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SECTION 1 INTRODUCTION

This paper is an attempt to determine the order of magnitude of the problem of giving an axiomatic
treatment, in LCF, of an established programming language with a sizable user community. We
wanted to include such features as declarations, 1/O, different types of parameter bindings and
control structures. For this purpose we chose the integer arithmetic part of PASCAL, which we will
refer to as PASCAL. It seemed to us a reasonable choice in that:

1) it satisfies the above criterion, thus it is not a toy language.
2) it is powerful enough to compute any partial recursive function on sequences af integers.

3) the existence of VCCEN (lgarashi, London and Luckham 1973) and FOL (Weyhrauch and
Thomas 1974) will eventualy give us the ability to compare the effectiveness of Hoare's
axiomatic definition of PASCAL, McCarthy’s style of first order axiomatization (McCarthy
and Painter 1966) and the Scott style of assigning extensional meanings to programs.

One pleasant result of our work was the discovery that the task seems more manageable than we
had originally thought. Most discouraging was realizing exactly how inadequate even careful
descriptions of programming languages actually are.

LCF is both a logical calculus and a proof-checker for a suspected proof in the logic.It could be
described as an equation calculus based on terms in the typed A-calculus, whose most powerful rule
of inference is Kleene's first recursion theorem stated as a rule (see Kleene 1952). Using this
language in the mathematical theory of computation was first suggested by Dana Scott. Its formal

" properties are described in Milner 1972a,1972b. Also see Milner and Weyhrauch 1972, Weyhrauch

and M ilner 1972, Newey 1973, 1974, Aiello and Aiello 1974 for other applications. A short
description of LCF syntax is given in appendix 1.

Initially our intent was to present a semantics for the description of PASCAL given in Wirth 1971,
1972 and Wirth and Hoare 1973. As a result of our attempts to give what we consider a complete
description, we found many ambiguities and places where the literal interpretation of Wirth’s
descriptions led to a semantics having undesirable properties (see 3.3.2.3 for a discussion of the for
statement). We have described a language which has a fairly smooth semantics, and whose formal
properties are more clearly apparent. All the differences are documented in the text.

We think of our axiomatization as characterizing properties of the whole PASCAL and not as a
description of properties of individual statements. In section 4.2, for instance, we prove that, if two’
programs P and Q_ don't contain goto statements, we can represent the function computed by the
program consisting of P appended to Q_ as the composition of the function computed by P with that
computed by Q. This theorem and others in section 4 simply cannot be expressed or used in
formalisms like Floyd's method of attaching assertions to programs or in Hoare’s axiomatic
approach. We consider this a major difficulty with those techniques. Both consider programs
individually. Tt is our belief that the feasibility of checking (or generating) large formal proofs
depends on our ability to prove general properties of classes of programs. A description of the
entire programming language is required in order to mention these classes.

Characterizing an entire language in this way means that conflicts arising out of putting different
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programming features together must be resolved, or at least describable in the formalism. The
discussion of function activations in section 3.2.1.3 is a typical example of the difficulty one
encounters when trying to characterize the behavior of an entire language. Unusual programs
cannot be ignored or left unmentioned. In actua programming languages the ability to decide if a
program is well formed is in generd too costly and many “ill formed” programs are usualy accepted
by the parser. An example of such a difficult case is found in section 3.3.2.3. on the for statement.

In section 2 we describe the ax ioma tiza tion of the environment in which PASCAL programs are
executed

A specia word is needed here to make clear an abuse of language that appears throughout the
report. We frequently speak about a combinator being executed and then explain what it does.
Strictly speaking this is not correct. Combinators don’'t do anything. The functions we mentioh are
to be interpreted extensionaly. It means that the only properties of LCF functions that can be
mentioned are properties of their graphs. Thus, when looking at

F = [AN.(isname(N)=(isRichard(N)-Good,Bad),FF)]

we may say informaly that F is a function which checks if N is a name. If it is not then its value is
FF otherwise it returns Good or Bad depending on whether that name is Richard or not. This
description is in the style of an interpreter. More correctly we should say, F is a three valued
function whose value is FF on arguments which are not names, and otherwise has the value Good or
Bad depending on whether that name is Richard. How the function is computed is transparent to
LCF. This point is very important so that there is no confusion about the nature of the semantics
defined here. To each. program is assigned a function, not a computation procedure. LCF terms
also have interpretations as computation procedures, but it is not this interpretation that concerns us
here.

Section 3 describes al the control structures and statements relevant to the arithmetic part of
PASCAL. They include

1) type definitions

2) variable and array declarations,

3) procedure declarations and procedure activations,

4) function declarations and function evaluations,

5) assignment, conditional, while, repeat, for-to,for-downto and goto statements,
6) input/output instructions.

We do not consider constant definitions, label declarations (Wirth 1972), case or with statements, or
records and files (except INP and OUT). These are either easily addable or are not relevant to the
arithmetic part of PASCAL.

Although LCF uses the typed X-calculus, a natural semantics may be given to goto’s and to
procedures having themselves as actual parameters without introducing type conflicts. This is
explained in section 3.3.1.3. .

Examples of general theorems about PASCAL are presented in section 4. Most of the work to date
on the correctness and equivalence of programs, has actually. only dealt with the extensional
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properties Of agorithms. Input/output or the effects of declarations cannot be ignored in any theory
of correctness which hopes to be practical. As soon as we ask whether a program will run or not, or
whether it will compile or not, then the question “do we have the correct algorithm?’ is a minimal
criterion for correctness. In addition, the distribution and consumption of resources during the
execution of a program, involves both what has been declared and how bindings are made to
parameters. The correctness of programs which input data incrementally, must know how these
inputs are treated.

We have set out here a description of a large but stable core for any interesting programming
language. We wanted to establish a base from which further work could be done towards a practical
system for proving properties of programs within this core. Some example are the theorems of
section 4.

Section 5 gives partia correctness proofs for some programs. The much overworked factorial
program is again discussed. We included it to show some of the flexibility in our approach to
program correctness as well as illustrate points made in other parts of the report. A proof of the
correctness of a program implementing the McCarthy Airline reservation system is given. This is
new in that it treats an interactive program which has a potentidly infinite number of inputs. The
details are in 5.2.

The appendices contain a short description of the LCF syntax, the list of al the LCF axioms
describing the syntax and semantics of PASCAL, and the actual. LCF printouts of the proofs of
theorems mentioned in the text.

Some familiarity with the papers Wirth 1971, 1972 and Wirth and Hoare 1973 is recommended to

- better understand this memo.
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SECTION 2 THE SEMANTICS OF PASCAL

Section 2.1 Description of the semantics

In this version of PASCAL we restrict our attention to programs whose inputs are sequences of
integers. The meaning (or interpretation) we assign to a program is thus a function from sequences
of integers into sequences of integers.

Programs, on the other hand, map memories onto memories. In order to describe the effects of
procedures and function activations more clearly we introduce the notion of a store. A store divides
the memory into frames or environments. Frames are specified by a framepointer. Thus we think of
programs as mapping stores onto stores, and stores are functions from framepointers to frames.

store: framepointer - frame
A frame is a function from locations to values.
frame: location - value

A store describes abstractly additional structure of a memory without knowing how it is realized in
any particular implementation. The execution of a program, p, starts with’ the creation of the initial
store. This is done by FRAMES (see next section). It contains the locations fileloc INP and fileloc ouT
for the input and output files respectively, and a location textloc where the text of the program is
stored. This store has only one frame called 8.

Type definitions are then made in this frame. Each frame represents an environment in which the
current declarations and variable bindings are found.

The effect of declaring a variable, v, in a frame is to create a location typeloc v, which contains the
type of v. Thus we can tdl if a variable has been declared in a frame s(f) by checking if

s(f,typeloc v)=UNDEF.

The execution of a procedure or a function creates a new frame. It is set up by the combinator
MAKFRAME defined in appendix 3.9. The new framepointer is just the successor of the current one,
namely that pointing to the frame where the procedure or function has been activated. This
imposes a stack discipline on procedure and function activations. The binding of free variables are
made in the style of ALGOL. The position of the variable declaration in the program text
determines the binding frame. FETCHV is the function which looks up the value currently bound to
a variable.

The combinators FRAME8 and MAKFRAME build stores with the following property. If f is a
framepointer corresponding to a non activated frame, then s(f)=UU, otherwise for any legal location
loc, s(f,loc) is either a value or is UNDEF. The vaue of a variable is stored in a location which
depends on its name. This is dightly complicated in PASCAL, because both identifiers and array
element names (e.g. Al1)) are considered variables. Section 3.2.1.2 describes the combinators which
allow us to treat them uniformly.
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BothFRAMEB and MAKFRAME store the body of statements to be evaluated into a location of the
frame they are defining. The effect of procedure and function declarations is to add new locations
to the store.

The statement part of a program, procedure or function, is interpreted in the store where the
corresponding declaration part has been evauated. Statements are evaluated in sequential order,
unless a goto statement is encountered. Where to go is determined by the function segm, which takes
a text and a labd, and returns a text, i.e. it tells you where to jump. The new text is evaluated in
the same frame as you jumped from. Thus you cannot jump out of a procedure activation. This
follows Wirth 1971. The effects of the other statements are pretty much as you might expect. They
are defined by MS in section 3.3.

The stack discipline imposed on procedure and function activations and the discipline imposed on
goto's are not intrinsic to this approach to the description of the semantics of programming
languages. We impose them because we wanted to correspond to Wirth 1971.

Programs are written in abstract syntactic form. Each syntactic construct is assembled by a
constructor and its components are selected by a selector. The list of all the axioms about the syntactic
constructors and selectors are given in appendices 2.1 and 2.2. Each construct is identified by
associating a type to it. A predicate 1s defined which is satisfied only by objects of that type (see
appendix 2.3). The equality of identifiers denoting types of syntactic constructs and of location
names is denoted by "="in the formulas through the text and is detected by LCF itself.

Section 2.2 Top level functions
The function FUNCT:
FUNCT = [Ap o.[Ai.(INPUT®PASCAL (p,0)®0UTPUT)(i)]] .

where®=[\f g x.g(f(x))] is the composition function and i, 0 are sequences of integers, represents the
“interface” between functions which compute on integers and programs which compute on stores.

Wirth 1971 describes a program as a PASCAL procedure which has an input and an output file as
parameters. The combinator PASCAL

PASCAL = [Ap.[A0 i.MP(p,8,FRAMEB(p,0,i))]]

when applied to a program, p, is a function which takes as arguments two sequences of integers o
and i (representing the initialization of the output and input files respectively) and returns a
function from stores to stores. The definition of PASCAL Imitates explicitly the bindings which a
procedure would make when executed as part of a program. FRAMEB(p) applied to 0 and i creates a
store containing a single frame, called 8, with these bindings and then applies MP to the program p
in frame 8 and this store.

FRAMEB = [Ap.[xo i.[\f. (f=0) -
[Moc.{loc=fileloc INP)- INTERNALREP(i),
{loc=fileloc OUT)- INTERNALREP(o0),
{loc=textloc)- statmof (p),UNDEF],UU]]],
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PASCAL programs read sequences of numerals supplied by some input device into the buffer tileloe
INP and write outputs into the buffer fileloc OUT. INPUT is just the identity function. The write
statement puts numerals in the output buffer, thus OUTPUT maps sequences of numeras, onto
sequences of integers. INTERNALREP is a function which takes sequences of integers and returns
sequences of numerals. The definitions are found in appendix 3.1.

Programs in PASCAL have two parts: a declaration part and a statement part.
The interpretation of a program in some frame specified by the framepointer f:

M P = [xp f.MD(declof t,f)@MS (statmof t,f)]

is just the interpretation of definitions MD composed with that of statements MS. These are
described in the next section.
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SECTION 3 DESCRIPTION OF THE LANGUAGE

This section contains the description of al the instructions included in our version of PASCAL and
the description of their semantics in LCF. Each text (it may be a program, a procedure or a function
text) consists of two parts. declaration part and statement part. The semantics of a text depends on

the frame in which such textis executed, for this reason a framepointer is specified as parameter in
every semantic function.

Section 3.1 Declaration part

The declaration part includes type definitionsandthe declaration of allthe variables, functions and
procedures local tothattext.Its semantics is defined by:

MD = [Ad f.MDEF(d,)@MDEC(d,1)],

MDEF =[ecF [Ad{.
isemptyst d = ID,
istypedef d - CREAT(f,namof d,typof d),
iscmpnd  d = F(fstof d,f)@F (rmdof d,{),ID]],

MDEC = [ocF.[Ad f.
isemptyst d = ID,
isvardecl d = CREAV(f,namof d,typof d,f),
isprocdeci d = CREAP(f,namof d,prspof d,f),
isfundec! d =» CREAF (f,namof d,fnspof d,lypeof d.f,f),
isempnd  d = F(fstof d,f)@F (rmdof d,f),ID]).

MD is the composition of MDEF, which defines the semantics of type definitions and MDEC, which
defines the semantics of variable, procedure and function declarations. Every identifier appearing in
a declaration statement isanameso it must satisfy the predicate isname. Consequently, whenever
some property of a PASCAL program is to be proved in LCF, for each identifier appearing in that
program, axioms stating that it is a name are to be added. The predicates for the identification of
syntactic constructs are given in appendix 2.3.

3.1.1 Data Type Definitions

Since we are dealing withthe integer arithmetic part of PASCAL, thescalar data types we have
introduced are the integer type INT and its subranges. A subrange is an interval of integers and is
defined by specifying i t s lower a n d upper bounds. The structured d a t a_types included in out
language are the array types. An aray mayhaveanynumber of indices (each ranging in asubrange
type) and its elements are all of the same scalar type.

Each type may be assigned a name in a type definition. The semantics of a type definition is CREAT:
CREAT = [\ f n ty s.CREALOC(f,s,typidioc,n,ty)].

CREALOC = [Af s loc n val. ISPRESENT(n,s(f))-UU,STORE (f,s,loc n,val)]
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CREALOC is used by CREAT. It declares a name n to be a synonym for the type.ty in the frame s(f),
by storing tyina new location typidlocn. The result of CREALOC is undefined if n doesn't satisfy the
predicate isname or if it has been aready declared in the current frame. This is tested by ISPRESENT.
Modification of the store is done by the combinator STORE. Their definitions are in appendix 3.9.

Inthe definitions of MDEF and CREAT no assumption is made on the order of the type definitions. If
all the type identifiers satisfy the predicate isname and are different from each other, the result of
MDEF on a frame, in which they don't appear, doesn’t depend on their order in the text (see theorems
in4.5).

3.1.2 Variable Declarations

Each variable occurring in a textmust be assigned a type which specifies the range of values that
variable may assume during the execution of the statement part of the text. ‘The semantics of a
variable declaration is defined by CREAV:

CREAV = [Af n ty fl s.CREALOC(f,s,typeloc,n, TYPEVAL(ty,fls))].

CREAV creates a location in the current frame s(f), whose name s typelocn, provided n is aname and
no other location with the same name already exists in that frame, The content of that location is
the type associated with n. Such type is evauated by TYPEVAL (see 3.3.1.3). Each type identifier
possibly appearing in it is removed and its definition is substituted for it. The evaluation is made in
the frame specified by the framepointer fl. When a variable is declared fI coincides with f,so at the
moment there is no point in introducing another parameter in CREAV. We have introduced this
extra parameter since CREAY is also used when binding value parameters in a procedure or function
activation, On that occasion the two framepointers f and fl (the one in which the new location is
created and the one in which the type evaluation starts) do not coincide.

3.1.3 Procedure and Function Declarations

The semantics of a procedure declaration is defined by CREAP:
CREAP = [\ n ps fl s.STORE(f,CREALOC(,s,accink,n,fl),procloc n,ps)],

The result of CREAP is undefined if nisnotaname or something with the samenamehas already
been declared. Otherwise two locations are created. One of them, whose name is proclocn contains
the formal argument list and the text associated to that procedure declaration, the other one, whose
name is aeelnk n contains the frame pointer specifying the frame where the procedure hasbeen
declared, i.e. the environment where its free variables are bound. As for variable declarations, when
a procedure is declared the two framepointers fand fi are the same, but the combinator CREAP is
also used when binding procedure parameters in a procedure or function activation,, and in that case
thetwo framepointers differ.

The semantics of a function declaration is CREAF:

CREAF = [Xfnisty ftfls.
STORE(f,STORE(f,CREALOC(f,s,accink,n,fl),typeloc n,TYPEVAL(ty,ft,s)),funcloc n,fs)).
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CREAF is similar to CREAP. The only difference is that, in addition to funloc n and acclnk n, a location
typelocn is created, whose contentisthe type of the result of that function.

From the definition of MDEC and the others LCF combinators describing the semantics of the
declarations it follows that the order in which declarations are made is not relevant. If the identifiers
being declared are different and no other locations have been declared with these names the same
store is obtained, independently of the order (see theorems in 4.5). This is dightly more general than
the definition of PASCAL in Wirth 1971, which requires that al the variable declarations must
appear before the function and procedure declarations.

Section 3.2 Expressions

An LCF function can either evaluate to an object or to a truth value, but not both. For this reason
we could not introduce a unique evauation function for arithmetic and boolean expressions. So we
have divided expressions into arithmetic and boolean (this distinction is absent in Wirth 1971) and
introduced two evauation functions. Furthermore, we have introduced a finer distinction between
the types of operators in order to avoid funny situations like the prefix adding operator “or” which
is allowed in the syntax given in Wirth 1971, 1972 but whose meaning is not defined there.

3.2.1 Arithmetic Expressions
Arithmetic expressions are written in abstract syntactic form and are evaluated by MEXPR:

MEXPR =[e«cF [Xefs.
isconste = MCONST e,
isexpr e =isunary(opof e) - MOPI (opof e,F(arglof e,f,s)),
isbinary (opof e)~» MOP2(opof e,F(arglof e,f,s),F(arg2of e,f,s}),
isvariable e = FETCHV(e,f,s),
isfundes @ = RETURN(succ f,MF(namof e,actargot e,f,s)),UU,UU]].

3.2.1.1 Evaluat ion of Constants and Expressions

The abstract syntactic representation of numbers is defined by the combinator mknumconst. If nisa
number, mknumconstnis the corresponding numeral and it satisfies the predicate isconst(see
appendix 2.3). Numerals are evaluated by the semantic combinator MCONST, which returns the
corresponding number.

MCONST = [Ax.isconst x = numot x,UU].

Arithmetic operator symbolsappear explicitlyin expressions and satisfy the predicate isunary or
isbinary according to thenumber of arguments the corresponding operator expects (see definitions in
appendix 2.4). When evaluating arithmetic expressions MEXPR checks whether the operator symbol
isunary or binary, then MOP1 or MOP2 evaluates them and applies the corresponding value to the
argument(s) evaluated recursively.

MOP 1 =[Ax.x=pplus=?Ax.x,x=pminus=-Ax.(B=x},x=plus 1 -*succ,x=minusl->pred,UU].
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MOP2 = [Ax.x=plus—>!+,xaminus—!= x=times— bk x=div->!/ xermdr-mod,UU].

MOP1 evaluates unary operator symbols and MOP2 evaluates binary operator symbols to the
corresponding functions. For example, the meaning of the symbol Plus is the LCF function s. Note
that, due to the LCF syntax, infix operators, when written without arguments, are prefixed by ™"
An LCF axiomatitation of arithmetic is given in Newey 1973.

Asan example, if:
mkexpr2 (plus,mkexpr] (plus1,nl),mkexpr2(times,mknumconst 2,mkexpr1 (minusl ,n2)))

is evaluated in a frame where the location nl contains the value 3 and the location n2 contains the
value 7, its result is 16, i.e. succ(3)+(2%pred(7)).

3.2.1.2 Evaluation of Variables

If the expression to be evaluated is a variable, then-the corresponding value is fetched by the
FETCHV com bin ator.

FETCHV =[e<F [AnTs.
ISLOCAL(typeloc NAMOFVAR(n),s(f))=>ISLOCAL(NAMOFVAR(n),s(f))-s(f,LOCOFVAR(n,f,s)),uU,
istopf(f)=UU,F (VARBNDTO(n,t,s),NEWFP(n,{,),5)]).

The fetching mechanism is very simple. The variable to be fetched may be an entire variable of a
scalar type or an array element. In both cases a test is done (by ISLOCAL) to see whether or not that
variable name has been declared in the current frame. If this is the case, the corresponding value is
fetched in the current frame (it will be undefined if the variable has been declared, but no value has
been assigned to that location). If the variable name has not been declared in the current frame and
the current frame is not the top one (i.e. if the fetching is done during a procedure or function
activation), the binding list is checked. In fact the variable to be fetched may be a formal parameter
passed by name (see 3.3.1.3 for details on the binding mechanism). In this case FETCHV applies
recursively to the corresponding actual parameter in the preceding frame. If that variable name is
not found in the binding ligt, the variable is free for that procedure or function activation, hence
FETCHV applies recursively to the same variable in the frame specified by the result of NEWFP, i.e. the
frame where the procedure or function in execution has been declared, hence where its free
variables are bound.

The definitions of the auxiliary combinators used in FETCHV may be found in appendix 2.7,-9.
ISLOCAL performs a -test to see whether a given name has been declared or not in a frame.
NAMOFVAR applies to a variable n, and gives as result its name: it coincides with n if n is an entire
variable of scalar type, or it is the name part of n if n is an array element. Analogously LOCOFVAR
returns the location of n. As above, the location of n might be n itself, or an array location. varbndto
is the function which accesses the list of parameter bindings. If the variable n appears in it, then n
(or its name-part) is a formal name parameter and the corresponding actual parameter is the result
of varbndto. If n is not a name parameter, then n itself is the result of varbndto. In this case n is a
free variable for the function or procedure in execution. NEWFP evaluates to pred f or to the content
of the ank location of the current frame, according to whether n is a formal parameter or a free
variable. The alnk location is set up when a new frame is created for a procedure (function)
activation, it contains the pointer to the frame where the activated procedure (function) has been
declared.
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From the definition of NAMOFVAR giveninappendix 3.7 we see that its result is undefined if itis
applied to FUNV.Asexplainedin 3.2.1.3 and 3.3.1.2 FUNV is the location where the value of a
function is stored. Since NAMOFVAR is undefined on FUNV, the result of FETCHV is undefined if it
applies t 0 FUNV. So it is impossible to “read” the value of a function withthe usual fetching
combinator.

3.2.1.3 Function Designators

If theexpression to be evaluated is a function designator, then a new frame is set up. The function
is evaluated by MF and itsvalueisretrieved by the RETURN combinator in a speciallocation named
FUNV.

RETURN = [Af s.ISLOCAL{FUNV,s(f))=s(f,FUNV),UU],

The semantics of a function activation is very similar to that of a procedure activation {see 2.2.1.3).
Starting from a given store, a new frame is created l_)y the combinator MFB and thenthe semantic
function MP (described in section 2.2) is applied to the text of the function. The current frame is
changed by incrementing the frame pointer by I.

MF = [An a f. MFB(FUNCFAL(n,f),a,f,n)@MP(FUNCDEF (n,f),succ f)].

FUNCFAL and FUNCDEF are the two functions which fetch from the store the formal argument list
and the text of the function being activated. Their definition is given in appendix 3.8. T h e y use the
FETCHcombinator which, like FETCHV, returns the content of a location from the frame where it has
been created.

The activation of anew frame andthe binding of parametersis done by MFB:

MFB = [xfa aa f n s.BIND(fa,aa,succ {,CREALOC(succ f,typeloc FUNV,TYPEDEF(n,f,s),
MAKFRAME(FUNCBODY (n,f,s),PFLNK(n,f,s),suce £,s) ))].

It not only binds the formal parameters to the actual parameters (the binding function BIND will be
fully explained in 2.3.1.3), but it aso crestes a new frame. The frame in which the function is
evaluated issetup by MAKFRAME (see appendix 3.9).1t creates a location textloe where the statement
part of the text is stored, and alocation alnk whose content is a pointer to the frame where the
function has been declared. Moreover,a location typeloc FUNVis created, whosecontentisthe type of
the function being evaluated. A location named FUNV will eventually contain the value of the
function. In fact Wirth 1971, 1972 says that the function hame must appear at least once inthe
function text at the left handside of anassignment statement. The value of the function in
execution is stored in the FUNV location by the combinator ASSIGN. From its definition in 2.3.1.2 we
see that the result of a function can onlybe assigned toFUNVinits functionframe. Thismeans that
if the name of the function in execution appears at the left hand side of an assignment statement in
the text of a procedure where such identifier has not been declared, it is interpreted as a free
variable, not the name of the functioninexecution.

As noted in 3.2.1.2 the FETCHV combinator returns an undefined value if applied to FUNV. This
implies thata variable named FUNV cannot be declared even in a frame different from that set up
by a function activation. We have prevented this by considering FUNVa “reserved” identifier which
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doesn't satisfy the predicate isname, so it cannot be used in declarations (the axiom isname FUNV=FF is
included in appendix 2.4).

We assume that the translator from concrete to abstract syntax has substituted FUNV for all the
occurrences of the function name on the left hand side of assignment statements within the function
text. If there are no such occurrences, the function activation returns an undefined result. If there
are severd, the last executed determines the value of the function. If a variable identifier equal to
the name of the function in execution occurs on the rigth hand side of an assignment statement,
then either that variable has been declared within the function execution or it is considered a free
variable of that function. When a variable has been declared with the same name as the function in
execution, its value is undefined during the function execution. In fact, it cannot be assigned a value
since FUNV has replaced it on the left hand side of any assignment statement. It cannot be inputed
since the read statement cannot be executed within a function activation’ (see the following
paragraphs for a discussion on side effects).

The declaration of a variable with the same name as the function in execution is not forbidden by
Wirth 1971, 1972, but we do not see any reasonable semantics for it. In addition Wirth 1971, 1972

says that:

“Occurrence of the function identifier in a junction designator within its declaration
implies recursive execution oj the junction”. :

This sentence doesn't specify what happens if within a function another function is declared with
the same name. Our semantics allows such declarations - why not? In such case the “outermost”
function cannot be executed recursively. This is adso the case if a function has a formal parameter
with the same name (this is not forbidden in Wirth 1971, 1972). In this case the corresponding
actual parameter is executed.

PASCAL adlows functions to have themselves as actual parameters. Even though LCF is a typed
logic, the semantic combinators we have defined avoid type conflicts by passing the text of the
function and not the function itself as a parameter. This is also true for procedures having
themselves as parameters.

Haberman 1973 is very critical of the PASCAL'’s notion of function. He says that, while the aim of a
PASCAL function is that of not having side effects, this is not true since a function may cal a
procedure which may have side effects. Our semantics deals with this situation in a different way,
Statements which change the content of a location and hence cause side effects are only the
assignment, read, write and for statements.

The read and write statements modify the content of the input and output buffers so they cannot be
executed during a function activation. We forbid this by the test ISFUNFR which is performed
whenever a read/write statement is executed. It checks if any frame between the current one and the
top one has been set up by a function activation (see 3.3.1.4,-5). The test on whether a frame has
been created for a function activation or for a procedure activation is done by checking in the frame
whether typeloc FUNV is defined or not.

An assignment statement may cause side effects by assigning a value to a free variable. Whenever
the variable to be assigned is a free variable for the current frame, the ASSIGN combinator (see
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3.3.1.2), checks whether between the current frame and that where the variable is bound (hence
where the modification of the store actually takes place) a function has been activated.

The for statement may cause a side effect if its control variable is free in a function activation.
Wirth 1971, 1972 doesn’'t say that the control variable must be loca to the frame where the for
statement is executed. In our semantic definition of PASCAL, the for statement cannot cause side
effects in a function activation since its definition relies on the combinator ASSIGN for updating the
control variable (see 3.3.2.3).

We included the above checks in our semantics so that ill-formed programs return an undefined
store. It turns out, however, that in our formalism no function can cause side effects. This is because
MEXPR simply returns a value from a function activation. The checks clone in our semantic
combinators amount to checking for side effects “at run time”. Thus some programs which would be
re jected by a PASCAL compiler will still have well defined meaning for us if the statements
producing side effects are never executed.

Findly, we want to point out that our semantics allows parameters of a function to be passed by
name, but guarantees that those parameters can only be “read” during the function execution. This
contrasts with Hoare’s opinion (private communication) that PASCAL functions must not have
parameters passed by name. Wirth 1971, 1972 says nothing about it. In Wirth 1971 the assignment
to nonlocal variables is explicitly forbidden. Nothing is said about this in Wirth 1972.

3.2.2 Boolea n Expressions

The evaluation of boolean expressions is very similar to that of arithmetic expressions (see 3.2.1 and
subsections). It is performed by MBEXPR:

MBEXPR =[«F [Ae f S
(estrue)-TT,
(e=f alse)FF,
isbexpr e =isbunary(bopof e) » MBOP| (bopof e,F (barglof e,f,5)),
isbbinary(bopof e} MBOP2(bopof e,F(barglof e,fs),F(barg2of e,f,s)),
isrelop(bopof @) = RELOP(bopot e,MEXPR(arglof e,f,s),MEXPR(arg2of e,f,s)),UU,UU]].

true and false are the abstract syntactic representations of the boolean constants true and false. If the
expression to be evaluated is the constant true,then it evaluates to TT, if it is the constant false, it
evaluates to FF. Boolean expressions containing unary and binary operator symbols are evaluated
like arithmetic ones. Relation operators take integers as arguments, so the meaning of a relation
symbol is applied to its arguments evaluated by MEXPR. The meaning of unary and binary boolean
operators and that of relation operators is defined by MBOP1, MBOP2 and RELOP:

MBOP | = [Ax.x=not-»=,Ul],
MBOP2 = [Ax.x=and=!Ax=or-3tv,UU],
RELOP = [Ax.x=lseq—!¢,x=greq—- x=It-1¢ x=gt>h x=eq-!=,x=neq-4,Ul).

For example in the frame specified by the frame pointer f and in the store s

mkbexpr 1 (not,mkbexpr2(or,mkrel,it,a,mknumeonst 8),mkrel(gt,a,mknumconst 1)))
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evaluates to
-((MEXPR(a,f,s)<8)v(MEXPR(a,f,s)>1)).

AnLCF axiomatization for the boolean operators is given in Newey1973.

Section 3 . 3 Statement Part
The semantics of thestatement part of the program is defined by MS.

MS=[ocF [Ast f.
iseamptyst st = 1D,
iscmpnd st -
iseamptyst(fstof st)= F(rmdot st,f),
islabstat(fstof st)~ F(mkcmpnd(statmof(fstof st),rmdof st) 1),
isgoto(fstof st) — GOTO(F labelof (fstof st),f), i
isass (fstof st) = ASSIGN(lhsof(fstof st), MEXPR(rhsof(tstof st),f),f)®F (rmdof st,f),
igproccall(fstof st)-[As.MPB(PROCFAL(namof(fstof st),f,s),actargof(fstof st),f,s,namof(fstof st))]®
[xs.MD(PROCDECL (namof (fstof st),f,s),succ f,s))®
[\s.F(PROCBODY (namof(fstof st),f,s),succ f,s)J@CLEAR(suce §)®F (rmdof st,f),
isread(fstof st} — READ(namof(fstof st),f)@F (rmdof st,f),
iswrite(fstof st) = WRITE(namof(fstof st),f)@F (rmdof st,f),
iscond(fstof st) = COND(MBEXPR(testof(fstéf st),f),
F(append(thenof(fstof st),rmdof st),f),F (append(elseof(fstof st),rmdof st),f)),
iswhile(fstof st} = COND(MBEXPR(testof (fstof st),f),
F(append(bodyof (fstof st),st),f ),F (rmdof st,f)),
- isrepeat (fstof st) = F(append(bodyof (fstof st),mkempnd(mkcond(mkbexpr 1 (not,
testof(fstof st)),fstot st,ES),rmdot st)),f),
isforto(fstot st) = COND(MBEXPR(fortest(fstof st),f),
ASSIGN(indexof (fstof st),MEXPR(Ibof (fstof st),f ),f)®
F(append(bodyof(fstot st),fortoup st),f),F(rmdof st,f)),
isfordn(fstof st) - COND(MBEXPR(fortest(fstof st),f),
ASSIGN(indexof (fstof st),MEXPR{ubof ({stof st),),f)®
F(append(bodyof(fstof st),fordnup st),f),F(rmdot st,f)),uU,UUJ).

The definition of MShas the form of a nested conditional, each branch corresponds toone
instruction of the language. Note that MS is defined only on the empty statement ES, whose semantics
is the identity ID=[xx.x], and on compound statements. In fact, the abstract syntactic form of a
programisalistof instructions assembled by the constructor mkempnd and ending with the empty
statement €S.When the first argument of MS is-a compound statement a test is done on its first
element. Except for thelabeled statements, whose semantics is simply that the corresponding
unlabeled statement,the detailed description of the semantic functions defining the meaning of each
instruction will be given in the following sections.

3.3.1Simple Statements

We have defined the semantics of all the simple statements of PASCAL, i.e. gotostatement,
assignment statement,and procedure statement. Furthermore, we have defined the semantics of an
instruction for reading input data from the input buffer INP and of an instruction which writes

output data into the output buffer OUT.



The Semantics of PASCAL in LCF 15

3.3.1.1 Got0 Statement

The semantics of the goto statement is defined by the GOTO combinator.
GOTO = [AF.[xn f. F(segm(n,TEXT(f)),1]],
o It applies the semantic function MS recursively to the text returned by the segm combinator:

B segm = [oF.[An st.
isemptyst st =» UU,
iscmpnd st-
isemptyst(fstof st) =F(n,rmdof st),
islabstat(fstof st)=(n=labelof st)= st,F (n,mkcmpnd(statmof(fstof st),rmdof st)),
~ issingle(fstof st) =F (n,rmdof st),
iscond(fstof st) —occurs(n,thenof(fstof st))-~append(F(n,thenof(fstof st)),rmdof st),
occurs(n,elseof {fstof st ))=append(F (n,elseof (fstof st)),rmdot st),
F(n,rmdof st),
isrepwh(fstof st} ~occurs(n,bodyof(fstof st))=append(F(n,bodyot(fstof st))st),
F(n,rmdof st),
» isforto(fstot st} —occurs(n,bodyof(fstot st))->
s append(F (n,bodyof(fstof st)),fortoup(st)),F (n,rmdof st),
isfordn(fstof st) =occurs(n,bodyof (fstof st))—
* append(F (n,bodyof(fstof st)),fordnup(st)),F(n,rmdot st),UU,UU]J).

segmappliestoalabel, and the text stwhich is retrieved from the store by the TEXT combinator,
andreturns the piece of text starting from the first occurrence of thelabel. If the label is not found
- inthetextthe result of segmis undefined. The behaviour of PASCAL programs when several
- identical labels appear in it is another example of ambiguityin Wirth 1971, 1972. An accurate
description of alanguagemust say if this is a well-formed program or not.

In our semantics, no restriction isimposed onwhere the label may appear in the text. This means
that jumps into (or out from) the body of a repetitive statement are alowed. The behavior of segm
S in such case will be described in their respective sections.

According to Wirth 1971 we do not allow jumps into a procedure body, but, contrary to Wirth1972
we do not allow jumps out of a procedure activation, i.e. Jumps cannot cause the change of the
current frame. For this reason we have not introduced the label declaration statement of Wirth 1672
since the notion of scope for a label is meaningless to our semantics.

L
Lockhood Morris and others have suggested the notion of continuation as a possible way of defining
the semantics of programming languages with the goto instruction. It cannot be used in LCF in a
straightforward way since a type conflict arises. On the contrary in our semantics no type conflict is
introduced by the goto, in fact its semantics simply reduces to changing the first argument of MS.
N The text to be executed next is replaced by the text evaluated by the segm function.
3.3.1.2 Assignment Statement
The semantics of the assignment statement is defined by the combinator ASSIGN:
C



The Semantics of PASCAL in LCF 16

ASSIGN =[F.[An v f s.
n=FUNV-ISADMISVAL(s(f,typeloc FUNV),v(s))-=>STORE(f,s,FUNV,v(s})),UU,
ISINTYPE(n,v,f,s)>STORE(f,s,LOCOF VAR(n,f,s),v(s)),
istopf {f)-=UU,
ISFUNFR(f,s,NEWFP(n,f,s))-F (VARBNDTO(n,f,s),v,NEWFP(n/f,s),5),UU]].

First of al atest is done to see whether the location to be assigned is FUNV, i.e. if we are assigning
the value to a function identifier in a function activation (see 3.2.1.3). In this case if the typeloc FUNV
is present in the current frame and the value v matches with its content, the combinator STORE stores
v(s) in FUNV (see appendix 3.9). Otherwise ASSIGN returns the undefined score. If nis not FUNY,
then the current frame is checked. If n has been declared in it and the value v matches with its type
then the assignment. takes place. A type mismatch makes the assignment to return the undefined
store. If nis not local to the current frame, it may be a name parameter or a free variable for that
frame. In both cases ASSIGN applies recursively with a mechanism quite similar to FETCHV (see
3.2.1.2). The only difference is that here a test is done by ISFUNFR to see if the assignment may cause
a side effect in a function activation.

ISFUNFR = [ocF.[Af s nf. ISLOCAL(FUNV,s(f))- FF pred f=nt = TT,F(pred f,s,nf)]].

ISFUNFR checks if any frame between those pointed to by f and nf is a function frame, i.e. if FUNV is
local to it.

The auxiliary combinator ISINTYPE:
ISINTYPE = [Xv val f s.ISLOCAL(typeloc NAMOFVAR(v),s(f))=ISADMISVAL(TYPOFVAR(v,f,s),val(s)),FF].

evaluates to true if the variable v is local to the frame s(f) and the value val is compatible with its
type. It evaluates to false if v is not local to s(f) and to undefined if a type mismatch occurs. The
definition of the combinators used in ISINTY PE may be found in appendix 3.7,-9.

3.3.1.3 Procedure Statement

When a procedure is activated, its forma arguments are bound to the actual arguments in a new
frame obtained by increasing the current frame pointer by 1. In such frame a location textloe is
created whose content is the statement part of the activated procedure, and a location alnk is created
containing the pointer to the frame where the procedure has been declared.

By looking at the definition of MS given in 3.3 we see that, when a procedure statement is executed,
the auxiliary combinators PROCFAL, PROCBODY, PROCDECL are used. They are defined in appendix
3.8 and are used for fetching the formal argument list, the declaration part and the statement part of
the activated procedure.

The set up of the new frame and the binding of the parameters is done by MPB:
MPB =[\fa aaf s n.BIND(fa,aa,succ f , MAKFRAME(PROCBODY (n,f,s),PFLNK(n,f s),succ f ,s))].

MAKFRAME sets up anew frame and creates the locations textloc and alnk in it. At the end of the
procedure activation such frame is deleted by CLEAR:

CLEAR =[xfsf1.(f1=f)-UU,s(f 1)).
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CLEAR makes it explicit that the local variables of the procedure frame are no longer in the store.

The bindings of the parameters in a procedure activation is the same as that of a function
activation. It is defined by:

BIND = [o«¢F [Afaaaf s
iseof fa = (iseof aa - s,ul),
isparameter(fstof fa) —F(rmdof fa,rmdof aa,f, MKBINDING(fstof fa,{stof aa,f,s)),UU]].

Corresponding parameters in the two lists are bound by MKBINDING. If the two lists have different
length the binding results in an undefined store. PASCAL alows procedures without parameters. In
such case the abstract syntax for the two parameter lists is the empty list EOF.

T he MKBINDING combinator is defined as:

MKBINDING = [Afa aa f s.
isvarp(fa) - TYMATCH(fa,typeloc,aa,f,s) = )
CREALOC(f,s,bindloc,namof  fa,EXPRFORV(aa}),UU,
isvalp(fa) = ASSIGN(namof fa,MEXPR(aa,tf),f,
CREAV(f,namot ta,typof fa,CRNTF(f,s),5)),
isfunp(fa) = TYMATCH(fa,typfunloc,aa,f,s) =
CREAF (f,namof fa,FUNCDEF (aa,f,s),typof fa,CRNTF(f,s),PFLINK(aa,f,s),s),UU,
isprocp(fa)- CREAP(f,namof fa,PROCDEF (aa,f,s),PFLINK(aa,f,s),s),UU].

If the formal parameter fa is a variable parameter (i.e. a parameter passed by name) then, if its type
matchesthe type of theactual parameter aa,a binding location bindloc (namof fa) is created. Its
content iS the EXPRFORV(aa). If aa has subscripts they must be evaluated whenthe binding takes
place (see Wirth 1971). This evaluation is performed by EXPRFORV which substitutes a numeral for
the value of each subscript.

The test on the type matching between formal and actual parameters is done by TYMATCH:
TYMATCH = [Afa loc aa f s. TYPEVAL(lypof fa,CRNTF(f;5),s)=TYPEDEF (loc aa,pred f,s)].

The type identifier associated with the formal argument is evaluated (by TYPEVAL) in the frame
where the procedure has been declared. The pointer to it is retrieved by CRNTF. We have in fact
chosento evaluate the type associated with the formal arguments of a procedure when it is activated
and not when it is declared. The type of the actual argument is fetched from the store by the
TYPEDEF combinator in the location typelocaaor typfunloc aa depending on whether fa is a variable
or function parameter. All these auxiliary combinators are defined in appendix 3.8. Here we only
describe TYPEVAL:

TYPEVAL = [«cF.[An { s.
isbasetype n = n,
isarspec n = mkarspec(F(ariimof n,f,s),F(typelof n,f,s)),
istyppart n = iseof n = n,
ispair n = mkpair (F(fstof n,f,s),F(rmdof n,f,s)),UU,
ISLOCAL(typeloc n,s(f))=F (s(f,typeloc n),f,s),
istopt f = UU,F (n,CRNTF (1,5),5)]).

If the type n being evaluated is abasetype, i.e. integer or subrange, then TYPEVAL evaluates to it. If
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n is an array specification, then both the types of its subscripts and the type of its elements are
recursively evaluated. The types of the subscripts of an array are given as a list of subranges. This
list satisfies the predicate istyppart, SO each one of its elements is recursively evaluated. Findly, if the
type being evaluated is a type identifier defined in the current frame, then TYPEVAL applies
recursively to its definition. If the type definition is not found in the current frame, then the
appropriate frame is searched.

If a formal parameter fa is passed by value, then a variable fa is declared in the current frame by
CREAV (see 3.1.2). Its type is evauated by TYPEVAL in the appropriate frame and stored into the
location typeloc fa. The value of the actual parameter aa is then computed by MEXPR and assigned to
fa. ASSIGN checks whether or not the types of fa and aa are compatible (see 3.3.1.2).

If the formal parameter fa is a function parameter and the type of fa matches with that of aa, a
function fa is declared in the current frame by the combinator CREAF (see 3.1.3). The type of this
function is the type of fa evaluated by TYPEVAL in the appropriate frame. In its acclnk location the
content of the acclnk location of aa is stored. The text of the actual argument is retrieved by
FUNCDEF, its acclnk by PFLINK and its type is evaluated by TYPEVAL in the usua way.

If the formal parameter fa is a procedure parameter a procedure fa is declared in the current frame
by CREAP. In the acclnk of such procedure the content of the acclnk location of the actual parameter is
stored.

Since the combinators used for binding forma and actual parameters are those used in declarations
(see 2.1.2,-3), an undefined store is returned if the reserved identifier FUNV is used as forma
parameter (see 3.2.1.3 for a discussion on the use of FUNV). From the definition of MKBINDING it is
also evident that FUNV cannot be used as an actual parameter since both EXPRFORV and MEXPR
return an undefined result if applied to FUNV. The auxiliary combinators used by MKBINDING test,
by ISPRESENT, the presence of identifiers in a frame. It follows that an identifier cannot appear twice
as formal parameter and in the declaration part of a procedure.

Procedures, as well as functions (see 3.2.1.3), cannot be executed recursively if they declare a
procedure or have a formal procedure parameter with the same name.

As noted for functions, a procedure may also have itself as actual argument. Even though LCF is a
typed logic, we avoid type conflicts by passing texts, and not functions as parameters.

3.3.1.4 Read Statement

PASCAL has no read and write statements. We have introduced them for dgfining the semantics of
the input and output. In Wirth 1972 a standard procedures, read and write, are introduced for
handling the input and output.

As said in 2.2 the data to be inputed is stored into the fileloc INP location of the store by the PASCAL
function. Whenever the value of a variable has to be inputed, it is read from the buffer INP by the
READ function:

READ =[xn f s.ISFUNFR(f,s,8)2ASSIGN(n,MEXPR(fstof (IBUFFER s),f) f,
STORE(8,s,fileloc INP,rmdof (IBUFFER s))),UU].
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A testisdoneto see if the read statement is executed during a function activation, in this case the
result of READ is undefined. Otherwise its result is a new store where the first element of the input
buffer has been removed and its value has been assigned to the variable being read.

3.3.1.5 Write Statement

The results produced by aprogramare stored into the fileloc OUT location, where they are eventually
retrieved by the QUTPUT combinator (see 2.2). The write statement putsintothe buffer the numeral
of the value of the variable to be outputed.

WRITE = [An f s.ISFUNFR(f,s,8)2STORE(8,s,fileloc OUT,mkpair(mknumconst(FETCHV (n,f,s)),
OBUFFER s)),uu]].

As with the read statement, itis forbiddentowrite during afunction activation.

3.3.2 Structured Statements

The structured statements included in our version of PASCAL are
1) the conditional statement in its two forms: if-then and if-then-else,
2)the repetition statements while and repeat,
3)the for statement in its two forms. for-te and for-downto.

We have not included the case and the with statements defined in Wirth1971,1972 since they do
not seem very relevant to the integer arithmetic partof PASCAL.In Wirth1971,1972 the

- compound statement is also included in the list of structured statements.Inour description of

PASCAL the compound statement does notappearsincethebegin, end delimiters are not present in
the abstract syntactic form of a program. The compound statenientinits abstract syntactic formisa
list of statements assembled by the syntactic constructor mkempnd and ending with the symbol ES.
The semantics of the compound statement is defined by MS which’ establishes the flow of the control
through the statement part of the program text.

3.3.2.1 Conditional Statement
The conditional statement in PASCAL has two forms:; if-then and if-then-else. In -the abstract
syntactic form the conditional statement aways has an else part, possibly it reduces to the empty
statement ES.
The semantics of the conditional statement is defined by the combinator COND:

COND = [\q f g s.(q(s)=1(s),g(s))).
The test of the conditionalis evaluated in the store where the conditional statement is executed. The
conditional returns the then-part orthe else-part evaluated in thisstore, depending onthe value of

the test.

Going back to the definition of MS given in 2.3, we see that if the first statement of the text in
execution is a conditional, itstestisevaluated by the MBEXPR combinator and then MS applies
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recursively to the text resulting from appending the then-part or the else-part of the conditiona to
the remaining statements. The appond function, defined in appendix 2.5 corresponds to the ordinary
appending function for lists.

If agoto statement is executed within a branch of a conditional, then the execution goes on with the
text furnished by the segm function. If a jump into a branch of a conditional is done, then the text
to be executed next consists of al the statements between the first occurrence of the label to jump to

and the end of the branch of the conditional, appended to the rest of the program. This text is the
result of the segm function defined in 3.3.1.1.

3.3.2.2 While and Repeat Statements
The while statement isa repetition statement whose abstract syntax is:

mkwhile(test,body).
body is repeatedly executed until test becomes false. The semantics of the while statement as given in
MS (see 3.3) can be explained as follows: test is evaluated, if its result is true, then MS applies
recursively to body appended to the while statement itself and to the remaining statements in
execution. If the test fails, MS applies to the remaining statements.
Wirth 1971 says that in PASCAL, for all e and § the two statements

whileedo S
and

if & thenbegin S; while ¢ do S end

are equivalent. We prove this true for our semantics (see 4.4).

The repeat statement is similar to the while statement. The only difference is in that the repeat first
executes its body and then performs the test to see whether to go on or stop. The semantics of the
repest statement is defined in MS (see 3.3). MS applies recursively to the body of the repest,
appended to a conditional (specifying whether or not the repeat must be executed again), appended
to the remaining statements in execution.

We have also proved the equivalence described in Wirth 1971 for the repeat statement, i.e. for alle
and S the two following statements are equivalent:

repeat S until e
and
begin S; if ~e then repeat S until ¢ 0zd

In Weyhrauch and Milner 1972 and in Aiello and Aiello 1974 a WHILE combinator was introduced
for defining the semantics of the while statement:



(\

The Semantics of PASCAL in LCF 21

WHILE = [ocF.[At b.COND(t,b®F (t,b),ID)]].

It cannot be used here since a goto statement can stop the execution of the body of the while. We
can prove that the definition of the semantics for the while statement given in MS reduces to the
above semantic combinator when the body of the while is goto free (see 4.3).

The language described in Weyhrauch, Milner 19'72 had no repeat statement. The semantics for the
repeat statementwas described in Aiello, Aiello 1974 by the combinator REPEAT:

REPEAT = [ocF.[Ab t. b®@COND(1,F(b,t),ID)]].

Itis similar tothe WHILE combinator described above and the same considerations concerning the
presence of goto’s hold for it.

If agoto statement is executed within the body of a while or repeat statement, then the execution of
the repetition statement is stopped and the text to be executed next is furnished by the segm
combinator. From the definition of segm givenin 3.3.1, we see that when a goto statement jumps
into the body of a repeat (while) statement the piece of body starting from the first occurrence of the
label is appended to the text starting from that repeat (while) statement. This means that the part of
b o d y fromthe labelto t h e end is executed and then a t e st is done to see whether or not the
execution of the repetition statement must be stopped or goes on.

3.3.2.3 For Statement
In PASCAL the for statement has two forms:
for i:=el toe2 do b;
and
for i:=el downto 42 da b;
Inbothcases b isthebody of statements which is repeatedly executed, and i is the variable which
controls the loop. In the for-to statement it is increased by 1 each time b is executed. In the for-

downto statement it is decremented by 1. The two expressions ¢l and a2 will be referred to as the
initial and final values of the control variable.

The abstract syntax for the two forms of for statements is defined by:
mkforto(i,el,e2,b),
mkfordn(i,el,e2,b).

Their semantics is defined in MS. A t e st is done to check if t h e value of the control variable i is
equal to thefinalvaluee2. The test is:

fortest = [Ax .isforto(x)->mkrel(lseq,Ibof (x),ubof(x)),isfordn(x)=mkrel(greq,ubot (x),ibof (x)),UU ].

If fortestevaluatesto TT,the initial value el is assigned to the control variable i thenthe meaning
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function MS applies to the body of the for statement appended to the text assembled by the
combinator fortoup (fordnup):

fortoup = [Xx .mkempnd(mkforto(indexof(fstof(x)),mkexpr1i (plusl indexof{tstof(x))),
ubof (fstof (x)),bodyof (fstof (x))),rmdof (x))},

fordnup = [Xx .mkempnd(mkfordn(indexof (fstof (x)),mkexpr | (minus 1 ,indexof (fstof (x))),
Ibof (fstof {x}),bodyot (fstof (x))),rmdof (x))).

fortoup (fordnup) updates the initial value of the for loop by substituting i+l (i-1) for i.

We have chosen to define the for in terms of the agorithmic equivalences given in Wirth 1971, j.e.
for all i, el, €2 and S the statement:

fori=eltoe2 do S
is equivalent to

if el<e2 then
begin i-=el;S;

for i-=succ(i)toe2 do S
end

and the statement

for i-=el downto €2 do S
is equivalent to

if eke2 then

begin i:=el,S;
fori:=pred(i)to €2 do S

end

We have imposed no restrictions on the fact that the values of i, ¢/ and €2 are changed by S or by
the for statement itself, or on the jumps into or out from the body of a for statement. The value of .
the control variable at completion of the for has the last value assumed, namely the value it had
after the last execution of S. This interpretation of the for statement is different from the description
of the PASCAL for statement as given in Wirth -1971, 1972 and in Hoare and Wirth 1973. The
definitions given in these three papers are indeed different from each other. Our choice .has been
motivated by the fact that we wanted the semantics of the for statement to be as smooth as possible
and, at the same time, we wanted to make it less ambiguous then Wirth 1972. The definition of the
for, given in terms of the above algorithmic equivalences in Wirth 1971, was changed in Wirth
1972, following the suggestions made in Hoare 1972. In order to leave the implementer more
freedom; the following equivalences are required in Wirth 1972

fori=eltoe2 do S

is equivalent to
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ir=€l; S i=succ(i); S, ... i=e2; S
and
fori=el downto €2 do S
is equivalent to
i=el;S;i=pred(i);S; .. i=€2;S
These definitions seem ambiguous to us: what happens if e/>e2 in the for-to statement?

The third definition of the PASCAL for statement is given in Hoare and Wirth 1973. This is
closer to that given in Wirth 1972, but not the same. It is given in axiomatic form:

(asxsh) A P(la.x)) {8} P(la.x])

P([1) {for x:=a to b do S} P([a.b])

(asxgb) A P((x.b]) {S} P([x.b])

P([ 1) (for x:=b downto a do S} P(la.b])

It is written in the formalism proposed by Hoare 1969, where P{QJ}R means that if P and R are
predicates and P is true before the execution of the body of statements Q,and Q terminates, then R

- is true after the execution of Q.[ab) denotes the interval {xJasxsb},[ab) denotes the interval

{xJasx<b}, and so on. This rule was used in Hoare 1972 for characterizing the correctness of the for
statement. Apart from the fact that the description of the rule given in Hoare 1972 and that given in
Hoare and Wirth 1973 are different, we do not agree with it. In fact it leaves unspecified what
happens when the for-to statement is executed with the initial value greater then the final value. It
seems to us that any definition which leaves this ambiguous cannot serve as a satisfactory
specification of the meaning of the for statement. In particular it cannot be used to prove general
theorems about the for statement. Consider for example an implementation of PASCAL in which if
b<a in one of the above for statements, then the body of statements § is executed 14 times! This
implementation satisfies the above axioms, but is certainly strange.

In Wirth 1971, 1972 nothing is said about the behavior of the goto’s with respect to the for
statement. Hoare and Wirth 1973 ‘do not deal with goto’s. In our semantic definition, if a goto
statement is executed within the body of a for statement, then the execution of the repetition
statement is stopped and the text returned by segm is executed next. From the definition of segm we
see that if a jump into the body of a for statement is executed, then sogm returns the piece of body
starting from the first occurrence of the label to jump to, appended to the piece of abstract syntax
returned by the fortoup or fordnup combinators.

If a jump into the body of a for statement is executed we distinguish between two cases: 1) the Jump
is from one point to another point of the body of the same for statement. In this case the
computation goes on with the control variable having the current value. 2) the jump is from a point
of the program outside the for statement. In such case the computation may result in the undefined
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store accordingly to whether or not the control variable has been assigned a vaue prior to the
execution of the jump. In fact the updating combinators fortoup and fordnup replace i+1 and i- 1 for
el in the for statement, so it evaluates to UU if the control variable has not yet been assigned a
value.

Haberman 1973 didikes the possibility of jumping into a for statement. We have allowed such
jumps, thus a for loop may be initialized from outside and started by a jump. This seems reasonable
since PASCAL has no block structure, so the control variable of a for statement has to be declared
in the declaration part of the text and may be given a value independently of the for statement.
Furthermore, since the control variable is not local to the for statement, we do not see any reason for
leaving it undefined after the execution of the for statement, as required in Wirth 1972. Nothing is
said at this regard in Wirth 1971 and in Hoare and Wirth 1973. We do not. agree that a perfectly
behaved statement should leave an undefined value in a location which has been declared and
assigned a value. Italso leaves ambiguous what happens to the control variable if a goto stops the
execution of the for loop.

Our semantics doesn’'t check to see if the control variable, the initiad value or the fina vaue are

modified during the execution of the for statement. This makes our for statement similar to the
while statement. Since the control variable is not a dummy variable of the loop there is no reason
for it to be treated differently from any other variable. Wirth 197 1, 1972 and Hoare and Wirth
1972 are discordant about the requirements on such modifications. Moreover it is our opinion that
checking for them is very difficult and is unlikely to be done in any current implementations of
PASCAL. Consider for example a program where an integer variable i is declared which also
declares the following procedure:

" procedure A(j,k:integer)
fori=jtok do

if ie3 then A(k+lj)

else A(jel k),

Note that in this, program the control variable is changed by the recursion of the procedure A, not
by an assignment statement.

A final point regarding our semantics: as with the while and repeat statements, if a text is goto-free
the semantics of the for statement can be defined by the following two combinators:

FORTO = [«F.[Ai o]l 82 b f. COND(MBEXPR(mkrel(lseq,el ,62),f),ASSIGN(i,MEXPR(e1 ,{),f)®b®
F(i,mkexpr 1 (plus 1,i),e2,b,f),iD)]};-

FORDN =[o¢F.[xi el 82 b f. COND(MBEXPR(mkrel(greq,el,e2),),ASSIGN(i,MEXPR(e1 1),{)®b®
F(i,mkexpr 1 (minusl ,i),e2,b,1),ID)]};

The equivalence, in the goto-free case, between the definition of the semantics of the for statement
given in MS and that given by the two above combinators, can be proved easily (see 4.3).

\"
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SECTION 4 PROPERTIES OF THE SEMANTICS

In this section we discuss some general properties of the interpretation of PASCAL in LCF. We
have proved :

1) the meaning function MS is strict on the store, i.e. for any statement st and any framepointer f,
MS (st,f,UU)=UU,

2) for goto-free programs, MS is a homomorphism with respect to the constructor mkcmpnd, i.e.
V{.MS (mkempnd(a,b),f)=MS(a,{)®MS(b,f).

3) MS reduces to a simpler function for goto-free programs. New combinators defining the
semantics of the repetition statements are given.

4) al the equivalences about repetition statements given in Wirth 1971 hold in our semantics.

5) some miscellaneous theorems about MDEC, MDEF, MS

Section 4.1 The strictness of MS on the store
The main theorem of this section is

Vst £ MS(st,f,UU)=UU.

- We do not show the proof here as it Isa single LCF simplification using the lemma

Vt ab.(t=a,b)(UU)=(t-a(UU),b{UU))

The main theorem should not be regarded as trivial however, as it requires 208 substitutions.
Without the LCF simplifier, this proof would have been over 1000 steps long. This is an important
theorem because it shows that our interpretation of statements behaves correctly with respect to the
termination of computations.

Consider the following program

var ninteger
begin

I: gotol;
n:=l;
end

This program fails to terminate. To us it seems that the only reasonable interpretation of this
program must be the undefined function. If the meaning function isnot strict, it may happen that
the assignment of Ito n builds up a store inwhichn has value 1. Suppose we were to choose the
most obvious interpretation of assignment, i.e. if the above program is being executed in & store s,
and a frame whose framepointer is f then the meaning of the assignment statement in the example is
anew store sl:
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sl = [xfr.fref=[xm.mzn=1 s{f,m)},s{fr,m)],
SO
s1 () = [Am.m=n=21 ,s(f,m)].

This new store has the unfortunate property that even if s=UU, we still have dl (f,n)=l.1tis thus not
undefined.

The desire for the interpretation of a program to be an extensionally given function on the store
and composition of these functions to correspond to executing one program after another, means that
an interpretation which is strict on the store is the only one that makes sense. In Hoare’s axiomatic
treatment this problem goes away but the price is that every statement that you can prove about a
program is conditional on its termination. In the above case one proves the sentence, “If the
program terminates then n=1"

Because, as already said, the proof is a single step we do not give it here. Instead we will explain
why for our semantics ASSIGN is strict on the store. The "==:" represent some arbitrary combinator.

ASSIGN = [An v f s.n=FUNV-ISADMISVAL(s(f,typeloc FUNV),v(s))= ¥%x,ISINTYPE(n,v,f,s)= k%% xkx]
So
ASSIGN(n,v,f,UU) = n=FUNV-ISADMISVAL{UU,v(UU))= *%%,UU,ISINTYPE(n,v,f,Ul)= k¥ kxx]

ISADMISVAL asks if a value is of an admissible type. UU is not even a type, no less admissible, so
ISADMISVAL returns UU.

ISINTYPE(v,val,f,UU)=ISLOCAL (typeloc NAMOFVAR(v),UU))=ISADMISVAL(TYPOFVAR(v,f,UU),val(UU)),FF]
ISLOCAL (loc,UU) = UU=UNDEF-FF,TT

But for any X, UU=X is just UU so ISLOCAL(loe,UU)=UU. This is the central point of the entire strictness
proof. Looking up a location in a defined store in an existing frame is not undefined if that
location has not been created. Stores are constructed in such a way that we can test if it is defined
and no assignment is made if it isn't. This check is done by ISLOCAL, which returns UU if the frame
is undefined. The proof is completed by making the correct substitutions.

Other theorems about strictness appear’in section 4.5.

Section 4.2 Properties of MS for goto-free programs

A goto-free program is defined by the following predicate :

isgotofree =[«F.[xs. .
isgoto s = FF,
issingles > T T,
islabstat s =» F(statmof s),
isiter s =»F(bodyof s),
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iscond s = F(thenof s) A Flelseof s),
iscmpnd s = F(fstof s) A F(rmdof s),UU]],

whereissingle and isiter are predicates satisfied by the simple and the repetition statements
respectively (see appendix 2.4). The main theorem about goto-free programs is:

V S P f.isgotofree(S):tisgotofree(P):: MS(append(S,P),f) = MS(S,f) ® MS(P,f).

It states that if S and P are texts without any goto statement, then the result of the application of MS
to the concatenation Of themisthe same as the functional composition of the application of MS to
each of them. The proof of this theorem is based on a case analysis on the first element of S. We
have not included it in the paper as it is rather long even if very simple. We didn't find any proof
byinductiononisgotofree, SO we proved it by induction on MS. To do this the two following lemmas
are to be proved:

V$ P fisgotofree(S)::isgotofree(P)::MS(append(S,P),f)eMS(S,f)OMS(P,f)
VS P f.isgotofree(S)::isgotofrea(P)::MS(S,1)@MS(P,f)cMS(append(S,P),f)

In section 4.1 1t has been noted that the proof of the strictness of MS on the store depends on a
theorem about conditionalexpressions. For proving the above lemmas with a simitar proof we
needed the following theorem about conditional expressions:

vt.(t-a,b) c (t=df}  ASSUME acd, bet.

Unfortunately the current version of the LCF conditional simplifier doesn’t handle sentences of the
form A<B as simplification rules, even though in this case no specific property of the symbol < is
Involved.

Theabove homomorphism theorem isanalogous to the Hoare's composition rule for statements,
valid for goto-free programs. This theorem, as welt as Hoare's rule isnot vaid in general. Consider
the following example:

a:=l;

aoto 1,‘

a:=3;
1. a:=a+l;

the corresponding abstract syntax is:

P = mkempnd(mkass(a,mknumconst 1 ),
mkempnd(mkgoto 1),
mkempnd(mkass(a,mknumconst 3),
mkempnd(mkiabstat({ 1 ,mkass{a,mkbexpr!{plusi,a)),ESH))

The meaning of this program in the frame specified by the frame pointer f is defined by MS(P,f).
The validity of the composition rule would imply the following equivalence:

MS(P,f) = MS(mkempnd(mkass (a,mknumconst 1 ),ES),)®
MS{(mkempnd(mkgoto(1),ES),f)®
MS (mkempnd(mkass(a,mknumconst 3),ES),f)®
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MS {mkempnd({mklabstat(l ,mkass(a,mkbexprl (plusl,a)}),ES),f),

which is false: starting from a store where a is declared in the current frame, MS(P,f) returns a store
where,inthe current frame, a has value 2, while the right hand side evaluates to a store where, in
the current frame, a as value 4. The right hand side is wrong, since by interpreting each statement
separately, it is impossible to skip a piece of text as required by a goto.

In the next section we consider how the semantics of a PASCAL statement part is simplified when it
isgoto-free. Our semantics deals also with programs where the composition rule is not vaid. Hoare
axiomatic approach to the definition of the semantics of a programming language relies on the
validity of the composition rule, so it cannot easily treat programs with goto’s. Hoare and Wirth
1973 axiomatizationof PASCAL, for instance, doesn't define the goto statement. The ' Igarashi,
London and Luckham 1973 VCGEN, based on this approach, deals only with backwards goto’s and
preserves the validity of the composition rule by considering indivisible the piece of program
between the label to jump to and the goto.

Section 4.3 An equivalent meaning function for goto-free programs

As noted in the description of repetition statements(see 3.2.2.2,-3), if the body of the repetition
statement is goto-free, new combinators may be defined for describing their semantics. In this case
the semantics defined by MS isthesame as that defined by the new combinators.

The proofs of the first four equivalences are quite similar; they are carried out by subgoaling to the
two goals with the logica symbols 2, « respectively. All these proofs are standard and could be
automated by enriching the features of the current LCF system. In appendices 4,56 we have
included the commands and the printouts of the proof of one half of each of the first three
equivalences. The fourth is analogous to the third one.

The proof of the equivalence between MS and MSGTFR is carried out by proving the lemmas with <,
o respectively, and using the above equivalences for repetition statements. A long case anaysis on $
is performed, analogous to that discussed in 4.2. Even in this case the proof could become very short
by improving dightly the LCF conditional simplifier.

1 )VStf.isgotofree(S):: MS(mkempnd(mkwhile(t,5),ES),{) = WHILE(MBEXPR(t,{),MS(S,1))
where WHILE = [oF.[\t b.COND(t,b®F (t,b),ID)]]

2) VS tf. isgotofree(S):: MS(mkcmpnd(mkr'epeat(s,t),ES),f) = REPEAT(MS(S,{),MBEXPR(mkbexprl (not,t),f))
where REPEAT = [ocF.[Ab t.b®COND(t,F(b,t),ID)]]

3) VS i el @2 f .isgotofree(S):: MS(mkempnd(mkforto(iel ,02,5),ES),f) = FORTO(i,el,82,MS(S,f),1)

where FORTO = [«F.[\i ] e2 b f. COND(MBEXPR(mkrel(lzeq,el ,02),{),ASSIGN(i,MEXPR(e1 ,f),f)
®beF (i,mkexprl (plusl ,i),e2,b,{),ID)]];

4) VS iel 82 f .isgototree(S):: MS(mkempnd(mkfordn(i,el ,e2,5),ES),f) = FORDN(i,el ,e2,MS(S,{),{)

where FORDN = [«F.[Ai € e2bf COND(MBEXPR(mkrel(greq,el ,02),1),ASSIGN(i,MEXPR(e1 ,{),f)
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®b&F (i,mkexpr 1 (minusl ,i),e2,b,t),1D)]};
5) VS f. isgotofree(S):: MS(S,f) = MSGTFR(S,f)

where
MSGTFR=[«F [Ast .
isemptyst st = 1D,
iscmpnd st =
isemptyst(fstof st)= F(rmdof st,f),
islabstat(fstof st)= F(statmof(fstof st),f)@F (rmdof st,f),
isread(fstof st) = READ(namof(fstof st),f)®F (rmdof st,f),
iswrite(fstof st} = WRITE(namof (fstof st),f)®F (rmdof st,f),
isass (fstof st) = ASSIGN(hsof(fstof s1), MEXPR(rhsof(fstof st),f),f)®F (rmdof st,f),
isproccall(fstof st}=>[\s.MPB(PROCFAL(namof(fstof st),f,s),
 actargof(fstot st),f,s,namot(fstot st))}e
[xs.MD{PROCDECL (namof(fstot st),f,s),suce f,5)}®
[Xs.F(PROCBODY(namot(fstof st){f,s),suce f,s)J®@CLEAR(suce f)OF (rmdof st,f),
iscond{fstof st} —» COND(MBEXPR(testof(fstof si),f),
F(thenof(fstof st),f),F(elseof(fstof st),f))@F (rmdof st,f),
iswhile(fstof st) - WHILE(MBEXPR(testof(fstof st),f),F (bodyof(fstof st),f))oF (rmdof st,f),
isrepeat(fstof st) = REPEAT(bodyof(fstof st),MEXPR(mkbexprl (not,testot(fstof st)),))®F (rmdof
isforto(fstof st) - FORTO(indexof(fstof st),Ibot(istet st),
ubof(fstot st),bodyof(tstot st),{)@F (rmdot st,f),
istordn{fstot st) = FORDN(indexot(fstof st),ubof(fstof st),
Ibof(fstot st),bodyof(fstot st),f)®F (rmdof st,f),UU,UU])

The definition of MSGTFR shows how our semantics simplifies for goto-free programs. No
manipulation of the text is required, every statement can be treated independently of the others,

“some combinators as fortest, fortoup, fordnup, append are no longer necessary. The semantic

combinators for repetition statements not only simplify the form of MS but aso the proofs of
properties of goto-free programs. In fact, in the general case proofs by induction on the repetition
statement must be done by inducting on MS. For goto-free programs the induction can be directly
done on the appropriate semantic combinator. Hence, only properties of the body of the repetition
statements and not of the whole program are involved. The structure of the program reflects
directly on the structure of the proof since alows to factorize it into easier lemmas.

Insection 5.1 two different programs which compute the factorial function are compared. In the first
one the iteration is performed by a while statement, in the second one by a backwards goto. The
proofs of their correctness are different, the goto-free case is more straightforward. The proof of the
correctness of the goto program may be'reduced to-that of the goto-free program by showing that, in
general, a while loop is equivalent to an appropriate loop controlled by a conditiona goto. This
example shows the advantage of a formalism which alows to prove general properties of the
language and the necessity of creating the right environment of theorems about the programming
language to greately simplify the proofs of properties of programs.

Section -4.4 Equivalences for repetitive statements

In giving an interpretation of PASCAL in LCF our aim was to be as close as possible to the
informal description given in Wirth 1971. For this reason we proved most of the properties of the
statementsthat are mentioned in that paper. The LCF theorems stating the equivalences for
repetition statements given in Wirth 1971 are:
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Ve S. MS(mkempnd(mkwhile(e,S),ES)) =
MS (mkempnd{mkeond(e,append(S,mkempnd{mkwhile(e,$),ES)),ES),ES)),

Ve S f. MS{mkempnd(mkrepeal(S,e),ES)f) =
MS (append(S,mkecmpnd(mkcond(mkbexpr 1 {not,e),mkempnd(mkrepeat(S,e),ES),ES),ES)),f),

Vi el e2 S . MS(mkcmpnd(mkforto(i,el ,€2,5),ES),f) =
MS$ (mkempnd{mkcond(mkrel(lseq,a] ,02), '
mkempnd(mkass(i,e] ),append(S,mkempnd(mkforto(i,mkexpr1 (plusl ,i),02,5),ES))),ES),ES) 1),

Vi el 82 S f. MS(mkempnd(mkfordn(i,el,e2,5),ES),f) =
MS (mkempnd{mkeond(mkrel{greq,el,02),
mkempnd(mkass(i,e 1 ),append(S,mkempnd(mkfordn(i,mkexpr | (minusl1,i),e2,5),ES))),ES),ES),1),

All the proofs of the above statements are one step proofs. In fact, we have defined the semantics of
the repetition statements directly in terms of the equivalence described in Wirth 1971.

Section 4.5 Miscellaneous theorems on MDEC, MDEF, MS

Our am in this section is not to give an exhaustive list of the properties of PASCAL, but rather to
show some typical example of theorems which have beenusedinthe proofs presented in this report.

First of aliwewant to state that type definitions and declarations are independent of the order. The
theoremproved for type definitions is:

Vnin2 tyl ty2 fs.
isname(nl ):zisname(n2)::nl An2::1SABSENT(nl ,s(f))s:ISABSENT(n2,s(f)) 2
MDEF (mkempnd(mkiypedef(nl,tyl),mkempnd(mktypedet(n2,ty2),ES))1,s) &
MDEF (mkempnd(mkiypedef(n2,ty2),mkempnd(mktypedef(nl ty1),ES)),f,s);

This theoremstates that if nl and n2 are different names and they do not appear in the store, then
the order of type definitions using these namesastype identifiers is irrelevant. The predicates
appearing in it have an obvious meaning: # isthe negation of =,ISABSENTis the negation of
ISPRESENT. The proof of this theorem has not been included in the report sinceitis a very simple
proof done by simplification and using some properties of conditional expressions. Analogouslythe
following theorems can be proved. They state that declarations are independent of the order,

Vnin2 tyl ty2 f s .

isname(nl)s:sisname(n2)::nl gn2 ::ISABSENT(nl ,s(f))::ISABSENT (n2,s(f)):2
MDEC (mkempnd(mkvardeci(nl ,ty ! ),mkempnd(mkvardecl(n2,ty2),ES)),{;s) =
MDEC({mkempnd(mkvardecl(n2,ty2),mkempnd(mkvardeci(nl ty1),ES)),f,5);

Vnin2 tyl ty2 fs2 f s .

isname(n1):iisname(n2)::nl An2::1SABSENT(n1,8(f))::ISABSENT (n2,s(f))::
MDEC (mkecmpnd({mkvardecl(nl ,ty | ),mkempnd(mkfundeci(n2,is2,ty2),ES)),1,s) =
MDEC (mkcmpnd(mkfundecl(n2,fs2,ty2),mkempnd(mkvardeci(ni ty1),ES)),{,s);

vnl n2 tyl ty2 fd fs2f s.
isname{nl)isisname(n2)::nl fn2::ISABSENT (nl,s(f))::1SABSENT (n2,s(f))::

MDEC (mkempnd(mkfundecl(nl fs1,ty1),mkempnd(mkiundecl(n2,{s2,ty2),ES)),f,5)=
MDEC (mkempnd(mkfundeci{n2,{s2,ty2),mkempnd{mkfundeci(nl ,{s1,ty1),ES)),f,5);
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Vnin2 tyl fd ps2 fs.

isname(nl):tisname(n2)::nl Fn2::1SABSENT(nl,s(f))::ISABSENT(n2,s(f))s:
MDEC(mkempnd(mkfundecl(nl fs1,ty1),mkempnd(mkprocdeci(n2,ps2),ES)),f,¢) =
MDEC (mkecmpnd(mkprocdecl(n2,ps2),mkempnd{mkfundecl(nl fs1,ty1),ES)),f,8);
Vnin2 tyl ps2 fs.

isname(nl)::isname(n2)::nl n2::1SABSENT(n1,s(f))::ISABSENT(n2,s(f))::
MDEC (mkempnd(mkvardect(nl,ty 1 ),mkempnd(mkprocdeci(n2,ps2),ES)),f,s) =
MDEC (mkecmpnd{mkprocdect(n2,ps2),mkempnd(mkvardeci(nl ,ty1),ES)),f,5);
Vnl n2 psl ps2 f s .

isname{n1):isname(n2)::nl £n2 ::ISABSENT(nl ,s(f))::ISABSENT(n2,s(f)):2
MDEC (mkecmpnd(mkprocdecl(nl,ps!),mkempnd(mkprocdeci(n2,ps2),ES)) f,s) =
MDEC(mkcmpnd(mkprocdect(n2,ps2),mkempnd(mkprocdecl(nl,psi),ES)),f,8);

Some theorems describing properties of MDEF and MDEC are now listed. Each of them has been
proved in one step.

¥ Xy f. MDEF (mkempnd(x,y),§)=MDEF (x,\éMDEF(y,{);
V x y . MDEF (mkvardecl(x,y),f)= 1D;

V x y z { MDEF (mkfundecl(x,y,2),f)= 1D;

V x y f. MDEF (mkprocdeci{x,y),f)= ID;

V x y f. MDEF (mktypedef(x,y),f)= CREAT(f,x,y);

Vi MDEF(ES,f)=ID;

V x y f. MDEC(mkempnd(x,y),f)=MDEC(x,{)®MDEC(y,f);
V x y f. MDEC(mkvardecl(x,y),f)= CREAV(fx,y,f);
V x y z £ MDEC(mkfundecl(x,y,z),f)= CREAF(f,x,y,2,f,f);
V x y f. MDEC(mkprocdecl(x,y),f)= CREAP(f,x,y,{);

vf. MDEC(ES,f)=ID;

In the following we present some of the theorems dedling with MS, the combinators defining the
semantics of statements and some predicates used by the semantic combinators. The proofs of these
theorems are very simple (one step), however they were useful in proving programs as well as
properties of MS.

VMS(ES,f)=ID;
Vx y f.MS(mkempnd(mkread x,y),f)=READ(x,f)®@MS(y,f);
Vx y £.MS(mkempnd(mkwrite x,y),f)=WRITE(x,f)®MS (y,f);

Vxl x2 y { MS(mkempnd(mkass(x1 ,x2),y),t)=ASSIGN{x1 ,MEXPR(x2,{),f)®MS(y,f);



Vn { s, ASSIGN(n,UU f,5)zUU;
Vn e £.ASSIGN(n,e,f,UU)=UU;
Vn { WRITE(n,f,UU)=UU;
Vn{.READ(n,f,UU)=UU;
MEXPR(UU)=UU;
BIND(UU)=UU;

MPB (UU)=UU;

VI { FETCH(l,f,uU)=UU;

Vn { PROCDEF (n,f,UU)=UU;
Vnf.PROCFAL(n,f,UU)=UU;
MD(UU)=UU;

Vn {.PROCTXT(n,f,UU)=UU;
Vn {.PROCDECL(n,f,UU)=UU;

V{.CLEAR(t,UU)=UU;

. Vloc.ISLOCAL (loc,UU)=UU;

ISINBOUND(UU)=UU;

Viy ISADMISVAL (ty,UU)=UU;
Vv f s.ISINTYPE(v,UU,f,8)=UU;
Vp e ISINTYPE(v,e,f,UU)=UU;

V1.1SPROCFRAME(f,UU)=UU;

The Semantics of PASCAL in LCF
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SECTION 5 EXAMPLES

In this section we want to discuss how to prove PASCAL programsin LCF. Two examples will be
fully described:

1) the factoria program,
2) the McCarthy Airline reservation system.

We have aso proved correct a PASCAL program for the computation of the GCD of two positive
integers with the euclidean agorithm and a PASCAL programfor the computation of the norm of a
vector. These proofs have been executed using an earlier version of the LCF axiomatization Of
PASCAL and are described in Aiello and Aiello 1974. We have not rerun them on the final
version of the axioms because, even though many details have been changed, the underlying ideas
have not been modified, so the proofs would remain very similar.

Section 5.1The factorial program

The partia correctness of a program for the computation of the factoria function has been already
proved in LCF and discussed in Weyhrauch and Milner 1972. The proof presented here is very
smilar to that one. We have included it because the factorial program is a very smple and familiar
example, so it is easy to go through the proof of its correctnessl By comparing the proof given here
and that given in Weyhrauch and Milner 1972 it may be seen that even though the programming
language described here is much richer, the proof isn't more complex.

A PASCAL program which computes the factorial function is the following:

var nln2: integer
begin
read(nl);
read(n2);
while n2#8 do
begin nl=nl:n2mn2:=n2-1; end;
write(nl);
end;

If the input consists of-two nonnegative integers x and n this program computes x:n!. The factoria
function is obtained if xequalsl.

in this program the repetition is performed by a while statement, hence we will call it while-program.
An anaogous program for the computation of the factoria function may be also written using a
goto statement (it will be called goto-programy:

var nln2: integer
bhegin
read(nl);
read(n2),

1: if n2#8 then
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beginnl:=nlin2;,n2:=n2-1;go0to0 |, end;
write(nl);
end;

In LCF both programs are provable correct with respect to the function FACT:
FACT =[«F.[An x.n=8 = x,F (pred n,n¥x)]],
FACT applies to two arguments n and x and evauates to x*n!.

In the following, the LCF proof of the while-program is described in details. This program has no
goto's, SO the theorems described in 4.2 for goto-free programs can be used, making the proof much
simpler. The proof of the second form of factoria program will only be sketched.

The abstract syntactic form of the while-program is:

FACTORIAL =mkiext(DP,SP),
DP = mkempnd{mkvardecl(nl INT),mkempnd(mkvardeci(n2,INT),ES)),

SP = mkcmpnd(mkread(n2),mkempnd(mkread(nl),
mkempnd(mkwhile(test,body),mkempnd{mkwrite(n1),ES)))),

test = mkbexpr 1 (not,mkrel(eq,n2,mknumconst(8))),

body = mkempnd(mkass(nl ,mkexpr2(times,nl,n2)),mkempnd(mkass(n2,mkexpr1 (minusl ,n2)),ES)).

The form of the LCF theorem to be proved is:
Vnx.isnat (n):zisnat (x)::APPLY (FACTORIAL,n,x)cFACT (n,x).

Informally, it says thatthe evaluation of the program FACTORIALon the data nandx; if it
terminates, gives the same result as the computation of the function FACT on n and x. APPLY is the

following combinator:
APPLY = [\ p x y.fstof(FUNCT(p,EOF LIST(x,y ))},
LIST =[x xy. mkpair(x,mkpair(y,EQF))}.

As said in section 2, FUNCT maps sequences of integers into sequences of integers. Given a program p
andtwoinputnumbersxandy, APPLY applies the combinator FUNCT to the sequence LIST(x,y) and
then takes the first element of the output sequence.

Themethodused to prove the partial correctness of the while-program is quite standard for proving
programs witha while loop. All the combinators appearing on the term at the left hand side are
substituted by their definition. After some simplification (automatically done by LCF) the goa to be
proved is.
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Vn x . isnat(n) 2 isnat(x) s
RESULT(WRITE(n1,8,WHILE(MBEXPR(test,B),MS(body,B),READ(n1,8,READ(n2,8,
CREAV(8,n2,INT,8,CREAV(8,n] ,INT,8,FRAMEB(FACTORIAL,INPUT(LIST{n,x)),EOF ))))}))) € FACT(n,x).

where RESULT is defined as Vx.RESULT x = fstof(QUTPUT x). The theorem on the while statement
given in section 4.2 for goto-free programs has been used in achieving the above goal. The
semantics of the loop is expressed in terms of the WHILE combinator. As it can be seen from the
printout in appendix 7.2 the proof is done by induction on the WHILE combinator. The base case is
trivially proved. The induction step is proved by cases on the predicate which controls the loop, i.e.
~(n=8). If <(n=@)s fi ke then the result easily follows, if -~(n=8) is undefined a contradiction arises
because n is a natural number. If ~(n=B) is true, the goal is proved by a proper instantiation of the
induction hypothesis. It is instantiated for pred n and x*n. Usually, in programs for the computation
of the factorial of a natural number the variable nl is not inputed a value, but it is initialized to 1.
The initialization of nl to x results in a strengthening of the induction hypothesis. In fact the
variable x appears universally quantified in the statement of the theorem to be proved and can be
properly instantiated. Actually the proved theorem is stranger than the desired one. The factorial
program is obtained by giving the value | to x in the above theorem.

The proof given in appendix 7.2 s generated by the list of commands given in appendix 7.1. We
want again to point out that LCF is not an automatic theorem prover. It has only a subgoaling
mechanism and a sophisticated simplification algorithm which converts terms and simplifies them by
using the axioms and theorems put (by the user) into a "simplification set".

In the simplification set there are all the syntactic constructors and selectors, plus the semantic
combinators appearing in the first line of the list of commands. Note that LCF labels are prefixed
by a ".", each axiom has been labeled with an identifier equal to the combinator being defined, and
INDUCT 1 s the label of the induction hypothesis. The modifications done to the simplification set afte;
the proof is started (8S+/-something) are done only to increase the readability of the goals. In
addition, to increase the readability of the proof, a combinator FRAME! is introduced to describe an
intermediate store:

FRAMEL = [At n x.[xf.4=0-

[Xloc.loc=n2 =n,
loe=nl -,
loc=typeloc n2 - INT,
loc=typeloc nl = INT,
loc=fileloc INP- EOF,
loc=fileloc OUT— EOF,
loc=textloc = t,UNDEF],UU]]

In the printout of the proof each step appears with its "reason”, namely the tactic used in achieving
it, as well as the step numbers of the axioms and the names of the theorems involved in the
simplifications. The theorems THI, TH2.. are general theorems about the semantics, they are some of
the theorems listed in section 4.3 and 4.5. Theorems named ARITHI, ARITH2.. deal with the
arithmetic, they are taken from Newey 1973. Theorems named LMI, LM2... are specific lemmas about
this program. All of them have been proved in the same environment as the main theorem and their
proofs are very simple. Often the proof reduces to a one step simplification. They are:
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READ(n1,8,READ(n2,8,CREAV(B,n2,INT,8,CREAV(B,n1INT,8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))=FRAME1 (SP,n,x)

ASSUME isnat x = TT, isnatn=TT

which implicitly defines the frame FRAMEL,
MS(body,8,FRAMEL (SP,n,x))= FRAMEI (SP,pred n,x¥n) ASSUME isnat x = TT, =(n=8)=TT.

It specifies the effect of the meaning function MS on the body of the while statement. Moreover
MBEXPR(test,8,FRAME (Sls,n,x))i ~(n=B) ASSUME isnat n =TT, isnat x=TT

evaluates the test appearing in the while, and finally
RESULT(WRITE(n] ,8,FRAME! (SP,n,x)))=FACT(n,x) ASSUME ~(n=@)=FF, isnat(x)sTT;

asserts that, when the loop is over, the vaue of the varible nl isFACT(n,x).

As already noted the proof is fearly standard and could be almost completely automated by
increasing the proving capabilities of LCF. The case of the goto program the proof is standard as
well, but much longer. In fact the theorem presented in 4.3 no longer applies, so the god to be
proved, after the first simplification is:

V n x.isnat (n) s isnat(x) ¢
RESULT(MS (mkempnd(mklabstat({ 1 ,mkcond(test,
mkempnd(mkass(nl,mkexpr2(times,nl,n2)),
mkempnd(mkass(n2,mkexpr 1 (minus1,n2)),
mkempnd(mkgoto(1),ES))),ES)),mkempnd(mkwrite(nl),ES)),8,
READ{(n1,8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(B,nl,INT,8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF )))) € FACT(n,x).

In order to prove it by induction on MS a possibility is that of proving the above goal in parallel
with the following 3 goals.

V n x.isnat{n) ¢ isnat(x)
RESULT([As.COND(MBEXPR(test,8,s),

MS (mkempnd(mkass(nl,mkexpr2(times,nl,n2)),
mkempnd{mkass(n2,mkexpr I {minus1,n2)),
mkempnd(mkgoto( 1 ),mkempnd(mkwrite(n1),ES)))),8,s),

WRITE(n1,8,5)] _

READ(n1,8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(B,n1,INT,8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF))}))) € FACT(n,x).

Vn x . isnat(n) :: isnat(x) :2
RESULT([As.COND(MBEXPR(test,8,s),
ASSIGN(n} MEXPR{mkexpr2(times,nl,n2),8),s)®
MS (mkempnd{mkass(n2,mkexpr 1 (minusl,n2)),
mkempnd(mkgoto( 1 ),mkempnd(mkwrite(n]),ES)))),8,s),
WRITE(n1,8,s)]
READ(n1,8,READ(n2,8,CREAV(8,n2,INT,8,CREAV(8,n1,INT,0,
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FRAMEB(FACTORIAL,INPUT(LIST(n,x)},EOF)))N) < FACT(n,x).

Vn X . isnat(n) :: isnat(x) ::
RESULT([\s.COND(MBEXPR(test,8,s),
ASSIGN(n1 ,MEXPR(mkexpr2(times,nl,n2),8),s)®
ASSIGN(n2,MEXPR(mkexpr | (minus1 n2)),8),s)®
MS{ mkempnd(mkgoto(l ),mkempnd(mkwrite(n1),ES)))),8,¢),
WRITE(n1,8,s)]
READ(n1,8,READ(n2,8,CREAV(B,n2,INT,8,CREAV(B,nl INT 8,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF))))) = FACT(nx).

In this way there are four induction hypotheses to be instantiated and it can be seen that each of
them serves to prove the next goal in the above order. Even this tricky way is standard. It can be
applied whenever in a ‘program a backward goto isencountered. In addition, such tactic could aso
be implemented in a PASCAL oriented version of LCF, so the user is relieved from the task of
generating al the parallel goals.

Section 5.2 The McCarthy Airline Reservation System

John McCarthy suggested the problem of proving the correctness of a program for the reservation
system of the McCarthy Airline Company. Such company has one plane, with only one seat. The
plane never flies! There are two customers, each one sometimes makes a reservation and then, tired
of waiting for the departure of the plane he cancels. Later on he may try again.

Proving the correctness of a program for the McCarthy Airline reservation system is interesting

- since it presents some characteristics absent in the programs so far proved correct. A program which
realizes a reservation system must deal with a potentialy infinite stream of input data “read” at
successive instants of time. Each time a request is inputed, an output datum is produced. The
correctness of incremental computations cannot be dealt with in a system where the input and output
operations aren’t mentioned.

Usually, in the existing systems for program verification, I/O is completely ignored. It is not
considered to influence the “meaning” of a program. In fact, existing systems deal with algorithins,
rather than programs, even though such agorithms are expressed in the syntax of a programming
language.

Our axiomatization of PASCAL includes the operations of inputing data from aninputfileinto
locations of the store and outputing data from the store into an output file. The length of these files
isn't fixed a priori, even for a particular program.

In our formalism we may express and prove a statement of the correctness of a PASCAL program
for the McCarthy Airline reservation system. Such statement asserts that, no matter what the
sequence of requests has been, the seat at any instant of time is reserved for the right person.

Let
st denote the sedt,
w! denote the waiting list,
rq denote the request and
ps denote the passenger.
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The variable st may assume the values 8, 1 or 2 meaning free, reserved for passenger 1 or 2. The
variable w! assumes the values 8, 1 and 2 with the same meaning. r¢ mayassume the value8and|
for cancellation and reservation, respectively. ps assumes the values 1 or 2, denoting the two

passengers.

A PASCAL program redizing the McCarthy Airline reservation system is the following:

begin
var st,wl,ps,rq: integer;
read(wl);
read(st);
repeat
hegin
read(rq);
if rg#3
then begin
read(ps);
if rg=1
then if st=8 v st=ps
then st:=ps also wi=ps;
else if st=8 v stéps
then wl:=8 else begin st:=wl end
write(st)
end
until rg=3
“end

The program consists of an initialization part, in which the initial status of the seat and the waiting
list (presumably both 8) are inputed, and of a repeat loop. The body of the loop consists in reading
new data, updating the status of the seat and the waiting list and then writing the status of the seat
intotheoutput buffer. An extraneous value in the input sequence, in this case the number 3, stops

the repetition.

This program doesn't make any assumption on the behavior of the passenger or about the kind of
requests it receives. Each request is accepted and the program behaves correctly even if, for instance,
two cancellationsinarow are done by the same person.

The abstract syntax for the above program is:

McCARTHY = mktext(DP,SP),

DP = mkempnd(mkvardecl(wl,INT),mkempnd{mkvardacl(st,INT),
mkempnd(mkvardeci(rg,INT),mkempnd(mkvardeci(ps,INT),ES)))),

SP = mkempnd(mkread{wl),mkempnd(mkread(st),
mkempnd(mkrepeat(BODY,mkrel(eq,rq,mknumconst(3))),ES))),

BODY = mkempnd(mkread rq,mkempnd(mkcond(mkrel{eq,rq,mknumconst(3)),ES,
mkempnd(mkread ps,SEATUPDATE)),ES)),

SEATUPDATE=
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) mkempnd(mkeond(mkrel(eq,rq,mknumconst 1),
~ mkcmpnd(mkcond{mkbexpr2(or,mkrel(eq,st,mknumconst B),mkrel({eq,st,ps)),
mkempnd(mkass(st,ps),ES),mkempnd(mkass(w!,ps),ES)),ES),
mkempnd({mkcond({mkbexpr2({or,mkrei(eq,st,mknumconst 8),mkbexpr1 (not,mkrel(eq,st,ps))),
mkempnd(mkass(wl,mknumconst 8,ES),
mkempnd(mkass(st,wl),mkempnd(mkass (wl,mknumconst 8,ES))),ES)),
mkempnd(mkwrite st, ES)),
Thestatement of the partial correctness of the McCARTHY program is:

Visq 0sq p q.iswisq(isq)::iswfos(osq)sisint(p):zisint(q)::
APPLY (McCARTHY,p,q,isq,0s9)cBOOKING(p,q,isq,089),

where: isq denotes the input sequence, osqdenates the initidization of the output buffer, namely the
output sequence,p and q are the initial values of the waiting list and the seat.

The predicate iswfsq (is-well-formed-sequence) is defined as.
iswfsq = [«F.[Asq. (ell (sq)= 3)=TT,iseof sq -UU,isrgst(ell sq)Aisprsn(el2 sq)=F(taill sq),FF]],
L whereell,el2,taill,isrgst (isrequest) and isprsn (isperson) are defined as follows:
ell = [\x. fstof x],
el2 = [\x. ell (rmdof x)],
o taill = [Ax. rmdof(rmdof x)],

isrgst = [Ax.(x=8)v(x=1)],
isprsn = [Ax.{x=1 )v(x=2)].

The predicate iswfos (is-well-formed-ol Jtyut-sequence) is.
¢ iswfos & [ocF.[Nos.iseof 0s = TT,isint(fstof os)=F{rmdof 0s),FF]],
andmust be satisfied by the object, presumably EOF, that initializes the output buffer.
Thecombinator APPLY appearing in the definition of the goal is:
- APPLY = [\ p x y is 0s.FUNCT(p,0s,LIST(x,y,is))],
LIST = [Ax y is. mkbair(x,mkpair(y,is))]. -

FUNCT, the combinator which “interprets’ a program p in the frame where the input and output
buffers have been initialized, is described in section 2.

Thefactthat, ateachmoment, the scat is reserved for the right person, is expressed in LCF by the
function BOOKING:
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BOOKING = [ecF.[X st wl sq 0s.
iseof sq - UU,
(ell sq=3) = os,
F(taill sq,stupdt(sq,st,wl),wlupdt(sq,st,wl),mkpair(stupdt(sq,st,wi),os))]},

where stupdt (seatupdate) and wlupdt (waiting-listupdate) are defined as.
stupdt=[Asq st wi.(ell sq=1 )= (st=B)v(st=el2 sq)-el2 sq,st,(st=B)v ~(st=el2 sq) - st,wl],
wlupdt=[Asq st wl.(ell sg=| )=(st=B)v(st=el2 sq)-wil,el2 sq,8].

We express the fact that, at each instant of time the program “answers’ in the right way, by stating
that it behaves correctly on input sequences of any length. Being extensional our semantics cannot
express the concept of elapsation of time, but, by talking of sequences of any length we give an
adequate extensional representation of a continuing process.

The list of LCF commands and the printout of the proof of the partial correctness of the MCCARTHY
program with respect to the BOOKING function is given in appendix 8. The goal to be proved, after
the first simplification is:

Visq osq P q.iswfsqlisq) :: iswfos(osq) :: isint(p) :: isint(q) 2

OUTPUT (~(MEXPR(rq,8,MS (BODY,8,READ(st,8,READ(w!,8,FRAME | (p,q,isq,059)))))=3)~
REPEAT(MS(BODY,B),MBEXPR(mkbexpr 1 (not,mkrel(eq,rq,mknumconst(3))),8),8,
MS(BODY,B,READ(st,8,READ(wWI,B,FRAMEI (p,q,isq,05q))))),
MS(BODY,B,READ(st,8,READ(w!,B8,FRAME! (p,q,isq,089))))) = BOOKING(p,q,isq,089)

In achieving this goa the theorem on the repeat statement, given in section 4.3 has been used, The
combinator FRAME! is introduced to increase the readability of the goal. It describes the store after
the declarations are done.

FRAMEI = [Ax y sq os. [Af.{f=8)=[)loc.
loc=typeloc ps—INT,
loc=typeloc rq=INT,
loc=typeloc st-INT,
loc=typeloc wi=INT,
loc=fileloc INPINTERNALREP(LIST(x,y,sq)),
loc=fileloc QUT—INTERNALREP os,
loc=textloc  =SP,UNDEF],UU].

The proof of the McCARTHY program differs from that of the factorial program mainly for two
reasons. 1) the while and the repeat statements behave differently, having the test performed at
different places. 2) here an initialization is done within the body of the repetition statement. In fact,
the two values of rq and ps are read within the loop. For this reason the loop must be executed once
in order to create a location named rq and one named ps, before doing an induction on the
combinator REPEAT. The goal is proved by cases on the test which controls the repeat loop. The
only nontrivial case isthatinwhich the input sequence is not yet over, namelyrqf3. In this case the
repeat loop goes on, SO an induction is needed for completing the proof. The base case of this
induction is trivial. The induction step is proved by doing again cases on the test which establishes
the exit conditions fromtheloop. If the loop is completed a lemma is used to state the result, if it
goes onthe god is proved by an appropriate instantiation of the induction hypothesis.
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As in the proof of the factorial programthetheorems used inthe proof havebeendivided into THs,
ARITHs and LMs. THs state facts about the semantics, one of them istheabove mentioned theorem
about the semantics of the repeat statement f 0 r goto-free programs. They are shown in 4.3 and 4.5.
ARITHs are theorems dealing with the arithmetic and properties derived from the above axiomson
the well formedness of input and output sequences. LMs are specific lemmasregarding this program.
The list of these lemmas follows.

Vsqos x| x2.MD(DP,8,FRAMEB(McCARTHY INPUT(LIST(x1 x2,5q)),INTERNALREP (0s)))=
FRAME 1 (x1,x2,59,08);

isanimplicit definition of FRAMEL. It defines the store after thedeclarationsare done.
READ(st,8,READ(wi,8,FRAMEI (x1,x2,5q,08)))=FRAME2(x | ,x2,sq,0s)
ASSUME iswfsq(sq)=TT, iswfos(os)=TT, isint(x1 )=TT, isint(x2)=TT
This statement is an implicit definition of FRAME2. | t descri b es the store after wi and st are
initialized.
FRAME2 = [Ax] x2 sq os. [Af.(f=8)=[Aloc.
loc=st -»x2,
loc=wl -x1,
loc=typeloc ps=3INT,
loc=typeloc rq-INT,
loc=typeloc st—2INT,
loc=typeloc wi=INT,
loc=tileloc INP=INTERNALREP(sq),

loc=fileloc OUT-INTERNALREP(os),
loc=textloc  =SP,UNDEF],UU],

The nexttheorem:
OUTPUT(MS(BODY,B,FRAME2(x1,x2,5q,05)))=BOOKING(x1,x2,5q9,0s)
ASSUME =(ell sq=3)=FF,iswfsq sq3TT,iswfos 0s=TT,isint x1=TT,isint x2=TT

states that, when the input sequenceis ov er, the content of the outputfile after the execution of
BODY in the store described by FRAMEZ2, equals the value of the function BOOKING.

BOOKle(stupdt(sq,x,y),wlupdt(sq,x,y),taill sq,mkpair (stupdt(sq,x,y),0s))=BOOKING(x,y,sq,0s)
ASSUME iswfsq sq =TT,iswfos os = TT,isint x = TT, isint y & TT,~(ell sq=3)=TT
states a simple property of the function BOOKING.

MS (BODY ,8,FRAME2 (stupdt (sa,x,y ),wlupdt(sq,x,y)taill sq,mkpair (stupdt(sq,x,y),08)))=
MS(BODY ,8,FRAME3(x,y,54,05))

ASSUME iswfsq sq =TT,iswfos os = TT,isint x = TT, isint y = TT,~(ell sq=3)= TT;

MS(BODY,8,FRAME2(x,y,sq9,08))=  FRAME3(x,y,s9,0s)
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ASSUME iswisqsq=TT,iswfosos = TT,isint x = TT, isint y = TT,~(ell sq=3)= TT;

Thetwoabove theorems use the combinator FRAME3 to describe an intermediate store:

FRAMES =[xx1 X2 sqos. [xf.{f=8)-[)loc.

loc=ps -el2 sq,
loc=rq —=rell sq,
loe=st =stupdt(sq,x 1,x2),
loc=wl =wlupdt(sq,xl,x2),

loc=typeloc ps=INT,

loc=typeloc rq=3INT,

loc=typaloc st=INT,

loc=typeloc wi=INT,

loc=fileloc INP—taill (INTERNALREP sq),

loc=fileloc QUT—mkpair(mknumconst stupdt (sq,x 1 ,x2),INTERNALREP os),
loc=textioc  =SP,UNDEF],UU];

FRAMES is the description of the store after the body of the loop has been executed once.
MEXPR(rq,8,MS(BODY,8,FRAME3(x,y,59,05)))= &I3 sq
ASSUME iswisq sq =TT,iswfos os = TT,isint x = TT,isint y = TT,~(ell sq=3) = TT
MBEXPR(mkbexpr 1 (not,mkrel(eq,rq,mknumconst(3))),8,MS(BODY,8,FRAME3(x,y,59,0s)))= ~{el3 sq = 3)
ASSUME iswfsq sq =TT,iswfos os = TT,isint x = TT,isint y = TT,~(el] sq=3)= TT
MEXPR(rq,8,MS(BODY,8,FRAME2(x,y,s0,08)})zel] sq
ASSUME iswfsq sq=TT,iswfos os =TT,isint x=TT,isint y=TT,

The three above lemmas are introduced to abbreviate the evaluation of expressions.
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SECTION 6 CONCLUSION

The most important aspect of this memo relates to our attempt to axiomatize ail of the arithmetic
partof PASCAL. This is interesting for two reasons. First we are able to describe in LCF different
programming language features and show how they interact. Secondly we can express property, of
classes of programs and use them as lemmas in proofs of theorems about particular programs. A
typical example is the theorem about goto-free programs in section 4.2. It is used in section 5.2 to
simplify the first proof of the correctness of the factorial program. When interpreted literally, it
proves that for goto-free programs the composition rule in Hoare 1969 is valid. By formulating the
validity of this rule as a theorem we can discuss, in LCF, the relative merits of various programming
features. This has not previousy been accessible to a forma treatment, and is important if the
mathematical theory of computation is ever to have an effect on language design.

Our desire to axiomatize all aspects of a programming language is not simply a matter of choice of:
available formalisms but represents a philosophy about what kinds of questions the mathematical
theory of computation should ask. The method of attaching inductive assertions to programs treats
programs one at a time. We do not think general theories about programs can be developed in this
way. Of course using inductive assertions is not a waste of time, but formalisms which use them
should be expanded to include more general applicability.

The kind of questions about programs we have in mind include: will it run at al, even if its
agorithm is correct? Will it compile? Does some other coding or “optimization” compute the same
function? We believe that LCF is capable of expressing these notions. Furthermore, any formalism
for describing a programming language could reasonably be expected to have this property.

We criticize the origina description of PASCAL, not because Wirth didn't have philosophically
reasonable ideas of what various features of a programming language should do, but rather he
lacked a formalism which was strong enough to describe the effect of putting together features,
which although separately make clear sense, cause problems when combined. The example of the
procedure in the discussion of the for statement is a case in point. Itisnot a PASCAL procedure as
the value of the index variable of the for statement is changed in its body. This fact, however is
hard to detect and is certain to be missed by most compilers. The difficulty arises out of the desire
not to make the index of a for statement local to that statement, to have the limits of the for loop
variable determined once and for al and to have recursive procedures in the same language.
Features when combined in arbitrary ways make even the recognition of well formed programs
complicated.  Further evidence of this difficulty is found in the large number of restrictions
Igarashi, London and Luckham 1973 have put on the application of their rules. The only example
of a procedure given in Hoare and Wirth 1973 cannot be treated in their system. It does not seem
obvious to us how to extend their style of axiomatization to all of PASCAL. We do not impose any
of their restrictions, but describe the full generality alowed by Wirth. The expressive power of LCF
permits us to represent their restrictions and to prove that rules similar to theirs are vaid for the
subset of PASCAL they treat.

The above should reflect on language design. One overwhelming feeling of al\ three authors after
doing this work was that we know large amounts more about how to describe a language to make
proving theorems about it reasonable. We believe that the ability to describe programming features
and demonstrate by proving theorems that a language has ‘certain properties represents a
particularly satisfying way to describe a language. Furthermore we propose this as a. standard for
acceptable descriptions.
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Qne possible idea for future work is designing a programming language using the more precise
description of this paper. Only small modifications to PASCAL are necessary to give a similar
language a demonstrably smoother semantics. Thus, by starting with a more detailed description,
some properties of the language, which could only be informaly described before would now be
made explicit as statements in LCF. One could then begin to amass a collectron of theorems that
could be used to prove properties of particular programs. We could then integrate everything into
an LCF-PASCAL “machine” which took a concrete PASCAL syntax and generated the LCF
abstract syntactic representation. Of course the new language would have to include more features
than those discussed here, Obvious candidates are real arithmetic, file manipulation and more
complicated data structures. If we wanted to abandon the ALGOL like control structures it would
be possible to choose either that of LISP or even the more aggressive control structures of Bobrow
and Wegbreit or the Landin J operator. It would be an interesting project to describe them &l and
see what theorems hold when you alow them to exist simultaneously.

We chose to work out the McCarthy airline reservation system as an example because we believe
the treatment of interactive programs is another area which a vita mathematical theory of
computation must consider. Our idea for how to treat the correctness of continously interactive
programs Was to consider them as functions from sequences of inputs to sequences of outputs. If the
processes you are considering are continous, that is, some initial sequence of outputs is completely
determined after some fixed number of inputs, then equivalently we can consider the correctness of
finite output sequences given finite input sequences. Basically this idea has been used in
intuitionistic theories of free choice sequence as developed by Brouwer and Kleene (see Kleene and
V esley | 965).

We end this memo with some comments about LCF. A major difficulty involved in using LCF as
the language for interpreting programming languages is that descriptions of the data being
manipulated (in our case integers) is awkward. The axiomatization of arithmetic in LCF although
adequate is both non standard and frequently hard to use. It is partially the fault of LCF as it does
not implement such nice user oriented features as arbitrary structural inductions. It forces you to use
computation induction in its primitive form. Unfortunately the implementation cannot be blamed
for everything. A proof of Wilson's theorem, for example, would be virtually impossible even by
mathematical induction. LCF terms not only haveinterpretations as functions, but can also be
interpreted ds computation rules. Although this duality has not been fully exploited it is the
essential reason that the simplification mechanism of LCF is so successful.
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APPENDIX 1|

A BRIEF DESCRIPTION OF LCF

The syntax of LCF sentences is described in detail in Milner 1872a. Here we only give an informal
description of the language, its interpretation and enough of the abbreviation conventions to make
the formulas in this report intelligible to those not familiar with LCF.

There are two kinds of base variables and constants in LCF. Those that range over individuas
and those that range over truth values. Each term has an associated type. If tis aterm and ¢ its
associated type symbol we write to. IND and TV are type symbols. If @ and T are type symbols

then so is (7). We write x:IND and x:TV for x of type individua and truth vaues respectively.
There are variables and constants for each different type symbol. The variable symbols of different
types ‘are supposed to be digoint. There are three constants of type TV. They are TT for true, FF
for false, and -UU for undefined.

Terms are formed as follows: if x:i¢ is a variable and tr then [Axi)(e-7) is a term whose
interpretation is a function from things of type ¢ onto things of type 7. In LCF [xx.[xy.t]] is
abbreviated by [Xx y.t). If r:(e-7) and s:¢ then r(s):7. We interpret r(s) as the result of applying the
function rto the argument s. We frequently write this rs, thus

a b c =alb)(c)=(alb))(c)=alb,c).

Note that if 7is TV then r is a predicate. Conditiona expressions are formed as (p-q,r), where
p:TV and g, r are of the same type. On the undefined truth-value the conditional is undefined, j.e,

for all g and r,(UU=q,r)=UU. Terms are also built up using the least fixed point operator «. If x:o
is a variable and s:o-0 then {ex.s] iS a term representing the least fixed point of the functional s,

Atomic well formed formulas (or AWFFs) are formed by joining two terms using = or ¢, i.e. if r and
s are terms then r=s and res are AWFFs.res means that the functions denoted by r and s are the
same. In a full description of the theory there is also a partial order between terms of the same type.
This is represented using <.

The more usual definition of the factorial function fact(n)« if x=0 then I else n:fact(n-1) becomes
inLCF

FACT =[ef.[An.(n=0-1,n%f{n=1)]].

LCF aso alows two other abbreviations.
Vx.fzg is the same as [Ax.t)=[xx.g].

Because terms are interpreted as extensionally given functions, this definition makes sense.
P::Q=R is the same as (P-Q,UU)=(P-R,UU})

Intuitively this is read as. If P istrue then Q=R, otherwise | don’'t know anything.
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APPENDIX 2

THE ABSTRACT SYNTAX

2.1 Syntax for Statements

AXIOM SYNAXS:

V d s. type(mktext d s) = _T,
V d s. declof(mktext d s) = d,
V d s. statmof(mktext d s) s s,

v d| d2.type(mkempnd dl d2) = _CM,
V d1 d2. fstof(mkempnd d1d2) = d | ,

V dl d2. rmdof{mkcmpnd d1 d2) = d2,
v
v
v

n ty. type(mktypedef n ty) = _TD,
n ty. namof({mktypedef n ty) = n,
n ty. typof(mktypedef n ty) = ty,

V nl n2. type(mksublim nl n2) = _SL,
V nl n2. Ibof(mksublim nl n2) = nl,
V nl n2. ubof(mksublim nl n2) = n2,

V al ty. type(mkarspec al ty) = _AS,
- ¥ al ty. arlimof(mkarspec al ty) = al,
Y al ty. typelof(mkarspec al ty) = ty,

V il i2. type(mkpair il i2)= _PA,
Vi 1 i2. fstof(mkpairili2)zil,
V il i2. rmdof{mkpair il i2)= i2,

¥ n ty. type(mkvardeci n ty) = _VD,
V n ty. namof(mkvardeci n ty) = n,
V n ty. typof(mkvardeci n ty) = ty,

V n ps. type(mkprocdecl n ps) = _PD,
VY n ps. hamof(mkprocdecl n ps) = n,
V n ps.-prspof(mkprocdecl n ps) = ps, .

V n fs ty. type(mkfundeci n fs ty) = _FD,
V n fs ty. namof(mkfundeci n fs ty) = n,
¥ n fs ty. fnspof(mkfundecl n fs ty) = fs,
V n fs ty. typeof(mkfundecl n fs ty) = ty,

t t.type(mkprocspec f t) = _PS,
f t.fargof(mkprocspec f t) = f,
f t.textof(mkprocspec f t) = t,

wmoom 1

f t.type(mkfunspec f t) = _FS,
f t.fargof(mkfunspec f R
f

v
v
v
v
v t)
V f t.textof(mkfunspec f t)

F
{
t
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V x ty. type(mkvarp X ty)= _VRP,
V x ty. namof {(mkvarp x ty) = x,
V x ty. typof(mkvarp x ty) = ty,

v x ty.l type(mkvalp X ty) = _VLP,
V xty. namaf(mkvalp x ty) & x,
Y x ty. typof(mkvalp x ty) = ty,

V x ty. type(mkfunp x ty) = _FP,
V x ty. namof(mkfunp x ty) = x,
V x ty. typof(mkfunp x ty) = ty,

V x. type(mkprocp x) = _PP,
V x. hamof(mkprocp x) £ x,

V | 's. type(mkiabstat | s) = _LS,
V | s. labelof(mklabstat | s) = |,
V | 5. statmof{mklabstat | s) = s,

V n. type(mkread n) = _RD,
Y n. namof(mkread n) = n,

V n. type(mkwrite n) = _WT,
V n. namof(mkwrite n) = n,

Vn. type(mkgoto n) = G,
Vn. labelof(mkgoto n) = n,

Vn e. type(mkass n e) = _A,
Vn e. lhsof(mkass n e) = n,
Vn e. rhsof(mkass n e) = @,

VY n a. type(mkproccall n a ) = _PC,
V n a. namof(mkproccalin a) = n,
V n a. actargof(mkproccall n a) = a

Vbe pl p2. type(mkcond be p! p2) = _C,
Vbhe p | p2. testof(mkeond be pl p2) = be,
nl p2. thenof(mkeond be pl p2) = pl,

p | p2. elseof(mkeond e p | p2) = p2,

Vit b. type{mkwhile t b) = _W,
Vt b. testof(mkwhile t b) = t,
Vi b. bodyof{mkwhile t b) = b,
Vb t. type(mkrepeat b t) = _R,
Vb t. bodyof(mkrepeat b t) = b,
Vb . testof(mkrepeoat b t) = t,

Vi el 62 b. typo(mkforto i e] e2 b)=_FT,
Vi el @2 b. indexof(mkforto i el e2 b)= i,
Vi el @2 b. Ibof(mkforto i el e2 b)= el,
Vi e | 82 b. ubof(mkforto i el e2 b)= e2,
Vi el e2 b. bodyof (mkforto i el €2 b)= b,

17
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Vi el e2 b. type(mkfordn i el e2 b)=_FD,
Vi e | e2 b. indexof(mkfordn i el e2 b)= i,
Vi e ] @2 b. ubof (mkfordn i el €2 b)= el ,
Vi el e2 b. Ibof(mkfordn i el e2 b)= e2,

Vi el 2 b. bodyof(mkfordn i el e2 b)= b,

type UU = UU,
type ES = _ES,
type EQF = _EOF;

2.2 Syntax for Expressions
AXIOM EXPRAX:

Vo el. type(mkexprloel)e E,
Vo el.opof(mkexprlo 01) =o,
Vo el. arglof(mkexprl o el) = el,

Vbo bel. type(mkbexprl bo bel) = _BE,
Vbo bel . bopof(mkbexprl bo bel ) = bo,
Vbo bel. barglof(mkbexprl bo bel) = bel,

Vo el e2. type(mkexpr2 o e| e2) = _E,
Vo el e2. opof(mkexpr2 o el e2) = o,
Vo el e2. arglof(mkexpr2 o el e2) = el
Vo el e2. arg2of(mkexpr2 o el e2) = e2,

Vbo bel be2. type(mkbexpr2 bo bel be2) = _BE,
Vbo bel be2. bopof(mkbexpr2 bo b ol be2) = bo,
Vbo bel be2. barglof(mkbexpr2 bo bel be2)= bel,
Vbo bel be2. barg2of(mkbexpr2 bo bel be2) = be2,

Vbo el e2. type(mkrel bo e| e2) = BE,
Vbo e | e2. bopof(mkrel bo el e2) = bo,
Vbo €l e2.arglof(mkrelbo €l e2) = el,
Vbo el e2. arg2of(mkrel bo el e2) = e2,

V ni. type(mkae n i) = _AE,
V n i, namof(mkae n i) = n,
V ni. subof(mkae n i) = i,

V n a. type(mkfundes n a) = _FA,
V n a. namof({mkfundes n a) = n,
V n a. actargof(mkfundes n a) = a,

V n. type(mknumconst n) = _NC,
V n. numof(mknumconst n) = n;
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2.3 Predicates for the Identification of Syntactic Constructs

AXIOM PREDAX:

Vx.
Vx.
Vx.
Vx.

istext x = type x = _T,
iscmpnd x = type x = _CM,
istypedef x = type x = _TD,
issublim x = type x = _SL,

V X . isarspec x = type x = _AS,

Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.

Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.

Vx.
Vx.

Vx.
Vx.
Vx.
Vx.
Vx.
Vx.
Vx.

ispair x = type x = _PA,
isvardeci x = type x = _VD,
isprocdec! x = type x = _PD,
isfundecl x = type x = _FD,
isprocspec x = type x = _PS,
isfunspec x = type x = _FS,
isvarp x = type x = _VRP,
isvalp x = type x = _VLP,
isfunp x = type x = _FP,
isprocp x = type x = _PP,

islabstat x = type x = _LS,
isread x = type x = _RD,
iswrite x = type x = _WT,
isgoto x = type x = _G,
isass x = type x = _A,
isproccall x = type x = _PC,
iscond x = type x = _C,
iswhile x = type x = _W,
isrepeat x = type x = _R,
isforto x = type x = _FT,
isfordn x = type x = _FD,

isemptyst x = type x = _ES |
iseof x = type x = _EOF,

isconst x = type x = _NC,
ishame x = type x = _N,
isexpr x = type x = _E,
isbexpr x = type x = _BE,
isrel x = type x = _BE,
isae x = type x = _AE,
isfundes x = type x = _FA;

49
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2.4 Auxiliary Predicatesand Functions

AXIOM AUXSYN :

isname FUNV = FF,

fstof EOF = UU,

rmdof EOF = UU;

issingle = [\st. (isread st)v(iswrite st)v(issimple st)v (isemptyst st)],

issimple = [Ast. (isgoto st)v(isass st)v(isproccall st)],

fortest = [Ax .isforto(x)-»mkrel(!seq,Ibof(x),ubof(x)) isfordn(x)->mkrel(greq,ubof(x),Ibof(x)),UU] ,

fortoup = [Ax .mkempnd(mkforto(indexof(fstof(x)),mkexpr] (plusl,indexof(fstof(x})),
ubof (fstof (x)),bodyot (fstof(x))),rmdof (x))],

fordnup = [Ax.mkempnd(mkfordn(indexof {fstof (x)),mkexpr 1 {minus1 indexof (fstof (x))),
Ibot(fstof(x)),bodyof(fstot(x))),rmdot(x))],

isrepwh = [Ast. (isrepeat st)v(iswhile st)),

isiter = [Ast. (isforto st)v(isfordn st)v(isrepwh st)],
isparameter = [Ax. (isvarp x)v(isvalp x)v(isprocp x)v(isfunp x}),
isbasetype = [An.(n=INT)v(type(n)=_SL)],

istyppart = [An.ispair(n)viseof (n))],

occurs = [ocF.[An st.
isemptyst st = UU,
iscmpnd st = F(n,fstof st)vF(n,rmdof st),
islabstat st = (n=labelof st)=TT,F(n,rmdof st),
issingle st = FF,
isiter st - F(n,bodyof st),
iscond st = F(n,thenof st)vF(n,elseof st),Ul]],

append = [o«F.[x stl st2.
isemptyst stl = st2, .
iscmpnd st 1 = mkempnd(fstof st 1, F(rmdof stl st2)),UU)],

segm = [ocF.[An st.

isemptyst st - UU,

iscmpnd st—

isemptyst st =F (n,rmdof st),

islabstat(fstof st)=(n=labelof st)— st,F(n,mkempnd{statmof(fstof st),rmdof st)),

issingle(fstof st} =F (n,rmdof st),

iscond(fstof st) moccurs(n,thenof(fstof st))=append(F(n,thenof(fstof st)),rmdof st),
occurs(n,elscof (fstof st))=>appand(F(n,elseot (fstof st)),rmdot st),
F(n,rmdof st),

israpwh(fstof st)=occurs(n,bodyof(fstof st))-append(F(n,bodyot(fstof st)),st),
F(n,rmdof st),

isforto(fstof st)2occurs(n,bodyof(fstof st))=append(F(n,bodyof(fstof st)),fortoup(st)),
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F(n,rmdof st),
isfordn(fstof st)=2occurs(n,bodyof(fstof st))-rappend(F(n,bodyot(fstof st)),fordnup(st)),
F(n,rmdof st),Ul,UU]],
isvariable = [Ax.isname(x)visae(x)),
isunary = [Ax.(x=pplus)v(x=pminus)v(x=plus | )V(x=minus1)],

isbunary = [Ax.(x=not)],

isbinary = [Ax.(x=plus)v(x=minus)v(x=times)v(x=div)v(xsrmdr)v(x=and)v(x=or)v
{x=lseq)v{x=greq)v(x=it)v(x=gt)v(x=eq)v(x=neq))],

isbbinary = [Ax.(x=and)v(x=or)],

isrelop = [Ax.(x=lseq)v(x=greq)v(x=It)v(x=gt)v(x=eq)v(x=neq)];
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APPENDIX 3

THE SEMANTICS

3.1 Top Level Functions
AXIOM TOPSEM:
FUNCT = [Ap o i.(INPUT®PASCAL(p,0)@0UTPUT)()],
PASCAL = [Ap o i. MP(p,8,FRAMEB(p,0,))),
FRAMEB = [\t i o f. (f=8)-[Xloc.(loc=fileloc INP) = INTERNALREP(i),
(loc=tileloc OUT) = INTERNALREP(0),
(loc=textioc) = statmof {,UNDEF],UU],
MP = [At f. MD(declof {,f)®@MS(statmot )],
INPUT = ID,
OUTPUT = [«F.[xs.[Niiseof i —EOF,
ispair i =»mkpair (F (fstof i),F (rmdot i)),
isconst i=numof (i),UU}(OBUFFER s)}],
INTERNALREP = [ocF [Aiiseof i =EOF,

ispair i =»mkpair(F(fstof i),F (rmdof i)),
isint i -mknumconst(i),UU]];
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3.2 Declaration Part

AXIOM DECSEM:
MD = [\d f. MDEF (d,f)®MDEC(d,f)),
MDEF = [«F.[\d f.isemptyst d = ID,
istypedef d = CREAT(f,namof d,typof d),
iscmpnd  d - F(fstof d,f)®F (rmdef d,§),ID]],
MDEC = [xF.[Ad tisemptyst d = ID,
isvardecl d = CREAV(f,namof d,typof d,f),
isprocdec! d = CREAP(f,namof d,prspof d,f),
isfundecl d » CREAF(f,namof d,fnspof d,typeot df,f),
iscmpnd  d - F(fstot d,f)oF (rmdot d,),1D]],
CREAT =[x h ty s.CREALOC(f,s,typidlioc,n,ty)],
CREAV = [\f n ty fl s.CREALOC(f,s,typeloc,n, TYPEVAL(ty,tl,s))],
CREAP = [Af n ps fl s.STORE(f,CREALOC(f,s,accink,n,fl),procloc n,ps)],

CREAF =[xfnfstyftfls
STORE(f,STORE(f,CREALOC(f,s,accink,n,fl),typfuntoc n,TYPEVAL(ty,ft,s)),funcloc n,fs)],

CREALOC = [t s loc n val.ISPRESENT(n,s(f))=UU,STORE(t,s,loc n,val)];
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3.3 Definition of MS

AXIOM MSDEF:

MS=[ocF.[Ast f.
isemptyst st = ID,
iscmpnd st -
isemptyst(fstof st)= F(rmdof st,f),
islabstat (fstof st)=> F(mkempnd(statmof(fstof st),rmdof st),f),
isgoto(fstof st) —=» GOTO(F,labelof(fstof st),f),
isass (fstof st) = ASSIGN(lhsof(fstof st),MEXPR(rhsof(fstof st),f),f)OF (rmdof st,f),
isproccall(fstof st)-[\s. MPB(PROCF AL (namof(fstof st),f,s),actargof(fstof st),f,s,namof(fstof st))]e
[\s.MD(PROCDECL (namof(fstof st),f,s),succ f,5))®
[As.F(PROCBODY (namof(fstof st),f,s),succ f,5)J@CLEAR(succ f)®F (rmdof st,f),
isread(fstof st) = READ(namof (fstof st),f)&F (rmdof st,f),
iswrite(fstof s t ) = WRITE(namof(fstof st),f)@F (rmdof st,f),
iscond(fstof st) -=» COND(MBEXPR (testof(fstof st),f),
F(append(thenof (fstof st),rmdot St) f) F(append(elseol (fstof st),rmdof st),f)),
iswhile(fstot s t ) =» COND(MBEXPR(testot(fstot st),f),
F(append(bodyof(fstof st),st),f),F{rmdofst,f)),
isrepeat(fstof st) = F (append(bodyof (fstof st),mkcmpnd(mkcond(mkbexpr 1 (not,
testof (fstof st)),fstofst,ES )rmdof st)),f),
isforto(fstof st) = COND(MBEXPR(fortest(tstof st),f),
ASSIGN(indexof(fstof st),MEXPR(Ibof(fstof st),f),f)®
F(append(bodyof(fstof st),fortoup st)f),F(rmdof st,f)),
isfordn(fstof s t ) & COND(MBEXPR(fortest(fstof st),t),
ASSIGN(indexof (fstof st), MEXPR(ubof (fstof st ),{),f)®
F(append(bodyof(fstof st),fordnup st),f),F(rmdof st,f)), UU,UU]J;
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3.4 Axioms for Statements

AXIOM STATSEM:

READ = [An f s.ISFUNFR(f,s,8)=ASSIGN(n,MEXPR(fstof (BUFFER s)hi)f,
STORE(0,s,fileloc INP,rmdof{IBUFFER 5))),UU],

WRITE =[xn f s.ISFUNFR(f,s,8)- STORE(8,s,fileloc OUT,
mkpair (mknumconst(FETCHV(n,f,5)),0BUFFER 5)),UU],

GOTO0 =[AF.[xn f. F(segm(n,TEXT(f)),)]],

ASSIGN s[xF [xnv fs.
n=FUNV-ISADMISVAL (s(f,typcloc FUNV),v(s))-STORE(f,s,FUNV,v(s)),UU
ISINTYPE(n,v,1,s)STORE(f,5,LOCOFVAR(nf,8),v(s)),
istopf(f)-UU,
ISFUNFR{f,s,NEWFP(n,f,s))~F (VARBNDTO(n,f,s);v,NEWF P(n,f,s),8),UU]],

COND = [Aq f g s.(q(s)=f(s),g(s))],

MPB = [Xfa aa f s n.BIND(fa,aa,succ f,
MAKFRAME(PROCBODY (n,f,5),PFLNK(n,f,s),suce 1$))]),

CLEAR =[Msfl.(fl=f)-UUs(f I)];
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3.5 Binding Mechanism

AXIOM BINDINGS:

BIND = [ocF.[Afa aa f s.
iseof fa = (iseof aa = s,UU),
isparameter(fstof fa)-F (rmdof fa,rmdof aa,f,MKBINDING(fstof fa,fstof aa,f,s)),UU]],

MKBINDING = [xfa aa f s.
isvarp(fa) = TYMATCH(fa,typaloc,aa,f,s) »CREALOC(f,s,bindloc,namot fa,EXPRFORV (aa)),uU,
isvalp(fa) = ASSIGN(namof fa,MEXPR(aa,f),{,CREAV(f,namot fa,typot fa,CRNTF(f,s),s)),
isfunp(fa) = TYMATCH(ta,typfunloc,aa,f,s) =
CREAF (f,namof fa,FUNCDEF (aa,f,s),typof 1a,CRNTF(f,s),PFLINK(aa,f,s),s),uUU,
isprocp(fa)= CREAP(f,namof fa,PROCDEF (aa,f,s),PFLINK(aa,f,s),s),Ul],

TYMATCH = [Afa loc aa ¢ s.TYPEVAL(typot fa,CRNTF(f,s),s)=TYPEDEF (loc aa,pred {,s)],

TYPEVAL = [ocF.[An § s.
isbasetype n = n,
isarspec n = mkarspec(F (arlimof n,f,s),F(lypelof n,(f,s)),
istyppart n = iseof n = n,ispair n = mkpair(F(fstof n,f,s),F(rmdof n,f,s)),UU,
ISLOCAL(typidloc n,s{f))=F (s(f,typidlac n),f,s),
istopt f = UU,F(n,CRNTF(f,s),8)]];
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3.6 Evaluation of Expressions

AXIOM EXPRESSIONS:

MEXPR = [ocF [Xe § 8.
isconst @ = MCONST e,
isvariable e = FETCHV(e,f,s),
isfundes @ = RETURN(succ f,MF(namof e,actargof e,f,s)),
isexpr e =isunary(opof e) = MOPI (opof e,F(arglof e,f,5)),
isbinary(opof e)-» MOP2(opof e,F(arglof e,f,s),Farg2of e,f,s)),UU,UU]],

MF = [xn a f. MFB(FUNCFAL(n,),a,f,n)®MP (FUNCDEF (n,f),succ 1)},

MFB = [Afa aa f n s.BIND(fa,aa,succ {,CREALOC(succ f,typeloc,FUNV,TYPEDEF(n,f,s),
MAKFRAME(FUNCBODY (n,f,s),PFLNK(n,f,s),succ f,s) )],

MBEXPR = [«F.[re f s,
(e=true)->TT,(e=false)-FF, -
isbexpr e =isbunary(bopot e) = MBOP] (bopof e,F (barglof e,f,s)),
isbbinary{bopot e)» MBOP2(bopof e,F (barglof e,f,5),F(barg2of e,f,s)),
isrelop(bopof e)=RELOP(bopof e,MEXPR(arglof e,f,s),MEXPR(arg2of e,f,s)),UU,UU]),

MCONST = [Ax.isconst x = numof x,UU],
MOP!  =[Ax.x=pplus=Ax.x,x=pminus—IAx.(8=x),x=plus 1 ~*suce,x=minus 1 9pred,Ul),

MBOP1 = [Ax.x=not->-,UU],
MOP2 = [Ax.x=plus—!+,x=minus=!- x=times=!¥x=div-!/ x=rmdr-mod,UU},
MBOP2 = [Ax.x=and=!Ax=or-tv,UU),

- RELOP = [Ax.x=lseq=!S,x=greq=>R x=lt=!¢( x=gt=>> x=eq==x=neq-4,UU};
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3.7 Variables

AXIOM VARIABLES:

NAMOFVAR = [Av.n=FUNV=-UU,isname v-v,isae v=>namof v,Ul],
LOCOFVAR = [\v f sisname v-v,isae v->arloc(namof v,VAL(subof v,{,s)),UU],
TYPOFVAR = [Av { s.isname v=>TYPEOF (v f,5)isae v=typelof(TYPEOF (namof v,f,5)),UU],
EXPRFORV = [Av f s.isname v-)v,isae v->mkae(namof v,EXPRVAL(subof v)),ul],
VARBNDTO = [Av f sISBND(NAMOFVAR v,f,s)=

isname v = BVALOF(v,f,s),

isae v = mkae(BVALOF (namof v,f,s),subof v),Ul,v],

ISINTYPE = [Av val { s.ISLOCAL(typeloc NAMOFVAR(v),s(f)) =
ISADMISVAL(TYPOFVAR(v,f,8),val(s)),FF],

ISADMISVAL = [Aty v.(ty=INT)=isint v,issublim ty=>ISINBOUND(v,ty),ul],

ISINBOUND = [ocF.[Ax y.
iseof x = TT,
ispair x = F(fstof x,fstof y)AF(rmdof x,rmdof y),
isint x = issublim y=(x2numof (Ibof y))A(x<numof (ubot y)),Ul,Uu]],

VAL = [F.[Ap fs.
iseof p = EOF,
ispair p = mkpair(MEXPR(fstof p,f,s),F(rmdof p,f,s)),UU]],

EXPRVAL = [«F[rpfs.
iseof p = EOF,
ispair p = mkpair(mknumconst(MEXPR(frstof p,f,s)),F(rmdot p,f,s)),UUJ};
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3.8 The Lookup of the Store

AXIOM LOOKUP:

IBUFFER = [x5.5(8,fileloc INP)],

OBUFFER = [Xs.5(8,fileloc OUT)],

TEXT = [Af ss(f,textloc)),

PROCDEF = [An f s FETCH(procloc n,f,s)],
FUNCDEF = [An t s.FETCH(funcloc nf,s)],
TYPEDEF = [Xloc f s.FETCH(loc,f,s)],
PROCTXT = [xn f s.textof(PROCDEF (nf,¢))),
FUNCTXT = [An { s.textof (FUNCDEF (n,f,s)}],
PROCFAL = [An f s.fargof (PROCDEF (n,f,5))],
FUNCFAL = [xn f s.fargof(FUNCDEF(n,f,s))],
PROCBODY = [An { s.statmof(PROCTXT(n,f,5)}],
FUNCBODY = [xn f s.statmof(FUNCTXT(n,f,s))],
PROCDECL = [An ¢ s.declof(PROCTXT(n,f,s))},
FUNCDECL = [An f s.declof (FUNCTXT(n,f,s))],

PFLNK = [An f 5. FETCH{acclnk n,t,s)],
NEWFP = [xn f 5. ISBND(NAMOFVAR vf,s) pred f,CRNTF(t,s)],

CRNTF = [Af s. s(f,aink)],
FETCH = [oF [Al f S.ISLOCAL(L,s(f))s(f)),istopt(f)->UULF (LCRNTF (f,s),5)]],
FETCHV = [ocF.[An f sISLOCAL(typeloc NAMOFVAR(n),s(f))->

ISLOCAL(NAMOF VAR(n)ys(f))-*s(f,LOCOFVAR(n,f,s)),uu,
istopf(f)->UU,F(VARBNDTO(n,i,s),NEWFP(n,{,5),5)]],

TYPEOF = [An f s.s(f,typeloc n)),
BVALOF = [An t s.s{f,bindioc n));

59



The Semantics of PASCAL in LCF

3.9 Updating and Miscellaneous Axioms

AXIOM UPDATE:

STORE = [Afsloc val.[xf1.f1=f->MODFRAME(s(f),loc,val),s(f1)]],
MODFRAME = [\ floc val.[Aloc 1 .loc | =zloc-sval,f(loc1)]],
MAKFRAME =[Atxtinfs.[Af 1 f1=f=>[Xloc 1 .loc 1 =textloc=ixt,loc 1 =alnk = In,UNDEF],s(f 1 )] J.

AXIOM FRAME:

frame = [xs f.s(f)],
istopt = [Af.(f=8)];

AXIOM AUXSEM:

1® = [\ g rglf(r)),

ID = [Axx],

ISFUNFR = [F.[Af s nf. ISLOCAL(FUNV,5(f))= FF,pred fznf = TT,F(pred f,s,nf)]],

ISLOCAL = [Aloc fr.fr(loc)=UNDEF-FF,TT],

ISPRESENT = [An fr.isname n=ISLOCAL(typidioc n,fr)vISLOCAL(typeloc n,fr)v
ISLOCAL (acclnk n,fr)viSLOCAL(bindloc n,fr),UU],

RETURN = [Af s.ISLOCAL(FUNV s(f))-s(f,FUNV),UU),

ISBND = [An s fISLOCAL(bindloc n,s(f))];
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APPENDIX 4

Proof of the equivalence involving WHILE for goto-free programs

4.1 List of LCF commands

TRY 1 INDUCT ~;
TRY 1 SPREF;

LRREL INDUCT;

TRY 2 SPREF;

USE GOTOF;

RPPL - ,S,mkcmpnd (mkuhiie(t,8),ES), ;
LAREL HELP;

SINPL - BY GOTOF1;
RPPL .INDUCT,S,t, f;
SINPL -3

USE COND!-;

APPL -,MBEXPR(t,1),S;
SIMPL -3

SS+. HELP:

TRY SSUBST .MSFP OCC 3;
TRY ;0ED;
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4.2 Printout of the proof

|[TRY #1 VS t . isqototree(5) 1 WHILE(MBEXPR(t,{),MS(S,{)) c MS(mkempnd (mkuhile(t,S),ES), ) INDUCT 331 ~
|

| |TRY #141 vs t t. isgotofree(S) :: UUMMBEXPR(t, ) ,HS(S,4)) c MS(mkcmpnd (mkuhile(t,S) ,ES), 1) SPREF.

| 1332 vs t ¢. isgotofree(S) :: UUMBEXPR(1, ) ,NS(S,£)) c NS (mkcmpnd (mkuhile(t,S),ES), ) --- SPREF BY .

| |TRY #142 vs t f. isgotofree(S) :: (At b .COND(t,beF (t,b),1D)] (MBEXPR(t, ) MS(S, 1)) c MS(mkcmpnd (mkwhile(t~

,5),ES),#) : RSSUME vs t f . isgotofree(S) :: F(MBEXPR(t,{),HS(5,#)) c NS (mkcmpnd (mkuhile(t,S),ES), f) SPRE~
F.

| 1333 vs t f. isgotofree(S) :: F(MBEXPR(t,),MS(S,f)) c MS(mkcmpnd (mkwhile(t,S),ES), ) (333) - - - ASSUME.

| 1334 isgotofrea(S) = T T (334) - - - SRSSUME,

| 1335 vs P f. isgotofree(3) . isgototree(P) :: NS (append(S,P), ) = MS(S,H)eMS(P, ) --- USE GOTOF.

| 1336 ISP f ,isqotofres(S)+(izgotofree (P)sNS (append(S,P), f),UU),UU) (S, mkempnd (mkuhile(t,S) ,ES), f) 2[AS P ~
t , isgotofrea(S)a(isgotofree(P)+(MS (5, +)alS (P, ¢)),UU),UU) (S, mkempnd (mkwhile (1,5),ES), f) --- APPL 335 S mkempnda

(mkwhile(t,S),ES) f.

| 1337  MS(append(S,mkcmpnd (mkwhile(t,5),ES)),f) = MS(S, {)&MS (mkcmpnd (mkwhile(t,5),ES),f) (334) --- SIMPL 336~
BY 334 GOTOF1L .

| 1338 [XS t .isgotofree(S)F (MBEXPR(t,¢),M5(5,f)) ,UU1(5,1,1) c IAS t { . isgotofree(S)aMS (mkempnd (mkuhile (t~
,S),ES), £),UUI(S,t,1)(333) --- APPL 333 S tf.

| 1339 F(MBEXPR(t, ) ,MS(S,€)) c MS(mkempnd (mkwhile(t,5),ES),¢) (333 334) --- SIMPL 338 BY 334 ,

| 1348 VT SI . COND(T,MS(SI,#)&F (MBEXPR(1,),MS(S, #)),1D) c COND(Y,MS(SL, f)aMS (mkecmpnd (mkuhile (t,$),ES), 1), 10~
) (333 334) --- USE CONDL 339.

| 1361 [AT S1 .COND(T,MS(SL, {)&F (HBEXPR(t, ), HS(S, )),1D)] (HBEXPR(t, {),5) ¢ [AT S1 .COND(T,HS (51, f)eMS (mkempnw
d(mkuhile(t,5),ES), £),10)] (MBEXPR(1,),8) (333 334) --- APPL 340 NBEXPR(t,#)S.

| 1342  COND(MBEXPR(t, f),MS(S, f)aF (MBEXPR(t, ),MS(S,)),10) c COND(MBEXPR(t, f) ,HS(S, f)&MS (mkempnd (mkwhile (t,S)~
LES), #),1D) (333 334) --- SIMPL 341,

|
| | ITRY #1#42#1  COND(MBEXPR(t, ) ,MS(S, f)«F (MBEXPR(t, {),NS(S,{)),10) c HS (mkcmpnd (mkuhile(t,S),ES), ) SSUB~

ST 320 OCC 3.
| ____________________
F | | ITRY #1#241#1  COND(MBEXPR(1, £),NS(S, {)aF (MBEXPR(t, ), 1S (S, 1)), 10) ¢ COND(MBEXPR (t,),NS (S, §) &S (mkcmpnda~

(mkwhile(t,5),ES), 1), 1D)

[ 1] memmmmmmmoomemooees

| | 1363  COND(MBEXPR(t, f),HS (S, f)eF (MBEXPR(1, ) S (S, )),10) c NS (mkcmpnd (nkuhile(t,5),ES), ) (333 334) ---
SSUBST 342 USING 328 OCC 3.

I .

] 13644 vs t f . isgotofree(S):: (At b .COND(1,beF (t,b),ID)] (MBEXPR(t, ) ,MS(S,f)) Cc MS(mkcmpnd (mkwhile(t,S), En
S),f) (333) --- SPREF 343,

1365 vs t f. isgotofree(S) t: WHILE(MBEXPR(t,),H3(S, 1)) C NS (mkcmpnd (mkwhile (t,S),ES),§) - INDUCT 332 3~
44,
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APPENDIX 5

Proof of the equivalence involving REPEAT for goto-free programs

5.1 List of LCF commands

TRY 1 INDUCT -3
TRY 1 SPREF ;

LABEL INDUCT;
TRY 2 SPREF;

USE GOTOF;

APPL ~ ,5,mkcmpnd (mkcond (mkbexprl (not, t),mkrepsat (S,1) ,ES),ES),
LABEL HELP;

SIMPL - BY GOTOFI;

APPL . INDUCT, S, t, f;

SIMPL -;

USE CONDI-~;

APPL - ,HMBEXPR (mkbexpri(not,1),4),5;

SIMPL - ;

§5+. HELP;

TRY SSUBST .MSFP OCC 3;
TRY SSUBST .tISFP OCC 4;
TRY ;QED;
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5.2 Printout of the proof

(TRY #1 VS tf . isgototree(S) : : REPEAT(MS(S, ) ,MBEXPR (mkbexpritnot,t),#)) c NS (mkcmpnd (mkrepeat (S, t) ,ES), §)~
INDUCT 331 .

| "TTTTTTmTmmmmmmmees .
| JTRY #1441 VS ¢ f . isgototres(S) :: UUMS(S, ) MBEXPR (mkbexpri(not,t),)) c MS(mkcmpnd (mkrepeat(S,t),ES), f)~

SPREF.
| 1332 vs tf . isgotofree(S) : : UUNS(S,t),MBEXPR (mkbexprl(not,t),{)) c MS(mkcmpnd (mkrepeat(S,t),ES), ) - - -

- SPREF BY .

| = '

| {TRY #142 vs t f . isgotofree(S) :: [xb t .beCOND(t,F(b,t),10)) (MS(S, f) ,MBEXPR (mkbexprl(not,t),f)) C MS (mkc~
mpnd (mkrepeat (S, t),ES), ) : ASSUME vs t f . isgotofree (S):: F(MS(S,{),MBEXPR(mkbexpri(not,t),1)) Cc MS(mkcmpnd~
(mkrepeat (S, t),ES), ) SPREF.

| §333 vs tf . isgotofree(S) : : F(MS(S,),MBEXPR (mkbexprli(not,1),{)) ¢ NS (mkcmpnd (mkrepeat(S,t),ES), ) (333~
) --- ASSUHE.

| 1334 isgotofree(8) =TT (334) --- SRSSUME. )

| 1335 ¥S P f . isgotofree(S): : isgotofree(P) : : MS(append(S,P),f) = MS(S,f)eMS(P,f)  --- USE GOTOF.

| 1336 [AS P f . isgotofree(S)+(isgotofrea(P)-NS (append(S,P), $),UU),UU} (S, mkempnd (mkcond (mkbexprl(not, t), mkrep~
eat(S,1),ES),ES), ) = NS P f . isgotofrea(S)a(isgotofree (P)a(MS(S, )NS(P,)),UU),UU) (S, mkcmpnd (mkcond (mkbexprl (~
not,t),mkrepeat(S,t),ES),ES),f)  --- APPL 335 S mkempnd (mkcond (mkbexprl(not,t),mkrepeat (S, t},ES),ES) ¢,

| 1337  HS(append (S, mkcmpnd (mkcond tmk bexpri(not, t), mkrepeat (S, t),ES), ES)), f) = MS(S, f)&MS (mkcmpnd (mk cond (mkbex~
prlnot,t),mkrepeat(S,t),ES) ES), ) (334) --- SIMPL 336 BY 334 GOTOF!L .

| 1338 [ASt f.isgototree(S)sF (NS(S, ) MBEXPR (mkbexprlinot, t),£)),UU)(S,t,§) c [ASt f | isgototree(S)MS (mke~
mpnd (mkrepeat (S, 1) ,ES), ) UUI (5,1, 1) (333) -~ RPPL 333 Sti.

| 1339  F(MS(S, ) ,MBEXPR (mkbexprl(not,t),{)) c HS(mkcmpnd (mkrepeat(5,t),ES),f) (333 334) .. SIHPL 338 BY 334~

|{348 VT SI . MS(SL, )«COND(T,F (MS(S, 1) ,MBEXPR (mkbhexpri(not,t),{)),10) c NS(S1, {)=COND(T, NS (mkcmpnd (inkrepeats
(S,1),ES), ),10) (333 334) --- USE CONDL 339.

1344 (AT S 1 .MS(SL, )&«COND (T, F(MS(S, f) ,HBEXPR (mkbexpri(not, t), {)),I0)] (MBEXPR (mkbexpritnot,t), §),5) c IAT S~
1.MS(S1, £)«COND (T, S (mkempnd (mkrepeat (S, ), ES), 3, 10)] (MBEXPR (mkbaxpr1(not, 1), 1),5) (333 334) --- APPL 340 MBE~
XPR (mkbexprl(not,t),§) S. .

|- 1342 MS (S, #) «COND (MBEXPR (mkbexprl (not, t), §) ,F (NS (S, {) ,MBEXPR (mkbexprl(not, t), £)),10) c MS(S, {) «COND (MBEXPR (~
mkbexprl énot, t}, f) 1S (mkcmpnd (mkrepeat(S,t) ,ES),§),1D) (333 334) --- SIMPL 341.

[ [ ] =mmmmmmmmmmoeae —ome
P11 (TRY 41424141 NS(S, £)aCOND (MBEXPR (mkbexpri (not, ), f),F (MS(S, ) ,NBEXPR (mkbexprl(not, t),)),ID) c MS(S, f)~

«MS (mkcmpnd (mkcond (mkbexpri (not, t) ,mkrepeat (S, t),ES),ES), f) SSUBST 328 OCC 4.
I
It1 (TRY #142#1#141  MS(S, f)<COND (MBEXPR (mkbexprl(not, t), {),F (MS(S, {) ,MBEXPR (mkbexprl(not, t),£)),ID) ¢ MS(~
S, 1) aCOND ¢MBEXPR (mkbexprl (not, t), §) 1S (mkempnd (mkrepeat (S, t) ,ES), §),1D) ,
[H] -

k| 1343 MS(S, $)«COND (MBEXPR (mkbexprl(not,t), ) F (MS(S, ¢} ,MBEXPR (mkbexprl(not,t), §)),10) ¢ MS(S, {)&MS (mkcmp~
(mkcond (mkbexpri(not, t),mkrepeat(S,t) ES),ES),f) (333 334) - SSUBST 342 USING 320 OCC 4.

| | =mmmmmmmmmmonas = ano

| 1344 MS (S, ) «COND (MBEXPR (mkbexprl(not, t), f) ,F(MS(S, t},MBEXPR (mkbexprlinot,1),)),1D) c MS(mkcmpnd (mkrepea~
t(5,t),ES), ) (333334) -- SSUBST 343 USING 328 OCC 3.

|
’
|
¥
nd
|
|
(
1

O T

|
nkrepeat (5,1),ES), O[5 ooeoeeennn isgotofres (3)(333)— SPREF : [Ab 344t . bwCOND Ct,F (b, 1), 10)) (NS (S, £),MBEXPR (mkbexpri(not, 1), £)) c MS (mkempnd (~
¥t

| ‘
(346 vs tf . isgotofree(S) :: REPERT(MS(S, {) ,MBEXPR (mkbexpri(not,t), 1)) c MS(mkempnd(mkrepeat(5,t),ES), ) ~

--- INDUCT 332 345.
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APPENDIX 6

Proof. of the equivalence involving’ FORTO for goto-free programs

6.1 List of LCF commands

TRY 1 INDUCT -;
TRY 1 SPREF;

LABEL INDUCT;

TRY 2 SPREF;

USE GOTOF;

APPL - ,S,mkcmpnd (mk forto(i,mkexpri(plusl, i), e2,5),ES) ,f;
LAREL HELP;

SIMPL -3

APPL . INDUCT,S, i,mkexpri(plusl, i), e2,f{;

SIMPL -;

USE CONO1 -;

APPL - ,MBEXPR (mkrel (Iseq,e,e2),§),5,ASSIGN (i MEXPR(e, 1), 4);
SIMPL -;

SS+. HELP;

TRY SSUBST .MSFP OCC 3;
TRY ;QED;
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6.2 Printout of the proof

JTRY #1 VS i el €2 f . isgotofree(S) :: FORTO(i,el,e2,MS(S,1),1) c HS(mkcmpnd(mkforto(i,el,e2,5),ES),{) I~
NDUCT 304 .

| mmemmmmmmem—————

| (TRY #141 VS i el o2 f . isgototree(S) :: UU(i,el,a2,M5(5,),¢) c NS (mkecmpnd(mkforto(i,el,e2,5),ES), ) ~
SPREF.

| 1365 VS i el e2 f . isgotofrea(S) : UU(i,el,e2,MS5(5,),1) c MS(mkempnd (mkforto(i,el,e2,5),ES),t) ... SPRw
EF BY .

___________ —————————

| .
| |TRY #1#2 VS i e e2 f . isqotofree(S) ;i [Xiee2 b f.COND(MBEXPR(mkrel(iseq,e,82),1), (RSSIGN (i, HEXPR (e, f)~
,1)ab)aF(i,mkexprl(plusl,i),eZ,b,f),lD)] (i,e,e2,15(S,4),f) ¢ MS(mkcmpnd{mkforto(i,e,e2,5),ES), ) + ASSUME VS in

e €2 f . isgotofree(S):: F(i,e,e2,M5(S,f),{) c MS(mkcmpnd(mkfortoli,e,e2,5),ES), ) SPREF.

| 1366 VS i e e2 f . isgotofree(S) : F(i,e,e2,M5(S,f),1) c MS(mkcmpnd(mkforto(i,e,e2,5),ES),f) (306) - - -AS~
SUME.

| 1307 isgotofree(S) =T T (307) - - - SRSSUME.

11308 , ¥SP f , isgotofree(S) :: isgotofrea(P) :: NS(append(5,P), ) = NS(5, HaNS(P, ) --- USE GOTOF.

| 1309 XS P f , isgotofree(S)-(isgotofree(P)NS (append(S,P), {),UU),UUI (S, mkempnd (mk for to (i, mkexprl(plusl, i), e~
2,5),65),1) =IaS P f , isgotofree(S)(isgotofree(P)a(MS(S, NS (P, {)),UU),UU] (S, mkempnd (mk forto (i, mkexprl(plusl,~

i),82,8),ES),4) - - - APPL 308 S mkempnd (mkforto(i,mkexprl(plusl,i),e2,5) ,ES)f,

| |318 1S (append (3, mkcmpnd (mk forto (i ,mkexprl(plusl,i),e2,5) ,ES)), {) = NS(S, f)&NS (mkempnd (mk forto (i, mkexprl (pi~
usli,i),e2,5),E8),§) (387)- - - SIMPL 309 BY 307 GOTOF1I.

IREIYS (XS i e e2 f .isgotofree(S)F (i, e,e2,MS(5,1),4),UUI(S, i, mkexprl(plusl,i),e2,f) c [A§1e e 2 f.isgotof~
ree (5)4HS (mkempnd (mk for to (i, e,e2,5) ,ES), f),UU) (5, i ,mkexpri(plusl,i),e2,f) (386) --- APPL 366 S i mkexpri(plusl,~
i) e2 f.

} 1312 Fi,mkexprl(plusl,i),e2,l15(5,f),1) c MS(mkcmpnd(mkforto (i, mkexpri(plusl,il),e2,5),E5),) (306 307) ——=-~
SIiMPL 311 BY 307 . .

] 1313 VT S1H. COND (T, (H=MS (S1, f))&F (i, mkexprl(plusl,i),e2,MS(S,£),),1D) c COND(T,Hx (MS(S1, f)@MS (inkcmpnd (m~
Kfortoli,mkexpri(plusl,i),e2,5),ES5),$)),1D) (306 387) - - - U S E CONDI 312.

| 1314  IAT S1 H .COND(T, (HaMS (S, f))«F (i, mkexprl(piusl,i),e2,M5(5,),),10)] (MBEXPR (m.rel{iseq,e,e2),f),5,ASS~
IGNYi,MEXPR (e, ), 1)) c (AT S1 H .COND(T,Hsw(MS(S1, {)4S (mkcmpnd (mk forto (i, mkexprl(pluel, i),e2,5) ,ES),1)),10)] (MBE~
XPR (mkrel (Iseq,n,02),4),5, ASSIGN (i, HEXPR (e, {),f)) (306 387) --- RPPL 313 MBEXPR(mkrel(Iseq,e,82),{) S RSSIGN(i,~
MEXPR (a, 1), 1),

| 1315  COND(MBEXPR(mkrel(Iseq,e,e2),f), (ASSIGN(i,HEXPR (e, ¢), )eNS (S, f))&F (i, mkexprl(plusl,i),e2,MS(S, ), ), ID~.
) ¢ COND (MBEXPR (mkrel (Iseq,e,e2),f) ,RSSIGN (i, HEXPR (e, {), )& (NS (S, 1)=MS (mkcmpnd (mk for to (i, mkexprl(plusl, i) e2,5),~
ES), f1),ID) (3066 387) --- SIMPL 314.

| ) mmmmmemmmmm e
|| |TRY #1#2#1  COND(MBEXPR (mkrel (1seq,0,82), 1), (RSSIGN (i, MEXPR (e, 1), £)el1S (S, ))eF (i, mkexprl(plusl, i),82,M5 (Sx

,$),4),10) ¢ MS(mkcmpnd(mk forto(i,e,e2,5),E5),{) SSUBST 293 OCC 3.

I

|t | |TRY #1#241#41  COND(MBEXPR(mkrel (iseq,e,e2),f), (ASSIGN(i ,MEXPR (e, ), )aNS (S, f))eF (i ,mkexprl(plusl, i), e2,~
MS(S, ), ), 1D) C COND(MBEXPR(mkrel(Iseq,e,e2),) ,ASSIGN (i, HEXPR (n, ), )@ (MS(S, ) &MS (mkchpnd (mk for to (i, mkexprl(pl~
usl,i,e2,$ e, ), I10)

{1 ] mmemmmmmmeeoeae

| | |316  COND(MBEXPR(mkrel(Iseq,e,02),{), (RSSIGN(i MEXPR (e, f), )NS5 (S, f))eF (i, mkexpri(plusl, i), e2,MS(S, ), ) ,~
1D) ¢ MS (mkcmpnd (mk forto (i,e,e2,5) ,ES), ) (306 387) --- SSUBST 315 USING 293 0CC 3.

f
11317 V¥S i ee2 t . isgotofrea(S):: [(ni-se2 b f.COND(MBEXPR(nkrel{lseq,e,e2),), (RSSIGN (i, NEXPR (s, ), §)cb~
YeF Ci,mkexprliplusl, i), e2,b,),10)] (i,e,e2,N5(5,f),{) c MS(mkcmpnd (mk fortoli,e,e2,5),ES),f) (3086) --- SPREF 316~

1318 VS i o1 e2 f . isgotofree(5) :: FORTO(i,el,e2,MS(5,f),f) c MS(mkcmpnd(mkforto(i,el,e2,5),ES), ) - - - INe
DUCT 385 317.
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The Semantics of PASCAL in LCF

APPENDIX 7

Proof of the goto-free factorial program

7.1 List of LCF commands

SS+ .APPLY, .FUNCT, .PRSCAL, .IP, . FUNCCONP, . 1D, .DP, .SP, . ND;
TRY SIMPL;
TRY INDUCT .HHILE;

TRY 1 SPREF;

SS + .COND; SS -.5P;
LRBEL INDUCT;

TRY 2 SPREF;

LRABEL L1 --3

TRY CASES =(ne@);

TRY 3 SIHPL;

TRY 2;
USE ARITHL.LL,-;
QED -;

TRY 1 SINPL;

RPPL . INDUCT,pred n,xin;
SIMNPL -

TRY 3 QEDy
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7.2 Printout of the proof

|TRY 41 ¥Ynx.isnat(n)::isnat (x) 1 APPLY(FACTORIAL,n,x) c FRCT(n,x) SIMPL.

| (TRY #1#1 Vn x , isnat(n) :: isnat(x) :: RESULT(HRITE (n1,0,UHILE (MBEXPR(test,8),MNS (body,8) ,READ(nl, 8,RERD (n~
2,8,CREAY(8,n2, INT,8,CREAV(B,nl,INT, 0, FRF\HEU(FRCTDRIRL INPUT(LIST (n,x)), EUF)))))))) C FACT(n,x) INDUCT 314 .

T
(TRY #141#1  wvn x . isnat{n) : @isnat(x) :: RESULT(WRITE(nl,8,UU(MBEXPR (test,B) NS (body,B) ,READ (nl,0,READ (~

|
,8,CREAV(8,n2, INT,8,CREAV(8,nl, INT,0,FRANED(FRCTORIAL, INPUT(LIST(n,x)),EOF)))))))) ¢ FACT (n,x) SPREF.

| 1318 Vn x . ismat(n) : isnat(x) :: RESULT(WRITE(nl,®,UU(MBEXPR(test,B8),MS (body,8) ,RERD(n1,8,READ (n2,8,CR~
V(8,n2,INT,8,CREAV(8,nl, INT,8,FRAME (FACTORIAL,, INPUT (LIST (n,x)),EOF)))))))) c FACT(n,x) --- SPREF BY TH8 THs.

[ A
(| [TRY #1#1#42 Vn x . isnat{n) : isnat(») ::RESULT(HRITE(n1,8,[xt b ,COND(t,bsF (1,b),ID)] (MBEXPR (test,0), M~

S (body,8) ,READ (nl, 8,READ (n2,8,CREAV(H,n2, INT,8,CREAV(B,nl, INT,8,FRAMES (FRCTORIAL,, INPUT(LIST(n,x)),EOF)))))))) ¢ ~
FACT(n,») : RSSUME  Vn x . isnat(n) : :isnatix) :: RESULTC(URITE(nl,8,F (MBEXPR (test,0),MS(body,8) ,RERD (n1,8,RERD~
(n2,8,CREAV(8,n2, INT,0,CREAV(B,nl, INT,0,FRAMEG (FACTORIAL, INPUT(LIST(n,x)),EOF)))))))) ¢ FACT (n,x) SPREF.

11313 Vn x . isnat(n) : isnat(x) :: RESULT(IRITE(nl,8,F (MBEXPR (test,®),MS (body,8) ,RERD (ni,8,READ (n2,8, CRE~
AV (8, n2, INT,8,CREAV(B,nl, INT,8,FRANECG (FACTORIAL, INPUT(LIST (n,x)) ,EOF)))))))) ¢ FACT(n,x) (319) --- RSSUME.

| | {328 isnat(n) =TT (320) --- SASSUNE.

| | 1321 isnat(x)=TT (321) --- SASSUNE.

[
{1l (TRY &#1#1#2#1  RESULT(HURITC(nl,8,-(n=8)+F (MBEXPR (test,8),MS (hody,8),HS thody,8,FRANEL(SP,n,x))) ,FRANEL (SP~

yn, x))) C FACT (n,x) CRSES ~(n=0).

n

|
|
2
i
ER
|
|

TRY #L#1#241#3  RESULTURITE (n1,8,~(n=8)F (MBEXPR (test,0),MS (body, 8) , MS (hody, 0, FRAMEL (SP, n,x)) ) , FRANE ~
) ¢ FACT(n,») : SRSSURE  ~(n=0)= F F SIMPL.
| (32 =~tn=B)= FF (322) - SRSSUME.

[ | | 1323 RESULT(MRITE(n1,0,-(n=0)-F (HBEXPR (test,8),HS (body,8),HS (body, 8,FRANEL(SP,n,x))) , FRANEL (SP,n,x)) ) ~
FACT(n,x) (321 322) --- SINPL BY 321 322 LM4.

|
e T
| |TRY 4141424142  RESULT(RITE (nl,0,~(n=8)+F (MBEXPR (test, ) ,MS (body,8) ,MS (body, 8, FRAUEL (SP,n,x))) , FRANE ~

,))) ¢ FACT(n,x) : SASSUME  =(n=8) 5 UU |,

| 11324 -fin= 9)'UU (324) --- SASSUNE.

| |1 325 TT= UU (320 324) --- USE ARITHL 324 324.
| '9¢ 326 TT = UU (320 324) --- INCL 325.

-
—————— e
___}Q_
S —

| || ITRY #141#24141  RESULT(URITE(nl,8,-(n=8)F (MBEXPR (test,8), M5 (body,B) ,HS (hody, 8, FRANEL (SP,n,x))) ,FRAME~
1(sP,n,x))) ¢ FRCT(n,x) : SRSSUME  ~(n=®)z T T SINMPL.

It1] (327 ~tn=8) a TT (327) -- SRSSUME.
| 1 1 11328 [An x . isnattn)sCisnat (x)+RESULT(HRITE (n1,8,F (MBEXPR (test,8) ,MS (body, 8) ,READ (nl, 8, READ (n2, 8, CREA~

V(8,n2, INT,8,CRERV(8,nl, INT,8,FRAMEQ (FRCTORIAL, INPUT(LIST (n,x)),E0F)))))))),UL),UU) (pred(n),xxn) ¢ Ian X .isnat(~
n)a Cisnat(x)aFACT (n,x),UU),UU} (pred(n) ,»:n)  (319) --- RPPL 319 pred(n)xxn.

| {4 ] 1323 RESULT(RITE (n1,8,F (HBEXPR (test,0) M5 (hody,0) ,FRANEL (SP, pred (n),x#n)))) ¢ FACT(n,x) (319 320 32~
1 327) --- SIMPL 328 BY 320 321 327 LMl RRITH2 RRITH3 RRITHA4.

[ |TRY H#LY¥LH2¥1H1AL RESULT (URITE (n1,0,F (MBEXPR (test,0),MS (body,8) ,FRAHEL (SP,pred(n),xxn)))) ¢ FACT(n,x).

I ————————————————————
| ||330 RESULT (HRITE (nl,8,~(n=0) +F (HBEXPR (test,0),HS (hody, 0) , 1S (body, 8,FRANEL(SP,n,x))) ,FRAMEL (5P, n, x)) ) ~

|
FACT(n,x) (319 320 321327) --- SINPL328 RY 321 327 LM2.

| | 1331 RESULTC(HRITE (nl,8,~(n=8)<F (NBEXPR (test,0), 1S (body,8) NS (body, 8, FRANEL (SP,n,x))) ,FRANEL (SP,n,x))) c~
CT(n,x) (319 320 321) --- CRSES -(n=0) 330 326 323.

TR R R
(332 ¥n x . imatdn): isnat(x) . RESULTWOURITE(nl,0,{xt b .COND(t,b&F (t,b),10)] (MBEXPR (test,8) , 1S (hody, ~

8),READ(n1,0,READ (n2,8,CREAV(B,n2, INT,8,CREAV(8,nl, INT, 8, FRRHEO(FRCTORIRL INPUT(LIST(n X)), EOF)))))))) c FACT(n,~
x) (319) --- SPREF 331 BY 227 280 281 320 321 LM3LMI.

—— M — O ————
—— D
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

i

11333  ¥nx . isnat(n): :isnat(x) :: RESULT(HRITE(nl,0,UHILE (MREXPR (test,®),MS (hody,0) ,RERD(n1,8,READ(NZ,0,Cn
REAV(B,n2, INT,8,CRERV(D,nl, INT,8,FRAMED (FRCTORIAL, INPUT(LIST (n,x)) ,EOF)))))))) C FACT(n,x) --- INDUCT 318 332,
(334 Vn x . isnat(n) : :isnat(x) :tRAPPLY(FACTORIAL,n,x) ¢ FRCT(n,x) --- SINPL 333 BY 207 208 210 214 280 2~

81 394 306 307 310 311 316 TH13 TH15THI8 TH12 THi1 THS TH14 TH2 TH7 TH3 THI.



The Semantics of PASCAL in LCF

APPENDIX 8

Proof of the McCarthy Airline Reservation System

8.1 List of LCF commands

SS+ .APPLY,.FUNCT, .PRSCAL, .FUNCCOHP, . 1P, .SP;
TRY SIMPL;
TRY INDUCT .REPEAT;
TRY 1 SPREF;
TRY CRSES~(ell(isq)=3);
TRY 3 SIHPL;
TRY 2; USE ARITHL -, ~—=mmmm ; QED;
TRY 1 SINPL;
LABEL , INDUCT;
TRY 2 SPREF;
TRY CASES ~(el1(isg)=3);
TRY 3 SINPL;
TRY 2; USE ARITHY -, =wemmnm ; QED;
ss+ .COND, . ID;
TRY 1 SIMPL;

APPL . INDUCT, tai I1isq,mkpair (stupdt(isq,p,a),0s4),stupdt154,P, 4} ,wlupdtCisa,p,q);

SINPL -;
TRY; QED;
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8.2 Printout of the proof

ITRY #1  Visqg osq p g , iswfsqlisq) :: isufos(osq) i1 isint(p) ::isint(q) :: APPLY(McCARTHY,p,q, isq,0sq) ¢ BO~
OKING(p,q, isq,05¢) SIHPL.

| (TRY #1#1 V¥Yisq0sqg p g ,isufsqlisq)::isufos(osq)::isint(p)::isintlq) :: OUTPUT(~(MEXPR(rq,8,MS (BODY, ~
0,RERD(st,0,RERD (Wi, B,FRAMEL (p, 4, i5q,05q)))))=3)REPERT (MS (BODY, 0) ,MBEXPR (mkbexpri(not,mkrel (eq,rq, mknumconst (3) ~
y),8), 8,15 (BODY, 0,RERD (st,8,READ (w1, 8,FRAMEL (p,q, isq,054))))) NS (BODY, 8,READ (s t,8,RERD (W1, 8,FRAMEL (p,q, isq,o08q) ) ~
)}) c BOOKING (p,q, isq,05q) INDUCT 308 .

| | mmmmmmmmmmmeomeee
| | ITRY #1#41#1 Visq osqgpqg .isufsqlisq)i:iswfos(osq) @ isint(p)::isint(q) . OUTPUT(-(MEXPR (rq,8,MS (B~

0DY,8,RERD(st,8,RERD (1, 08,FRAMEL (p,q, isq,035¢)))))=3)+UU (NS (RODY, 8) ,MBEXPR (mkbexprl (not,mkrel (eq,rq, mknumconst (3) ~
)),8),8,11S (BODY,8,RERD(st,8,READ (u!,0,FRANEL (p,q, isq,0s¢))))),MS(BODY,B8,READ(s1,8,READ (Wi, 8,FRAMEL(p,q, isq,08¢)) ~
1)) ¢ BOOKING(p,q, isq,o05q) SPREF,
| 1 }335 isufsqlisg)= T T (335) --- SASSUME.

| 1336  isWfosfosq)= TT (336) --- SASSUME.

| 1337 isint{p) =TT (337) --- SASSUME.

| 1338  isintlg)= TT (338) --- SRSSUME.

|

f

| 1| | TRY #141#41#1  OUTPUT(~(ell(isq)=3)-UU,NS(BODY,0,FRAME2 (p,q, isq,0sq))) C BOOKING (p,q, isq,o0sq) CASES «~
~{ellCisg)=3).

L

f1i] (TRY #1#1#14143  OUTPUT(~(ell(isq)=3)-UU,NS(BODY,8,FRAME2 (p,q, isq,08q))) Cc BOOKING (p,q, isq,0sq) @ SASS~
UME  -(elllisq)=3)= F F SIHPL.

I [333  -(ellCisq)=3)z FF (339) --- SASSUME.
| | | | 1368  OUTPUT(~(el1(isg)=3)~UU,NS (BODY,B,FRAME2(p,q, isa,0sq))) ¢ BOOKING(p,q,isq,0sq) (335 336 337 338~
339) --- SIMPL' BY 335 336 337 338 339 LM3.

|
|
I

| |TRY #1#141#142  OQUTPUT(~(ell(isq)=3)-UU, N5 (BODY,B,FRAME2(p,q, isq,089))) Cc BOOKING(p,q, isq,0sq) : SASS~
UME  =(elllisg)=3)=u u .

| | 1341 ~(eflisq)=3)= UU (341) --- SRSSUME.

| | ]342 TT = UU (335 341) --- USE ARITH1 341 335.

| — —
| | |TRY #141#1#141  OUTPUT(=(e!1(isq)=3)UU,NS (BODY,8,FRAME2 (p,q, isq,05q))) C BOOKING(p,d, isq,o0sq) : SASS~
UME ~(etllisg)=3) = TT SIHPL.
] 11 1343 ~telllisg)=3)=TT (343) --- SASSUME.
| | 1344 OUTPUT(~(eil(isq)=3)-UU,NS(BODY,O,FRAME2 (p,q, isa,08q))) Cc BOOKING(p,q, isq,08q) (343) --- SIMPL ~

I

| 1 1365  OUTPUT(~(a}lCisq)=3)-UU,HS(BODY,D,FRAME2(p,q, isq,050))) c BOOKING (p,q, isq,05q) (335 336 337 338)~
- CASES ~(elllisq)=3) 344 342 340.

I

| | 1348  Visq 0 S pq . iswfsqlisq) @ @ isufos(osq) @ Disint{p) @ Iisint(g) :: OUTPUT(~(MEXPR (rq,8,MS (BODY,0,Rn
£AD(st,8,READ (11, 0,FRANEL (p, g, iz, 0354)))))=3)4UUINS (BODY, 8) ,MBEXPR (mkbexpriinet, mkrel (aqg,rq,mknumconst (3))),8), 8~
,S (RODY, 8,READ(st,8,READ (w1, 8,FRANEL(p,q, isq,0s9))))) ,M5(BODY,0,RERD (st,8,READ (Wi, B,FRANEL (p,q, isq,05¢))))) € Ba
QOKING (p,q, tsq,05q) --- SPREF 345 BY 335 3.36 337 338 Lh9LM2.

| | }TRY #14142 Visqosqpq . |su€5q(is'r|) © lisufosfosq) I Iisint(p): Iisint(q) :: OUTPUT(~(HMEXPR (rg,8,HS (B~
0DY,8,READ(st,8,READ (i, B8,FRANEL (p,q, i3g,05¢)))))=3)+[AB T f .B«COND(T,F(B,T,),ID)] (1S (BODY,B),MBEXPR (mkbexprl (~
not,mkrol (aq,rq,mknumconst(3))),8),8,N5(BODY,8,RERD(st,B8,RERD (w1, 8 FRRHEl(p,q,isq,osq)))H MS (BODY, 8,READ(st,0,R~

EAD (w1, 8,FRAMEL (p,q, isq,089))))) ¢ BOOK ING(p,q,usq,o:q; : GERVI 'Y isq osq p o . lewfsq(u
sq) 1 iswtoslosq) I isint(p): © isint(q) - - OUTPUT (~(MEXPR (rg. 8, MS(RODY, 8. READ (st B RFAD (), 8, FRAMEL (p~
, 4, isd,054)))))=3)-F (NS(BODY, 8)  MBEXPR (mkbexprl(not,mkrel (eq,rq,mbnumconst(B)?) 2,0, NS(BODY a, RERD(st 0,RERD (Wi~
,0,FRANEL (p,q4, isq,0s¢))))) M5 (BODY,0,RERD(st,8,READ (!, B,FRANEL (p,q, izq,059))))) C BOOKING(p,q, isq,osq) SPRE~
F.

| 1347 VYisq0 s qp(q ,isuisqlisqg)::isufos(osq) . :isint(p): lisint(q) :: OUTPUT(-(HEXPR(Pq,B,HS(BODY,O,R~
EAD(5t,0,READ(WI,8,FRANEL (p,q, isq,08q)))))=3)+F (MS(BODY, 8) ,MBEXPR (mkbexpri(not,mkrel (eq,rq,mknumconst (3))),0),8, ~
MS (BODY, 8,RERD (st,8,READ (w1, 8,FRANEL (p,q, isq,0sq))))),MS (BODY,B,RERD (s t,8,RERD (wi,8,FRANEL(p,q, isq,0sq))})) c BO~
OKING (p,q, isq,0sq) (347) --- RSSUNE.

|| {348 isutsqlisg) =TT (348) --- SRSSUHE.

1 {1349 iswfos(osq)= TT (349) --- SASSUME.
| | {358 isint(p) = TT (358) - - - SASSUME.



A
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| | 1351 isint (gq) = T T (351) --- SASSUME.

[ ] | mmmmmmscmmmmmaceens

[ 1| ITRY #14142#1 QUTPUT (~(ell(isq)=3)+COND(MBEXPR (mkbexprl(not,mkrel (sg,rq,mknumconst (3))),9), F (S (BODY, ) ~
,MBEXPR (mkbexpri(not,mrrel (eq,rq,mnumconst (3))),0),08), 10,15 (BODY, 0,15 (BODY, 0, FRRHE2(p,q,isq,u.q)))) MS (BODY, g Fua
RRME2(p,q, isq,0sq))) c BOOKING(p,q, isq,0sq) CRSES "(GUUSQ’ =3),

P

P11 (T R Y #1#1424143 OUTPUT (- (e 11 (isq)=3)-COND (MBEXPR (mkbexprl(not,mkrel (eq,rq, mknumconst (3))),8) ,F (M5 (BOD~
Y,8) ,MBEXPR (mkbexprl (not,mkrel leq,rq,mknuncons t(3))),8),8),10,M5 (BODY, 8, M5 (BODY, 8, FRANE2 (p, q, isg,0s5¢)))),MS(BODY~
0 FRHHEZ(p,q,tsq,osq)))cBOOI’ING(p,q,tsq,osq) SRSSUHE  =(eli(isq)=3)= FF SIHPL.

1111352 a(eiltisq)=3)= F F(352) --- SRSSUHE,

| | 111353 OUTPUT(~(elllisq)= 3)-COND(NBEXPR(ml’berprl(not,mkrel(eq,rq,mknumconst(3))),0),F(ﬁS(BODY,8),NBEXPR.,
(mkbexprl(not,mkrel(eq,rq,mknumcons((3))),0),0),ID,HS(BODY,G,HS(BODY,O,FRHNEZ(p,q,isq,osq)))),NS(BODY,G,FRHHEZ(p~
,g, isq,0sq))) c BOOKING (p,q,isq,0sq) (348 349 358 351 352) --- SIHPL BY 348 349 350 351 352 LM3.

|
| | 1 {TRY #141#24142 OUTPUT(~(ell(isq)=3)COND (MBEXPR (mkbexprltnot,mkrel leq;rq, mknumconst (3))),0) ,F (NS (ROD~
Y,8) ,MBEXPR (mkbexprl{not,mkrel (eq,rq,mnumconst(3))),0),0), 10,15 (BODY, 8,NS (BODY, 8, FRANE2 (p,q, isq,0s5q)))) NS (BODY~
LFRAME2 (p, ¢, isg,0sq)) ) ¢ BOOKING(p,q, isq,0sq) : SASSUME  «~(elllisg)=3) = U U |
| | | 135 -(etiCisg)=3)= UU (354) --- SRSSUHE.
] 1| 1355 TT = UU (348 354) --- USE ARITH1 354 348.

{11

I
{11 (TRY  #1#1422141  OUTPUT (~(e 11 (isg)=3)-COND (MBEXPR (mkbexpri(not,mkrel (eq, rq,mknumconst (3))) ,0),F (1S (BOD~
Y, 8) ,MBEXPR (mkbexprl(not,mkrel (eq,rq,mknumconst (3))),8),8),10,MS (BODY, 8, 1S (BODY, 8,FRANE2 (p, q, lsq,osq)))) MS(BODY~
,8,FRAME2 (p,y,isq,05¢))) C BOOKING (p,q,i54,03q) : SRSSUHE ~(elllisq)=3)=TT SIMPL.
| | | 1356 =felifisg)=3)= TT (356) --- SRSSUHE.
111357 [xisq 0Sq p Q . isu!sq(isq)a(isufos(osq)-o(isint(p)a(isin!(q)-;DUTPUT(-(ﬂEXPR(rq,O.NS(BODY,G,RERD(s~
t,8,READ (w1, 08,FRANMEL (p,q, isq,059)))))=3)F (1S5 (BODY, 8) ,MBEXPR (mkbexprl (not,mkrel (eq,rq, mknumcons t (3))), 8}, 8, 1S (RO~
DY,8,RERD(st,8,RERD (wi,8,FRANEL (p,q, isq,0s9)))}),HS(BODY,8,READ(st,8,READ (w1, 8,FRANEL (p,q, isq,08q))))),UU),UU) ,Un
U),UUY (tailllisq),mkpair(stupdtCisq,p,q),08q),stupdt (isq,p,q),wlupdt isg,p,q)) C [xisq osqp q , isutzqlisg)sisun
ios(osq)c(isim(p)-(isin!(q)-oBOOKING(p,q,isq,osq),UU),UU),UU),UU]((auIl(isq),mkpair(stupdt(isq,p,q);osq),stupdt(..
isq,p,q),nlupdtisq,p,q)) (347) --- RPPL 347 taili(isq) mkpair(stupdt(isq,p,q),0sq) stupdt(isq,p,qdniupdt{isq,~
P,
| | | 11358 OUTPUT(~(el13(isq)=3)-F (M5 (BODY, ) ,MBEXPR (mkbexprl(not,mkrel {eq,rq, mknumconst (3))),8) MS (BODY, B~
,FRAME3 (p,q, isq,0sq)) ), NS(BOOY,O8,FRANE3 (p,q, isq,054))) c BOOKING(p,q,isq,0sq) (347 348 349 350 351 §5é emr SIMw
PL 357 BY 348 349 350 351 356 LH7 LH2 LMSARITH2ZARITH3 RRITH4 ARITHS LM4.
|||H] |1 (TRY #14142814141 OUTPUT (- (e 13 (isq)=3)F (MS(BODY,8) ,MBEXPR (mkbexprl(not,mkre! (eq,rq, mknumconst (3))) ~
,8),8,MS BODY,B,FRRME3(p,q, isq,0sq))),NS(BODY,8,FRAME3 (p,q, isq,0s5q))) c BOOKING(p,q, isq,osq) .
|
|

o
I
|
!
|
|
8
I
[

| | | 1359 OUTPUT (~(e 11 (isq)=3)-COND (MREXPR (mkbexprl(not,mirel (eq,rq, mknumconst (3))),8) ,F (MS(BODY, 8) ,MBEXPRA~
(mkbexpriinot,mkral (eq,rq, mknumconst(3))),8),8), 1D, MS (BODY, 8,HS (BODY, 8,FRAME2 (p, q, isq,0s9)))),HS (BODY, 8, FRAME2 (pa
8 ,0, LM6. isq,05q))) c BOOKING (p,q,isq,05q) (347 348 349 359 351 356) --- SIMPL 358 BY 227 281 348 349 358 351 356 LM~

P

| | | 1368 OUTPUT(~(ell(isq)=3)-COND(NBEXPR (mkbexprl(not,mirel (eq, rq,minumconst (3))),6),F (MS (RODY, B) , HIBEXPR (mw
kbexprl(not,mkrai (eq,rg,mnumconst(3))),8),0),10,N5(BODY, 8, HS (BODY,8,FRANE2 (p,q, isq,05q)))) ,MS(ROBY, 8, FRANEZ (p, g~
, |sq,o°q>)) c BOOKING(p,q,isq,059) (347 348 349 350 351) GR-SES ~(ell(isg)=3) 359 355 353.

l i _____________________

| H3E’l Visq 0sq p g . iswtsqlisg) @ iswtoslosq) i isintlp) I isint(q) = OUTPUT (=~ (MEXPR  (rq,(BODMSG,R~
EAD(st,0,READ(uI,0,FRANEL (p,q, isy,08¢))2))=3)[xB T ¢ .B=COND(T,F(R,T, () » 10)1 (MS(BOBY, 8), HBEXPR (mkbexprl(not, mkr~
al(aq,rq,mknumcund(S))) 8),0,M5 (RODY, 0,READ(st, B,READ (W1, 8 FRRHEI(p q,nsq,osq))))) NS (BODY,8,READ (5t,0,READ (w1,
0,FRAMEL (p,q,isq,08q))))) c BOOKING (p,q,isq,05q) (347) SPREF 360 BY 288 348 349 350 351 LMg N2

| 1362 v isq osqg pa.isufsqlisg): : iswfosfosa) t:isint(p)tiisint(y) 1: OUTPUT(~(HEXPR (rq, 8, MS (RODY, 8, REA~

D(sl 6,READ (1, 8,FRAMEL (p,a, isq,0sq)))))=3) »REPERT (MS (BODY, 8) ,MBEXPR (mkbexpri (not,mkrel (eq, rq, mk numconet(B))) 8)~
,8, HS(BODY a, RERD(st 0,READ (w1,0,FRANELp,q, isq,08¢))))) HS(BODY, 8, RERD (st,8,RERD (w1, 8,FRANEL (p,¢q, ISy, 08 q)”” c~
BOUKING(p,q, isq,osq) INDUY CT 346 361.

‘ ____________________

1363 visq 0sq p Qq , isufsqlisq) :: iswtoslosq) : :isint{p) t: isintlg) :: APPLY (NcCARTHY,p,q, isq,0sq) C BOOKI~
NG (p,q, --meremmeeerees isqose) SIMPL 362 BY 207 288 218 280 303 326 333 334 LML TH2 THS.
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