (resp. &> w'). Inthis situation, o<t
= 1

is chosen to be o' jn (b) and thus z?‘*l =0in (c) of Step 1'.

Case 2.

E mzk+l+ E m zk+ >0
jog 1373 ;8 TR (3)

Therefore, in Step 1 we have gli_“l 'Zli{ < -zE, zik + w(ii“l - z?) <0
for all «>1 and zfﬁl is set equal to zero. |p Step 1,
equation @inmplies that 7' _ g and that (2t zf‘l) = -zli‘.
Consequently, « > 1 inplies that the value of CL)li«:+l chosen in (b)

of Step 1" is unity and thus zf.ﬁl is set equal to zero in (c). i

In Section 2.5, we show that AlgorithmIll with the Step 1'
substitution will converge for all o < (0,2). Under this new

interpretation regarding the choice of the relaxation parameter at

18
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each iteration, a generalization of the preceding al gorithm maybe

proposed. By a slight change in notation, we shall pass froma point-
iterative to a block-iterative technique. s will use the notation
described in Section 2.3 on block SOR for linear systems. |, particul ar,
Mis partitioned into submatrices N,j (i, j =1, 2 ..., m where
Mi isof order n, z=(z,2,,...,2) and 4=(z ,q,,..-,q) where
¢ and g, are n -vectors. Algorithm 11, with the substitution of

Step 1', then forns the basis for the foll owing generalization. W
refer to the new algorithm as the Mdified Block SOR Al gorithm for

the linear conplenmentarity problem (g,M where Mis positive

definite and Moo (=12 ... ,mM issymetric.

Algorithm IV (Mdified Block SOR)

0 0 0 . :
Step 0. Let z” = (22,20, . ., %) be an arbitrary nonnegative
1’72 m
vector and o < (0,2). Set k =0 and i =1
-k . .
Step 1. Let zi.+l solve the linear conplenentarity problem
( Z M. -Zl?-+l + CM, zk + M
j<1 191 Jgi i5%5 T 4 ii)
:éfep 2. Let a)l;'+l = max{w:w < o, % E}Hl . zk) > 0).
= i | 1/ 2
Let 7 _ 4 Jotlgkel K
| 1 [ i’”
Step  If 1 =m, g0otoS8tep 4. Ctherwise return to Step 1 with

I replaced by i+1.

19
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. o k+1 & k+1
Step 4. Define J = {(1,J):(Zi+ )j > 0 or (r—zl V2.t q:.L)J_ < 0}.
o K+l
| f mx (% Mrzr + q_i) !j< e, stop. An approximate sol ution

(i,j) €3  r=1
is at hand. Qherwise, return to Step 1 with k replaced by k+1

and i =1

The di fferencesbetween this algorithmand bl ock SOR for
linear systems are evident. In Step 1, we solve a linear complemen-
tarity problem (q,M) instead of solving a linear system Mz + q = O.
Al'so, the nonnegativity constraint of the conplenentarity problemis
handled in Step 2 by requiring that novement in the directi on'1(2§1—z'§)
be constrained to remain in the nonnegative orthant. |n solving |inear
systens, the nonnegativity restriction is absent and thus wikﬂ al ways
equal s w.

The conputational bottleneck to the nodified block SOR al gorithm
if one exists, wll occur in Step 1 where linear conplenmentarity
probl ems nust be repeatedly solved. |n general, if M, is an
arbitrary positive definite matrix, then the standard nethods for
sol vi ng (Ei,ﬁii), (e.g., the principal pivoting technique of Cottle
[13] or Lenke's nethod [38] may be used--possibly at the expense of
| arge core storage requiremehts and perhaps not particularly rapid
convergence.) However, if we apply the nodified block SOR al gorithm
to matrices whose diagonal bl ocks M, are tridiagonal Stieltjes
matrices, then Algorithms | and Il may be profitably applied to yield
an algorithmof high overall efficiency. An exanple of this type will

be discussed in Section 3.

20
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2.5. Convergence of Algorithm 1v .

It is natural to look at the corresponding problem of the
mnimzation of a quadratic function over the nonnegative orthant to
hel p dermonstrate the convergence of the algorithm W shall use a
method Of proof sinmilar to that of Cyer [20] and Schechter [53],[54].

If the matrix Mis positive definite, then the Kuhn-Tucker conditions

for the problem

nnimze f(2) :%ZTMZWZ

subject to z >0

are the necessary and sufficient conditions which a global minumm

satisfies. If we further assume that Mis symetric, then the

Kuhn- Tucker conditions are equivalent to the linear conplementarity

" problem (g, M.

The first result will show that the successive iterates {zk}

cause the sequence (f(zk)} to be strictly nonotonically decreasing.

Theorem 1. Let

1 x T A B x pT X
) =3 () GO R )
, . on N-n :
where P, x = R, s, y€ R , and x and y are arbitrary vectors.
Assume-that A is symetric and positive definite. Let x solve
the linear conplenentarity problem (Hy + p,A) where H = (B+CT)/2.
Then f(x + w(x-x),y) < f(x,y) for Y c(0,2). Eyrthernore,

quality holds if and only if x = x.

21



Proof. W exanine the ninimzation of g(u) = f(u,y) over the non-
T
)

negative orthant. Rearranging terms, g(u) :él-uTAu+ (Hy + p)u + c

where ¢ is a constant. Since A is symmetric and positive definite,
the mininizing vector x is the solution to the related |inear cou-

plenentarity problem (Hy + p, A). For notational convenience, |et

r = Hx + p.
Ve will assume that x # X. By a principal rearrangenent of

A, we may further assune that x = (QK,O), where K is the index set

(L, 2, . . ., x)and )—<K:(>-<l, %, ...’,'x&)( > 0 Letting X be the
index set (k+l,k+2,. . . , N), the corresponding partitionings are
bw Ao
r = (rK,rE) and A= KK
A A
KX KK

Let 4 = x-x = (x - I by -
e X=X (xl xl,x2 X ,...,xk-xk Xk+l’ Xk+2""’"
(dK, -X_). W want to show that g(x) > g(v) for all v in the
K
open line segment V= (x, x +2d). Noting that V may be rewritten

as (v:iv==x+ N, VA€ (-1,1)}, we consider two cases » < 0 and

A > 0.

Gase 1. A= (-1,0]. Since g is strictly convex, then for all

A € (-1,0],
g(x + M) < (1 - |A]) g(®) + |A] g(Za)
= (1 - I\]) e(x) + 7] elx)
< (1 =N &lx) + ] a(x) .
Thus,
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g(x + Ad) < g(x) . ()

Case 2. A <€ (0,1). Consider the Taylor series expansion

A

g(x + Ad) = g(%) + NaT(AX + 1) + -;- AaTad. By showing that da (A% +r) < O,

we may conclude that g(x + Ad) < g(x - hd) for all A < (0,1). But
equation (4) shows g(x - Ad) < g(x) for all A< (0,1); thus
g(x + hd) < g(x) for all A€ (0,1) al so.

Using the index set K and the corresponding partitionings

descri bed above, we have

T -1
A - 0 r r
- i % E A A k K
A (Ax + 1) = +
-X A A 0 0 r_ r_
K KK K K
d’K T -1 0] rK rK
-X -A 0 r r
K KK R K K
= -x_(r_ - A_ A.;}%rK)
K K KK

Now recal | that x = (;?K,o) satisfies the system

A A~ ’-‘K %

A
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Therefore Am<xKK+r = 0 and A_ xK+r >0 Substituting
K

—-AKKr in the latter of these two systenms gives r A AKKrK

Finally, we conclude the argunent by noting that x > 0 |np||es

dT(Ai +r1) <0, |

Theorem 1 neans that we can use the function f to nonitor
the progress of the algorithm |f we can guarantee that f is bounded
from bel ow on the nonnegative orthant, then we will be assured that
the sequence of successive iterates -{zk} contain a convergent sub-
sequence. Positive definiteness of Mis one sufficient condition
for the boundedness of f. A necessary condition is that M be co-
positive [31]. For f is unbounded on the nonnegative orthant if
there is a nonnegative vector x for which XTMX is negative. Hence
f is bounded below on the nonnegative orthant only if x™ s pon-
negative for every nonnegative vector X.

Each iteration of the algorithm updates the m subvectors of

k k k . ,

the vector 2z = (zl, Zoy o u s z:l). For future notational convenience,

. kK Kk K k-1 k-1 k-1
let f:(v) =f(zl, Zor o - -0 By Vo By zi+2,...,z?n ).
Theorem 1 thus shows that fk( k) < ¢ k'l) ' ity i

11230 < ey with equality if and

. kK = k-1

only if =z =2z"". Consequently- £ k)§ 2(Z) with equality if
. k - .

and only if z° - 25"1 | the case of equality, we can prove that

k :
z~ solves the linear complementarity problem

Proposition 2. |f the algorithm generates iterates z9, | = 1,2,...,k

k-1 k
and z z , then zK solves (q,M).
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Proof. From Step 2 of the algorithm we see that Z;(= zki_I if and
only if 'zli( = Iéll Suppose we are solving for Elf in Step 1.
Ve require
k -k K- 1 -T-k
= + M, . + .M. .2 > 0 and w.z, = 0.
V\{ j§133Z lllj;lMlJJ +q1= i
Si nce Eil.{: zl;'l and zK! - 25, then
k k k k T k
= \ + ., = w, >0 and %F =0
Wy j gi 1373 1 §| 1% T4 T2 ()21
This holds for all i =1, 2, . . ., m so & sol ves (q,M). |

Finally, we prove that the sequence of iterates have a unique

limit z and that the limt solves (aq,M).

Proposition 3. If Mis positive definite, then the sequence of

iterates {zk} are contained in a conpact set and hence contain a

convergent subsequence with linit z.

Proof. (Simlar to Cryer). From Theorem 1, {f(zk)} is a nmonotonically
decreasing sequence. Since Mis-positive definite and f is a
quadratic function, f is bounded from bel ow and thus there is sone
val ue to which f(zk) converges as k —> «.

The set S = {x|f(x) <:f(zo), x > 0) is conpact. It is closed
because f is continuous. Furthernmore, S is bounded. Suppose

v, '7S i =12 ...,ad |vj—> » where .. is the Euclidean



: . 1.7
norm In the quadratic function f(v) = 5V M+ qv, we may assune

that Mis synmetric and has real eigenvalues. Let N >0 be the
snal | est eigenvalue. Then, by the Fisher Minimax Theorem [k, p. 72]
T T 2 Too o o . :
vini>:7\lvivi = AiHvi | ; thus vini > as i —>« . Since

the quadratic terml— VZEMVi dom nates the linear term qui as

2
{IviH becones large, we conclude that f£(v,) —> « as i —> «. But
this contradicts the assunption that f(vi) < f(zo) <w for all i.

Therefore the iterates (zk} are elements of a conpact set

and have a convergent subsequence with sone linmit point Z €S. '

Proposition 4. Using the notation develcped in the algorithm and

: , - - S SN
assuming that Mis positive definite, then |Im(Zi-Ki|) =0
. kK k-1 ke
and lim(z -z~ 7) = o.
k 5o

Proof. Fromthe proof of Theorem 1, for any k and each i,

k, -k ky _ _k,-k k\T -k o1 k\T k
£0(z0 - 40) = £(3) - ) Mz +q) 5 (d) Mpydy
and
-k k -k K\T -k 1,2, kT k
-t (g0 v ) = _flf'&(zi) - M) Mz +ag) b g M) M, dy
where d.li = Ef - z}f-l‘ Adding these equations, we have
k, k-1 k,-k k k\T -k 1152 kTM“l'i
fil(Z - fi(zl + ?\dl) = '()\+l)(d1) (Mllzl + ql) + 2 (l ?\ )(dl) 1471
2., k\T k
> (1-N)(a;)" My, d)
>0 since A€ (-1,1) .
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ko . . .
Recal | that « is the scalar chosen in Step 2 of iteration . ,nq

k _ k , .
thus A has the value A, = “-1. These values satisfy the following

bounds:

k
; S®-1<1,

. -1<mn(0 al) <A
for all k and all i. Therefore there is a scalar a independent
of k and i for which 1- (N)° 45 o

. k
Since the {£(z")) converge, the {ff(zf)} al so conver ge.

Therefore
i k, k k, -k k k _ . kK, k k+1
11 . - \ _
. .,moo (£;(2)) £ (2 + Ajd))) lim (£5(z5) fli%zi* 1) =0
k 5o
and al so .
\ lm (a)M, a8 =0 .
; kK 5w 11 1
. . o o ' . |
Since M., is positive definite, then |jn & =0, e
K=o
. ..k - ) . _ .
lim(z; - zf S - 0. Finally, lim (5 - 2% lim (1-25)a® _ o)
Ko k 5w 1 L Kk - o i’71

Proposition 5 et | be the index set of a convergent subsequence

of the iterates (z%) generated by the algorithm Assune the sub-

sequence converges to the vector z. Then Mz + q> 0.

Proof. If the inequality does not hold, then there are integers i

j and N and some 5 > 0 for which k > Nand k €| inplies
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o —

-y

k
M.,2, + + < -
(t<l it t iii t§iMitZt+q1)j 6
However
k+1 -k+1 J
M, .,z .
(t§ 1% i % +tz;lMitZt+q1}>=o

Since the terms in parentheses becone arbitrarily close to zero, we

have a contradiction. [}

Proposition 6. Let |

be the index set for the convergent subsequence
above.  Then ZT(MZ +q) =0

Proof.  Suppose the contrary. Then there are integers i, j and N
and sone & > 0 for which k > Nand k € | inplies that (zlz‘)j>6

and

! k k k
( Z . Mltzt + Mlzl + 2 Mitzt + ql)J >8 . (5)
However

-k k _k
(z.). ( Z M,,z, + M, .z +E M Zk"l) =
j i : .= 0. (6
1Jt<iltt i1 i £> 1 it7t j (6)

-k - . -k
Suppose (Zi)j > 0. Then dividing equation (6)by (Zf)j and sub-

tracting the result from equation (5) gives
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As before, Proposition 5leads to a contradiction. Aternatively,

suppose (E?)j =0. Pick N > N sufficiently large to guarantee

t hat l('z'l.{-zl.§)|<§ when k> n'. If (ZX). =0 for all k > '
i i 2 173
-k k _ . k 5 oL
when k € |, then I(zi - Zi)jl = (Zi)j >3 a contradiction. |f

there is some k € 1 which is greater than N' for which (Elii)j > 0,
then the analysis in the preceding paragraph applies and a contradiction

follows. [

In summary, these results show that the algorithm generates a
sequence of vectors {zk} bel onging to a conpact set S. Gven any
convergent subsequence of (zk}, its limt point z solves the l|inear

complementarity problem (q,M).

Theorem 2. The entire sequence {zk} has a unique limt point z,

and z solves (q,M).

Proof. Since M has positive principal mnors, the |inear complemen-
tarity problem (q,M) has a unique solution (see [k4], [52]). Propo-
sitions 5and 6show that the [imt of any convergent subsequence of

(z%)  solves (q,M. Consequently, every convergent subsequence has

a-common (and hence unique) limt point z. Finally, the entire

k :
= sequence f{z'} converges to z since every convergent subsequence

does [49, p. 371. K

\ .



2 .6, On the Mnotonicity of the Iterates zk, k=0 1, 2,

If Mis merely positive definite, one cannot conclude much
nore about the sequence (zk} than that it converges to a solution
of the linear conplenentarity problem (g,M. However, if we further
assune that Mis Mnkowski and require that ©<w <1, then a very
interesting result obtains. W shall use the follow ng characterization

of M nkowski matrices from /| 17].

Lenmma 1.  (Cottle and Veinott [17]). Mis a Mnkowski matrix if and
and only if the solution z* to the linear conpl ementarity problem
(a,M) is the unique vector minimunt of the polyhedral set

Z ={z:Mz + q>0, z>0}.

Lenme 2. 1f Mis Mnkowski, a,. < a, and z: solves (q,,M), then

*

Proof. By Lemma 1, z; is the vector mninum of

z; = (z:Mz + o, >0,2>0}, 1=1, 2. But 9, < a, inpliesthat

* * *
Z, < Zy 80 2z, € Z,. Therefore z . z, |

Theorem 3. Let M be a Minkowski matrix having di agonal bl ocks M,

i=12 ..., m If o€ (0,1] and zO:O, t hen zkﬂzzkfor

all k=0, 1, 2

*
l.e., zx £ Z and z*_<z for all z € Z.
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Proof. The proof is by induction. Assume Mis partitioned into

submatrices M l!j 1,3 1, 2, , m and that q and 4 are
L k kk
= k .
clonf ormably partitioned (e.g., z £,sz2, . 7). Since
z >=0=zo, we may assume that z* > zk-l | 9 and
k+1 k . . -k+1 = = . =
zj > zJ. for j<i. Let . solve the linear complementarity
probl em
.\ K+1
(L mpe™ + 8 M5 +q, M)
| i<i 3>1 194 He
Since
o k+1 k ) k
OM, Lz k-1
LMz S M.zl rg. < B u + M, .z
j<1 J J iSi 1) =321 1d J j§i 133

Lenma 2 inplies thaglf’l > 2:}:
k+1 _ k =+1 k

Recall that Zi = Zi + (D(;I =z, )| wher e NS (O,l].

W next show that¥% > zlz‘ for a11 i and all k.

i Cearly,
2>l s 0 -T r
i 2% 21 =0, somy assune z; >z, for r < k. Therefore,
k+1  -k+l K -k Kk K
o =o T (lo)zg > ezl o+ (1-w)zy > az) + (l-w)zl; = zf : |

Theorem 3 may be made nore intuitive by examning a sinple

case in which m= 2 and Ny =n, =21 InFigure 6 we illustrate

k
the sequence {z} generated by the algorithm when w is equal to

one. The zigzagging which occurs causes slow convergence as we approach

the solution z*. mis problemis mitigated when val ues of « greater

than-one are used.  However, in those cases, we |ose the monotonicity

of the vectors {zk}.

The next theorem shows that we can al so approach z* from

above.
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Theorem 4. Let M be a Mnkowski matrix having diagonal blocks M,

i =1, 2 ..., m Furthernore, let 2 solve (a, M. If o< (0,1],

Mz~ + g > 0 and zO_> z*,then zkﬂgzk for all k =0, 1, 2,

Proof. The proof is by induction. W shall assume that z° > zl_ D
J . k k+1
and Mz® + a>0 for j<k. W my further assune that zj>_zj
. . -k+1 .
for | <i. Let z; solve the |inear complementarity problem
k+1 - k .
(8 M2 + & M.z, + q, M ). Then, by assunption
j<i j>1i 1 +
k _\ k - ( k
0 < M.z, + M, .z, o+
= ii 1 ] Z<JI ij g 3 ‘;’ 5 13 3 ql
AR T N VI S (7)
= oy <i 351 94
-k+1 k
Thus, by Lemma 2,7z, <z, and so z};+l_<z Furthernore,
M---k+l + E M k+1 T M. _Zk + q1 > 0 (8)
[ . J 3 Lo 1) J =
J<i J>1
. k+1 . — - .
Si nce z; i's a convex conbination of zil.ﬁl and zl.(, equations (7
1
and (8) inply that
Miz— o+ Tt o+ T 2o+ g >0
j< i Jd d i>i 13 J =
These argunents hold for all i =1, 2, . . ., m Since M . <
1] =
. . . +
(componentwise) for i # |, M EF q > 0. Consequently, 2 > 25" and

w2t +q>0 forann k.

Intuitively, one mght guess that a "qual" version of Theorem &

exists. For instance, if Mand » are as above, zo< z , and z0

35
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is an elenment of the same cone but lies on the other side of the apex,

0 k Zk+l

i.e., Mz” + <0 then z= < for all k=0, 1, 2, . . . . Hw

ever, mz + q <0 my i mply that 20 # 0, an undesirable situation.

A slight nmodification of these hypotheses will correct this problem

Theorem 5. Let M be a Mnkowski matrix having diagonal bl ocks M.

. *

i =12 ..., m Furthernmore, let z solve (q,M) and assune that
* - 5 0 R

(zi)t> 0 inplies that (j‘iz‘iMiJZj + qi)t < 0. If we(o,1) and

0 < zO§ z*, then 2~ < X1 for all k =0, 1, 2,

Proof. The proof is by induction. W first establish that (za.e) =0

it
. . r _ _ . 0 *
i mplies that (zi)t—Ofor all r=0,12 .. .. Sne0<z<z,
we may assune that ngr<_z* for r=0 1, 2, . . ., k and
* . .

0<zZ <y for j <i. Therefore

. _ % -

E M..Z}?‘fl + Y:_-Mzk +7qj _> ; M._Z‘_'+ >, M"Z-)f-’-q—i'

By Lemma 2, 0 < E]iﬁl < z; and consequently 0 < zlf’l < z*i. Thus,
0 <2 < 2 forall r =0 1, 2 . ... andwe have resolved our first
probl em

Next, suppose Z = (;‘Il,'zlg+}..., Z:}.L{+1',zlz,z1;+l,...,zz)

Pal

is known and Zz satisfies the hypotheses of the theorem W nay
determ ne z?l by applying Algorithm Il (nodified point SOR) to the

| i near complementarity problem

(p,a) = ( 5w 2. ©
J <1



— o r___‘f"r

0 _ k S £ £t
Ve let x” =z  be the initial guess, x" - (xl,xe’ ,X;: ) be the
successive iterates, and let x*= |jm 40 (Not e X*': sk+1 )l Ve
i
. t t -
shal | demonstrate that if x” satisfies the hypotheses, then x°**

will also. Assume vy = (X*13+l’ L t+1 1t

o L X L, XX L,
J-1"J7 g+l
has been generated by the algorithm and satisfies the hypotheses.

t
)Xni)

There are two cases.

*
Case 1. (Zi)J = Since p >} Mirz* +q, then x* < 2 and
¥ , Tr<i ¥ = |
X. = 0. Since x: nust also equal zero we may assume that x- = 0
J

for all t =0, 1,

o <

N &

* .
Case 2. (Zi)j > 0. Then (Ay + p)j < 0. But x**t -
) =
mex(0, Xt - w(Ay + p).} > *;- Furthermore, A(x?l,x;ﬂ; xoH
= LTS | . b
t t t . J
Y10 Xyppr 0 00 X )t pcOsince a <o for ifj.
Ve ma concll ude that 1. A ~k+1
y k=X <z, 2z, <z~ andthus
kK k+l . .
z, <z, 7. Since M <0 (elementwise) for i #j, then
13 =
k+1  k+1 k+l k x k o
(2 225,90 Zi.p0 %% > 2 ) satisfies the

hypotheses.  The rest follows by induction. |

2.7. The Algorithm Interpreted as a Manifold Suboptimzation Technique.

In this section, we shall transfer our attention from the

linear complementarity Problemto its related quadratic program In

order to facilitate the follow ng discussion, we create a nore general

setting for the problem s pay view the function to be nininized as

one defined on the product space -
V= il-[-l V.- Consequently we have
Z:(Zl’ Zoy oo zm)‘EVV\heI’e ziEVi. Each ZiV\“I be

35



m

restricted to the subset E cV.; thus z€E= T E. Let
i=1
(-,-)tbe the scalar product corresponding to vy, and | et Mij be

a linear transformation from V;] to Vi‘ Then the function

f(2) :f(zl, Ziyy oo zm) may be defined as

palf=

f(Z) = . <Z., M, .Z.>-+

1 L ig gt

AV

m n

| {a;,2,7;

0l

i=1 j i

[

where q, < V. In the case of Algorithm IV (Mdified Bl ock SOR),
n.xn,

v. = R4, B = (x:x = V.,x>0}, and M, € R~ 9. Recall that we

i 1 i = 1g

assumed that the matrix M (having partitions Mij) is positive

definite and that the M, are, furthernore, symetric. Wth this

notation, we may state an algorithm for the mninization of f over

Al gorithm V.
Step. Let ZO= (zg, zg, Coe zri) € Eand let we (0,2) be given.

Set k=0 and i = 1.

. -k+1 .
Step 1. Determne z € Ei for which

( k+1 k+1 k+1 -k+1 7k k)
27 »2%p ;o;zg;zi_l;z-i o FSEARRE) 2o
k+l k+1 k+1 k k
< f(zl 92 e G VaZy g e .,zm)

for every v € E'1‘

} - k -,-k+1 k
Step 2. Tet w, = = max{w:w < o, z; + w(zi -zi) € Ei}-
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Let "t . K, rlckel )
[ | [ i~ i’

Step 3. 1f i =n, go to Step 4. Otherwise return to Step 1 with

I replaced by i+1.

k+1 " .
Btep Is z 'reasonabl y" close to the sol ution?

I'f so, stop. Qtherwise, return to Step 1 with k replaced by k+1
and i =1

Notice that Steps 0, 1, 3 and & of AlgorithmV are essentially
identical to the corresponding steps of Al gorithm1v. For the probl em

described above, the algorithns are, in fact, jdentical. |n Step 1

of AlgorithmV, we performa constrained mninzation of f on the

s B

2} o . i"l’

a0 B and letting the mninzation take place in Ei’ the

mani fold of V deternined by using fixed values in E s E

E

i+1?

constraint set in the space V.l. This i S equival ent to solving

1.7 -
mnimze f;(u) == uM ,u+ (" Mz + T k T
’ o) 14 — e b, o M.z + ._) u
o<y B g>1 E:
(9)

subject to wuc E'l‘

But M. is a symetric positive definite matrix by assunption. Hence

I
-k+1 . . ~kK+1 .
Z; solves (9) if and only if z, solves the linear complementarity

probl em
( - k+1 -

— M..Z. + , M Zk + M
g<i *dJ 55 19w i1

However, this is Step 1 of Algorithm | V.
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If we let w =1, then wli“l =1 and z]'_ii"k:L = for all
k and all i. In this case, AlgorithmV is a typical exanple of a

mani fol d suboptim zation algorithm[63]. Wen o is greater than 1,
we have an accelerated version of a manifold suboptim zation technique.
The results of Section 2.5 apply and we have convergence for any val ue

of o strictly between 0 and 2.

2.6. Related Manifold Suboptim zation Techniques.

Methods simlar to Algorithm V have appeared in the literature
on the mnimzation of functionals On Hilbert spaces or reflexive
Banach spaces. J. Cea [8] treats the case in which the bilinear form
(corresponding to our quadratic form uTMv) is continuous, symmetric
and coercive. The sets E, are cl osed convex subsets of V'l' Under
these hypotheses, Cea proves that if w = 1, then the zk, k = 1,2,...,
converge weakly to the sol ution.

A Auslender [2] treats the case in which v, and Ei are
defined as above but where the gradient of f satisfies a uniform
Li pschitz condition on the closed, bounded, convex sets of V. I|f
E; ¢ Voo he requires w¢< (0,1] for convergence of his algorithm
In the unconstrained ease, i.e., E =V, 0 is permtted to assune
any value strictly between 0 and 2. |f Vis finite dinensional,
the Lipschitz condition on f is relaxed and replaced by a nuch
weaker condition.

R dow nski [30] uses the sane hypotheses as Cea. However,

Gownski's algorithmnodifies Steps 1 and 2 as follows. He mnimzes

f over v, i nstead of Ei inStep 1. In Step 2, he uses a fixed
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value of w for i = 1, 2,
1

, mand guarantees that ,k+1 .

kel -k K+l Kk | ’
by Tetting" P (o« o (270 - 2.)) where p g ypg

(
=

"orthogonal Projection operator from V. to E, corresponding to
i i

t he nor nf¥ | nduced by Mil . " G O\M' nski st at es , W t hOUt pr OOf , t hat

if the a)iE(O,E),i =1, 2, . . ., m then the iterates {zk}

converge
strongly to the solution.

The research of J.-C. Mie110y [43] and of B. Martinet [k2]
is also of related interest.

*
vl = <Miiv,V) where (-,.) is a scalar product
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SECTION 3

APPLI CATI ON-- THE JOURNAL BEARING PROBLEM

3.1. Statenent of the Problem

A journal bearing consists of a rotating cylindrical shaft
(the journal) which is separated from a bearing surface by a film of
lubricating fluid. The journal and bearing are of length L and have
paral l el longitudinal axes (of rotation). A typical journal bearing
is shown in Figure 7 as is an unfolding of the bearing surface into
the plane. A cross-section perpendicular to the axis of rotation is
depicted in Figure 8. The mathematical description of the system will
be stated using various coordinate systens as need dictates. A
description of the cross-section is nost easily couched in polar
coordinates whereas a description of the entire journal bearing has a
nmore natural setting in rectangular coordinates.

Ve wish to know the distribution of pressure on the |ubricating
film An inportant underlying assunption of the nmodel is that the
lubricating filmis so thin that there is no variation in pressure
in the axial direction. Therefore (in Figure8), the pressure is
constant on the "line” fromthe journal to the bearing for each val ue
of 9. Consequently, one may view the problem as the deternination
of the pressure distribution on the l[ubricant of the bearing surface.

An initial understanding of the journal bearing nodel may be
obtained by first examning the cross-section of Figure 8 \W shal

review Cryer's [19] description. The thickness* of the film

-
l.e., depth, not viscosity.
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i'S mninmm at enin where the angle 6 neasures rotation about the

z-axis, the axis of rotation. |n the case of a partial bearing (one

whi ch does not conpletely encase the journal) the lubricant flows out

at GT and is replenished at 90. In the case of a full bearing,

wher e Op = 90|- 2m, the liquid which may have vaporized is assuned

to condense at o1 into its previous liquid state. (In the ful

model of Figure 6, the lubricant can also flow out of both ends of

the journal bearing.) The thickness of the filmis denoted by n(8,z);

it satisfies

h(6,z) > 0 8 € [eo,eT]
oh
= <
5o 0 6 € (eo,emin)
dh
36 >0 9¢< (Gmin’e‘l‘) :

The pressure on the filmcan be expected to increase between 6 = 90

and e = 6 . and to decrease between g =9 . and o It is
mn min T

assuned that when 6 = 6_  the pressure becomes so |ow that the

£
lubricant vaporizes. The interface between the two boundaries of the
lubricant is called the free boundary (see [39]). In the finite
length bearing of Figure 7, the |ocation of the free boundary depends
on the axial coordinate z and is denoted by ef(-), The pressure

is zero (i.e., atrnosphere) along and beyond the free boundary 6. Thig

b

is discussed in nore detail in Section 3.k. |, Figure 9, we illustrate

the profile of the pressure distribution on the lubricant at the
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Figure 9. |sobars for Devel oped Bearing

with ¢ = 0.8, ", = 1
(Excerpted with Permission of th -

| e Publisher
En ]
Instit, Mech. ENQ .y from [4].)
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(devel oped) bearing surfece. Teomputations and graph were Cone t;
Cameron and Wood [t]. This journal teerirg has an eccentricity ratic
e =elr equal to 0.8 and a bearing diemster-to-length ratio of D/L
equal to 1. The isobars (constant pressure contours) are given in
nondi mensi onal units (lOBRE/uUre)p. The variable p is the pressure,
Ris the bearing radius, u is the viscesity of the lubricant, U is
the surface velocity of the journal, r is the mninum clearance
between the bearing and the journal and e is the distance between

the two axes (see Figure 8).

3.2. The Reynoclds Eacuation

In 1886, GCshorne Reynolds [L48] devel oped the now classic
equation governing the nechanism of hydrodynanic lubrication by ircom-
pressible fluids. The equation, a special case of the nmore general
Navier-Stokes equation [45, p. 4], is deduced from seven essenti al
assunptions On the physical properties of the system (see [45, p. 51).

(1) The dinmensions are sufficiently large to justify ignoring the
curvature of the journal bearing when studying a small section
of it.

(i1) The pressure across the film (fromthe journal to the bearing)
is constant; i.e., dpfy = 0.

(iii) The flow i s laminar, i.e., there is no turbulence in the film
(1V) There are no external forces acting on the film

(v). The fluid inertia is small compared to the viscous shear.

This neans that the rotational forces of the journal acting
on the lubricant are nuch larger than the natural tendency
(e.g., fluid gravity) of the fiuid to remain at rest.
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(vi) There is no slippage of the fluid at the bearing surfaces.
(vii) If u and w are the velocities of the fluid in the x- and
z-directions, respectively (see Figure 13),then all velocity

gradients are negligible conpared to du/dy and dw/dy.

Pinkus and Sternlicht [45] note that in npst practical cases,
the bearing is stationary and only the shaft is nmoving. In these cases,

the nost general form of the Reynolds equation is
3
ph” 9dp ) h” 3 _ d(ph) ~
. ax)”a“z(pu—sﬁ = 6U S+ 120V - (10)

The variable o represents the density of the lubricant, , is the

absol ute viscosity, and Yo represents a velocity resulting from the

nmotion of the journal center. In the ensuing discussion of equation

(10), we will postulate that v, = 0 and that o and u are constants.
In order to gain a better understanding of the nodel of a

journal bearing of finite length, we first examne a sinpler nodel

By nmeans of this special case, we may notivate the boundary conditions

for the problem of nore general interest.

3.3. A Limting Case: The Infinite Length Full Journal Bearing

If we suppose that the length L of the journal bearing is
infinite, certain further sinplifications may be nmade. W may dis-
regard the effect of fluid flow fromthe ends of the bearing and
therefore op/dz, the pressure gradients in the axial direction, will

be zero

L6



e

— 7y

r

Cbviously, an infinitely long journal bearing is a physical

inpossibility and does not closely approximate the dinensions of those
used in practice. However, it does provide sone understanding of' the
behavior of nore realistic bearings. Some notable simlarities between
the finite and infinite length nodels are the following. The infinite
case provides upper limts on both the pressure exerted on the fluid
filmand on the loads which the filmwl| support. Moreover, Pinkus
and Sternlicht [45, pp. 69-71] show that the solution to equation (10)
(which describes the finite length journal bearing) is a perturbation
to the solution of the infinite length journal bearing problem The
perturbation involves adding the product of the solutions of two
differential equations of a single variable. (To the authors

know edge, this realization has not borne fruit due to the difficulty
of solving the latter two differential equations.)

As Pinkus and Sternlicht indicate [45, p. 68], the difficulty
in obtaining satisfactory solutions for journal bearing problenms |ies
not only in solving a given fornulation but in adequately defining the
boundary conditions for the formulation. For the remminder of the
paper, we shall assume 6, = 0. In order to determine these boundary
conditions for the sinpler nodel, we first recall that there is no
pressure variation in the axial direction. Consequently, it is
sufficient to examne an arbitrary cross-section perpendicular to the
axial direction (see Figure 8). Generalization to the finite Iength
case (where, for a given 6, there is pressure variation in the axia
direction z) may then be thought of as the examnation of a collection

of cross-sections along the z-axis, say at z = z 2y wher e

1,22,25, ceey
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the boundary conditions for the ith cross-section are analogous to
those for the infinite-length journal bearing nodel

Replacing the variable x by R9, where 6 is in radians
and Ris the bearing radius, and recalling that dp/dz = 0, then

the Reynolds equation for an infinite journal bearing is

O 1,3 9p] dh
W may use full instead of partial derivatives because both p and h

are now functions of 6 alone. Furthernore, since 6uR is a constant,

a change of units is sonetines made to allow setting it equal to unity.
In 1904, Sommerfeld obtained* the first solution to equation

(11); he addressed the full journal bearing case in which the boundary

values were pP(0) = p(27) = p . He also assuned that both journal and

o
bearing were cylindrical and hence (h being a function of 6 only),

h(8) = r(1 + € cos 9) .

The paraneter Py is the anbient (or atnospheric) pressure and is
usual ly set equal to zero. Sommerfeld' s expression for the pressure

distribution was

(12)

6uUR 2 +ccos 0) siné®
p(9) = p, + 2 : > ) 5
(2 + ¢ )(1 +¢ecos 9)

Setting P, equal to zero, the graph of p(6) becomes

* . .
by a clever transformation of variables
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The inportant thing to notice is that equation (12) yields
regions of high negative pressure. This rodel was unacceptable since
a lubricating fluid cannot support such high negative pressures and
still remain an inconpressible fluid. The underlying problem was that
as 6 increased beyond 6 in = m, the width of the filmincreased
and consequently the pressure exerted on the film decreased. Eventually,
at 6 = 6., the pressure becane so low that the tensile strength of
the fluid was overcome and the fluid vaporized. Since the Reynol ds

equation only holds for inconpressible lubricating fluids and the

region of the journal bearing beyond the free boundary, i.e., 8> 6,

contained a conpressible gaseous lubricant, it was no longer valid to

apply equation (11) over the region (ef, T).
Thus, a different set of boundary conditions was needed to
provide a nore realistic solution to the problem of determning both

the region (90,6 in which the lubricant exists as a liquid

)
and the pressure p(6) in that region. Fromthe literature, one
infers that the boundary conditions comonly used today are due to

Swi ft [55]. They state that when the pressure falls to zero, the
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circunferential pressure gradient dp/d6 also falls to zero. In other
wor ds,
(i) P(0) =0
(ii)  »6,) =0
(iii) 2 (e)=0.
Cearly, the pressure function p nmay be continuously extended on the
i nterval [ef,eT] by setting it equal to zero on that interval. From
the results of Cryer [19], the free-boundary 6. occurs at the largest
value of 9 =8 for which p is nonnegative on [eo,é] .
Sommerfeld' s technique for solving the differential equation
with these boundary conditions is still applicable and yields the

fol I owing conplex expression for p(6) in terms of another angle, v

2+e )y - . 2 .
_ 6uUR _ : ( he sin e + e siny cos ¥ |
o(v) = r2(l_€2)3/2 V- e siny 2(1 + ¢ cos(ljff - 7-1)
(13)
wher e cos _]e- : ZOSOS 3

and Ve corresponds to ef.

The location of the free boundary 6. is not immediately

apparent from the original problem However, the boundary condition

p(Gf) = 0 yields an inplicit fornula for Ve
AE(Sin(llff'Tr) cos(\yf-ﬂ') - Ilff) +2(\lff cos(\uf-ﬂ-) - sin(\}ff-v))z 0
The solution under these new boundary conditions has the follow ng

graph.
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Notice that the regions of negative pressure found in the graph of
equation (12) do not appear in this graph. This is the principa

reason for using the boundary conditions of Swift.

3.k, The Use of Finite Difference Techniques.

Before leaving the case of the infinite length journal bearing,
we wish to discuss a situation where Sonrnerfeld s technique does not
apply and where no other neans of obtaining an exact solution is
currently known. An exanple of this mght be one where the bearing
is not cylindrical and hence the width function h does not have
the common formh(6) = r(1 + ¢ cos 0). I n 1941, Chri st opherson [10]
proposed a technique forsolving free boundary problens for journa
bearings by neans of approximting the differential equation by finite
differences. Later, inprovenents on Christopherson's nethod were nade
by Rai nondi and Boyd [46] and by Gnhanadoss and Osborne [29]. The
former solved the difference equations by nodifying the Liebnman
(or Gauss-Seidel) nethod, the latter by nodifying successive over-

relaxation (SOR). In 1971, Cryer [19] analyzed the nunerical aspects
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of Christopherson's algorithmwith the SOR nodification when applied

to the infinite journal bearing case. He proved that if

(i) ais the interval length on the approxination grid,
(ii) Py = p(3ja) is the true value of the pressure at ja, i.e.

th

at the | grid point, j =1, 2, . . ., N

h grid point

(iii) Pj is the discrete approxi mation value at the jt
j=12 ..., N and
(iv) ais sufficiently small, then there is a K<« for which
2
maxlp. - P_I < KA
. J
J
Furthernore, he showed that the boundary conditions (in particular,
the "free boundary") cause this problemto be equivalent to a linear
complementarity problem (g,M. The matrix M corresponds to the

finite difference equations which are fully discussed in [19].

Jo 5 The Finite Length Journal Bearing Mdel and an Approxi mation.

A realistic mathematical nodel of a finite length journal bear-
ing has great potential for becomng very conplicated. For instance
the lubricant can be admtted through oil grooves to the bearing at
any angle and the larger the angle, the nore pronounced is its effect
on the resulting pressure distribution. Further, the lubricant is
not always adnitted at atmospheric (i.e., zero) pressure. These and

other factors contribute a significant conplexity to the formulation.
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In our discussion of the finite length case, we shall treat
a fairly sinple nodel, one in which the bearing is a full (as opposed
to partial) cylindrical bearing. Anbient pressure is taken to be
zero. As in the infinite length case, the lubricant that vaporizes
at the free boundary is assumed to condense along the line where 6 = 0.
The boundary conditions are a natural generalization of (i)-(iii) for
the infinite length case (see [29]). As indicated before, it is
easier to present the finite length case in rectangul ar coordinates.
Referring to the bearing surface of Figure 7, we shall let p(x,z)
represent the pressure on the lubricant along the bearing surface.

The boundary conditions are

(i) p(0,2) = 0 for all z,
(ii)' p(2m, z) = 0 for all z,
iy B Do for all x
(iv)' p(Gf(z),z) =0 for all z, and

(v)' R (8,(z), 2) = 0 for all z,

wher e & is the free boundary, and %E (Gf(z), z) is the nornal
derivative of p at (ef(zL z), i.e., the derivative of p in the
direction normal to the tangent of the free boundary 6. at (6.(z),z).
(In the case of the infinite length journal bearing, the normal
derivative at 6, becones gg (Gf) =0 as in (iii) of Section
3.3 )

Since even this relatively sinple nodel of the finite length

journal bearing has eluded attenpts to obtain a closed form solution

by analytic neans, other avenues have been explored and have net with
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nore success. These alternate methods have included electrolytic tank
- model s, d-c anal ogues and finite difference nodels (see [45]). It
Is the last category to which Christopherson's nethod bel ongs.

To devel op the discrete nodel, we shall first follow Pinkus
and Sternlicht [45, pp. 79-81] in deriving a five-point finite
difference approximation to the Reynolds equation. By a change of
variables, we first obtain a dinensionless version of equation (1).
Let x = x/D, z=12/L, h = hfer, and p = (re/p.VRe)p where V is
the speed of the journal neasured in revolutions per unit tine. This

yields

2 = 2 il N
_ _5-(5) 5)+(112> 3’;(55 5—Ei> _er (14)
dx dx '/ dz dz dx

Dropping the bars above the variables and referring to Figure 16, we

- have the following finite difference representations.

; oW (p_zjii) . (P_Lg_‘iﬂ_l)
9 ('h5 52) - _1,j+1 JAV:¢ i,j-1/2 £X
Ax X Ax ?
L P, 4 <P . P, =P, .
3 i+l,J "1, ) _1_;4___1_-_1&>
9 (hB ép) B hi+l/2,,j ( AZ ) hi| /2] ( Az
dz dz’ Az
dh hi,j+l/2 - Iii,g-ge
F - 3% AX ‘

After rearranging terns, the evaluation of the equation at grid point
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55



(i,j) takes the form

W.. = q.. .
ij qlJ ' al,j,lpi,j-l * ai,j,Epi-l,j + ai’j,Bpi,j
ra (15)
i, 3P, " B, ,50, g
wher e
8 51 = CHp g gp/(ax)?
i, 3,1 i,j-1/2 ’
D 3 2
R hi1pe, /()"
3 3 3 3
a . :(ZD) (1+l/2,a i-1/2 j) (l,J‘l/Q i }IJ',J-J./E)
1, J, )
2 (22) (o)
2
__¢(D 3 2
A,5,0 = 7§ Nigp j/(02)°,
_ D 2

ai,j,5 - hi,j+l/2/<AX) ?

6r - i, j-1/2
4,3
and Wij =0 if the pressure at (i,j) satisfies the Reynolds equation.
1fi=12 ..., mandj =1 2, . .. n, then the discretized

version of equation (1) is an (m) x(m) linear system ror each i. we

define the entries of the matrix M as
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M -1 7 %%,e,2
M,5 0 = ak;£:5
M, 31 = %k, 0,k (16)

5 = %k, 0,5

and m =0 for all other r

vhere k-1 is the largest integer not exceeding i/n and where

£ =1i-kn. In addition we let the subvector p, = (pil, P.o» .** , Pin)
and the vector p = (pl,pE,. .+, by); we define the vector g
simlarly.

The matrix M and corresponding vector q formthe basis
for an approxinmation to the nodel of a finite length journal bearing
having a free boundary 6. As in the infinite length case, there is
an associated |inear conplenmentarity problem (g,M whose equival ence
is illustrated by a synthesis of Christopherson's original application
[10] of his method to the finite length journal bvearing problem and
cryer's later discussion [19] of the method and its application.
Intuitively, the conplementarity problemarises as follows. Denote
the region where the [ubricant exists inits liquid (vaporized) statc
as the positive (zero) region. These appellations refer, of course
to the pressure on the lubricant in those regions. |n the positive
region, the Reynolds equation is required to be satisfied. Hence
if the grid point (i,j) belongs to the positive region, then

iy T o and the discretized version, equation (15), becones
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s =9qq,.. +m, . p, +m . _p. . .p. + s P, =
VYJ qlJ 1, J-an-n 1:J‘lpJ'l 1,J?I ™, J+lpJ+l + mi,j+npn

On the other hand, if the grid point (i,j) belongs to the "interior"
of the zero region, then the pressure variables associated with the

) have zero val ue

adj acent points (p.. P

i,9-n’ 7,317 P15+ Pi,5en

Consequent |y, equation (15) becones wij = qij = 6W(hi,j+l/2—hi,j-l/2)/ﬁx

However, the location of the free boundary and the zero region requires
hi,j+1/2"hi,j-1/2’ and hence wij, to be nonnegative. Summarizing
we have a variable P, and an al gebraic expression W associ ated
with the point (i,j) and related by w= M +q. |f pig is
positive, then m&b equal s zero and if pij is zero, then mqj is
nonnegative, i.e., p and w satisfy the conditions of the linear
complementarity Problem (q, M.

If the bearing is cylindrical in the exanple discussed above,
then h(x,z) is independent of z and consequently hi-l/E,j
hi+l/2)j is independent of i. From this observation, we nay draw

and

several conclusions about the matrix M
(1) M is a symetric block tridiagonal M nkowski matrix where
MjEan and i, j =1, 2. .., m
(i) NE+1,1 = Mﬁ,i+1 =T wher e o < Oand i =1, 2, ..=, m

(iii) M, Is a tridiagonal matrix whose subdiagonal and superdiagona

entries are identical and whose diagonal entries are identical.

Wth this structure, the Mdified Bl ock SOR Algorithm MRy be brought

to bear on the journal bearing problem Tne conputational experience

reported in the next section demonstrates the efficacy of this approach.
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section 4
COVPUTATI ONAL  ASPECTS OF ALGORTTHM |V

b,1. Storage Requirenents.

W first address the question of storage requirenents for the
nost general formof AlgorithmIV. In this case, Mis nerely assumed
to be positive definite with synmetric diagonal blocks, Mii.The
matrix Mis partitioned so that M, Is a square matrix of order n.,
fori =1, 2, . . ., m Then, for each i, there are, say, minon-
zero double precision matrix entries and ng doubl e precision entries
for each of the subvectors a9 and Z; - If one uses sparse matrix
techniques to store the entries of M additional storage demands are
made in the form of row and colum index vectors. In the algorithm
itself, the updating of the solution vector iterate z.f requires
sufficient space to solve the conplenmentarity problem

l?+l + ZM--Z}% M..). This means allocating
1373 ii

J>1i

(Q)M)=(qi + Z Ml .

Z
j<i 9
space for a copy of g and M as well as any additional space re-
quired by the conplenentarity subroutine. Notice that it is not
necessary to have all the initial data constantly available in core
For instance, it is sufficient to have the vector z, the subvector
qi,the submatrices M iJfor j =1, 2, . . ., mand appropriate
storage for solving (q,M).
By restricting our attention to the block tridiagonal case
wher e hqi is symmetric and tridiagonal and both M;i+l and Nﬁ+l’i

are diagonal matrices, we find certain economies in storage. Suppose

t he di agonal bl ocks M, are of order n; =N fori =1, 2, . . ., m
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Then, one can easily show that the storage required for M z and

qis 6mn +Un- 2m- 2 (8byte) words.
What further requirenents does Step 1 inpose? If M, is

solved by Lenke's algorithm or the principal pivoting method, we need

approxi mately n° nore 8-byte words. |f we further assune, as
above, that M, is Mnkowski, then Algorithms I-111 are applicable.
Recal | that Algorithnms I-111 preserve the sparsity of the data. Their

addi tional requirenents are approxi mately 4on, 60n and 40n bytes

of storage, respectively. O course,-savings (of 8m-8n bytes) are

achieved when Mis symetric and nmore dramatic savings occur when
M corresponds to the finite length journal bearing problem described
in Section 3.5. In the latter case, Mhas attributes (i)-(iii)

found on page 58.

These storage estimates represent the mninum necessary for

the algorithm  Conputational refinenents (e.g., reduction of multi-

plications by zero) make further storage demands in the manner of
sparse matrix techniques (i.e., in the formof index sets incorporated

into the conputer progran.

4.2.  The Conput er Codes.

Three conmputer codes have been witten for Algorithm IV, the
Block Modified SCR Algorithm  They differ from each other in the way
that each solves the subproblens found in Step 1. The programs are
witten in IBM 360/370 Fortran IV and use double precision (8-byte)

floating-point arithnetic.
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The matrix Mis required to be symetric, block tridiagonal,
and positive definite. Furthernore, the diagonal bl ocks M, are
required to be tridiagonal Mnkowski matrices and the off-diagonal
nust be diagonal matrices. The "tri-

bl ocks M, and M,
1, 1+

i+l 14
diagonal" |inear complementarity problens occurring in Step 1 are

solved by Algorithms I, Il and Ill, respectively.

4.3. Conput ational Experience.

A conputational study of the problem (g,M was performed in
which we used two types of matrices M The "JB" matrix corresponds
to equations (15)-(16), the 5-point finite difference approxi mation
to the Reynolds equation arising in the free boundary problem for the
journal bearing problem (The eccentricity ¢ equals 0.8 and the
ratio DL equals 1.)  The "LAP" matrix corresponds to the five-point
difference approximation to Laplace's equation. (See Figure 3 for
an exanple.) In both cases, the diagonal bl ocks M, are of order n
and m is set equal ton. Thus the matrix Mis of order N = n°
Wen the JB matrix is used, the g-vector cones in two varieties. (One
type corresponds to the finite difference equations for the journal
bearing. The other is a random vector in which the absolute val ues of
the conponents are chosen from a uniform distribution on [0,2] and

their sign is determned by the fornula
( +1 if j(modOt)iB

sgn(qj)=
l—l if j(mod o) >p
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where a and g are given constants. For instance, if o = 20 and
p = 10, then the g-vector has a repeating pattern of 11 positive and
9 negative entries. The LAP matrix is used only with the random g-
vectors described above.

Algorithm IV uses two paraneters, a stopping criterion tolerance
¢ and a relaxation paraneter w. W have set < equal to 10" 7 and for
each experinent, have deternmined (to within 0.02) the value wexp of
the parameter « which mnimzes the nunber of iterations to achieve

the desired level of error in the solution. (In one of the three codes,

we solve Step 1 by AlgorithmIll, the nodified point SOR al gorithm
Algorithm Il uses its own relaxation paraneter o' and for each
experiment, we have deternined (to within 0.1) the val ue we'xp of

the parameter o' which mininmzes the total solution tinme when
w = wexp.)

Finally, we shall use the follow ng nonmenclature for the
algorithms tested. Let BSORF, BSORP and BSCORS denote the three
versions of the Mdified Block SOR Algorithm With the first solving
Step 1 by AlgorithmI--the factorization method, the second by
Algorithm II--the nodified principal pivoting nmethod, and the third
by AlgorithmIll--the nodified point Sor algorithm A so, let PSOR
denote the Mdified Point SOR Algorithm as coded for symmetric block
tridiagonal matrices for which M., is a tridiagonal matrix and both
Nl,i-l and le.,i+l are diagonal matrices.

The first experiment is a general conparison of the four
met hods applied to a sanple of each type of problem The results are

sunmarized in Tables 1, 2 and 3.  (The nunmber of iterations of BSORF,

BSORP and BSORS is the same for each w)
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Table 1. Dpata; JB matrix, JB g-vector
BSORF  BSORP BSORS PSOR
iter sec sec %ﬁ sec EEP_ Hii
18 0.133  0.183 1.3 1.797 1.58 s
37 0.881 5 5og 1.3 20.517 1.76 87
78 7.388 33. 862 1.3 182. 291 1.88 179
Table 2. Dpata; JB matrix, random g-vector, n - 15
BSORE  BSORP BSORS PSOR
iter sec sec ' sec W iter
-&£Xp _ -£Xp _—
15 0183 0 216 1.2 2.013, 1.3 26
18 0.249 0. 266 1.2 2.995 1.52 36
18 0.216 0.299 1.2 2.961 1.56 39
Table 3! Data: LAP matrix, random g-vector, n=16
BSORFE  BSORP BSORS. PSOR
iter sec sec ijXP sec weXp iter
22 0.316 0.316 1.1 2.329 1.46 31
33 o332 0.482 4143 1.62 43
21 0.282 0.332 L 2.579 1.46 33

sec

0.282
2.296
20.616

sec

0.183
0.249
0. 266

sec

0.216
0.299
0.232




One notices that BSORF is al nost always uniformy faster and
BSORS uniformy slower than the others. Further conparison seens to
be very dependent on the sign configuration of the g-vector. From
the results of Section 35 we may deduce that the sign configuration
of the g-vector used in Table 1 is that the first n(n-1)/2 entries
are negative, the next n are zero (or negative if n is even) and
the remainder are positive. Here, we see a pronounced ordering of
convergence speed (as neasured in seconds), especially as n increases.
From fastest to slowest, it is BSORF, PSOR, BSORP, and BSORS. I|n
contrast, the g-vectors used in Tables 2 and > have a |arge nunber of
reversals in their sign configurations. Furthermore, a significantly
| arger fraction of the z-variables are positive in the experinents of
Tables 2 and 3than in Table 1. These two characteristics tend to be
levelling effects, i.e., the running times of BSORF, BSORP and PSOR
are nearly equal (as well as we can tell in light of the systematic
error involved in nmeasuring execution time in the nulti-programm ng
environment of the 18v360/91).

The second experiment dealt specifically with the hypothesis
that when the nunber of positive conponents of the solution vector was
smal |, then BSORF was considerably faster than PSOR and that as the
nunber of positive conmponents increased, the running times becanme
equal. A LAP matrix was used with mand n equal to 30. A sequence
of constant vectors qt were used in which the first 30t conponents
were -3and the remaining 900-30t conmponents were + 1. The results,
summarized in Table k4 support the hypothesis. Since the number of

positive conponents of the solution vector is at least as large as the
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nunber of negative entries in the g-vector (see [9]), this experinent

may serve as a guideline in the choice of an algorithmfor a specific

probl em
Table 4. Data: LAP matrix, random g-vector, n = 30
Ratio
BSORF PSOR PSOR/BSORF No. pos.

j wexp iter sec wexp iter sec iter sec  z-compon.
1 108 7T 099 120 19 ok9 9714 4535 60

2 1.26 14 0.216  1.40 32 0.732 2.286 3.389 118

5 140 20 o.3u9 150 % 0.998 2100 2.860 174

e 158 3 0765 168 e0 1431 1.667 1871 34

9 166 s0 1.8 176 79 1880 1580 1638 480
2 172 60 1580 178 se 2113 1483 1.:37 60
30 174 97 2.995 182 14 2.061 1978 0.989 900

(In this Table, the relaxation parameter o was determined to within
exp
0.02 for both BSORF and PSCR.)

The third experinent attenpts to relate the solution time to n.
From Table 1, we find that a growth rate of order 3/2 hol ds between the
order of the matrix (i.e., ne) and the solution time for BSORF (i.e.,
t o (n2)5/2). Doubl i ng n vincrease’s the running time of BSORF, BSORP,
BSORS and SOR by a factor of about 8, 13.5, 9 and 7.5, respectively.
The results of further testing with random g-vectors are sunmarized in
Tables 5 and €. These approxi mately support the factors deternined

fromTable 5.
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Table 5. Data: JB matrix, random g-vector

BSORF
_I’I- _E j wexp iter sec
16 4 8 1.12 15 0.183
32 4 8 1.14 18 1.181
16 8 16 1.24 18 0. 249
32 8 16 1.36 32 1.896
16 16 3 1.22 18 0.216
32 16 32 1.50 3 1.747

Table €. Data: LAP matrix, random g-vector

BSORF
_n_ j f a)exp iter sec
16 4 8 1.34 22 0.316
3 4 8 1.36 3 1.880
16 8 16 1.50 33 0.332
3 8 16 1.62 48 2. 046
16 16 3 1.32 21 0.282
3 16- 32 1.72 6/ 2.346
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The fourth experiment denonstrates the sensitivity of the
Modi fied Block SOR Algorithmto the relaxation parameter w. The test
probl ens used LAP matrices of order 1024 and random g-vectors. Since
the nunmber of iterations is identical for BSorF, BSORP and BSORS, we
present the results only for BSORF. Sunmarized in Tables 7, S and 9,
this experiment indicates that the convergence is fairly robust, e.g.,
if is the optimal value, then we still achieve good convergence

exp

rates for wé€ [w - .2, w + .2].
exp exp

Table 7 . Data: LAP matrix, random g-vector, n = 32, o = 4, B = 8

BSORF
W iter sec w iter sec

1.10 5 3.011 1.40 30, 1.713
1.20 47 2.396 1.50 39 1.980
1.30 3T 1.836 1.60 47 2.396
1.32 3 1.880 1.70 59 3.011
1.3k 3 1.73%0 1.80 85 L. 309
1.36 33 1.880 1.90 153 1.870
1.38 33 1.697
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Tabl e 8. Dat a:

LAP natrix, random g-vector, n = 32, a= 8, B — 16

BSCGRE

w iter sec w iter sec
1.10 >200  __ 1.62 48 2.046
1.20 175 7.288 1.6 bl 2.063
1.30 140 5.807 1.70 6l 2.529
140 100 4459 1.80 8/ 3.577
150 8l 34977 1o 163 6739
1.60 53 2.163

Table 9. Data: LAP matrix, random g-vector, n =32,a:lé,5:32

BSORF

W iter sec o iter sec
140 >e00 - - 1.70 72 20617
1.50 1745973 1.72 6/ 2.346
1.60 12 4176 1.74 11 2.612
1.64 105 3.560 1.76 11 2.128
1.66 9% 3178 1.80 95 3.39k
1.68 8 2078 1.90 17h 5 .93

The fifth experiment neasures how much of the total solution
time is used by Step 1 alone. The results, reported in Table 10,
indicate that the subproblens use nearly one-third to one-half of the
total tinme. The times reported are sonewhat inaccurate due to the
resolution of the tiner (16 mlliseconds). Despite this, the results
enphasi ze the inportance of having a very efficient linear complementarity

algorithmfor use in Step 1. Further investigation along these lines
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m ght study the dependence of the solution time on the partitioning of

the mtrix, i.e., on the values of Ny By oo 51

Table 10.  Subproblem Sol ution Tinme vs. Total Solution Tine

_ Subprobl em Tine Total Tine
Mat ri x n a 8 (sec) (sec)
JB 3]_ nonr andom 0688 1.999
J-B 03 nonrandom - 4.304 13 .79
JB 16 4 8 0. 208 0.448
JB 16 § 16 0.176 0.416
JB 16 16 32 0. 304 0.644
LAP 37 4 8 1.409 3178
LAP 32 § 16 1.664 3.807
LAP 32 16 32 1.792 4.808

The sixth experinment studies the possibility of accelerating
the convergence by varying the value of the relaxation parameter during
the progress of the algorithm |t js sometimes profitable when solving
systems of linear equations by overrelaxation nethods to let z0 _ 0,
i = 1 and o = & for some fixed & and all k > 2. Te intended
effect of this procedure is to reduce the variationain the conponents
of z' which vould result if o were given a value greater than unity.
The overrelaxation technique then proceeds with some appropriately chosen
val ue* of the relaxation parameter. |p applying this scheme to Al gorithm

IV, we repeat the experiments reported in Tables |-3 and 5-9 and set

*theoreti cal | y or enpirically based
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® equal to the wexp determned in those experinments. As a point

of interest, we also determine the value o = &exp that mnimzes
the nunber of iterations necessary to satisfy the convergence
criterion when using o = 1. The results are sunmarized in Table 1.
They indicate that the scheme has a mnor effect, if any. \Wen there
s a change, it is usually a variation of one nmore iteration than
in the preceding experiments. (However, one test showed a decrease
of one iteration.)

The ei ghth, and |ast, experiment studies another approach to
sol vi ngt hel i near complementarity problem (q,M). In Section 26,
we indicated that when Mis a Minkowski matrix, then the solution

to (g,M) is the unique vector ninimum of the polyhedral set

(z:Mz + ¢ >0, z>0}. It is thus a sinple exercise to show that the

- problem (q,M) is equivalent to the linear programing problem

M ni mi ze ¢’z
subject to M > -q

A

v
o

~for any strictly positive vector c.. Letting ¢ pe a vector of ones,

we solved the linear programwith a production code LPML [¥1] written
at the Systens Optimzation Laboratory at Stanford University. The
data was a JB matrix of order 225 and the g-vector corresponded to the
journal bearing problem The 1mm code took 4.93 seconds with nost

of the time spent in the Phase | procedure. (Recall that BSoRF

t ook .133 seconds to solve (q,M.)
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Table i. Varying the Relaxation Parameter Using BSORF
w =1 w =1
3 k.
ol = o= K >=2wexpl (: :;)exp'
exp = =

Mat ri x o _(3 _P. O o iter iti & . iter
JB » o+ 15 130 18 19 130 1
« o+ 31 1M 38 154 38

« o+ 63 L4 T8 19 L1

4§ 16 112 15 15 112 15

8 16 16 1.24 18 19 1.24 19

b » 1 12 1 2 126 17

L8 n 114 18 18 114 18

§ 16 = 136 % 3 138 R

b 2 % 150 3 40 150 40

TAP 48 16 14 2 23 13 N
g 16 16 150 3 34 150 3

6 = 16 132 2 21 132 =

b §F n 1B/ 0B 32 136 %

i 6 2 162 48 48 162 48
b % % L2 6 o7 172 67

B "+ " indicates that the g-vector corresponds to journal bearing data.
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Next, we solved the dual problemusing the same data. In this

case, the zero vector was a initially feasible point, thus no Phase |
was necessary. The solution time for LpMl solving the dual problem
was 4.09 seconds.

Since the matrix is block tridiagonal, it can be partitioned
so that the nonzero entries exhibit a "staircase™ structure.  Under

this partitioning, the corresponding linear programmng problem was

sol ved by the Ho-Manne nested deconposition algorithm[35], an al gorithm

especial |y developed for problens with this structure. e running
time was 11.46 seconds. In all cases, the numerical accuracy was

conpar abl e.

Further experinentation mght investigate whether a reordering
of variables mght reduce solution tinme. (One possibility is the
so-cal led 'checkerboard" ordering.* Forsythe and Wasow [2k, p.259]
have reported, however, that the (unpublished) work of M R Powers
has indicated the convergence of the SOR nethod for linear equations

may not be very sensitive to various orderings.

9.4. Choice of the Relaxation Paraneter w,

The problem of determning a 'theoretically optimal' yglue of
w for the PSOR algorithm applied to tridiagonal Minkowski matrices
is discussed in Section 1.3. The setting was the application of over-
relaxation to systens of linear equations. \% now review and extend

the key notation and results.

*A'so known as the "black-wnite" or "odd-even parity" ordering.
See [2k, p. 245].

72



Mbst generally, an algorithm may be expressed in the operator

*
form S = & zk wher e zk+l, S 7% 1f we let z repr esent
: * *
the solution and ¢ = z - z° be the error vector, then z = @,*
k+1 k : o
and e " = Ze. W will let -]l be any vector normor its induced

matrix normwth usage dictating its neaning.

since  1m (/%)% < o(2),[58] where o)
is the spectrkal—):cadi us of @ and 8 = . ZO is the initial error
vector, we want to mnimze (). In the specific case where we are
applying successive overrelation to the |jnear systemM + q = 0,

the operator % is forned as follows. We wite M= D - E - F where

Dand (E+ F) is a regular splitting of M (see [58, p. 88]) and

let L =p"g U=-1T"F. (The splitting used depends on whether we
are doing point or block SOR  Since the operator # is dependent

on o and M we express it as

2,00 = (1 - o) [av + (1-0)L] .

Wien Mis a tridiagonal or block tridiagonal M nkowski matrix,
it belongs to the class of consistently ordered 2-cyclic matrices
[58, pp. 99-101}. Consequently, the relaxation paraneter @ t hat
nininizes o(g ) can be uniquely specified in terms of B =L+

the Jacobi matrix associated wth M Froma fornula of Young [62,

p. 169], the optimal paranmeter value is

@, (1) = 2/(1 +41 - 0%(B) ).
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As discussed in Section 1.3, one approach to theoretically
deternmining an "optim? value of o for AlgorithmIVis to imtate
the procedure for systens of |inear equations outlined above. This
is a plausible idea since if z* solves (q,M), then for large enough
walues of K, (Mzk + q)i w |l equal zero when zr is positive. In
other words, after a nunber of iterations, Algorithm IV wll appear
to act as a block SOR algorithm solving a subsystem of |inear equations
extracted fromthe original problem Mre specifically, let
N= .55 ng, 4= (1,2, . . ., X}, T be an index set from. and
T Ezlits conpl enent. Al so |et Mo be the principal submatrix of
M corresponding to rows and colums j € T and |et
F(z) = (i €S iz, > 0}. The results of Cryer [20] are easily generalized
to formthe basis of the conjecture that the optimal o for A gorithm
W is oy = a%(MTT) where z  sol ves (9, M, W= Mz o+ q and
T = ¥4- J(w*).

In the case where Mis a tridiagonal M nkowski matrix, the
theoretical estinmate of Do pt is not supported very well by experi-
nmental evidence [20]. However, when Mis a block tridiagonal matrix,
the correlation between theory and practice inproves considerably. In
order to denonstrate this, we first need to devel op sone technica
machi nery.

Recal | that the expression for @, requires the evaluation of

o(B). In general, this is difficult to do theoretically. If the

matrix is symmetric, an approxi mation may be obtained by setting

Th
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o(8) = min([[Bl_, IB"|,) = min(max £ |v, .|, max 3 v, .|}
i 3 J i 1 J
or by a variety of iterative nethods (e.g., the power nethod [36,
p. 147]). In the special case of the LAP matrix, we can state o(B)
explicitly. W deal first with the Jacobi matrix B arising in the
PSOR al gorithm A gorithmlIll. W deconpose M= D -E - F into a
diagonal matrix D and strictly |ower and upper triangular matrices

E and F. The matrix Mis partitioned the usual way into sub-

matrices Mi(j for i, j =1, 2, ..., mso that Mi is n Xn. W
wi |l next determne p(BKK) where K = (1, 2, . . . , kn} for any
k=12 ..., m (Note that By is the Jacobi matrix associated

with the LAP matrix MKK’)

Theorem 6. Let BKK be the matrix described above. Then
o(Be) = 3 (cos m/(k#1) + cos m/(n+1)).

Proof. Define the s X s matrix TS = (tij) by tio = ti yq =

,1+l
t. c=1for i =2, 3, .. ., s, t =1 and t.. =0
l+l,l %S—l 13
otherwi se. Let I, be an s x s identity matrix. Recall that if
G and H are slx52 and 53'>< s4 matrices, then their tensor

product (or Kronecker product [%2, pp. 97-98]) P = G® His an

sls5 X 5,8), matrix of the form
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8 g H glng
P =
g i g_ _H g H
511 512 5152
It is easy to show that 5 = 4p = +
Y AT RO e Let

be the orthogonal s xs matrix whose colum vectors are the eigen-

vectors of T, and et | . be the diagonal matrix of eigenval ues;

thus  T.Q = Q.. The matrix Q= Q. ®Q, is orthogonal since

72K
and QN are, hence QT%{Q has the sane ei genval ues as ]QK (Not e

that we have suppressed the explicit dependence of Q on X and N.)

Using the fact that (Gl ® Ge)(G3 ® Gh) = (GlGB) ® (GEGA) for any

mtrices, G , G, one can show that Q'f g -
.. 4 YBQ =1 ® I + L ®L.
But this is a KN xKN diagonal matrix with entries Ny A wher e
I nj
Age =L 2, ..., k and Anj’j =1, 2, ..., n are the diagonal

entries of Lo and Ly, respectively. From[33, p. 154], we know
t hat ?\rJ. = 2 cos m§/(r+1) for j =1, 2, . . . , r. Thus the spectral

radi us ofalg is

B = R L T
D(BK) L <m£;x< ,7\1(1 + Anjl' =2 (COS =Tt cos m)
1< é n
and since B = 4B, o(B.) = -21- (cos T/(x+1)+cos T/(n+1)).

Ve now study the block Jacobi matrix associated with A gorithm

IVv. Let M=D- E - F where, again, Mis a IAP matrix and
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0 Mg
Myp O Mop
-L = M52 0 s D=
Mnml 0 i - Mrmn
0 My
0 M
and U= 32 -
U 0 .
m-1,m
0

Let B = -D'IL(L + U and Bex be the leading principal kn x kn
submatrix.  The application of Young's fornula for @ to bl ock SOR
algorithns refer to By the Jacobi matrix associated with M

The next result gives the spectral radius of these submatrices of B.

Theorem 7. Let BKK be the matrix described above. Then

°<BKK> = cos(m/(k+1))/(2 - cos(w/(n+1)).

Proof. Define the s x s matrix Uy = (1%) by u T L for

i =1, 2 LS Uy, = -1, ui,i+l = ui’i_l = -1, us’s 1 =-1 and
- : _ -1 . .
ug s T 0 otherwise. Let Vg = Ug and IS be an s x s identity

matrix. Al so |let Ty = LLIS - U Finally, |et Py (resp., Qs)

be the orthogonal s x s matrix whose colum vectors are the eigenvectors

7



of Tq (resp., Vg

of eigenvalues. Thus, the matrix Q = Q¥ Py is orthogonal. (Again,

) and | et Ly (resp., CS) be the diagonal matrix

we have suppressed the dependence of Qon K and N.)
: _ , T
Notice that B, = TK® Vi Si nce B and q BKQ have the
sane ei genval ues, we can instead determne those of the latter matrix.
T _ . : ,
But q BKQ = L ® Cy @ di agonal matrix. Hence, the eigenval ues of
B, are all possible products of the diagonal entries of L and CN,
say[)\kicnj}v\/nerel =1, 2, ... ,kandj =1, 2, ..., 0N &
in Theorem 6, )\kj = 2 cos mj/(x+1) for j =1, 2, . . . , k. Further-
nor e, {cnj} are the reciprocals of the eigenval ues of Uy there-
fore [33, p. 154, . 1/(k - 2 cos wj/(n+l)) for j =1, 2, . . ., n

[t then follows that

p(BK> = nax cos(mi/(k+1))/(2 - cos(mj/(n+1)))
1

i k

IA A
EA A

J n

cos(m/(k+1))/(2 - cos(m/(n+1))). l

There are two problems in applying Theorem 6 or 7 to determne

W The theorens both presuppose that one knows, a priori, the

opt'
index set T = J(z*) since T determnes the linear subsystem
MogZq * G = 0 which is eventually solved. Furthermore, they both
assune that T ={1,2, . . . , kn) for sone 1<k <m (The theorens
remain true if K = {t+1, t+2, . , t+kn} for t =0, n, 2n,...,(m-1)n
and k =1, 2, . . ., m) Fromthe Perron-Frobenius theory of non-

negative matrices, if T=1(1, 2, . . ., kn, kn+l,. . . , kntc} where

0 < k <, then we can bound (nb(MTT) bet ween wb(MT‘fpl) and wm(MT2T2>
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wher e Tl:(l, 2, . . ., kn}and T, = (1,2, . . ., (x+1)n}. This

fact mtigates the second problem somewhat although it still |eaves
the problemof determning 1, and Ty  ne mght be able to determne
T, and T, during the progress of AlgorithmIIl or IV by nonitoring
JZ(Zk) until it appears to stabilize at some index set. From [20],
we know that gross bounds for - can be obtained by setting

T, = #(-q) and T, = & . Qur conputational experience has shown

these latter bounds are not very useful unless T, is afairly large

i ndex set in which case a%(MT - )} and wé MT T ) are fairly close

171 272
t oget her

In order to illustrate the use of Theorems 6 and 7, we use
the data of the second experiment reported in Section 9.3. \ |et
T, = (1, 2, .-. , 30t} and T, = (1, 2, . . ., 30(k+1)} where
(1,2, . . . 30k} ézﬁ'(z*) C T,. The results are summarized in
Table 12. For the Psor algorith = =
g m & wb(MT.LTl) and ¢ %(NEQTQ)

is determined via Theorem 6. For the BSORF al gorithm these quantities

are calculated using the results of Theorem 7. |p poth cases, o
eX

was determned (within 0.02) to be the enpirically optiml value and

can be seen to be remarkably close to @, in most cases. (W woul d

expect @, < u%xp < aé.) These results suggest that an adaptive

mechani sm whi ch sets ol = o and changes o during the operation

of the algorithnms could prove very worthwhile.
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Table 12. Theoretical Rounds for the Relaxation Paraneters

FSOR BSORF
t k+1 w (.02 wexp w "‘é wexp

1 1
2 1.07 1.20 1. 20 1.00 1.07 1.08
4 1.20 1.40 1.40 1.07 1.26 1.26
131 152 1.50 1.17 1.39 1. 40
12 152 1.69 1.68 1.39  1.59 1.58
17 1.63 1.75 1.76 151 1.67 1.66
12 22 1.69 1.79 1.78 1.59 1.71 1.72
30 30 1.82 1.82 1.82 1.75 1.75 1.74

O O\ o N
()Y

An alternate approach for estimating the optimal relaxation
paranmeter is suggested by sone research of Garabedian [27]. In a study
of the point SOR nmethod applied to linear systens derived fromfinite
difference approximations to partial differential equations, he proposed
an asynptotically good estimte for o (i.e., the estimte becane
better as the mesh size on the region R of interest tended to zero).
He assuned that the mesh size was uniformand of width h and the
area of the closure of R was a. Garabedian then suggested using a

1/2). For many shapes of

rel axation paraneter o = 2/(1 + 5.015(h2/a)
regions, he noted that in several nunerical tests carried out by

Young, this choice of o resulted in approximately a 20 percent decrease
in convergence rate from the optinmal convergence rate. The remarkable
-success of this estimate lies in the sinplicity of its application in
conparison with the application of Young's formula. This suggests

that a generalization to the block SOR method (and thence to

Gl



Algorithm V) could be worthwhile as future research. The authors

have not yet derived simlar results for either the block SOR or

Modified Block SOR techniques.
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