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The Semantics of PASCAL in LCF 1

S E C T I O N  1  INTRODlJCTION

This paper is an attempt to determine the order of magnitude of the problem of giving an axiomatic
treatment, in LCF, of an established programming language with a sizable u$er community. We
wanted to include such features as declarations, I/O, different types of parameter bindings and
control structures. For this purpose we chose the integer arithmetic part of PASCAL, which we will
refer to as PASCAL. It seemed to us a reasonable choice in that:

1) it satisfies the above criterion, thus it is not a toy language.

2) it is powerful enough to compute any partial recursive function on sequences af integers.

3) the existence of VCCEN (lgarashi, London and Luckham  1973) and FOL (Weyhrauch and
Thomas 1974) will eventually give us the a.bility  to compare the effectiveness of Hoare’s
axiomatic definition of PASCAL, McCarthy’s style of first order axiomatization (McCarthy
and Painter 1966) and the Scott style of assigning extensional meanings to programs.

One pleasant result of our work was the discovery that the task seems more manageable than we
had originally thought. Most discouraging was realizing exactly how inadequate even careful
descriptions of programming languages actually are.

LCF is both a logical calculus and a proof-checker for a suspected proof in the logic. It could be
described as an equation calculus based on terms in the typed X-lalculus,  whose most powerful rule
of inference is Jcleene’s  first recursion theorem stated as a rule (see J<leene 1952). Using this
language in the mathematical theory of computation was first suggested by Dana Scott. Its formal

- properties are described in Milner 1972a, 1972b.  Also see Milner and Weyhrauch 1972, Weyhrauch
and M ilner 1972, Newey 1973, 1974, Aiello and Aiello 1974 for other applications. A short
description of LCF syntax is given in appendix 1.

Initially our intent was to present a semantics for the description of PASCAL given in Wirth 1971,
1972  and Wirth and Hoare 1973. As a result of our attempts to give what IU~  consider a complete
description, we found many ambiguities and places where the literal interpretation of Wirth’s
descriptions led to a semantics having undesirable properties (see 3.3.2.3 for a discussion of the for
statement). We have described a language which has a fairly smooth semantics, and whose formal
properties are more clearly apparent. All the differences are documented in the text.

We think of our axiomatization as+ characterizing properties of the zuhole PASCAL and not as a
description of properties of individual statements. In section 4.2, for instance, we prove that, if two’
programs P and Q- don’t contain goto statements, we can represent the function computed by the
program consisting of P appended to Qas the composition of the function computed by P with that
computed by Q This theorem and others in section 4 simply cannot be expressed or used in
formalisms like Floyd’s method of attaching assertions to programs or in Hoare’s  axiomatic
approach. We consider this a major difficulty with those techniques. Both consider programs
indi<idually. It is our belief that the feasibility of checking (or generating) large formal proofs
depends on our ability to prove grncral properties of classes of programs. A description of the
entire programming language is required in order to mention these classes.

Chara.cterizing  an entire language in this way means that conflicts arising out of putting different

-
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programming features together must be resolved, or at least describable in the formalism. The
discussion of function activations in section 3.2.1.3 is a typical example of the difficulty one
encounters when trying to characterize the behavior of an entire language. Unusual programs
cannot be ignored or left unmentioned. In actual programming languages the ability to decide if a
program is well formed is in general too costly and many “ill formed” programs are usually accepted
by the parser.’ An example of such a difficult case is found in section 3.3.2.3. on the for statement.

In section
executed

2 we describe the ax ioma tiza tion of the environment in which PASCAL programs are

A special word is needed here to make clear an abuse of language that appears throughout the
report. We frequently speak about a combinator being executed and then explain what it does.
Strictly speaking this is not correct. Combinators don’t cfo anything. The functions we mentioh  are
to be interpreted extensionally. It means that the only properties of LCF functions that can be
mentioned are properties of their graphs. Thus, when looking at

F E [XN.(isname(N)+(isRichard(N)+Good,Bad),FF)]

we may say informally that F is a function which checks if N is a name. If it is not then its value is
FF otherwise it returns Good or Bad depending on whether that name is Richard or not. This
description is in the style of an interpreter. More correctly we should say, F is a three valued
function whose value is FF on arguments which are not names, and otherwise has the value Good or
Bad depending on whether that name is Richard. Hozu the function is co~+ted is transparent to
LCF. This point is very important so that there is no confusion about the nature of the semantics
defined here. To each. program is assigned a function, not a computation procedure. LCF terms
also have interpretations as computation procedures, but it is not this interpretation that concerns us
here.

Section 3 describes all the control structures and statements relevant to the arithmetic part of
PASCAL. They include

1). type definitions
2) variable and array declarations,
3) procedure declarations and procedure activations,
4) function declarations and function evaluations,
5) assignment, conditional, while, repeat, for-to,for-downto and goto  statements,
6) input/output instructions.

We do not consider constant definitions, label declarations (Wirth 1972), case or with statements, or
records and files (except INP and OUT). These are either easily addable or are not relevant to the
arithmetic part of PASCAL.

Although LCF uses the typed X-calculus, a natural semantics may be given to goto’s  and to
procedures having themselves as actual parameters without introducing type conflicts. This is
explained in section 3.3.1.3. .

Examples of general theorems about PASCAL are presented in section 4. Most of the work to date
on the correctness and equivalence of programs, has actually. only dealt with the extensional
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propertles of algorithms. Input/output or the effects of declarations cannot be ignored in any theory
of correctness which hopes to be practical. As soon as we ask whether a program will run or not, or
whether it will compile or not, then the question “do we have the correct algorithm?” is a minimal
criterion for correctness. In addition, the distribution and consumption of resources during the
execution of a program, involves both what has been declared and how bindings are made to
parameters. The correctness of programs which input data incrementally, must know how these
inputs are treated.

We have set out here a description of a large but stable core for any interesting programming
language. We wanted to establish a base from which further work could be done towards a practical
system for proving properties of programs within this core. Some example are the theorems of
section 4.

Section 5 gives partial correctness proofs for some programs. The much overworked factorial
program is again discussed. We included it to show some of the flexibility in our approach to
program correctness as well as illustrate points made in other parts of the report. A proof of the
correctness of a program implementing the McCarthy Airline reservation system is given. This is
new In that it treats an interactive program which has a potentially infinite number of inputs. The
details are in 5.2.

The appendices contain a short description of the LCF syntax, the list of all the LCF axioms
describing the syntax and semantics of PASCAL, and the actual. LCF printouts of the proofs of
theorems mentioned in the text.

L Some familiarity with the papers Wirth 1971, 1972 and Wirth and Hoare 1973 is recommended to
- better understand this memo.
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SECTION 2 THE SEMANTICS OF PASCAL

Section 2.1 Description of the semantics

In this version of PASCAL we restrict our attention to programs whose inputs are sequences’of
integers. The meaning (or interpretation) we assign to a program is thus a function from sequences
of integers into sequences of integers.

Programs, on the other hand, map memories onto memories. In order to describe the effects of
procedures and function activations more clearly we introduce the notion of a store.  A store divides
the memory into frames or environments. Frames  are specified by aframcpointer.  Thus we think of
programs as mapping stores onto stores, and stores are functions from framepointers to frames.

store: framepointer + frame

A frame is a function from locations to values.

frame: location + value

A store describes abstractly additional structure of a memory without knowing how it is realized in
any particular implementation. The execution of a program, p, starts with’ the creation of the initial
store. This is done by FRAME8 (see next section). It contains the locations fileloc INP and fileloc OUT
for the input and output files respectively, and a location textloc  where the text of the program is
stored. This store has only one frame called 8.

Type definitions are then made in this frame. Each frame represents an environment in which the
current declarations and variable bindings are found.

The effect of declaring a variable, v, in a frame is to create a location typeloc  v, which contains the
type of v. Thus we can tell if a variable has been declared in a frame s(f) by checking if

s(f,typeloc  v)=UNDEF.

The execution of a procedure or a function creates a new frame. It is set up by the combinator
MAKFRAME defined in appendix 3.9. The new framepointer  is just the successor of the current one,
namely that pointing to the frame where the procedure or function has been activated. This
imposes a stack discipline on procedure and function activations. The binding of free variables are
made in the style of ALGOL. The position of the variable declaration in the program text
determines the binding frame. FETCHV is the function which looks up the value currently bound to
a variable.

The combinators FRAME8 and MAKFRAME build stores with the following property. If f is a
frameptiinter  corresponding to a non activated frame, then s(fWJ, otherwise for any legal location
IOC, s(f,loc)  is either a value or is UNDEF. The value of a variable is stored in a location which
depends on its name. This is slightly complicated in PASCAL, because both identifiers and array
element names (e.g. A[ 11) are considered variables. Section 3212,describes the combinators which
allow us to treat them uniformly.
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Both FRAME0 and MAKFRAME  store the body of statements t,o be evaluated into a location of the
frame they are defining. The effect of procedure and function declarations is to add new locations
to the store.

The statement part of a program, procedure or function, is interpreted in the store where the
corresponding declaration part has been evaluated. Statements are evaluated in sequential order,
unless a goto statement is encountered. Where to go is determined by the function segm, which takes
a text and a label, and returns a text, i.e. it tells you where to jump. The new text is evaluated in
the same frame  as you jumped from. Thus you cannot jump out of a procedure activation. This
follows Wirth 1971. The effects of the other statements are pretty much as you might expect. They ’
are defined by MS in section 3.3.

The stack discipline imposed on procedure and function activations and the discipline imposed on
goto’s  are not intrinsic to this approach to the description of the semantics of programming
languages. We impose them because we wanted to correspond to Wirth 1971. I

Programs are written in abstract syntactic form. Each syntactic construct is assembled by a
construc(or and its components are selected by a sclcctor.  The list  of all the asioms about the syntactic
constructors and selectors are given in appendices 2.1 and 2.2. Each construct is iclentified by
associating a type to it. A predicate IS defined which is satisfied only by objects of that type (see
appendix 2.3). The equality of identifiers  denoting types of syntactic constructs and of location
names is denoted by “=” in the formulas through the text and is detected by LCF itself.

S e c t i o n  2.2 Top level functions

The function FUNCT:

FUNCT 3 [Xp o.[\i.(lNPUT@PASCAL(p,o)@OUTPUT)(i)]]  .

where  w@f g x.g(f(x))] is the composition function gnd i, o are sequences of integers, represents the
“interface” between functions which compute on integers and programs which compute on stores.

Wirth 1971 describes a program as a PASCAL procedure which has an input and an output file as
parameters. The combinator PASCAL

PASCAL r [Xp.[Xo  i.MP(p,B,FRAMEB!p,o,i)))]

when applied to a program, p, is a function which takes as arguments two sequences of integers o
and i (representing the initialization  of the output and input files respectively) and returns a
function from stores to stores. The definition of PASCAL  Imitates explicitly the bindings which a
procedure would make when executed as part of a program. FRAMEB(p) applied to o and i creates a
store containing a single frame, called 0, with these bindings and then applies MP to the program p
in frame 8 and this store.

FRAME8 = [Xp.[Xo i.[Xf. (f=f3) +
[Xloc.(loc=fileloc  INP)+ INTERNALREP(

(loc=fileloc  OUT)+ INTERNALREP(
(loc=textloc)+  statmof  (p),UNDEF],UU]]],
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PASCAL programs read sequences of numerals supplied by some input device into the buffer fileloc
INP and write outputs into the buffer fileloc OUT. INPUT is just the identity function. The write
statement puts numerals in the output buffer, thus OUTPUT maps sequences of numerals, onto
sequences of integers. INTERNALREP is a function which takes sequences of integers and returns
sequences of numerals. The definitions are found in appendix 3.1.

Programs in PASCAL have two parts: a declaration part and a statement part.

The interpretation of a program in some frame specified by the framepointer 1:

M P  s [Xp f.MD(declof  f,f)@MS(statmof  f,f))

is just the interpretation of definitions MD composed with that of statements MS. These are
described in the next section.



The Semantics of PASCAL in LCF 7

SECTION  3 DESCRIPTION  OF THE LANGUAGE

This section contains the description of all the instructions included in our version of PASCAL and
the description of their semantics in LCF. Each text (it may be a program, a procedure or a function
text) consists of two parts: declaration part and statement part. The semantics of a text depends on
the frame in which such text is executed,  for this reason a framepointer is specified as parameter in
every semantic function.

:

Section  3.1 Declaration  part

The declaration part includes type d~jinitions  and the declaration of all the variables,  functions and
procedures local to that text.  Its semantics is defined by:

MD 5 [Xd f.MDEF(d,f)eMDEC(d,f)],

MDEF 3 [ocF.[Xd  1.
isemptyst  d + ID,
istypedef  d + CREAT(f,namof d,typof  d),
iscmpnd d + F(fstof d,f)@F(rmdof  d,f),lD]],

MDEC = [otF.[Xd  1.
isemptyst  d 3 ID,
isvardecl d + CREAV(f,namof d,typof  d,f),
isprocdecl d + CREAP(f,namof d,prspof  d,f),
isfundecl  d -+ CREAF(f,namof d,fnspof  d,typeof d,f,f),
iscmpnd d + F(fstof d,f)@F(rmdof  d,f),lD]].

MD is the composition of MDEF, which defines the semantics  of type definitions and MDEC, which
defines the semantics of variable, procedure and function declarations. Every identifier appearing in
a declaration statement is a name  SO it must satisfy the predicate isname.  Consequently,  whenever
some pi-operty  of a PASCAL program is to be proved in LCF, for each identifier appearing in that
program, axioms stating that it is a name are to be added. The predicates for the ideiltification  of
syntactic constructs are given in appendix 2.3.

3.1.1  Data  Type Defildions

Since we are dealing -with the integer  ‘arithmetic part  of PASCAL, the ~cnl~r data types  we have
introduced  are the integer tyt’e INT and its subranges. A subrange is an interval of integers and is
defined  by specifymg i t s  lowe! a n d  upper bounds. The  s?rzccturetl  d a t a  Q#WJ  included  in 0~11
language are the array types. An array may have  any number  of indices (each ;anglng  in a subrange
t y p e )  and its elements  are all of the same  scalar type.

Each type may be assigned a name in a type definition. The semantics of a type definition is CREAT:

CREAT  z [Xf n ty s.CREALOC(f,s,typidloc,n,ty)].

CREALOC  5 [if s lot n vat.  ISPRESENT(n,s(f))+UU,STORE(f,s,loc  n,val)]
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CREALOC  is used by CREAT. It declares a name n to be a synonym for the type,ty in the frame s(f),
by storing ty in a new location typidloc  n. The result of CREALOC is undefined if n doesn’t satisfy the
predicate isname  or if it has been already declared in the current frame. This is tested by &PRESENT.
Modification of the store is done by the combinator STORE. Their definitions are in appendix 3.9.

In the definitions of MDEF  and CREAT no assumption is made on the order of the type definitions. If
all the type identifiers satisfy the predicate isname  and are different from each other, the result of
MDEF  on a frame, in which they don’t appear, doesn’t depend on their order in the text (see theorems
in 4.5).

3.1.2 Variable Declaratims

Each variable occurring in a text must be assigned a type which specifies the range of values that
variabsle  may assume during the execution of the statement part of the text. ‘The semantics of a
variable declaration is defined by CREAV:

CREAV = [Xf n ty 11 s.CREALOC(f,s,typeloc,n,TYPEVAL(ty,fl,s))J. .

CREAV creates a location in the current frame s(f), whose  name  is t)rpeioc  n, provided n is a name a.nd
no other location with the .same name already exists in that frame, The content of that location is
the type associated with n. Such type is evaluated by TYPEVAL (see 3.3.1.3). Each type identifier
possibly appearing in it is removed and its definition is substituted for it. The evaluation is made in
the frame specified by the framepointer 11. W.hen a variable is declared 11 coincides with f, so at the
moment there is no point in introducing another parameter in CREAV. We have introduced this
extra parameter since CREAV is also used when binding value parameters in a procedure or function
activation, On that occasion the two framepointers f and 11 (the one in which the new location is
created and the one in which the type evaluation starts) do not coincide.

3.1.3  Procedure  aud Fuuctiorl  Declarations

The semantics of a procedure declaration is defined by CREAP:

CREAP  E [Xf n ps 11 s.STORE(f,CREALOC(f,s,acclnk,n,fl),procloc  n,ps)],

The result of CREAP is undefined if n is not a name  or something with the same name  has already
been declared. Otherwise two locations are created. One of them,  whose name is procloc n contains
the formal argument list and the text associated to that procedure declaration, the other one, whose
name is acclnk n contains the frame pointer specifying the frame where the procedure has been
declared, i.e. the environment where its free variables are bound. As for variable declarations, when
a procedure is declared the two framepointers f and 11 are the same,  but the combinator CREAP  is
also used when binding procedure parameters in a procedure or function activation,, and in that case
the two framepointers differ.

The semantics of a function declaration is CREAF:

CREAF  z [ X f  n fs ty ft fl s.
STORE(f,STORE(f,CREALOC(f,s,acclnk,n,fl),typeloc  n,TYPEVAL(ty,ft,s)),funcloc  n,fs)].
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CREAF  is similar to CREAP. The only difference is that, in addition to funloc n and acclnk n, a location
typeloc n is created, whose content  is the type of the result of that function.

From the definition of MDEC  and the others LCF combinators  describiilg the semantics of the
declarations it follows that the order in which declarations are made is not relevant. If the identifiers
being declared are different and no other locations have been declared with these names the same
store is obtained, independently of the order (see theorems in 4.5). This is slightly more general than
the definition of PASCAL in Wirth 1971, which requires that all the variable declarations must
appear before the function and procedure declarations.

Section  3.2 Expressions

An LCF function can either evaluate to an object or to a truth value, but not both. For this reason
we could not introduce a unique evaluation function for arithmetic and boolean expressions. So we
have divided expressions into arithmetic  and boo1ea-n  (this distinction is absent in Wirth 1971) and
introduced two evaluation functions. Furthermore, we have introduced a finer distinction between
the types of operators in order to avoid funny situations like the prefix adding operator “or” which
is allowed in the syntax given in Wirth 1971, 1972 but whose meaning is not defined there.

3.2.1 Arithmetic  Expressions

Arithmetic expressions are written in abstract syntactic form and are evaluated by MEXPR:
.

MEXPR = [ocF.[xe  f s.
isconSt  8 - + MCONST  e,
isexpr  e -+isunary(opof  e) * MOP1  (opof  e,F(arglof  e,f,s)),

isbinary(opof  e)+ MOP2(opof e,F(arglof  e,f,s),F(arg2of  e,f,s}),
isvariable e + FETCHV(e,f,s),
isfundes e + RETURN(succ  f,MF(namof  e,actargof  e,f,s)),UU,UUJJ.

3.2.1.1 Evaluat  ioll of CowtaNs  and Expressions

The abstract syntactic representation of numbers is defined by the combinator mknumconst. If n is a
number,  mknumconsf  n is the corresponding numeral and It satisfies the predicate isconst  (see
appendix 2.3). Numerals are evaluated by the semantic combinator MCONST, which returns the
corresponding number.

MCONST  = [Xx.isconst  x + numof  x,UU].

Arithmetic  operator symbols appear explicitly  in expressions and satisfy the predicate isunary  , or
isbinary according to the number  of arguments the corresponding operator expects (see dcfinitlons  in
appendix 2.4). When evaluating  arithmetic expressions MEXPR checks whether the operator symbol
is unary or binary, then MOP1 or MOP2 evaluates them and applies the corresponding value to the
argument(s)  evaluated  recursively.

MOP  1 E [Xx.x=pplus+Xx.x,x=pminus+Xx.(f3-x),x=plus 1 +succ,x=minus  1 +pred,UU].
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MOP1 evaluates unary operator symbols and MOP2 evaluates binary operator symbols to the
corresponding functions. For example, the meaning of the symbol Plus is the LCF function +. Note
that, due to the LCF syntax, infix operators, when written without arguments, are prefixed by I’!“.
An LCF axiomatitation of arithmetic is given in Newey 1973.

As an example, if:

mkexpr2(plus,mkexprl (plus1  ,nl ),mkexpr2(times,mknumconst  2,mkexprl  (minus1 ,n2)))

is evaluated in a frame where the location nl contains the value 3 and the location n2 contains the
value 7, its result is 16, i.e. succ(3)+(2*pred(7)).

3.2.1.2 Evaluation  of Variables

If the expression to be evaluated is a variable, then-the corresponding va!ue is fetched by the
FETCHV corn  bin a tor.

FETCHV 3 [ocF.[Xn  f s.
ISLOCAL(typeloc  NAMOFVAR(n),s(f))~iSLOCAL(NAMOFVAR(n),s(f))~s(f,LOCOFVAR(n,f,s)),UU,
istopf(f)~UU,F(VARBNDTO(n,f,s),NEWFP(n,f,s),s)JJ.

The fetching mechanism is very simple. The variable to be fetched may be an entire variable of a
scalar type or an array element. In both cases a test is done (by ISLOCAL)  to see whether or not that
variable name has been declared in the current frame. If this is the case, the corresponding value is
fetched in the current frame (it will be undefined if the variable has been declared, but no value has
been assigned to that location). If the variable name has not been declared in the current frame and
the current frame is not the top one (i.e. if the fetching is done during a procedure or function
activation), the binding list is checked. In fact the variable to be fetched may be a formal parameter
passed by name (see 3.3.1.3 for details on the binding mechanism). In this case FETCHV applies
recursively to the corresponding actual parameter in the preceding frame. If that variable name is
not found in the binding list, the variable is free for that procedure or function activation, hence
FETCHV applies recursively to the same variable in the frame specified by the result of NEWFP, i.e. the
frame where the procedure or function in execution has been declared, hence where its free
variables are bound.

The definitions of the auxiliary comhinators  used in FETCHV may be found in appendix 3.719.
ISLOCAL  performs a -test to see whether a given name has been declared or not in a fra.me.
NAMOFVAR  applies to a variable n, and gives as result its name: it coincides with n if n is an entire
variable of scalar type, or it is the name part of n if n is an array element. Analogously LOCOFVAR
returns the location of n. As above, the location of n might be n itself, or an array location. varbndto
is the function which accesses the list of parameter bindings. If the variable n appears in it, then n
(or its name-part) is a formal name parameter and the corresponding actual parameter is the result
of varbndto. If n is not a name parameter, then n itself is the result of varbndto. In this case n is a
free variable for the function or procedure in execution. NEWFP evaluates to pred f or to the content
of the alnk location of the current frame, according to whether n is a formal parameter or a free ,
variable. The alnk  IoSation is set up when a new frame is created for a procedure (function)
activation, it contains the pointer to the frame where the activated procedure (function) has been
declared.
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From the definition of NAMOFVAR given  in appendix 3.7 we see that its result is undcfincd if it is
a p p l i e d  t o  FUNV. As explained  in 3.2.1.3 and 3.3.1.2 FUNV is the locatlon  where the value of a
funct ion 1s stored. Since NAMOFVAR is undefined on FUNV, the result of FETCHV  is undefined if it
applies t o  FUNV. So it is impossible  to “read“  the value of a function with the u s u a l  f e t c h i n g
combinator.

3.2.1.3 Functioll  Desigllators

If the expression  to be evaluated is a function designator, then a new frame is set up. The function
i s  e v a l u a t e d  b y  MF a n d  its value is retrieved by the RETURN  combinator  in a special  location named
FUNV.

RETURN 2 [xf s.lSLOCAL(FUNV,s(f))+s(f,FUNV),UU),

The semantics of a function activation is very similar to that of a procedure activation {see 3.3.1.3).
Starting from a given store,  a new frame is created by the combinator  MFB and then the s e m a n t i c
function MP (described in section .22) is applied  to the text of the function.  The  current frame is
changed  by incrementmg  the frame  pointer by 1.

MF 5 [in a 1. MFB(FUNCFAL(n,f),a,f,n)QMP(FUNCDEF(n,f),succ  f)],

FUNCFAL  and FUNCDEF are the two functions  which fetch from the store  the formal argument list
and the text of the function  being  activated. Their  definition  is given in appendix  3.8. T h e y  use  the
FETCH combinator  which,  like FETCHV,  returns  the content of a location from the frame where it has
been created.

The activation of a new frame and the binding  of parameters  is done by MFB:

MFB E [xfa aa f n s.BIND(fa,aa,succ  f,CREALOC(succ  f,typeloc  FUNV,TYPEDEF(n,f,s),
MAKFRAME(FUNCBODY(n,f,s),PFLNK(n,f,s),succ f,s) ))I.

It not only binds the formal parameters to the actual parameters (the binding function BIND will be
fully explained in 3.3.1.3),  but it also creates a new frame. The frame in which the function is
eva lua t ed  is set up by MAKFRAME ( see appendix 3.9).  It creates a location textloc where the statement
part of the text is stored, and a location alnk  whose  content is a pointer  to the frame where the
function has been declared. Moreover,  a location typeloc  FUNV is created, whose content  is the type of
the  funct ion being evaluated.  A location named FUNV wiit eventually  contain the value of the
f u n c t i o n .  In f a c t  W i r t h  1 9 7 1 ,  1972  s.ays  that the function  name must appear  at least once in the
funct ion  text  a t  the  le f t  hand  side  of an assignment statement. The value of  the  funct ion in
execution is stored in the FUNV  location by the combinator  ASSIGN.  F r o m  i t s  defmition  in 3.3.1.2  w e
see that the result of a function can only be assigned to FUNV in its function frame.  This  means that
if the name  of the function  in execution  appears at the left hand  side of an assignment statement  in
the text of a procedure  where such identifier has not  been  declared,  i t  i s  i n t e r p r e t e d  a s  a  f r e e
variable, not the name of the function in execution.

As n o t e d  i n  3 . 2 . 1 . 2  t h e  FETCHV  combinator  returns  an undefined*  value if applied  to FUNV. This
i m p l i e s  that a variable  named  FUNV  cannot be declared  even in a frame  different  from that set up
by a function activation. We have prevented  this by considering  FUNV  a “reserved” iclentifier which
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doesn’t satisfy the predicate isname,  so it cannot be used in declarations (the axiom isname  FUNVEFF is
included in appendix 2.4).

We assume that the translator from concrete to abstract syntax has substituted FUNV for all the
occurrences of the function name on the left hand side of assignment statements within the function
text. If there are no such occurrences, the function activation returns an undefined result. If there
are several, the last executed determines the value of the function. If a variable identifier equal to
the name of the function in execution occurs on the rigth hand side of an assignment statement,
then either that variable has been declared within the function execution or it is considered a free
variable of that function. When a variable has been declared with the same name as the function in
execution, its value is undefined during the function execution. In fact, it cannot be assigned a va.lue
since FUNV has replaced it on the left hand side of any assignment statement. It cannot be inputed
since the read statement cannot be executed within a function activation’ (see the following
paragraphs for a discussion on side effects).

The declaration of a variable with the same name as the function in execution is not forbidden by
Wirth 1971, 1972, but we do not see any reasonable semantics for it. In addition Wirth 1971, 1972
says that:

“Occurrence of the function identijier  in a junction designator within its declaration
implies recursive execution oj the junction”. 1:.

This sentence doesn’t specify what happens if within a function another function is declared with
the same name. Our semantics allows such declarations - why not? In such case the “outermost”
function cannot be executed recursively. This is also the case if a function has a formal parameter
with the same name (this is not forbidden in Wirth 1971, 1972). In this case the corresponding
actual parameter is executed.

PASCAL allows functions to have themselves as actual parameters. Even though LCF is a typed
logic, the semantic combinators we have defined avoid type ,conflicts  by passing the text of the
function and not the function itself as a parameter. This is also true for procedures having
themselves as parameters.

Haberman  1973 is very critical of the PASCAL’s notion of function. He says that, while the aim of a
PASCAL function is that of not having side effects, this is not true since a function may call a
procedure which may have side effects. Our semantics deals with this situation in a different way,
Statements which change the content of a location and hence cause side effects are only the
assignment, read, write and for statements.

The read and write statements modify the content of the input and output buffers so they cannot be
executed during a function activation. We forbid this by the test ISFUNFR which is performed
whenever a read/write statement is executed. It checks if any frame between the current one and the
top one has been set up by a function activation (see 3.3.1.4,-5).  The test on whether a frame has
been created for a function activation or for a procedure activatioli is done by checking in the frame
whether typeloc  FUNV is defined or not.

An assignment statement may cause side effects by assigning a value to a free variable. Whenever
the variable to be assigned is a free variable for the current frame, the ASSIGN  combinator (see
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3.3.I.2), checks whether between the current frame and that where the variable is bound (herice
where the modification of the store actually takes place) a function has been  activated.

The for statement may cause a side effect if its control variable is free in a function activation.
Wirth 1971, 1972 doesn’t say that the control variable must be local to the frame where the for
statement is executed. In our semantic definition of PASCAL, the for statement cannot cause side
effects in a function activation since its definition relies on the combinator ASSIGN  for updating the
control variable (see 3.3.2.3).

We included the above checks in our semantics so that ill-formed programs return an undefined
store. It turns out, however, that in our formalism rto function can cause side effects. This is because
MEXPR  simply returns a value from a function activation. The checks clone in our semantic
combinators amount to checking for side effects “at run time”. Thus some programs which would be
reJected by a PASCAL compiler will still have well defined meaning for us if the statements
producing side effects are never executed.

Finally, we want to point out that our semantics allows parameters of a function to be passed by
name, but guarantees that those parameters can only be “read” during the functibn execution. This
contrasts with Hoare’s  opinion (private communication) that PASCAL functions must not have
parameters passed by name. Wirth 1971, 1972 says nothing about it. In Wirth 1971 the assignment
to nonlocal variables is explicitly forbidden. Nothing is said about this in Wirth 1972.

32.2 Boolea t) Expressions

The evaluation of boolean expressions is very similar to that of arithmetic expressions (see 3.2.1 and
subsections). It is performed by MBEXPR:

MBEXPR E [ocF,[Xe  f s.
(e=true)+TT,
(e=f  alse)+FF,
isbexpr e +isbunary(bopof  o) -+ MBOPl  (bopof  e,F(barglof  e,f,s)),

isbbinary(bopof  e)+ MBOP2(bopof e,F(barglof  e,f,s),F(barg2of  e,f,s)),
isrelop(bobof  e) + RELOP(bopof  e,MEXPR(arglof e,f,s),MEXPR(arg2of  e,f,s)),UU,UU]J.

true and false are the abstract syntactic representations of the boolean constants true and false. If the
expression to be evaluated is the constant true, then it evaluates to TT, if it is the constant false,  it
evaluates to FF. Boolean expressions containing unary and binary operator symbols are evaluated
like arithmetic ones. Relation operators take integers as arguments, so the meaning of a relation
symbol is applied to its arguments evaluated by MEXPR. The meaning of unary and binary boolean
operators and that of relation operators is defined by MBOPl, MBOP2 and RELOP:

MBOP 1 2 [Xx.x=not+,UU],
MBOP2 = [Xx.x=and+!A,x=or+!v,UU],
RCLOP  f [Xx.x=lseq~!~,x=greq~!~,x=lt~!<,x=gt~!>,x=eq~!=,x=neq~~,UU].

For example in the frame specified by the, frame pointer f and in the store s ’

mkbexpr  1 (not,mkbexpr2(or,mkrel,lt,a,mknumconst  B),mkrel(gt,a,mknumconst  1)))
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-( (MEXPR(a,f,s)<6)v(MEXPR(a,f,s))  1)).

An LCF axiomatitation  for the boolean  operators is given in Newcy  1973.

Section  3 . 3  Statemerlt  Part

The semantics of the statement  part of the program is defined by MS.

MSz[acF.[Xst  f.
isemptyst St + ID,
iscmpnd  st
isemptyst(fstof:t)+  F(rmdof st,f),
islabstat(fstof st)+ F(mkcmpnd(statmof(fstof  st),rmdof  st),f),
isgoto(fstof  st) 4 GOTO(F,labelof (fstof  st),f),
isass (fstof 4) 4 ASSIGN(lhsof(fstof  st),MEXPR(rhsof(fsTof  st),f),f)@F(rmdof  st,f),
iqproccall(fstof  sl)+[Xs.MPB(PROCFAL(namof(fstof  st),f,s),aclargof(fstof  st),f,s,namof(fstof  St))]@

[Xs.MD(PROCDECL(namof  (fstof  sf),f,s),succ  f,s)]@
[Xs.F(PROCBODY(namof(fstof s1),f,s),succ  f,s)]@CLEAR(succ  f)@F(rmdof  st,f),

isread(fstof  4) 4 READ(namof(fstof st),f)@F(rmdof  st,f),
iswrite(fstof  st) 4 WRITE(namof(fstof st),f)@F(rmdof  st,f),
iscond(fstof  st) 4 COND(MBEXPR(tostof(fstUf  st),f),

F(append(thenof(fstof  st),rmdof  st),f),F(append(elseof(fstof  st),rmdof  st),f)),
iswhile(fstof  st) 4 COND(MBEXPR(testof  (fstof  st),f),

F(append(bodyof  (fstof  st),st),f ),F(rmdof st,f)),
- isrepeat  (fstof 4) + F(append(bodyof (fstof  st),mkcmpnd(mkcond(mkbexpr  1 (not,

testof(fstof  st)),fstof  sl,ES),rmdof st)),f),
isforto(fstof  st) 4 COND(MBEXPR(fortest(fstof  st),f),

ASSIGN(indexof  (fstof  st),MEXPR(lbof (fstof  st),f ),f)@
F(append(bodyof(fs1of st),fortoup st),f),F(rmdof  st,f)),

isfordn(fstof 4) 4 COND(Mf3EXPR(fortest(fstof  st),f),
ASSIGN(indoxof  (fstof  st),MEXPR(ubof  (fs1of sf),f),f)@
F(append(bodyof(fstof  st),fordnup  st),f),F(rmdof  st,f)),UU,UU]].

The definition of MS has  the form of a nested conditional, each branch corresponds to one
instruction of the language. Note that MS is defined only on the empty statement ES, whose semantics
is the identity lD~[Xx.x],  and on compound statements. In fact, t.he  abstract syntactic form of a
program  is a list of instructions assembled by the constructor mkcmpnd  and ending with the empty
statement ES. When  the  first argument of MS is-a compound statement a test is done on its first
element.  Except for the labeled  statements, whose semantics is simply that the corresponding
unlabeled statement, the detailed description of the semantic functions defining the meaning of each
instruction will be given in the following sections.

3.3.1 Simple  S t a t e m e n t s

We have defined the semantics of all the simple statements of PASCAL, i.e. goto  statement,
assignment  statement, and procedure statement. Furthermore, we have defined the semantics of an
ins t ruct ion  for reading  input data from the input  buffer INP and of an instruction w h i c h  w r i t e s
output  data into the output  buffer OUT.
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The semantics of the goto statement is defined by the GOT0  combinator.

GOT0 = [AF.[xn  1. F(segm(n,TEXT(f)),f)]],

It applies  the semantic  function  MS recursively  to the text returned by the segm  combinator:

segm = [ocF.[An  st.
isemptyst  St + UU,
iscmpnd  St-+
isomptyst(fstof  st) +F(n,rmdof st),
islabstat(fstof  st)+(n=labelof st)+ st,F(n,mkcmpnd(statmof(fstof  st),rmdof St)),
issingle(fstof  st) +F(n,rmdof st),
iscond(fstof  st) +occurs(n,thenof(fstof  st))+appond(F(n,thonof(fstof  si)),rmdof st),

occurs(n,elseof (fstof  st ))+append(F(n,elseof  (fstof  st)),rmdof  st),
F(n,rmdof st),

isrepwh(fstof st) +occurs(n,bodyof(fstof  st))+ajjpend(F(n,bodyof(fstof  St))@),
F(n,rmdof St),

isforto(fstof st) -+occurs(n,bodyof(fstof  St))+
append(F(n,bodyof(fstof  st)),fortoup(st)),F(n,rmdof  st),

isfordn(fstof  st) -+occurs(n,bodyof  (fstof  St))-+
* append(F(n,bodyof(fstof, st)),fordnup(st)),F(n,rmdof  st),UU,UU]J.

segm applies  to a label, and the text st which is retrieved from the store by the TEXT combinator,
and returns the piece of text starting from the first occurrence of the label.  If the label is not found
in the text the result of segm  is undefined. The behaviour  of PASCAL programs when several

- identical labels appear in it is another example of ambiglrity in Wirth 1971, 1972. An accurate
description of a language must say if this is a well-formed program or not.

In our semantics, no restriction is imposed on where  the label may appear in the text. This means
that jumps into (or out front) the body of a repetitive statemenl are allowed. The behavior of segm
in such case  will be described in their respective sections.

According to Wirth 1971 we do not allow jumps into a procedure body, but, contrary to Wirth 1972
we do not allow jumps  oul of a procedure activation, i.e. Jumps cannot cause the change of the
current frame. For this reason we have not introduced the label  declaration statement of Wirth 1972
since the notion of scope for a label is meaningless to our semantics.

Lockhood  Morris and others have suggested the notion of continuation as a possible way of defining
the semantics of programming languages with the goto instruction. It cannot be used in LCF in a
straightforward  way since a type conflict arises. On the contrary in our semantics no type conflict is
introduced by the goto,  in fact its semantics simply reduces to changing the first argument of MS.
The  text to be executed next is replaced by the text evaluated by the segm function. .

The semantics of the assignment statement is defined by the combinator ASSIGN:
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ASSIGN = [&F.[In  v f s.
n=FUNV+ISADMISVAL(s(f,typeloc FUNV),v(s))+STORE(f,s,FUNV,v(s)),UU,
ISINTYPE(n,v,f,s)~STORE(f,s,LOCOFVAR(n,f,s),v(s)),
istopf (f)+UlJ,

First of all a test is done to see whether the location to be assigned is FUNV, i.e. if we are assigning
the value to a function identifier in a function activation (see 3.,.c, 1.3). In this case if the typeloc FUNV
is present in the current frame and the value v matches with its content, the combinator STORE stores
V(S) in FUNV (see appendix 3.9). Otherwise ASSIGN returns the undefined score. If n is not FUNV,
then the current frame is checked. If n has been declared in it and the value v matches with its type
then the assignment. takes place. A type mismatch makes the assignment to return the undefined
store. If n is not local to the current frame, it may be a name parameter or a free variable for that
frame. In both cases ASSIGN applies recursively with a mechanism quite similar to FETCHV (see
3.2.1.2). The only difference is that here a test is done by ISFUNFR  to see if the assignment may cause
a side effect in a function activation.

tSFUNFR  = [ocF.[Xf  s  nf .  tSLOCAL(FUNV,s(f))-+  FF,pred f=nf + TT,F(pred  f,s,nf>]].

ISFUNFR  checks if any frame between those pointed to by f and nf is a function frame, i.e. if FUNV is
local to it.

The auxiliary combinator ISINTYPE:

ISINTYPE 1 [ X v  val f s.lSLOCAL(typeloc NAMOFVAR(v),s(f))~lSADMISVAL(TYPOFVAR(V,f,s),va~(s)),FF].

evaluates to true if the variable v is local to the frame s(f) and the value vat is compatible with its
type. It evaluates to false if v is not local to s(f) and to undefined if a type mismatch occurs. The
definition of the combinators used in ISINTYPE may be found in appendix 3.7,-g.

3.3.1.3 Procedure Statemelrt

When a procedure is activated, its formal arguments are bound to the actual arguments in a new
frame obtained by increasing the current frame pointer by 1. In such frame a location textloc is
created whose content is the statement part of the activated procedure, and a location alnk is created
containing the pointer to the frame where the procedure has been declared.

By looking at the definition of MS given in 3.3 we see that, when a procedure statement is executed,
the auxiliary combinators PROCFAL, PROCBODY, PROCDECL are used. They are defined in appendix
3.8 and are used for fetching the formal argument list, the declaration part and the statement part of
the activated procedure.

The set up of the new frame and the binding of the parameters is done by MPB:

MPB = [If a aa f s n.BlND(fa,aa,succ  f ,MAKFRAME(PROCBODY  (n,f ,s),PFLNK(n,f ,s),succ f ,s)) 1.

MAKFRAME sets up a new frame and creates the locations textloc and alnk in it. At the end of the
procedure activation such frame is deleted by CLEAR:

CLEAR z [Xf s f 1 .(f l=f)+UU,s(f 1 ,I.
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CLEAR makes it explicit Chat  the local variables of the procedure frame are no longer in the store.

The bindings of the parameters in a procedure activa.tion  is the same as that of a function
activation. It is defined by:

BIND B [ocF.[Xfa  aa f s.
iseof fa -) (iseof aa -) s,UU),
isparameter(fstof fa) -+F(rmdof fa,rmdof  aa,f,MKBINDING(fstof fa,fstof aa,f,s)),UU]].

Corresponding parameters in the two lists are bound by MKBINDING. If the two lists have different
length the binding results in an undefined store. PASCAL allows procedures without parameters. In
such case the abstract syntax for the two parameter lists is the empty list EOF.

The  MKBINDING  combinator  is defined as:

MKBINDING  z [Xfa aa f s.
isvarp(ia)  + TYMATCH(fa,typeloc,aa,f,s)  -)

CREALOC(f,s,bindloc,namof  fa,EXPRF6RV(aa)),UU,  I 1
isvalp(fa) + ASSIGN(namof fa,MEXPR(aa,f),f,

CREAV(f,namof  fa,typof fa,CRNTF(f,s),s)),
i.sfunp(fa) + TYMATCH(fa,typfunloc,aa,f,s)  +

CREAF(f,namof  fa,FUNCDEF(aa,f,s),typof  fa,CRNTF(f,s),PFLINK(aa,f,s),s),UU,
isprocp(fa)+  CREAP(f,namof  fa,PROCDEF(aa,f,s),PFLINK(aa,f,s),s),UU].

If the formal  parameter fa is a variable parameter (i.e. a parameter passed by name) then, if its type
matches  the type of the actual  parameter aa, a binding location bindloc  (namof fa) is created. Its
content  is the EXPRFORV(aa). If aa has subscripts they must be evaluated when the, binding takes

- place (see Wikh 1971). This evaluation  is performed by EXPRFORV  which substitutes a numeral for
the value of each subscript.

The test on the type matching between formal and actual parameters is done by TYMATCH:

TYMATCH  5 [Xfa IOC aa f s.TYPEVAL(typof  fa,CRNTF(fis),s)=TYPEDEF(loc  aa,pred f,s)].

The  type identifier associated with the formal argument is evaluated (by TYPEVAL) in the frame
where the procedure has been declared. The pointer to it is retrieved by CRNTF.  We have in fa.ct
chosen  to evaluate the type associated with the formal arguments of a procedure when it is activated
and not when it is declared. The type of the actual argument is fetched from the store by the
TYPEDEF combinator  in the location typeloc  aa or typfunloc  aa depending on whether fa is a variable
or function parameter. All these auxiliary  combinators  are defined in appendix 3.8. Here we only
describe TYPEVAL:

TYPEVAL s [ocF.[Xn  f s.
isbasetype  n + n,
isarspec n + mkarspec(F(arlimof  n,f,s),F(typelof  n,f,s)),
istyppart n -) iseof  n + n,

ispair n + mkpair(F(fstof  n,f,s),F(rmdof n,f,s)),UU,
ISLOCAL(typeloc  n,s(f))+F(s(f,typeloc n),f,s),
istopf f + lJU,F(n,CRNTF(f,s),s)]J.

If the type n being evaluated  is a base  type,  i.e. integer or subrange, then TYPEVAL  evaluates to it. If
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n is an array specification, then both the types of its subscripts and the type of its elements are
recursively evaluated. The types of the subscripts of an array are given as a list of subranges. This
list satisfies the predicate istyppart,  so each one of its elements is recursively evaluated. Finally, if the
type being evaluated is a type identifier defined in the current frame, then TYPEVAL applies
recursively to its definition. If the type definition is not found in the current frame, then the
appropriate frame is searched.

If a formal parameter fa is passed by value, then a variable fa is declared in the current frame by
CREAV (see 3.1.2). Its type is evaluated by TYPEVAL in the appropriate frame and stored into the
location typeloc fa. The value of the actual parameter aa is then computed by MEXPR and assigned to
fa. ASSIGN checks whether or not the types of fa and aa are compatible (see 3.3.1.2).

If the formal parameter fa is a function parameter and the type of fr matches with that of aa, a
function fa is declared in the current frame by the combinator CREAF (see 3.1.3). The type of this
function is the type of fa evaluated by TYPEVAL in the appropriate frame. In its acclnk location the
content of the acclnk location of aa is stored. The text of the actual argument is retrieved by
FUNCDEF, its acclnk by PFLINK and its type is evaluated by TYPEVAL in the usual way.

If the formal parameter fa is a procedure parameter a procedure fa is declared in the current frame
by CREAP. In the acclnk of such procedure the content of the acclnk location of the actual parameter is
stored.

Since the combinators used for binding formal and actual para.meters  are those used in declarations
(see 3.1.2,-3),  an undefined store is returned if the reserved identifier FUNV is used as formal
parameter (see 3.2.1.3  for a discussion on the use of FUNV). From the definition of MKBINDING it is
also evident that FUNV cannot be used as an actual parameter since both EXPRFORV and MEXPR
return an undefined result if applied to FUNV. The auxiliary combinators used by MKEINDING  test,
by ISPRESENT, the presence of identifiers in a frame. It follows that an identifier cannot appear twice
as formal parameter and in the declaration part of a procedure.

Procedures, as well as functions (see 3.2.1.3),  cannot be executed recursively if they declare a
procedure or have a formal procedure parameter with the same name.

As noted for functions, a procedure may also have itself as actual argument. Even though LCF is a
typed logic, we avoid type conflicts by passing texts, and not functions as parameters.

3.3.1.4 Read Statement

PASCAL has no read and write statements. We have introduced them for dqfining the semantics of
the input and output. In Wirth 1972 a standard procedures, read and write, are introduced for
handling the input and output.

As said in 2.2 the data to be inputed  is stored into the fileloc INP location of the store by the PASCAL
function. Whenever the value of a variable has to be inputed,  it is read from the buffer INP by the
READ function:

READ z [An f s.lSFUNFR(f,s,B)+ASSlGN(n,MEXPR(fstof(lBUFFER  s),f),f,
STORE(B,s,fileloc  INP,rmdof  (IBUFFER  s))),UU].
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A test is done to see if the read statment  is executed during a function activation, in this case the
result of READ is undefined. Otherwise its result is a new store where the first element of the input
buffer has been removed and its value has been  assigned to the variable being read.

3.3.1.5 Write Statement

The results produced by a program  are stored  into the fileloc  OUT  location,  where they are eventually
retrieved by the OUTPUT combinator  (see 2.2). The write statement  puts into the buffer  the numeral
of the value of the variable  to be outputed.

WRITE  E [An f s.lSFUNFR(f,s,B)~STORE(B,s,fiieioc  OUT,mkpair(mknumconst(FETCHV(n,f,s)),
OBUFFER s)),UU]],

As with the read statement,  it is forbidden  to write during a function activation.

3.3.2 S t r u c t u r e d  StatemeWs

The structured statements  included in our version of PASCAL are:
1) the conditional  statement  in its two forms: if-fhc,t and if-thm-ah,

2) the repetition statements  uMc and rcpcat,
3) the for statement in its two forms: for-lo  and [or-daurnta.

W e  h a v e  n o t  i n c l u d e d  the cost and the with  statements  defined in Wirth  1971, 1972 stnce they do
not  seem very re levant  to  the  in teger  ar i thmet ic  part of PASCAL.  In Wirth 197  1, 1972 t.he

- compound statement is also included  in the list of structured statements. In our descr ip t ion of
PASCAL the compound statement does not  appear  since the hcgizz, cl~rf delimiters  are not present  in
the abstract syntactic form of a program. The compound stattlnicnt in its abstract  syntactic  form is a
list of statements assembled by the syntactic constructor mkcmpnd  and ending  with the symbol ES.
The semantics of the compound statement is defined by MS which’establishes the flow of the control
through the statement part of the program text.

3.3.2.1  C o n d i t i o n a l  Statement

The conditional statement in PASCAL has two forms: if-tlzclz  and if-then-clsc.  In ‘the abstract
syntactic form the conditional statement always has an else part, possibly it reduces to the empty
statement  ES.

The semantics of the conditional statement is defined by the combinator COND:

COND E [xq f g s.(q(s)+f(s),g(s))].

The test of the conditional  is evaluated in the store where the conditional statement  is executed. The
conditional returns the then-part or the else-part evaluated in this store,  depending  on the value  of
the test.

Caine;  back to the definition  of MS given  in 3.3, we see that if the first statement of the text in
e x e c u t i o n  i s  a  c o n d i t i o n a l ,  its test is evaluated  b y  t h e  MBEXPR  combinator  and then MS applies
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recursively to the text resulting from appending the then-part or the else-part of the conditional to
the remaining statements. The appond function, defined in appendix 2.5 corresponds to the ordinary
appending function for lists.

If a goto statement is executed within a branch of a conditional, then the execution goes on with the
text furnished by the segm function. If a jump into a branch of a conditional is done, then the text
to be executed next consists of all the statements between the first occurrence of the label to jump to
and the end of the branch of the conditional, appended to the rest of the program. This text is the
result of the segm function defined in 3.3.1.1.

3.3.2.2  While and Repeat Statemerlts

The while statement is a repetition statement whose abstract syntax is:

mkwhile(test,body).

body is repeatedly executed until test becomes false. The semantics of the while statement as given in
MS (see 3.3) can be explained as follows: test is evaluated, if its result is true, then MS applies
recursively to body appended to the while  statement itself and to the remaining statements in
execution. If the test fails, MS applies to the remaining statements.

Wirth 1971 says that in PASCAL, for all e and S the two statements

urhilr!  e do S

and

if e thz heRitz  S; while  e do S mzd

are equivalent. We prove this true for our semantics (see 4.4).

The repeat statement is’similar  to the while statement. The only difference is in that the repeat first
executes its body and then performs the test to see whether to go on or stop. The semantics of the
repeat statement is defined in MS (see 3.3). MS applies recursively to the body of the repeat,
appended to a conditional (specifying whether or not the repeat must be executed again), appended
to the remaining statements in execution.

We have also proved the equivalence described in _Wirth  1971 for the repeat statement, i.e. for all e
and S the two following statements are equivalent:

tc?pmt  S urztil  e

and

h&z S; iI -e thciz  rcpwt S rr,iztii C o z d

In Weyhrauch and Milner 1972 and in Aiello and Aiello 1974 a WHILE combinator was introduced
for defining the semantics of the while statement:



The Semantics of PASCAL in LCF 21

WHILE E [ocF.[Xt  b.COND(t,beF(t,b),lD)J].

It cannot be used here since a g;oto  statement can stop the execution of the body of the while. We
can prove that the definition of the semantics for the while statement given in MS reduces to the
above semantic combinator when the body of the while is goto free (see 4.3).

The language described in U’eyhrauch,  Milner 19’72 had no repeat statement. The semantics for the
repeat statement  was described in Aiello, Aiello 1974 by the combinator REPEAT:

REPEAT  = [ocF.[Xb  1. beCOND(t,F(b,t),lD)]].

It is similar to the WHILE  combinator  described above and the same considerations concerning the
presence of goto’s hold for it.

If a goto statement is executed within the body of a while or repeat statement, then the execution of
the repetition statement is stopped and the text to be executed next is furnished by the segm
combinator. From the definition of segm given in 33.1, we see that when a goto statement jumps
into the body of a repeat (while) statement the piece of body starting from the first occurrence of the
label is appended to the text starting from that repeat (while) statement. This means that the part of
b o d y  from the label to t h e  end is executed and then a t e s t  is done to see whether or not the
execution of the repetition statement must be stopped or goes on.

3.3.2.3  For Statenlent

In PASCAL the for statement has two forms:

for  i:=el to ~2 do b;

and

for  i:=el  doumto  4 2  d a  b ;

In both cases  b is the body  of statements which is repeatedly executed, and i is the variable which
controls the loop. In the for-to statement it is increased by 1 each time b is executed. In the for-
downto statement it is decremented by 1. The two expresslons  cl and a2 will be referred to as the
initial and final values of the control variable.

The abstract syntax for the two forms of for statements is defined by:

mkforto(i,el ,e2,b),

mkfordn(i,el  ,e2,b).

Their semantics  is defined  in MS. A t e s t  is done to check  of t h e  value of the control variable  i is
equal  to the final value 82. The test is:

fortest  2 [Xx .isforto(x)+mkrel(Isoq,lbof (x),ubof(x)),isfordn(x)+mkrel(greq,ubof  (x),ibof  (x)),UU 1.

If fortest  evaluates  to TT, the initial  value el is assigned  to the control variable i, then the meaning
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function MS applies to the body of the for statement appended to the text assembled by the
combinator fortoup (fordnup):

fortoup E [Xx .mkcmpnd(mkforto(indexof(fstof(x)),mkexprl  (plus1  ,indexof(fstof(x))),
ubof (fstof (x)),bodyof  (fstof (x))),rmdof (x))],

fordnup 1 [Xx .mkcmpnd(mkfordn(indexof  (fstof (x)),mkexpr  I (minus 1 ,indexof  (fstof (x))),
lbof (fstof (x)),bodyof  (fstof (x))),rmdof (x))].

fortoup (fordnup) updates the initial value of the for loop by substituting i+l (i-l) for i.

We have chosen to define the for in terms of the algorithmic equivalen.ces given in Wirth 1971, i.e.
for all i, el, e2 and S the statement:

for  i:=el to e2 do S

is equivalent to

if else2 then
begin  i:=el;S;

for i:=succ(i)  to e2 do S
nnd

and the statement

for i:=el downto  e2 do S

is equivalent to

if eke2 then
begin i:=el;S;

for i:=pred(i) to e2 do S
end

We have imposed no restrictions on the fact that the values of i, el and e2 are changed by S or by
the for statement itself, or on the jumps into or out from the body of a for statement. The value of .
the control variable at completion of the for has the last value assumed, namely the value it had
after the last execution of S. This interpretation of the for statement is different from the description
of the PASCAL for statement as given in Wirth -1971, 1972 and in Hoare and Wirth 1973. The
definitions given in these three papers are indeed different from each other. Our choice .has been
motivated by the fact that we wanted the semantics of the for statement to be as smooth as possible
and, at the same time, we wanted to make it less ambiguous then Wirth 1972. The definition of the
for, given in terms of the above algorithmic equivalences in Wirth 1971, was changed in Wirth
1972, following the suggestions made in Hoare  1972. III order to leave the implementer more
freedom; the following equivalences are required in Wirth 1972:

for i:=el to e2 do S

is equivalent t o
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!
L

i:=el; S; i:=rucc(i); S; . . . i:=e2;  S

LL

for i:=el downto e2 do S

is equivalent to

23

i:=el; S; i:=pred(i);  S; . . . i:=e2;  S

These definitions seem ambiguous to us: what happens if ek2 in the for-to statement?

c The third definition of the PASCAL for statement is given in Hoare and Wirth 1973. This is
closer to that given in Wirth 1972, but not the same. It is given in axiomatic form:

c

Q

(n<x<b) A P(Cn..x))  (S) P(h.xl)m -
---------_--_-_-________________________---------

I’([])  (for x:=a  t o  6 d o  S) P([a..6])

(n<x<b)  A /‘((x.6]) (S) P(k.b])
_______________-_--_____________________------------------

P([ 1) (for x:=b downto a do S) P&,.61) . ’

It is written in the formalism proposed by Hoare  1969, where P{qR  means that if P and R are
predicates and P is true before the execution of the body of statements Q atid (2 terminates, then I?

- is true after the execution of 0,: [a,b]  denotes the interval (x)alx<b}, [a,b)  denotes the interval
(x la<x<b),  and so on. This rule was used in Hoare 1972 for characterizing the correctness of the for
statement. Apart from the fact that the description of the rule given in Hoare 1972 and that given in
Hoare and Wirth 1973 are different, we do not agree with it. In fact it leaves unspecified what
happens when the for-to statement is executed with the initial value greater then the final value. It
seems to us that any definition which leaves this ambiguous cannot serve as a satisfactory
specification of the meaning of the for statement. In particular it cannot be used to prove general
theorems about the for statement. Consider for example an implementation of PASCAL in which if
b<n in one of the above for statements, then the body of statements S is executed I4 times! This
implementation satisfies the above axioms, but is certainly strange.

L In Wirth 1971, 1972 nothing is said about the behavior of the goto’s  with respect to the for
statement. Hoare and Wirth 1973 ‘do not deal with goto’s. In our semantic definition, if a goto
statement is executed within the body of a for statement, then the execution of the repetition
statement is stopped and the text returned by segm is executed next. From the definition of segm we
see that if a jump into the body of a for statement is executed, then sogm returns the p&e of body

1
starting from the first occurrence of the label to jump to, appended to the piece of abstract syntax
returned by the fortoup or fordnup combinators.

If a jump into the body of a for statement is executed we distinguish between two cases: I) the Jump
is from one pomt to another point of the body of the same for statement. In this case the
computation goes on with the control variable having the current value. 2) the jump is from a point
of the program outside the for statement. In such case the computation may result in the undefined

c



,.
r
> 7

,^

The Semantics of PASCAL in LCF 24

store accordingly to whether or not the control variable has been assigned a value prior to the
execution of the jump. In fact the updating combinators fortoup and fordnup replace i+l and i- 1 for
81 in the for statement, so it evaluates to UU if the control variable has not yet been assigned a
value.

Haberman  1973 dislikes the possibility of jumping into a for statement. We have allowed such
jumps, thus a for loop may be initialized from outside and started by a jump. This seems reasonable
since PASCAL has no block structure, so the control variable of a for statement has to be declared
in the declaration part of the text and may be given a value independently of the for statement.
Furthermore, since the control variable is not local to the for statement, we do not see any reason for
leaving it undefined after the execution of the for statement, as required in Wirth 1972. Nothing is
said at this regard in Wirth 1971  and in Hoare  and Wirth 1973. We do not. agree that a perfectly
behaved statement should leave an undefined value in a location which has been declared and
assigned a value. It also leaves ambiguous what happens to the control variable if a goto stops the
execution of the for loop.

Our semantics doesn’t check to see if the control variable, the initial value or the final value are
modified during the execution of the for statement. This makes our for statement similar to the
while statement. Since the control variable is not a dummy variable of the loop there is no reason
for it to be treated differently from any other variable. Wirth 197 1, 1972 and Hoare and Wirth
1973  are discordant about the requirements on such modifications. Moreover it is our opinion that
checking for them is very difficult and is unlikely to be done in any current implementations of
PASCAL. Consider for example a program where an integer variable i is declared which also
declares the following procedure:

- praccdura  A(j,hnteger)
for i.=j  to k do

if  i=3 hrl  A(k*lj)
elm A(j+J,k);

Note that in this.program the control variable is changed by the recursion of the procedure A, not
by an assignment statement.

A final point regarding our semantics: as with the while and repeat statements, if a text is goto-free
the semantics of the for statement can be defined by the following two combinators:

FORT0 5 [ocF,[Xi  01 e2 b 1. COND(MBEXPR(mkrel(lseq,el  ,e2),f),ASSICN(i,MEXPR(el  ,f),f)ebe
F(i,mkexpr  1 (plus 1 ,i),k2,b,f),lD)J); -

FORDN 5 [ocF.[Xi  el 82 b 1. COND(MBEXPR(mkrel(greq,el  ,e2),f),ASSIGN(i,MEXPR(el  ,f),f)@b@
F(i,mkexpr 1 (minus1 ,i),e2,b,f),lD)]J;

The equivalence, in the goto-free case, between the definition of the semantics of the for statement
given in-MS and that given by the two above combinators, can be proved easily (see 4.3).
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SECTION  4 PROPERTIES OF THE SEMANTICS

In this section we discuss some general properties of the interpretation of PASCAL in LCF. We
have proved :

1) the meaning function MS is strict  on the store, i.e. for any statement st and any framepoln-ter f,
MS(st,f,UU)~UU,

2) for goto-free programs, MS is a homomorphism with respect to the constructor mkcmpnd, i.e.
Vf.MS(mkcmpnd(a,b),f)~MS(a,f)@MS(b,f).

3) MS reduces to a simpler function for goto-free  programs. New combinators defining the
semantics of the repetition statements are given.

ft) all the equivalences about repetition statements given in Wirth 1971 hold in our semantics.

5) some miscellaneous theorems about MDEC, MDCF,  MS

Section 4.1 The strictness of MS on the store

The main theorem of this section is

Vst f.MS(st,f,UU)=UU.

- We do not show the proof here as it IS a single LCF simplification using the lemma ’

Vt a b.(t~a,b)(UU)s(t~a(UU),b(UU))

The main theorem should not be regarded as trivial howeve;,  as it requires 205 substitutions.
Without the LCF simplifier, this proof would have been over 1000 steps long. This is an important
theorem because it shows that our interpretation of statements behaves correctly with respect to the
termination of computations.

Consider the following program

var  n:integer
hC/li?l

I: got0 I;
72:-l;
mtd

This program fails to terminate. To us it seems that the only reasonable interpretation  of this
program must be the undefined function. If the meaning function IS not strict, it may happen that
the assignment of 1 to n builds up a store m which n has value 1. Suppose we were to choose the
most obvious interpretation of assignment, i.e. if the above prosram is being executed in a store S,

and a frame whose framepointer is f then the meaning of the assignment statement in the example is
a new store sl:
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s l  = [Xfr.fr=f+[Xm.m=n+l ,s(f,m)],s(fr,m)],

SO

s 1 (f) = [Xm.m=n+l  ,s(f,m)].

This new store has the unfortunate property that even if s4JU,  we still have sl (f,n)sl. It is thus not
undefined.

The desire for the interpretation of a program to be an extensionalty  given function on the store
and composition of these functions to correspond to executing one program after another, means that
an interpretation which is strict on the store is the only one that makes sense. In Hoare’s  axiomatic
treatment this problem goes away but the price is that every statement that you can prove about a
program is conditional on its termination. In the above case one proves the sentence, “If the
program terminates then n= 1”.

Because, as already said, the proof is a single step we do not give it here. Instead we will explain
why for our semantics ASSIGN is strict 011 the store. The “c::::::” represent some arbitrary combinator.

ASSIGN 3 [An v  f  s.n=FUNV+ISADMISVAL(s(f,typeloc  FUNV),v(s))+  ***,lSINTYPE(n,v,f,s)-,  ***,***k]

so

ASSIGN(n,v,f,UU)  s n=FUNV+ISADMISVAL(UU,v(UU))+  ***,UU,ISINTYPE(n,v,f,UU)+ x**,***) ,

(SADMISVAL  asks if a value is of an admissible type. UU is not even a type, no less admissible, so
ISADMISVAL returns UU.

ISINTYPE(v,val,f,UU)4SLOCAL(typeloc  NAMOFVAR(v),UU))~lSAOMlSVAL(TVPOFVAR(v,f,UU),val(UU)),FF]

ISLOCAL(loc,UU)  s UU=UNDEF+FF,TT

But for any X, UU=X is just UU so ISLOCAL(loc,UU)4JU.  This is the central point of the entire strictness
proof. Looking up a location in a defined store in an existing frame is not undefined if that
location has not been created. Stores are constructed in such a way that we can test if it is defined
and no assignment is made if it isn’t. This check is done by ISLOCAL,  which returns UU if the frame
is undefined. The proof is completed by making the correct substitutions.

Other theorems about strictness appear’in section 4.5.

Sectioll  4.2 Properties  of MS for goto-free  programs

A goto-free program is defined by the following predicate :

isgotofree E [ocF.[X s .
isgoto s + FF,
issingle s + T T ,
islabstat s + F(statmof  s),
isiter s + F(bodyof s),
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iscond s 3 F(thenof s) A F(elseof s),
iscmpnd  s + F(fstof s) A F(rmdof  s),UU]],

where  issingle and isiter  are predicates satisfied by the simple and the repetition statements
respectively (see appendix 2.4). The main theorem about goto-free programs is:

V S P f.isgotofree(S)::isgotofree(P)::  MS(append(S,P),f)  s MS(S,f)  o MS(P,f).

It states that if S and P are texts without any goto statement, then the result of the apllllcatlon of MS
to the concatenation  of them is the same  as the functional  composition of the appllcatron of MS to
each of them. The proof of this theorem is based on a case analysis on the first element of S. We
have not included it in the paper as it is rather long even if very simple. We didn’t find any proof
by induction  on isgotofree,  so we proved it by induction on MS. To do this the two following lemmas
are to be proved:

VS P f.isgotofree(S)::isgotofree(P)::MS(append(S,P),f)cMS(S,f)~MS(P,f)
VS P f.isgotofree(S)::isgotofree(P)::MS(S,f)~MS(P,f)cMS(append(S,P),f)

In sectron 4.1 It has been noted that the proof of the strictness  of MS on the store depends on a
theorem about condltlonal espressrons. For proving the above lemmas with a sm111ar  proof we
needed the following theorem about conclltlonal  expressions:

Vt.(t+a,b)  c (t+d,f) ASSUME acd, bcf.

Unfortunaeely  the current version of the LCF condltlonal  simplifier doesn’t handle sentcnccs of the
form AcB as simplification rules, even though in this case no specific property of the symbol c is
Involved.

The  above  homomorphism  theorem IS analogous to the Hoare’s  composition rule for statements,
valid for goto-free programs. This theorem, as welt as Hoare’s  rule is not valid in general. Consider
the following example:

the corresponding abstract syntax IS;

P E mkcmpnd(mkass(a,mknumconst  1 ),
mkcmpnd(mkgoto  1 ),

mkcmpnd(mkass(a,mknumconst  3),
mkcmpnd(mklabstat(  1 ,mkass(a,mkbexpr  1 (plus  I ,a)),ES))))

The-meaning of this program in the frame specified by the frame pointer f is defined by MS(P,f).
The  validity of the composition rule would imply the following equivalence:

MS(P,f) t MS(mkcmpnd(mkass(a,mknumconst  1 ),ES),f)@
MS(mkcmpnd(mkgoto(1 ),ES),f)@

MS(mkcmpnd(mkass(a,mknumconst  3),ES),f)@
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MS(mkcmpnd(mklabstat(  1 ,mkass(a,mkbexprl (plus1  ,a))),ES),f),

which is false: starting from a store where a is declared in the current frame, MS(P,f)  returns a store
where,  in the current frame, a has value 2, while the right hand side evaluates to a store where, in
the current frame, a as value 4. The right hand side is wrong, since by interpreting each statement
separately, it is impossible to skip a piece of text as required by a goto.

In the next section we consider how the semantics of a PASCAL statement part is simplified when it
is goto-free.  Our semantics  deals also with programs where the composition rule is not valid. Hoare
axiomatic approach to the definition of the semantics of a programming language relies on the
validity of the composition rule,  so it cannot easily treat programs with goto’s.  Hoare and Wirth
1973 axiomatization  of PASCAL, for instance, doesn’t define the goto  statement. The a Igarashi,
London and Luckham  1973 VCGEN, based on this approach, deals only with backwards goto’s  and
preserves the validity of the composition rule by considering indivisible the piece of program
betweet!  the label to jump to and the goto.

Sec t i on  4.3 An equivalent  cleaning  function  for goto-frre p r o g r a m s

As noted in the description of repetition statements  (see  3.~’ 2.2,-3), if the body of the repetition
statement is goto-free, new combinators may be defined for describing their semantics. In this case
the semantics defined by MS is the same  as that defined by the new combinators.

The proofs of the first four equivalences are quite similar; they are carried out by subgoaling  to the
two goals with the logical symbols 3, c respectively. All these  proofs are standard and could be
automated  by enriching  the features of the current LCF system. In appendices 4,5,6 we have
included  the commands  and the printouts of the proof of one half of each of the first three
equivalences. The fourth is analogous to the third one.

The proof of the equivalence between MS and MSGTFR is carried out by proving the lemmas with c,
3 respectively, and using the above equivalences for repetition stat.ements. A long case analysis on S
is performed, analogous to that discussed in 4.2. Even in this case the proof could become very short
by improving slightly the LCF conditional simplifier.

1 ) VS t f .isgo!ofree(S)::  MS(mkcmpnd(mkwhile(t,S),ES),f)  = WHlLE(MBEXPR(t,f),MS(S,f))

where WHILE  = [ocF.[Xt  b.COND(t,b@F(t,b),lD)]]

2) VS t f. isgotofree(S):i  MS(mkcmpnd(mkrepeat(S,t),ES),f)  E REPEAT(MS(S,f),MBEXPR(mkbexprl  (not,t),f))

where REPEAT = [ocF.[Xb  t.b@COND(t,F(b,t),lD)]]

3) VS i el e2 f .isgotofree(S):: MS(mkcmpnd(mkforto(i,el  ,o2,S),ES),f)  5 FORTO(i,el,e2,MS(S,f),f)

where FORT0 = [ocF.[Xi el e2 b f. COND(MBEXPR(mkrel(tsoq,el  ,e2),f),ASSlGN(i,MEXPR(el  ,f),f) ’
@b@F(i,mkexprl  (plus1  ,i),e2,b,f),lD)]];

4) VS i el e2 f .isgotofree(S):: MS(mkcmpnd(mkfordn(i,el  ,e2,S),ES),f)  8 FORDN(i,el  ,e2,MS(S,f),f)

w h e r e  FORDN  = [ocF.[Xi el e2 b 1. COND(MBEXPR(mkrel(greq,el  ,e2),f),ASSIGN(i,MEXPR(el  ,f),f)
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Qb@F(i,mkexpr  1 (minus1 ,i),oZ,b,f  ),lD)]];

5) VS f. isgotofree(S)::  MS(S,f)  f MSGTFR(S,f)

where
MSGTFR+F.[Xst  f.

isemptyst  st -) ID,
iscmpnd  st +

isemptyst(fstof  St)+ F(rmdof st,f),
islabstat(fstof  St)+ F(statmof(fstof st),f)@F(rmdof  st,f),
isread(fstof  st) + READ(namof(fstof st),f)@F(rmdof  st,f),
iswrite(fstof  st) + WRITE(namof  (fstof  si),f)@F(rmdof s&f),,
isass  (fstof st) + ASSIGN(lhsof(fstof  st),MEXPR(rhsof(fstof  st),f),f)@F(rmdof  st,f),
isproccall(fstof  st)+[Xs.MPB(PROCFAL(namof(fstof  st),f,s),

actargof(fst0f  st),f,s,namof(fstof  St))]@
‘[Xs.MD(PROCDECL(namof(fstof  st),f,s),succ  f,s)]@
[Xs.F(PROCBODY(namof(fstof  sf),f,s),succ  f,t)]4PCLEAR(succ  f)@F(rmdof  s&f),

iscond(fstof st) 3 COND(MBEXPR(testof(fstof  st),f),
F(thenof(fstof  st),f),F(elseof(fstof  st),f))@F(rmdof  st,f),

iswhile(fstof  st) + WHILE(MBEXPR(testof(fstof  st),f),F(bodyof(fstof  st),f))@F(rmdof  st,f),
isrepeat(fstof st) + REPEAT(bodyof(fstof st),MEXPR(mkboxprl  (not,testof(fstof  st)),f))@F(rmdof
isforto(fstof st) + FORTO(indexof(fstof  st),lbof(fstof st),

ubof(fstof st),bodyof(fstof st),f)@F(rmdof  st,f),
isfordn(fstof  st) + FORDN(indexof(fstof  st),ubof(fstof St),

Ibof(fstof st),bodyof(fstof st),f)@F(rmdof  st,f),UU,UU]J

The definition of MSGTFR  shows how our semantics simplifies for goto-free  programs. No
manipulation of the text is required, every statement can be treated independently of the others,

-some combinators as fortest,  fortoup, fordnup, append are no longer necessary. The semantic
combinators for repetition statements not only simplify the form of MS but also the proofs of
properties of goto-free  programs. In fact, in the general case proofs by induction on the repetition
statement  must  be done by inducting on MS. For goto-free  programs the induction can be directly
done on the appropriate semantic combinator. Hence, only properties of the body of the repetition
statements and not of the whole program are involved. The structure of the progra.m reflects
directly on the structure of the proof since allows to factorize it into easier lemmas.

In section  5.1 two different programs which compute the factorial function are compared. In the first
one the iteration is performed by a while statement, in the second one by a backwards goto. The
proofs of their correctness are different, the goto-free  case is more straightforward. The proof of the
correctness of the goto program may be‘reduced to-that of the goto-free program by showing that, in
general, a while loop -is equivalent to an appropriate loop controlled by a conditional goto. This

L

example shows the advantage of a formalism which allows to prove general properties of the
language  and the necessity of creating the right environment of theorems about the programming
language  to greately simplify the proofs of properties of programs.

Sect ioll -4.4 Equivalences  for repetitive statements

In giving an interpretation of PASCAL in LCF our aim was to be as close as possible to the
informal description given in Wirth 1971. For this reason we proved most of the properties of the
statements  that are mentioned in that paper. The LCF theorems stating the equivalences for

I *
repetition statements  given in Wirth 1971 are:
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.

Ve S. MS(mkcmpnd(mkwhile(e,S),ES))  E
MS(mkcmpnd(mkcond(e,append(S,mkcmpnd(mkwhi~e(~,S),ES)),ES),ES)),

Ve S 1. MS(mkcmpnd(mkrepeW,e),ES),f)  E
MS(append(S,mkcmpnd(mkcond(mkbexprl  (not,e),mkcmpnd(mkrepeat(S,e),ES),ES),ES)),f),

Vi el e2 S 1. MS(mkcmpnd(mkforto(i,el  ,e2,S),ES),f) r
MS(mkcmpnd(mkcond(mkrol(lseq,~~  ,02),

mkcmpnd(mkass(i,el),append(S,mkcmpnd(mkforto(i,mkexprl  (plus1  ,i),eZ,Sl,ES))),ES),ES),f),

Vi el e2 S f. MS(mkcmpnd(mkfordn(i,el,e2,S),ES),f) 3
MS(mkcmpnd(mkcond(mkrel(greq,e  1,821,

mkcmpnd(mkass(i,el  ),append(S,mkcmpnd(mkfordn(i,mkexprl  (minus1  ,i),e2,S),ES))),ES),ES),f),

All the proofs of the above statements are one seep proofs. In fact, we have defined the semantics of
the repetition statements directly in terms of the equivalence described in Wirth 1971.

S e c t i o n  4 . 5  MiscelIar,eous theorems 011 MDEC, MDEF, MS

Our aim in this section is not to give an exhaustive list of the properties of PASCAL, but rather to
show some typical example  of theorems  which have been  used in the proofs presented in this report.

First of all we want to state that type definitions and declarations are independent of the order. The
theorem proved for type definitions is:

-Vnl n2 tyl ty2 f 6.
isname(n1 )::isname(n2)::nl  /nZ::ISABSENT(nl  ,s(f))::lSABSENT(n2,s(f)) ::
MDEF(mkcmpnd(mk~ypedef(nl,~yl),mkcmpnd(mk~ypedef(n2,ly2),ES)),f,s)  p
MDEF(mk~mpnd(mktypedef(n2,ty2),mkcmpnd(mk~ypedef(nl  Jyl ),ES)),f,s);

This theorem states  that if nl and n? are different names and they do not appear in the store, then
the order of type definitions using these names as typ.e identifiers is irrelevant. The predicates
appearing in it have an obvious meaning: + is the negation of =, ISABSENT is the negation  of
ISPRESENT.  The proof of this theorem  has not  been  included  in t h e  r e p o r t  since it is a very simple
proof done by simplification and using some properties of conditional expressions. Analogously  the
following theorems can be proved. They state that declarations are independent of the order, ,

Vnl n2 tyl ty2 f S .
isname(n1  )::isname(n2)::nl  in2 ::ISABSENT(nl  ,s(f))::ISABSENT(n2,s(f))::
MDEC(mkcmpnd(mkvardecl(n1  ,tyl ),mkcmpnd(mkvardecl(n2,ty2),ES)),f,s)  i
MDEC(mkcmpnd(mkvardecl(~2,ty2),mkcmpnd(mkvardecl(nl  ,tyl ),ES)),f,s);

Vnl n2 tyl ly2 fs2 f s .
isname(n1 )::isname(n2)::nl  +n2::ISABSENT(nl  ,s(f))::ISABSENT(n2,s(f))::
MDEC(mkcmpnd(mkvardecl(n1  ,tyl ),mkcmpnd(mkfundecl(n2,fs2,ty2),ES)),f,s)  I
MDEC(mkcmpnd(mkfundecl(n2,fs2,ly2),mkcmpnd(mkvardecl(n1,t~l),ES)),f,s);

,

Vnl n2 tyl ly2 fsl fs2 f s .
isname(n1 )::isname(n2)::nl+n2::ISABSENT(nl  ,s(f))::ISABSENT(n2,s(f))::
MDEC(mkcmpnd(mkfundecl(n1  ,fsl ,tyl ),mkcmpnd(mkfundecl(n2,fs2,ty2),ES)),f,s)E
MDEC(mkcmpnd(mkfundecl(n2,fs2,ty2),mkcmpnd(mkfundecl(nl  ,fsl ,tyl ),ES)),f,s);
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Vnl n2 tyl fsl ps2 f 5 .
isname(n1 )::isname(n2)::nl  Jn2::ISABSENThl  ,s(f))::ISABSENT(n2,s(f))::
MDEC(mkcmpnd(mkfundecl(n1  ,fsl ,tyi ),mkcmpnd(mkprocdeci(n2,ps2),ES)),f,s)  E
MDEC(mkcmpnd(mkprocdecl(n2,ps2),mkcmpnd(mkfund~c~(nl  ,fsl ,tyl ),ES)),f,s);

Vnl n2 tyl ps2 f s .
isnamo(n1 )::isname(n2)::nl+n2::ISABSENT(nl  ,s(f))::ISABSENT(n2,s(f))::
MDEC(mkcmpnd(mkvardecl(n1  ,ty 1 ),mkcmpnd(mkprocdecl(n2,ps2),ES)),f,s)  E
MDEC(mkcmpnd(mkprocdecl(n2,ps2),mkcmpnd(mkvardecl(n1  ,tyl ),ES)),f,s);

Vnl n2 psl ps2 f s .
isname(n1 )::isname(n2)::nl+n2  ::ISABSENT(nl  ,s(f))::ISABSENT(n2,s(f))::
MDEC(mkcmpnd(mkprocdecl(n1  ,psl ),mkcmpnd(mkprocdecl(n2,ps2),ES)),f,s)  5
MDEC(mkcmpnd(mkprocdecl(n2,ps2),mkcmpnd(mkprocdecl(t~l  ,psl ),ES)),f,s);

Some theorems describing ixol>ertles  of MDEF and MDEC are now  listed. Each of them has been
proved in one step.

.

V x y f. MDEF(mkcmpnd(x,y),f)~MDEF(x,f)@MDEF(y,f);  -

V x y 1. MDEF(mkvardecl(x,y),fb  ID;

V x y t f.MDEF(mkfundecl(x,y,t),f)e ID;

V x y 1. MDEF(mkprocdecl(x,y),fb  ID;

V x y 1. MDEF(mktypedef(x,y),f)z  CREAT(f,x,y);

Vf. MDEF(ES,f  )4D;

V x y 1. MDEC(mkcmpnd(x,y),f)EMDEC(x,f)@MDEC(y,f);

V x y f. MDEC(mkvardecl(x,y),f)n  CREAV(f,x,y,f);

V x y z f.MDEC(mkfundecl(x,y,z),f)z  CREAF(f,x,y,r,f,f);

V x y 1. MDEC(mkprocdecl(x,y),f)z  CREAP(f,x,y,f);

Vf. MDEC(ES,f  HO;

In the following we present some of the theotim dealing with MS, the combinators defining  the
semantics of statements and some predicates used by the semantic combinators.  The proofs of these
theorems are very simple (one step), however they were useful in proving programs as well as
propertles  of MS.

Vf.MS(ES,f)=ID;

Vx y f.MS(mkcmpnd(mkread  x,y),f)zREAD(x,f)@MS(y,f); ;

Vx y f.MS(mkcmpnd(mkwrite  x,y),f)sWRlTE(x,f)@MS(y,f);

Vxl x2 y f.MS(mkcmpnd(mkass(xl  ,x2),y),f)zASSIGN(xl ,MEXPR(x2,f),f)@MS(y,f);
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Vn f s.ASSIGN(n,UU,f,s)4JU;

Vn e f.ASSIGN(n,e,f,UU)4JU;

Vn f.WRITE(n,f,UU)dJU;

I Vn f .READ(n,f  ,UU)dJU;

MEXPR(UU)dJU;

BIND(UU)=UU;

MPB (UU)dJU;

VI f.FETCH(l,f,UU)dJU;

Vn f .PROCDEF(n,f  ,UU)4JU;

Vn f .PROCFAL(n,f  ,UU)dU;

MD(UU)4JU;

Vn f.PROCTXT(n,f,UU)dJU;

Vn f.PROCDECL(n,f,UU)dJU;

Vf.CLEAR(f,UU)dJU;

_ Vloc.lSLOCAL(loc,UU)IUU;

ISINBOUND(UU)dJU;

Vty.lSADMISVAL(ty,UU)=UU;

Vv f s.lSINTYPE(v,UU,f,+JU;

Vp e f.ISINTYPE(v,e,f,UU)4JU;

Vf.lSPROCFRAME(f,UU)~UU;

32
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SECTION  5 EXAMPLES

In this section we want to discuss how to prove PASCAL programs  in LCF. Two examples will be
fully described:

1) the factorial program,

2) the McCarthy Airline reservation system.

We have also proved correct a PASCAL program for the computation of the GCD of two positive
integers with the euclidean algorithm and a PASCAL program for the computation of the norn~ of a
vector. These proofs have been executed using an earlier version of the LCF axiomatization  of
PASCAL and are described in Aiello and Aiello 1971.  We have not rerun them on the final
version of the axioms because, even though many details have been changed, the underlying ideas
have not been modified, so the proofs would remam v_ery  similar. -

Sect ion 5.1 The  factorial program

The partial correctness of a program for the computation of the factorial function has
proved in LCF and discussed in Weyhrauch and Milner 1972. The proof presented
similar to that one. We have included it because the factorial program is a very simple

been already
here is very
and familiar

example, so it is easy to go through the proof of its correctness1 By comparing the proof given here
and that given in Weyhrauch and Milner 1972 it may be seen that even though the programming
language described here is much richer, the proof isn’t more complex.

A PASCAL program which computes the factorial function is the following:

mr nl,n2: integer
h?&t

wad(n/);
read(n2);
mitilr?  n2#0  do

hEin nl:=nIc:n2;n2:=n2-i;  ~1;
rurite(n1);
wtd;

If the input consists of-two nonnegative integers x and n this program computes x:::n!.  The factorial
function is obtained if x equals 1.

in this program the repetition is performed by a while statement, hence we will call it while-pr0gram.
An analogous program for the computation of the factorial function may be also written lrslng a
goto statement (it will be called goto-program):

wtw nl,n2: integer
hcffin
reatl(nl);
react(n2),

’1: if n2#0  then
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hc& nl:=nl:m2;n2:=n2-i;goto  I; md;
vrite(n1);
md;

In LCF both programs are provable correct with respect to the function FACT:

FACT E [ocF.[\n  x.n=0  + x,F(pred  n,n*x)]],

FACT applies to two arguments n and x and evaluates to x*n!.

In the following, the LCF proof of the while-program is dcscrlbed in details. This program has no
goto’s,  so the theorems described in 4.,9 for goto-free  programs can be used, making the proof much
simpler. The proof of the second form of factorial program will only be sketched.

The abstract syntactic form of the while-program is:

FACTORIAL z mktext(DP,SP),

DP = mkcmpnd(mkvardecl(n1 ,INT),mkcmpnd(mkvardecl(n2,lNT),ES)),

SP 5 mkcmpnd(mkread(n2),mkcmpnd(mkread(nl),
mkcmpnd(mkwhile(test,body),mkcmpnd(mkwrife(nl),ES~))),

test z mkbexpr  1 (not,mkrel(eq,n2,mknumconst(0))),

body I mkcmpnd(mkass(n1  ,mkexpr2(times,nl  ,n2)),mkcmpnd(mkass(n2,mkexprl  (minus1 ,n2)),ES)).

The form of the LCF theorem to be proved is:

Vn x.isnat  (n)::isnat  (x)::APPLY  (FACTORIAL,n,x)cFACT(n,x). . .

Informally,  it says that the e v a l u a t i o n  o f  t h e  p r o g r a m  FACTORIAL  on the  da ta  n and’ kb’ if it
terminates, gives the same result as the computation of the function FACT on n and x. APPLY is the
following combinator:

APPLY 3 [X p x y.fstof(FUNCT(p,EOF,LIST(x,y)))],

L I S T  5 [X x y. mkpair(x,mkpair(y,EOF))].

As said in section 2, FU‘NCT  maps sequences of integers into sequences of integers. Given a program p
and two input numbers  x and y, APPLY applies the combinator FUNCT to the sequence LIST(x,y)  and
then takes the first element o f  the output sequence.

The  method  used  to prove the partial correctness of the while-program is quite standard for proving
program> with a while loop. All the combinators  appearing on the term at the left hand side are
substituted by their definition. After some simplification (automatically done by LCF) the goal to be
proved is:
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Vn x , isnat  :: isnat  ::
RESULT(WRITE(nl,0,WHILE(Ml3EXPR(test,B),MS(body,0),READ(nl  ,0,READ(n2,0,
CREAV(B,n2,lNT,B,CREAV(B,nl  ,INT,0,FRAME0(FACTORIAL,INPUT~LiST(n,x)),EOF))))))))  c FACT(n,x).

where  RESULT is defined  as Vx.RESULT  x 5 fstof(OUTPUT  x1. The theorem  on the while  statement
given in section 4 .3 for goto-free  programs  has been  used  In achieving  the above goal. The
semantics  of the loop is expressed in tems  of the WHILE  combinator. As it can  be seen from the
printout in appendix  7.2 the proof  is done by induction  on the WHILE combinator.  The  base case  is
trivially proved. The inductmn  step is proved  by cases  on the predicate  which controls  the loop, i.e.
-(n=0). If -(n=0)IS a se then the result easily  follows,  rf -(n=O) is undefined  a contradictron  arisesf I
because  n is a natural number.  If +43)  is true, the goal  is proved  by a proper  instantiation  of the
induction  hypothesis. It is instantiated for pred  n and x*n. Usually, in programs for the computation
of the factorial  of a natural number  the variable  nl is not  inputed a value, but it is initialized to 1.
The, inrtlalitation  of nl to x results  in a strengthening  of the induction hypothesis. In fact the
variable  x appears universally  quantified in the statement of the theorem  to be proved  and can be
properly  instantiated.  Actually  the proved  theorem  is stronger than the desired  one. The factorial
program  is obtained  by giving the value 1 to x in the above  theorem.

The  proof  given  in appendix  7.2  I S  generated  by the list of commands  given in appendix  7.1. We
want again  to point  out that LCF is not an automatic  theorem  prover.  It has only  a subgoaling
mechanism and a sophisticated  simplification  algorithm  which converts terms and simplifies them by
using  the axioms  and theorems  put (by the user> into a “simplification  set”.

In the simplification  set there are all the syntactic  constructors and selectors,  plus the semantic
combinators  appearing  in the first line of the list of commands.  Note that LCF labels  are prefixed
by a “.“, each axiom has  been  labeled with an identifier equal  to the comhinator  being defined,  and
INDUCT  I S  the label of the induction hypothesis. The modtficatrons  done to the simplification  set after
the proof is started  (SS+/-something)  are done only to increase the readability  of the goals.  In
addition, to increase  the readability  of the proof, a combinator FRAME1  is introduced  to describe  an
intermediate  store:

FRAME1  s [Xt n x.[Xf.f=O-+
[Xloc.loc=n2  +n,

Ioc=nl  +x,
loc=typeloc  n2 -) INT,
loc=typeloc  nl -) INT,
loc=fileloc  INP+ EOF,  -

L loc=fikloc  OUT+ EOF,
loc=textloc  -$ t,UNDEF],UU)].

Jn the prlntout  of the proof each  step appears with its “reason”, namely  the tactic used  in achieving
it, as well as the step numbers of the axioms and  the names of the theorems  involved  in the
simplifications.  The  theorems  THI, TH2... are general  theorems about  the semantics,  they  are some of
the theorems  listed in section  4.3 and 4.5. Theorems  named ARITHl,  ARITH2... deal with the
arrthmetic,  they are taken from  Ncwey 1973.  Theorems named LMl,  LM2,..  are specific  lemmas  about
this program. All of them have been  proved  in the same  environment  as the maul  theorem  and their
proofs  are very  simple. Often the proof reduces  to a one  step  simplification.  They  are:



The Semantics of PASCAL in LCF 36

f?EAD(nl  ,B,READ(n2,8,CREAV(B,n2,lNT,B,CREAV(B,nl  ,INT,8,
FRAME0(FACTORIAL,INPUT(LIST(n,x)),EOF)))))~FRAMEl  (SP,n,x)

A S S U M E  isnat  x 3 TT, isnat n s TT

which implicitly defines the frame FRAMEI,

MS(body,B,FRAMEl  (SP,n,x))s  FRAME1  (SP,pred n,x*n) ASSUME  isnat  x 0 TT, -(n=B)sTT.

It specifies the effect of the meaning function MS on the body of the while statement. Moreover

MBEXPR(test,B,FRAMEl  (SI$,x))s -(n=0) ASSUME  isnat  n %TT, isnat  xeTT

evaluates the test appearing in the while, and .finally

RESULT(WRITE(n1  ,B,FRAMEl  (SP,n,x)))zFACT(n,x)  ASSUME  -(tvB)tFF, isnat(x)rTT;

asserts that, when the loop is over, the value of the varible nl is FACT(n,x).

As already noted the proof is fearly standard and could be almost completely automated b y
increasing the proving capabilities of LCF. The case of the goto  program the proof is standard as
well, but much longer. In fact the theorem presented in 4.3 no longer applies, so the goal to be
proved, after the first simplification is:

V n  x . isnat  (n) :: isnat  ::
. RESULT(MS(mkcmpnd(mklabstat( 1 ,mkcond(test,

mkcmpnd(mkass(n1  ,mkexpri!(times,nl  ,n2)),
mkcmpnd(mkass(n2,mkexpr  I (minus1  ,n2)),
mkcmpnd(mkgoto(1  ),ES))),ES)),mkcmpnd(mkwrite(nl  ),ES)),0,

READ(nl,0,READ(n2,0,CREAV(0,n2,lNT,0,CREAV(0,nl  ,INT,B,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF)))))))  c FACT(n,x).

In order to prove it by induction on MS a possibility is that of proving the above goal in parallel
with the following 3 goals:

V n  x . isnat  :: isnat  ::
RESULT([XsCOND(MBEXPR(te$t,0,s),

MS(mkcmpnd(mkass(n1  ,mkexpr2(times,nl  ,n2)),
mkcmpnd(mkass(n2,mkexpr  I‘(minus1  ,n2)),
mkcmpnd(mkgoto(  1 ),mkcmpnd(mkwrite(nl ),ES)))),B,s),

WRITE(n  1,0,s) ]
READ(nl,0,READ(n2,0,CREAV(0,n2,l~T,0,CREAV(0,nl  ,INT,B,

FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF))))))  c FACT(n,x).

Vn x , jsnat(n) :: isnat  ::
RESULT([Xs.COND(MBEXPR(test,B,s),

ASSJGN(n1  ,MEXPR(mkexpr2(times,nl  ,n2),0),s)@
MS(mkcmpnd(mkass(n2,mkexprl  (minus1  ,n2)),

mkcmpnd(mkgoto(  1 ),mkcmpnd(mkwrite(nl  ),ES)))),B,s),
WRITE(nl,0,s))

READ(nl,0,READ(n2,0,CREAV(0,n2,lNT,0,CREAV(0,nl  ,INT,0,
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FRAMEO(FACTORIAL,INPUT(LIST(n,x)),EOF))))))  c FACT(n,x).

L,

L

c‘

Vn x . isnat :: isnat ::
RESULT([Xs.COND(MBEXPR(test,0,s),

ASSIGN(n1  ,MEXPR(mkexpr2(times,nl  ,n2),0),s)@
ASSIGN(n2,MEXPR(mkexpr  1 (minus1  ,n2)),0),s)@
MS( mkcmpnd(mkgoto(1  ),mkcmpnd(mkwrite(nl  ),ES)))),EI,s),
WRITE(n 1 ,B,s)]

READ(nl,f3,READ(n2,0,CREAV(0,n2,INT,0,CREAV(0,nl  ,INT,0,
FRAMEB(FACTORIAL,INPUT(LIST(n,x)),EOF))))))  c FACT(n,x).

In this way there are four induction  hypotheses to be instantiated and it can be seen that each of
them serves to prove the next goal in the above order. Even this tricky way is standard. It can be
applied whenever in a ‘program a backward goto is encountered.  In addition, such tactic could also
be implemented in a PASCAL oriented version of LCF, so the user is relieved from the task of
gene,rating all the parallel goals.

*

Section 5.2 The McCarthy Airline Reservation System

John McCarthy suggested the problem of proving the correctness of a program for the reservation
system of the McCarthy Airline Company. Such company has one plane, with only one seat. The
plane never flies! There are two customers, each one sometimes makes a reservation and then, tired
of waiting for the departure of the plane he cancels. Later on he may try again.

Proving the correctness of a program for the McCarthy Airline reservation system is interesting
- since it presents some characteristics absent in the programs so far proved correct. A program which

realizes a reservation system must deal with a potentially infmite stream of input data “read” at
successive instants of time. Each time a request is inputed, an output datum is produced. The
correctness of incremental computations  cannot be dealt with in a system where the input and output
operations aren’t mentioned.

Usually, in the existing systems for program verification, I/Q is completely ignored. It is not
considered to influence the “meaning” of a program. In fact, existing systems deal with algorithins,
rather than programs, even though such algorithms are expressed in the syntax of a programming
language.

6 Our axiomatization of PASCAL includes the operations of inputmg data from an input file into
locations  of the store and outputing data from t!le store into an output file. The length of these files
isn’t fixed a priori, even for a particular program.

L

In our formalism we may express and prove a statement of the correctness of a PASC,AL  program
for the McCarthy Airline reservation system. Such statement asserts that, no matter what the
sequence of requests has been, the seat at any instant of time is reserved for the right person.

Let
st denote the seat,
rul denote the waiting list,

c
YQ denote the request and
ps denote the passenger.

c
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The variable  st may assume the values 8, 1 or 2 meaning free, reserved for passenger 1 or 2. The
variable zul  assumes the values 8, 1 and 2 with the same meaning. rg may assume the va4ue 0 and 1
for cancellation  and reservation, respectively. ps assumes the values 1 or 2, denoting the two
passengers.

A PASCAL program realizing the McCarthy Airline reservation system is the following:

hagirt
var st,rul,ps,rq:  integer;
reacl(rul);
reaii(st);
TV?pi?nt

ha&
read(rq);
if Yqf3

t h&t begin
read(@);
if rgpl
thcr~ if St=8 V St=@

than st:-Ps also wi:=ps;
the if St=8  v st#ps

than rul:=8  else  hegirt  st:=d md
rurite(st)
srtd

until rq=3
and

The program consists of an initializatron part, in which the initial status of the seat and the waiting
list (presumably  both 6) are inputed, and of a repeat loop. The body of the loop consists in reading
new data, updating the status of the seat and the waiting list and then writing the status of the seat
into the output buffer. An extraneous value in the input sequence, in this case the number 3, stops
the repetition.

This program doesn’t make any assumption on the behavior of the passenger or about the kind of
requests it receives. Each request is accepted and the program behaves correctly even if, for instance,
two cancellations  in a row are done by the same person.

The abstract  syntax for the above  program  is:

MCCARTHY s mktext&,SP),

DP 3 mkcmpnd(mkvardecl(wl,INT),mkcmpnd(mkvardecl(st,lNT),
mkcmpnd(mkvardeci(rq,INT],mkcmpnd(mkvardecl(ps,lNT),ES)))),  ,

SP H mkcmpnd(mkread(wl),mkcmpnd(mkread(st),
mkcmpnd(mkrepeat(B0DY,mkrel(eq,rq,mknumconst(3))),ES))),

BODY E mkcmpnd(mkread rq,mkcmpnd(mkcond(mkrol(eq,rq,mknumconst(3)),ES,
mkcmpnd(mkread  ps,SEATUPDATE)),ES)),

SEATUPDATEr
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mkcmpnd(mkcond(mkrel(eq,rq,mknumcons~  1),
mkcmpnd(mkcond(mkbexpr2(or,mkrcl(eq,st,mknumcons~  B),mkrel(eq,st,ps)),

mkcmpnd(mkass(st,ps),ES),mkcmpnd(mkass(wl,ps),ES)),ES),
mkcmpnd(mkcond(mkbe:~pr2(or,tnkrel~eq,s~,mknumcons~  B),mkbexprl  (not,mkrel(eq,st,ps))),

mkcmpnd(mkass(wi,mknumconst  8,ES),
mkcmpnd(mkass(st,wl),mkcmpnd(mkass(wl,mknumcons~  Q,ES))),ES)),

mkcmpnd(mkwrite  4, ES)),

The  statement  of the partial correctness of the MCCARTHY program  is:

Visq osq  p q.iswfsq(isq)::iswfos(osq)::isint(p)::isint(q)::
APPLY (McCARTHY,p,q,isq,osq)cBOOKING(p,q,isq,osq),

where: isq denotes the input sequence, osq  denotes  the initialization of the output buffer, namely the
output sequence,  p and q are the initial values of the waiting list and the seat.

The predicate iswfsq  (is-well-formed-sequence) is defined as:

iswfsq 2 [ocF.[Xsq.  (ell (sq)= 3)+TT,iseof  sq +UU,isrqst(ell  sq)r\isprsn(eli!  sq)+F(taill  sq),FF]J,

where  el1, 812,  tail 1, isrqst  (isrequest) and isprsn (isperson) are defined as follows:

ell = [xx. fstof x],

42 3 [xx. ell (rmdof x)],

tail1 s [Xx. rmdof(rmdof  x)],

isrqst = [Xx.(x=B)v(x=l )],
isprsn z [Xx.(x=1  )v(x:2)].

The predicate iswfos  (is-well-formed-olJtyut-sequence) is:

e iswfos H [ocF.[Xos.iseof  OS + TT,isint(fstof os)+F(rmdof  os),FF]],

’and must be satisfied by the object, presumably EOF, that initializes the output buffer.

The  combinator  APPLY appearing  in the definition of the goal is: I

APPLY E [X p x y is os.FUNCT(p,os,LI$T(x,y,is))],

LIST E [Xx y is. mkpair(x,mkpair(y,is))], -

c

FUNCT,  the combinator  which “interprets” a program p in the frame where the input  and output
buffers have been initialized, is described in section 2.

The fact that, at each moment, the scat is reserved for the right person, is expressed in LCF by the
function BOOKING:

e

c
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BOOKING 5 [~F.[x  st WI sq OS.
iseof sq + uu,
(ell sq=3) + OS,
F(tail1  sq,stupdt(sq,st,wl),wlupdt(sq,st,wl),mkpair(stupdt(sq,st,wl),os)))],

where stupdt (seatupdate) and wlupdt (waiting-listupdate) are defined as: ,

stupdtn[Xsq st wl.(ell  sq=l  )+(st=B)v(st=el2 sq)+el2  sq,st,(st=8)v -(st=el2  sq) + st,wl],

wlupdtz[Xsq st wl.(ell sq=l )+(st=B)v(st=el2  sq)+wl,el2  sq,B].

We express the fact that, at each instant of time the program “answers” in the right way, by stating
that it behaves correctly on input sequences of any length. Being extensional our semantics cannot
express the concel,t  of elapsation of time, but, by talking of sequences of any length we give an
adequatk extensional representation of a continuing process.

The list of LCF commands and the printout of the proof of the partial correctness of the MCCARTHY
program with respect to the BOOKING function is given in appendix 8. The goal to be proved, after
the first simplification is:

Visq osq  p q . iswfsq(isq)  :: iswfos(osq)  :: isint(p) :: isint(q)  ::
OUTPUT(~(MEXPR(rq,B,MS(BODY,B,READ(st,O,READ(wl,B,FRAMEl  (p,q,isq,osq)))))=3)-+

REPEAT(MS(BODY,B),MBEXPR(mkbexprl  (not,mkrel(eq,rq,mknumconst(3))),0),8,
MS(BODY,B,READ(st,E,READ(wl,O,FRAMEl  (p,q,isq,osq))))),
MS(BODY,B,READ(st,B,READ(wl,E,FRAMEl  (p,q,isq,osq)))))  c BOOKINC(p,q,isq,osq)

In achieving this goal the theorem on the repeat statement, given in section 4.3 has been used, The
combinator FRAME1 is introduced to increase the readability of the goal. It describes the store after
the declarations are done.

FRAME1  = [Xx y sq OS. [Xf.(f=B)+[Xloc.
loc=typoloc  ps+lNT,
loc=typeloc rq+INT,
loc=typeloc  st+lNT,
loc=typeloc wl+lNT,
loc=fileloc  INP+INTERNALREP(LIST(x,y,sq)),
loc=fileloc  OUT-WTERNALREP  OS,
loc=textloc  +SP,UNDEF],UU].

The  proof of the MCCARTHY  program differs from that of the factorial program mainly for two
reasons: 1) the while and the repeat statements behave differently, having the test performed a.t
different places. 2) here an initialization is done within the body of the repetition statement. III fact,
the twb values of rq and ps are read within the loop. For this reason the loop must be executed once
in order to create a location named rq and one named ps, before doing an induction on the
combinator  REPEAT. The  goal is proved  by cases on the test  which cont ro ls  the  repeat  loop.  The
only nontrivial case  is that in which the input sequence is not yet over, namely rq/3.  In this case the
repeat loop goes on, so an induction is needed for completmg  the proof. The base case of this
induction is trivial. The induction step is proved by doing again cases on the test which establishes
the exit conditions  from  the loop. If the loop is completed a lemma is used to state the result, if it
goes on the goal is proved by an appropriate instantiation of the induction hypothesis.
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As in the proof of the factorial program  the theorems used in the proof  have been divided  into THs,
ARITHS  and LMs.  THs state facts about the semantics, ohe of them is the above mentioned  theorem
about the semantics  of the repeat  statement f o r  goto-free  programs.  They  are shown  in 4.3 and 4.5.
ARITHS  are theorems dealing  with the arithmetic and properties derived from the above axioms on
the well formedness of input and output sequences. LMs are specific lemmas  regarding this program
The list of these lemmas follows.

Vsq OS xl x2. MD(DP,B,FRAMEB(McCARTHY,INPUT(LIST(xl  ,x2,sq)),lNTERNALREP(os)))s
FRAME 1 (x 1 ,x2,sq,os);

is an implicit definition  of FRAMEl.  It defines the store after the declarations are done.

READ(st,B,READ(wl,B,FRAMEl  (xl ,x2,sq,osWFRAME2(xl  ,x2,sq,os)

ASSUME iswfsq(sq)zTT,  iswfos(os):TT,  isint(x1 )zTT, isint(x2)ETT

This statement  is an implicit definition of FRAMEZ.  I t  d e s c r i b e s  the store after WI and st are
initialized.

FRAME2 z [xx1  x2 sq OS. [Xf.(f=fW[Xloc.
loc=s1 +x2,
loc=wl +x1,
loc=typeloc ps+lNT,
loc=typoloc  rq+INT,
loc=typeloc  st+INT,
loc=typeloc’wl+INT,
loc=filoloc  INP+INTERNALREP(sq),
loc=fileloc  OUT+INTERNALREP(os),
loc=textloc  +SP,UNDEF],UU],

T h e  next theorem:

OUTPUT(MS(BODY,B,FRAME2(xl  ,x2,sq,osWBOOKING(xl  ,xZ,sq,os)

A S S U M E  +I1 sq = 3 )EFF,iswfsq  sqiiTT,iswfos  ossTT,isint  xlsTT,isint  x2eTT

states that, when the input sequence  is o v e r , the content of the output file after the execution of
BODY in the store described  by FRAME2, equals the value of the function BOOKING.

BOOKIN’G(stupdt(sq,x,y),wlupdt(sq,x,y),taill  sq,mkpair(stupdt(sq,x,y),os))=BOOKING(x,y,sq,os)

ASSUME iswfsq  sq zTT,iswfos  OS = TT,isint  x E TT, isint  y i TT,-(ell sq=3)iTT

states a simple  property  of the funceion BOOKING.

MS (BODY ,B,FRAME2 (stupdt  (sq,x,y  ),wlupdt  (sq,x,y),tail  1 sq,mkpair  (stupdt  (sq,x,y),os))):
MS (BODY  ,&FRAME3  (x,y,sq,os))

ASSUME iswfsq  sq zTT,iswfos  OS H TT,isint  x 3 TT, isint y = TT,-(ell sq=3)z  TT;

MS(BODY,B,FRAME2(x,y,sq,os))z  FRAME3(x,y,sq,os)
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ASSUME iswfsq sq =TT,iswfos  OS = TT,isint  x E TT, isint  y 5 TT,-(ell sq=3)=  TT;

The two above  theorems  use the cornbinrttor  FRAME3  to describe an intermediate store:

FRAME3 = [Xx1 x2 sq OS. [Xf.(f=B)+[Xloc.
Ioc=ps +el2 sq,
loc=rq jell sq,
locfst +stupdt  (sq,x  1 ,x2),
IOC’WI +wlupdt (sq,x  1 ,x2),
loc=typeloc ps+lNT,
loc=typeloc rq+lNT,
loc=typoloc  st+INT,
loc=typeloc wl+INT,
loc=fileloc  INP+taill  (INTERNALREP  sq),
loc=fileloc  OUT-+mkpair(mknumconst  stupdt  (sq,x  1 ,x2),lNTERNALREP OS),
loc=textloc  +SP,lJNDEF],UU];

FRAME3 is the description of the store after the body of the loop has been executed once.

MEXPR(rq,B,MS(BODY,B,FRAME3(x,y,sq,os)))~  613 sq

ASSUME iswfsq sq mTT,iswfos  OS -= TT,isint  x 4 TT,isint  y E TT,-(ell sq=3)  5 TT

MBEXPR(mkbexprl  (not,mkrel(eq,rq,mknumconst(3))),B,MS(BODY,O,FRAME3(x,y,sq,os)))e  -(el3 sq = 3 )

ASSUME iswfsq sq =TT,iswfos  OS E TT,isint  x E TT,isint  y z TT,-(ell sq=3)z  TT

MEXPR(rq,O,MS(BODY,B,FRAME2(x,y,sq,os)))~ell  sq

ASSUME iswfsq sqsTT,iswfos  OS zTT,isint  xsTT,isint  yzTT.

The three above lemmas are introduced to abbreviate the evaluation of expressions.

42
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A-- S E C T I O N  6  CONCLUSlON

The most important aspect of this memo relates  to our attempt to axiomatize a// of the arithmetic
part of PASCAL. This is interesting for two reasons. First we are able to describe in LCF different
programming language features and show how they interact. Se:ondly we can express property, of
classes of programs and use them as lemmas in proofs of theorems about particular programs. A
typical  example is the theorem about goto-free programs in section 4.2. It is used in section 5.2 to
sinlglify  the first proof of the correctness of the factorial program. When interpreted literally, it
proves that for goto-free  programs the composition rule in Hoare 1969 is valid. By formulating the
validity of this rule as a theorem we can discuss, in LCF, the relative merits of various programming
features. This has not previously been accessible to a formal treatment, and is important if the
mathematical theory of computation is ever to’have  an effect on language design.

Our desire to axiomatize ail  aspects of a programming  language is not simply a matter of choice of:
available formalisms but represents a philosophy about what kinds of questions the mathematical
theory of computation should ask. The method of attaching inductive assertions to programs treats
programs one at a time. We do not think general theories about programs can be developed in this
way. Of course using inductive assertions is not a waste of time, but formalisms which use them
should be expanded to include more general applicability.

The kind of questions about progran~  we have in mind include: will it run at all, even if its
algorithm is correct.3 Will it compite?  Does some other coding or “optimization” compute the same
function?  We believe that LCF is capable of expressing these notions. Furthermore, any formalism
for describing a programming language could reasonably be expected to have this property.

- We criticize the original description of PASCAL, not because Wirth didn’t have philosophically
reasonable ideas of what various features of a programming language should do, but rather he
lacked a formalism which was strong enough to describe the effect of putting together features,
which although separately make clear sense, cause problems when combined. The example of the
procedure in the discussion of the for statement is a case in point. It is not a PASCAL procedure as
the value of the index variable of the for statement .is changed in its body. This fact, however is
hard to detect and is certain to be missed by most compilers. The difficulty arises out of the desire
not to make the index of a for statement local to that statement, to have the limits of the for loop
variable determined once and for all and to have recursive procedures in the same language.
Features when combined in arbitrary ways make even the recognition of well formed programs
complicated. Further evidence of this difficulty is found in the large number of restrictions
Igarashi,  London and Luckham 1973  have put on the application of their rules. The only example
of a procedure given in Hoare and Wirth 1973_cannot  be treated in their system. It does not seem
obvious to us how to extend their style of axiomatization to all of PASCAL. We do not impose any
of their restrictions, but describe the full generality allowed by Wirth. The expressive power of LCF
permits us to represent their restrictions and to prove that rules similar to theirs are valid for the
subset of PASCAL they treat.

The above should reflect on language design. One overwhelming feeling of al\ three authors aftel
doing this work was that we know large amounts more about how to describe a language to make
proving theorems about it reasonable. We believe that the ability to describe programming  features
and demonstrate by proving theorems that a language has ,certain properties represents a
particularly satisfying way to describe a language. Furthermore we propose this as a. standard for
acceptable descriptions.
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One possible idea for future work is designing a programming language using the more precise
description of this paper. Only small modifications to PASCAL are necessary to give a similar
language a demonstrably smoother semantics. Thus, by starting with a more detailed description,
some properties of the language, which could only be informally described before would now be
made explicit as statements in LCF. One could then begin to amass a collectron of theorems that
could be used to prove properties of particular programs. We could then integrate everything into
an LCF-PASCAL  “machine” which took a concrete PASCAL syntax and generated the LCF
abstract syntactic representation. Of course the new language would have to include more features
than those discussed here, Obvious candidates are real arithmetic, file manipulation and more
complicated data structures. If we wanted to abandon the ALGOL like control structures it would
be possible to choose either that of LISP or even the more aggressive control structures of Bobrow
and Wegbreit or the Landin ] operator. It would be an interesting project to describe them all and
see what theorems hold when you allow them to exist simultaneously.

We chbse to work out the McCarthy airline reservation system as an example because we believe
the treatment of interactive programs is another area which a vital mathematical theory of
computation must consider. Our idea for how to treat the correctness of continously interactive
progranis was to consider them as functions from sequences of inputs to sequences of outputs. If the
processes you are considering are continous, that is, some initial sequence of outputs is completely
determined after some fixed number of inputs, then equivalently we can consider the correctness of
finite output sequences given finite Input sequences. Basically this idea has been used in
intuitionistic theories of free choice sequence as developed by Erouwer and Kleene (see Kleene and
V esley I 965).

We end this memo with some comments about LCF. A major difficulty involved in using LCF as
the language for interpreting programming languages is that descriptions of the data being
manipulated (in our case integers) is awkward. The axiomatization of arithmetic in LCF although
adequate is both non standard and frequently hard to use. It is partially the fault of LCF as it does
not implement such nice user oriented features as arbitrary structural inductions. It forces you to use
computation induction in its primitive form. Unfortunately the implementation cannot be blamed
for everything. A proof of Wilson’s theorem, for example, would be virtually impossible even by
mathematical induction. LCF terms not only have interprettitions  as functions, but can also be
interpreted $s computation rules. Although this duality has not been fully exploited it is the
essential reason that the simplification  mechanism of LCF is so successful.
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APPENDIX 1

A BRIEF DESCRIPTION OF LCF

The syntax of LCF sentences is described In detail in Milner 1972a. Here we only give an infol*mal
description of the language, its interpretation and enough of the abbreviation conventions to make
the formulas in this report intelligible to those not familiar with LCF.

c

There are two kinds of base variables and constants in LCF. Those that range over individuals
and those that range over truth values. Each term has an associated type. If t is a term and u its
associated type symbol we write t:fl. IND and TV are type symbols. If d and ? are type symbols
then so is (~7). We write x:IND and x:TV for x of type individual and truth values respectively.
There are variables and constants for each different type symbol. The variable symbols of different
types ‘are supposed to be disjoint. There are three constants of type TV. They are TT for true, FF
for false, and UU for undefined.

Terms are formed as follows: if X:Q is a variable and f:? then [xx.t]:(a-+?)  is a term whose
interpretation is a function from things of type Q onto things of type 7. In LCF [xx.[xy.t]] is

i
abbreviated by [Xx y.11. If ~(647) and s:@  then r(s)% We interpret r(s) as the result of applying the
function r to the argument s. We frequently write this r s, thus

a b c E a(b)(c)a(a(b))(c)sa(b,c).

L
Note that if 7 is TV then r is a predicate. Conditional expressions are formed as (p+q,r), where
p:TV  and q, r are of the same type. On the undefined truth-value the conditional is undefined, i.e,
for all q and r, (UU+q,r)zlJU. Terms are also built up using the least fixed point operator d. If x:u
is a variable and S:U+Q  then [ocxs]  is a term representing the least fixed point of the functional S.

i
L

.

.

Atomic well formed formulas (or AWFFs)  are formed by joining two terms using E or c, i.e. if r and
a are terms then res and rcs are AWFFs.  r=s means that the functions denoted by r and s are the
same, In a full description of the theory there is also a partial order between terms of the same type.
This is represented using c.

.
The more usual definition of the factoria! function fact(n)  + if x=0 then I else n::fact(n-i)  becomes
in L C F

I
F A C T  3 [ocf.[Xn.(n=O-+l ,n*f(n-I)]].

LCF also allows two other abbreviations.

Vx.frg is the same as [Xx.f]z[Xx.g].

Because terms are interpreted as extensionally given  functions, this definition makes sense.

P::QsR is the same as (P+Q,UU)s(P+R,UU)

Intuitively this is read as: If P is true then QER, otherwise I don’t know anything.
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APPENDIX 2

THE ABSTRACT SYNTAX

2.1 Sylltax for Statetnerlts

AXIOM SYNAXS:

V d s. type(mktext  d s) E ,T,
V d s. declof(mktext  d s) p d,
V d s. statmof(mktext  d s) f s,

V d l  d2. type(mkcmpnd  dl d2) p -CM,
V dl ‘d2.  fstof(mkcmpnd dl d2) = d l ,
V dl d2. rmdof(mkcmpnd dl d2) z d2,

V n ty. type(mktypedef  n ty) z ,TD,
V n ty. namofhktypsdef  n ty) 1 n,
V n ty. typof(mktypedef  n ty) E ty,

V nl n2. type(mksublim  nl n2) E ,SL,
V nl n2. ibof(mksublim nl n2) E nl,
V nl n2. ubof(mksublim nl n2) 3 n2,

V al ty. type(mkarspec  al ty) 5 -AS,
- V al ty. arlimof(mkarspec  al ty) E al,

V al ty. typelof(mkarspec  al ty) 3 ty,

V il i2. type(mkpair  il i2)E -PA,
V i 1 i2. fstof(mkpair  il i2)z il,
V i 1 i2. rmdof(mkpair  il i2)e i2,

V n ty. type(mkvardocl  n ty) * ,VD,
V n ty. namof(mkvardecl  n ty) = n,
V n ty. typof(mkvardecl  n ty) 2 ty,

V n ps. type(mkprocdecl  n ps) f ,PD,
V n ps. namof(mkprocdecl n ps) 5 n,
V n ps..prspof(mkprocdecI  n ps) E ps, _

V n fs ty. typo(mkfundecl  n fs ty) = ,FD,
V n fs ty. namof(mkfundecl  n fs ty) E n,
V n fs ty. fnspof(mkfundecl n fs ty) p fs,
V n fs ty. typeof(mkfundecl  n fs ty) a ty,

V f t.typo(mkprocspoc  f 1) f ,PS,
V f t.fargof(mkprocspec  f 1) z 1,
V f t.textof(mkprocspec f 1) 5 1,

V f t.type(mkfunspec  f 1) 5 ,FS,
V f t.fargof(mkfunspec  f 1) i f,
V f t.textof(mkfunspec  f 1) H 1,

I.

46



t The Semantics of PASCAL in LCF

V x ty. type(mkvarp  x ty) I ,VRP,
V x ti. namof  (mkvarp x-ty) E x,
V x ty. typof(mkvarp x ty) 5 ty,

V x ty: type(mkvalp  x ty) 5 -VLP,
V x ty. namof(mkvalp x ty) = x,
V x ty. typof(mkvalp  x ty) E ty,

’ V x ty. type(mkfunp  x ty) p -FP,
V x ty. namof(mkfunp x ty) E x,
V x ty. typof(mkfunp  x ty) B ty,

c

V x. type(mkprocp x) 5 ,PP,
V x. namof(mkprocp  x) s x,

. V I ‘s. type(mklabstat  I s) E ,LS,
V I s. labelof(mklabstat  I s) E I,
V I s. statmof(mklabstat  I s) z s,

5,‘ V n. typetmkread  n) 5 ,RD,
V n. namof(mkread  n) E n,

i *
V n. type(mkwrite  n) = ,WT,
V n. namof(mkwrite  n) f n,

i, I
‘L

Vn. type(mkgoto  n) 5 -G,
Vn. labelof(mkgoto  n) 5 n,

L
Vn e. type(mkass  n e) p -A,
Vn e. Ihsof(mkass  n e) 2 n ,
Vn e. rhsof(mkass n e) = e ,

I
L

V n a. type(mkproccall  n a ) H -PC,
V n a. namof(mkproccall n a ) a n,
V n a. actargof(mkproccall  n a) 3 a,

L

Vbe pl p2. type(mkcond be pl ~2) E -C,
Vhe p 1 p2. testof(mkcond be pl p2) z be,

;jl p2, thenof(mkcond be pl p2) =’ pl,
p I p2. elsoof(mkcond e p 1 p2) E p2, _

Vt b. type(mkwhile  t b) E -W,
Vt b. testof(mkwhile t b) -z t ,
Vt b. bodyof(mkwhile  t b) H b,

Vb 1. type(mkrepaat  b t) f -R,
Vb t. bodyof(mkrepeat  b 1) 5 b,
Vb 1. teslof(mkrepoat b 1) 5 t ,

47

Vi 01 02 b. typo(mkforto  i el e2 b):,FT,
Vi el e2 b. indexof(mkforto  i el e2 b): i,
Vi el e2 b. Ibof(mkforto  i el e2 b)s el,
Vi e 1 e2 b. ubof(mkforto  i el e2 b): 02,
Vi e 1 e2 b. bodyof (mkforio  i el e2 b)g b,
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Vi el e2 b. type(mkfordn  i el e2 b)n,FD,
Vi e l  e2 b. indexof(mkfordn  i el e2 b)p i,
Vi e 1 e2 b. ubof  (mkfordn i el e2 b)z el ,
Vi el e2 b. Ibof(mkfordn  i el e2 b)= e2,
Vi el e2 b. bodyof(mkfordn  i el 82 b)z b,

type UU E UU,
type ES E -ES,
type EOF s BEOF;

2.2 Syntax  for Expressions

AXIOM EXPRAX:

Vo e l .  type(mkexpr1 o el) g -E,
Vo el. opof(mkexpr1  o 01)  E 0,
Vo el. arglof(mkexpr1  o el) z el,

Vbo bel. type(mkbexpr1  bo bol)  E -BE,
Vbo be1 . bopof(mkbexpr1  bo be1 ) E bo,
Vbo bel. barglof(mkbexpr1  bo bel) =’ bel,

Vo el e2. type(mkexpr2  o e l  e2) E -E,
Vo el 82. opof(mkoxpr2  0 el 82) E 0,
Vo eC 82. arglof(mkexpr2  o e l  82) E e l ,

- Vo el e2. arg2of(mkexpr2  o el 82)  z 82,

Vbo be1 be2. type(mkbexpr2 bo be1  be2) g -BE,
Vbo be1  be2. bopof(mkboxpr2  bo b o l  be2) 5 bo,
Vbo be1 be2. barglof(mkbexpr2  bo be1  be2) t b e l ,
Vbo be1 be2. barg2of(mkbexpr2  bo be1 be2) g be2,

Vbo el 82. type(mkrel  bo e l  82) z -BE,
Vbo e l  82. bopof(mkrel  bo el 02) 3 bo,
Vbo el 82. arglof(mkrel bo el 82) f e l ,
Vbo el 82. arg2of(mkrel  bo el 82) : 62,

V n i. type(mkae n i) : ,AE,
V n i. namof(mkae n i) H n,
V n i. subof(mkae n 1) 3 i,

V n a. type(mkfundes  n a) E ,FA,
V n a. namof(mkfundes n a) ‘= n,
V n a. actargof(mkfundes  n a) E a,

48

V n. 4ype(mknumconst  n) s -NC,
V n. numof(mknumconst  n) E n;
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2.3 Prcdicatcs for the Idelltificatiorl  of Sylltactic  Constmcts

AXIOM PREDAX:

Vx. istext x =- type x = ,T,
Vx. iscmpnd  x 5 type  x = -CM,
Vx. istypedef x E type x = ,TD,
Vx. issublim  x E type  x = ,SL,
V x .  isarspec x r type  x 8 -AS,
Vx. ispair x E type x = -PA,
Vx. isvardecl x 8 type  x = -VD,
Vx. isprocdecl x 3 type  x = ,PD,
Vx. isfundecl  x B type  x = ,FD,
Vx. isprocspec x z type x = ,PS,
VX. isfunspec  x s type x = ,FS,
Vx. isvarp x e type  x = ,VRP,
Vx. isvalp x p type  x = -VLP,
Vx. isfunp  x 5 type x = ,FP,
Vx. isprocp x E type x = ,PP,

Vx. islabstat x E type  x = -IS,
Vx. isread x a type x = ,RD,
Vx. iswrite x E type  x = ,WT,
Vx. isgoto  x 5 type  x = ,G,
Vx. isass x = type  x = -A,
Vx. isproccall  x 2 type  x = -PC,
Vx. iscond  x = type x = -C,
Vx. iswhile  x E type  x = -W,
Vx. isrepeat x p type  x = ,R,
Vx. isforto  x p type  x s J-T,
Vx. isforcln  x E type x = ,FD,

Vx. isemptyst  x 2 type  x = -ES ,
Vx. iseof x E type  x = ,EOF,

Vx. isconst  x E type  x = -NC,
Vx. isname  x E type  x = -N,
Vx. isexpr  x H type x = ,E,
Vx. isbexpr  x E type  x = -BE,
Vx. isrel x z type x = -BE,
Vx. isae x z typo x = ,AE,
Vx. isfundes  x 2 type  x = JA;

4 9
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2.4 Auxiliary  Predicates  and F u n c t i o n s

AXIOM AUXSYN :

isname FUNV p FF,

fstof EOF z UU,

I’
. I

rmdof  EOF 5 UU;

issingle  5 [Xst. (isread  st)v(iswrite  st)v(issimple  ;t)v(isemptyst St)],

issimple  5 [Xst. (isgoto st)v(isass st)v(isproccall  St)],

fortest  I [xx .isforto(x)~mkrel(!seq,lbof(x),ubof(x)),isfordn(x)~mkrel(greq,ubof(x),lbof(x)),UUJ  ,

fortoup*: [Xx .mkcmpnd(mkforto(indexof(fstof(x)),mkexprl  (plusl,indexof(fstof(x))),
ubof  (fstof  (x)),bodyof (fstof(x))),rmdof  (xl)],

fordnup  = [Xx .mkcmpnd(mkfordn(indexof  (fstof  (x)),mkexpr  1 (minus  1 ,indexof  (fstof  (x))),
lbof(fstof(x)),bodyof(fstof(x))),rmdof(x))],

isrepwh  5 [Xst. (isrepeat st)v(iswhile St)],

isiter = [Xst. (isforto  st)v(isfordn  st)v(isrepwh St)],

isparameter  5 [Xx. (isvarp x)v(isvalp  x)v(isprocp  x)v(isfunp x)],

isbasetype 3 [Xn.(n=INT)v(type(n)=,SL)],

istyppart  5 [Xn.ispair(n)viseof (n)],

occurs = [&F.[\n  st.
isemptyst  St + uu,
iscmpnd  st + F(n,fstof st)vF(n,rmdof  St),
islabstat st + (n=labelof  st)+TT,F(n,rmdof  St),
issingle st + FF,
isiter st + F(n,bodyof st),
iscond  st + F(n,thonof st)vF(n,elseof  st),UU]],

append  = [ocF.[X  s t l  st2.
isemptyst  stl -$ st2,
iscmpnd  st 1 -) mkcmpnd(fstof  st i, F(rmdof  stl ,st2)),UU]],

segm g [&F.[kn st.
isemptyst  St + UU,
iscmpnd  St+
isemptyst  st +F(n,rmdof  St),
Jslabstat(fstof  st)+(n=labelof St)+ st,F(n,mkcmpnd(statmof(fstof  st),rmdof St)),
issingle(fstof  st) +F(n,rmdof  St),
iscond(fstof st) *occurs(n,thenof(fstof  st))+append(F(n,thenof(fstof  st)),rmdof  St),

occurs(n,elsoof  (fstof  st))+appond(F(n,elsoof  (fstof  st)),rmdof  St),
F(n,rmdof St),

isrepwh(fstof st)+occurs(n,bodyof(fstof  st))+append(F(n,bodyof(fstof  st)),st),
F(n,rmdof St),

isforto(fstof st)+occurs(n,bodyof(fstof  st))+append(F(n,bodyof(fstof  st)),fortoup(st)),
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F(n,rmdof st),
isfordn(fstof  st)+occurs(n,bodyof(fstof  st))-+append(F(n,bodyof(fstof  st)),fordnup(st)),

F(n,rmdof st),UlJ,UU]],

isvariable  p [Xx.isname(x)visae(x)],

c
isunary 3 [Xx.(x=pplus)v(x=pminus)v(x=plus  1 )v(x=minusl )],

isbunary  E [Xx.(x=not)),

isbinary t- [Xx.(x=plus)v(x=minus)v(x=times)v(x~div)v(x~rmdr)v(x=and)v(x~or)v
(x=lseq)v(x=greq)v(x4)v(x=gt)v(x~eq)v(x=neq)J,

. .

i
isbbinary 4 (Xx.(x=and)v(x=or)],

isrelop s [Xx.(x=lseq)v(x=greq)v(x=lt)v(x=gt)v(x=eq)v(x=noq)];

c

c
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APPENDIX 3

THE SEMANTICS

3.1 Top  Level  Functions

AXIOM TOPSEM:

FUNCT f [Xp o i.(lNPUT@PASCAL(p,o)@OUTPUT)(i)],

PASCAL 5 [Xp o i. MP(p,B,FRAMEB(p,o,i))],

FRAME0 = [it i o f. (f=0)+[Xloc.(loc=fileloc  INP) + INTERNALREP(
(loc=filoloc  OUT)  + INTERNALREP(
(loc4extloc)  + statmof  t,UNDFF],UU],

MP E [Xt 1. MD(declof  t,f)@MS(statmof t,f)],

INPUT = ID,

OUTPUT  E (acF.[Xs.[Xi.iseof i +EOF,
ispsir i -+mkpair(F(fstof  i),F(rmdof i)),
isconst  hnumof  (i),UU)(OBUFFER s)]],

INTERNALREP  5 [ocF.[Xi.issof  i +EOF,
ispair i +mkpair(F(fstof  i),F(rmdof i)),
isint i +mknumconst(i),UU]];
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MD L [Xd 1. MDEF(d,f)eMDEC(d,f)],

MDEF p [ocF.[Xd  f.isemptyst d + ID,
istypedef  d + CREAT(f,namof  d,typof  d),
iscmpnd d + F(fstof d,f)@F(rmdof  d,f),lD]],

c

MDEC = [ocF.[Xd  fhmptyst d + ID,
isvardecl d -+ CREAV(f,namof  d,typof  d,f),
isprocdocl  d + CREAP(f,namof  d,prspof  d,f),
isfundecl  d + CREAF(f,namof  d,fnspof  d,typeof d,f,f),
iscmpnd d + F(fstof d,f)@F(rmdof  d,f),lD]],

CREAT = [Xf h ty s.CREALOC(f,s,typidloc,n,ty)], -

CREAV E [Xf n ty fl s.CREALOC(f,s,typeloc,n,TYPEVAL(ty,fI,s))],

s- CREAP 3 [if n ps 11 s.STORE(f,CREALOC(f,s,acclnk,n,fl),procloc  n,ps)],

I
CREAF = [Xf n fs ty ft 11 s.

STORE(f,STORE(f,CREALOC(f,s,acclnk,n,fl),typfunloc n,TYPEVAL(ty,ft,s)),funcloc  n,fs)],

i
CREALOC  p [Xf s IOC n val.lSPRESENT(n,s(f))-+UU,STORE(f,s,loc n,val)];

‘L

L .
t
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3.3 Definition  of MS

AXIOM MSDEF:

MSz[ocF.[Xst  1.
isemptyst st -+ ID,
iscmpnd st
isemptyst(fstof:t)+  F(rmdof  s&f),
islabstat(fstof  St)-+ F(mkcmpnd(statmof(fstof  st),rmdof  s
i s g o t o ( f s t o f  s t )  -+ GOTO(F,labelof(fstof  st),f),

‘t),f),

isass  (fstof st) + ASSIGN(lhsof(fstof  st),MEXPR(rhsof(fstof  st),f),f)@F(rmdof  st,f),
isproccali(fstof  st)+[Xs.MPB(PROCFAL(namof(fstof  st),f,s),actargof(fstof  st) , f ,s,namof(fstof st))]s

[Xs.MD(Pf?OCDECL(namof(fstof  st),f,s),succ f,s)]@
[Xs.F(PROCBODY(namof(fstof  st),f,s),succ f,s)]@CLEAR(succ  f)@F(rmdof  s&f),

isread(fstof st) + READ(namof (fstof st),f )@F(rmdof  st,f),
iswr’ite(fstof  s t )  + WRITE(namof(fstof  st),f)@F(rmdof  st,f),
i s c o n d ( f s t o f  s t )  + COND(MBEXPR(testof(fstof  st),f),

F(appond(thonof  (fstof st),rmdof  st),f ),F(append(elseof  (fstof st),rmdof  st),f)),
iswhile(fstof  s t )  + COND(MBEXPR(testof(fstof  st),f),

F(append(bodyof(fstof st),st),f),F(rmdof  st,f)),
isrepeat(fstof  st) -+ F(appond(bodyof  (fstof st),mkcmpnd(mkcond(mkbexpr 1 (not,

testof  (fstof st)),fstof  st,ES ),rmdof st)),f),
i s fo r to ( fs to f  s t )  + COND(MBEXPR(fortost(fstof  st),f),

ASSIGN(indoxof(fstof  st),MEXPR(lbof(fstof  st),f),f)@
F(append(bodyof(fstof  st),fortoup  st),f),F(rmdof  st,f)),

isfordn(fstof  s t )  + COND(MBEXPR(fortest(fstof  st),f),
ASSIGN(indexof  (fstof  st),MEXPR(ubof  (fstof  st ),f),f)@
F(append(bodyof(fstof  st),fordnup  st),f),F(rmdof  st,f)), UU,UU]J;
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3.4 Axiotr~s for Statements

A X I O M  STATSEM:

READ = [An f s.lSFUNFR(f,s,B)+ASSIGN(n,MEXPR(fstof(IBUFFER  s),f),f,
STORE(O,s,fileloc INP,rmdof(lBUFFER  s))),UU],

W R I T E  3 [in f s.lSFUNFR(f,s,O)+  STORE(O,s,fileloc  O U T ,
mkpairhknumcon~t(FETCHV(n,f,s)),OBUFFER  s)),UU],

G O T 0 z [XF.[Xn  f .  F(segm(n,TEXT(f)),f)]],

A S S I G N  E [dF.[h v f s.
n=FUNV~ISADMISVAL(c(f,typolac  FUNV),v(s))+STORE(f,s,FUNv,v(&,UU,
lSlNTYPEln,v,f,s)~STORE(f,s,LOCOFVAR(n,f,s),v(s)),
istopf(f)+UU,
ISFUNFR(f,s,NEWFP(n,f,s))~F(VARBNDTO(n,f,s)iv,NEWFP(n,f,s),s),UU]I,

COND H h f & s.(q(sbf(s),g(s))],

MPB s [ X f a  aa f s n.BIND(fa,aa,succ  1,
MAKFRAME(PROCBODY(n,f,s),PFLNK(n,f,s),succ  f,s))],

CLEAR E [Xf s f 1 .(f I=f)+UU,s(f I)];

55
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3.5 Billding Mechanism

AXIOM BINDINGS:

BIND i [ocF.[Xfa aa f s.
iseof fa 4 (iseof aa + s,UU),
isparameter(fstof  fa)+F(rmdof  fa,rmdof  aa,f,MKBINDING(fstof  fa,fstof  aa,f,s)),UU]],

MKBINDING L [Xfa aa f s.
isvarp(fa)  + TYMATCH(fa,typoloc,aa,f,s)  +CREALOC(f,s,bindloc,namof  fa,EXPRFORV(aa)),UU,
isvalp(fa) + ASSIGN(namof fa,MEXPR(aa,f),f,CREAV(f,namof  fa,typof fa,CRNTF(f,s),s)),
isfunp(fa)  3 TYMATCH(fa,typfunloc,aa,f,s)  -+

CREAF(f,namof  fa,FUNCDEF(aa,f,s),typof fa,CRNTF(f,s),PFLINK(aa,f,s),s)JJU,
isprocp(fa)+  CREAP(f,namof fa,PROCDEF(ra,f,s),PFLlNK(aa,f,s),s),UU],

TYMATCH  9 [Xfa lot aa f s.TYPEVAL(typof  fa,CRNTF(f,s),s)=TYPEDEF(lac  aa,pred f,s)],

TYPEVAL = [ocF.[Xn  f s.
isbasetype  n + n,
isarspec n + mkarspec(F(arlimof  n,f,s),F(typelof  n,f,s)),
istyppart n + iseof  n + n,ispair  n + mkpair(F(fstof n,f,s),F(rmdof n,f,s)),UU,
ISLOCAL(typidloc  n,s(f))+F(s(f,typidloc n),f,s),
istopf f -) UU,F(n,CRNTF(f,s),s)]];
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3.6 Evaluation  of Expressions

AXIOM EXPRESSIONS:

MEXPR  z [ocF.[Xe  f s. ’
isconst  e + MCONST  e,
isvariable  e + FETCHV(s,f,s),
isfundes  e + RETURN(succ  f,MF(namof  e;actargof  e,f,s)),
isexpr  e +isunary(opof e) + MOP1  (opof  o,F(arglof  e,f,s)),

isbinary(opof  e)+ MOP2(opof e,F(arglof  e,f,s),F(arg2of  e,f,s)),UU,UU]J,

MF 5 [in a 1. MFB(FUNCFAL(n,f),a,f,n)sMP(FUNCDEF(n,f),succ  f)],

c MFB = [Xfa aa f n s.BIND(fa,aa,succ  f,CREALOC(succ  f,typeloc,FUNV,TYPEDEF(n,f,s),
MAKFRAME(FUNCBODY(n,f,s),PFLNK(n,f,s),succ f,s) ))I,

L

MBEXPR  5 [ocF.[Xe  f s.
(e=true)+TT,(e=false)-+FF,
isbexpr e +isbunary(bopof e) + MBOPI (bopof  e,F(bkglof  e,f,s)),

isbbinary(bopof  e)+ MBOP2(bopof e,F(barglof  e,f,s),F(barg2of  e,f,s)),
isrelop(bopof  e)+RELOP(bopof  e,MEXPR(arglof e,f,s),MEXPR(arg2of  e,f,s)),UU,UU]J,

MCONST  t [hx,isconst  x -) numof  x,UU],
MOP1 I [hx.x=pplus+Xx.x,x=pminus+~x.(&x),x=plus  1 +succ,x=minus  1 +pred,UU],
MBOPI = [Xx.x=not+,UU  1,

i-
MOP2 z [Xx.x=pIus+!*,x=minus+!-,x=t imes+!*,x=div+!/,x=rmdr+mod,UU  1,
MBOP2 = [X x.x=and+!l\,x=or+!v,UU],

- RELOP  = [Xx.x=lseq+!$x=greq +!&x=lt+!(,x=gt+!>,x=eq+!=,x=neq-+#,UUJ;
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3.7 Variables

AXIOM VARIABLES:

NAMOFVAR  : [Xv,n=FUNV4JU,isname  v+v,isae  v+namof v,UU],
LOCOFVAR  3 [xv f s.isname  v+v,isae v+arloc(namof  v,VAL(subof  v,f,s)),UU],
TYPOFVAR z [Xv f s.isname  v+TYPEOF(v,f,s),isae  v+typolof(TYPEOF(namof  v,f,s)),UU],
EXPRFORV  E [Iv f sisname v+v,isae v+mkae(namof v,EXPRVAL(subof  v)),UU],
VARBNDTO 5 [Xv f s.lSBND(NAMOFVAR  v,f,s)*

isname  v + BVALOF(v,f,s),
isae v + mkae(BVALOF(namof  v,f,s),subof  v),UU,v],

ISINTYPE 1~ [Xv val f s.lSLOCAL(typeloc NAMOFVAR(v),s(f))  -+
ISADMISVAL(TYPOFVAR(v,f,s),val(s)),FF],

ISADMISVAL  i [Xty v.(ty=INT)+isint v,issublim  ty4SINBOUND(v,ty),UUJ,

ISINBOUND  H [ocF.[Xx  y.
iseof x + TT,
ispair x + F(fstof x,fstof  y)AF(rmdof x,rmdof  y),
isint x + issublim y-+(xlnumof (Ibof y))A(x<numof  (ubof  y)),UU,UU]},

VAL E [ocF.[Xp  f s.
iseof p + EOF,
ispair p + mkpair(MEXPR(fstof  p,f,s),F(rmdof p,f,s)),UU]J,

EXPRVAL a [ocF.[Xp  f s.
iseof p + EOF,
ispair p + mkpair(mknumconst(MEXPR(frstof  p,f,s)),F(rmdof  p,f,s)),UU]];
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1.. * 3.8i The Lookup  of the Store

AXIOM LOOKUP:

IBUFFER  4 [Xs.s(O,fileloc  INP)],
OBUFFER  ,= [Xs.s(B,filoloc OUT)],
TEXT 5 [Xf s.s(f,toxtloc)],
PROCDEF 5 [in f s.FETCH(procloc  n,f,s)],
FUNCDEF  s [xn f s.FETCH(funcloc  n,f,s)],
TYPEDEF  s [xloc f s.FETCH(loc,f,s)],
PROCTXT  g [An f s.textof(PROCDEF(n,f,s))],
FUNCTXT  E [An f s.textof (FUNCDEF(n,f,s))],
PROCFAL  1 [in f s.fargof (PROCDEF(n,f,s))],
FUNCFAL  E [An f s.fargof(FUNCDEF(n,f,s))],
PROCBODY  E [An f s.statmof(PROCTXT(n,f,s))],
FUNCBODY  z [An f s.statmof(FUNCTXT(n,f,s))],
PROCDECL 3 [An f s.declof(PROCTXT(n,f,s))],
FUNCDECL  = [An f s.declof  (FUNCTXT(n,f,s))],

PFLNK
NEWFP

E [in f s. FETCH(acclnk  n,f,s)],
z [An f s. ISBND(NAMOFVAR  v,f,s)+  pred f,CRNTF(f,s)],

CRNTF 3 [Xf s. s(f,alnk)],
FETCH p [ocF.[XI  f s.lSLOCAL(l,s(f))~s~f,l~,istopf(f)~UU,F(l,CRNTF(f,s),s)J],
FETCHV  5 [ocF.[xn f s.lSLOCAL(typeloc NAMOFVAR(n),s(f))j

ISLOCAL(NAMOFVAR(n),s(f))~s(f,LOCOFVAR(n,f,s)),UU,
istopf(f)jUU,F(VARBNDTO(n,i,s),NEWFP(n,f,s),s)]),

t

TYPEOF  -= [in f s.s(f,typeloc  n)],
BVALOF s [An f s.s(f,bindloc  n)];

L

L
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3.9 Updating arid Miscellaneous  Axioms

AXIOM UPDATE:

STORE I [If s lot val.[Xf 1 .f 1 ~f+MODFRAME(s(f),loc,val),s(f  1 I]],
MODFRAME  B [If lot val.[Xloc  1 .IOC 1 =loc+vaI,f  (lot I)]],
MAKFRAME  f [Xtxt In f s.[Xf 1 .f 1 =f+[Xloc 1 .loc  1 =textloc+txt,loc  1 =alnk + In,UNDEF],s(f  1 )] J;

AXIOM FRAME:

frame = [Xs f.s(f)J,
istopf  s [Xf.(f=6)];

AXIOM AUXSEM:

!@ E [Af g r.g(fWJ,
ID t [~x.xJ,
ISFUNFR  E [acF.[Xf s nf. ISLOCAL(FUNV,s(f))+  FF,pred fwf +TT,F(pred  f,s,nf)]J,
ISLOCAL  s [Xloc  fr.fr(loc)=UNDEF+FF,TTJ,
ISPRESENT  s [An fr.isname n+lSLOCAL(typidloc  n,fr)vlSLOCAL(typeloc  n,fr)v

ISLOCAL(acclnk  n,fr)vlSLOCAL(bindloc n,fr),UU],
RETURN 3 [Xf s.lSLOCAL(FUNV,s(f))+s(f,FUNV),UU],
ISBND z [h s f.lSLOCAL(bindloc n,s(f))];
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APPENDIS  4

Proof of the equivalence involving WHILE for goto-free programs

4.1 List of LCF cotnnrallds

TRY 1 INDUCT -;
TRY 1 SPREF;

LFWEL  INDUCT;
TRY 2 SPREF;
USE GOTOF;
RPPL - ,S,mkcmpndfmkwhile(t,S),ES),f;
LFIBEL  H E L P ;
SINPL - BY GOTOFI;
RPPL .‘INDUCT,S,  t,f;
SINPL -;
U S E  CONDl  -;
RPPL -,NBEXPR(t,f),S;
SIMPL -;
SS+. HELP:

TRY SSUBST .tISFP OCC 3;
TRY ;QED;

e

c

c
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4.2 Printout of the proof

--------------------
ITRY #l VS t f . isqotofree(S)  :: WHILE(MBEXPR(t,f),nS(S,f))  c llS(mkcmpnd(mkuhtle(t,S),ES),f) INDUCT 331 w

__------------------
1 ITRY #I#1 vs t f . isgotofree(S) : :  UU(MBEXPR(t,f),MS(S,f))  c flS(mkcmpnd(mkuhile(t,S),ES),1) SPREF.
I I332 vs t f . isgotofree(S) : :  UU(MBEXPR(t,f),MS(S,f))  c l%(mkcmpnd(mkuhile(t,S),ES),f) - - -  S P R E F  RY .

I I --------------------
--------------------

f ITRY #1#2 vs t f l isgotofree(S)  :: [At b ,CONO(t,beF(t,b),ID)I  (tlBEXPR(t,f),llS(S,f))  c flS(mkcmpnd(mkwhi  le(tW
,S),ES),f)  : ASSUIIE vs t f . isgotofree(S) : :  F(MBEXPR(t,f),llS(S,f))  c fiS(mkcmpnd(mkwhile(t,S),ES),f) SPREu
F.

I 1333 vs t f . isgotofree(S) : :  FQlBEXPR(t,f),MS(S,f))  c tlS(mkcmpnd(mkuhile(t,S),ES),f) (333) - - -  RSSUME.
I 1334 isgotofree(S)  z T T  (334)  - - -  SRSSUME.
I 1335 vs P f . isgotofree(S)  I: isgotofree(P)  :: llS(appond(S,P),f)  I MS(S,f)ellS(P,f) - - -  U S E  GOTOF.
I I336 IAS P  f  ,  isgotofree(S)~(isgotofree(P)~flS(append(S,P),f),UU),UUl  (S,mkcmpnd(mkwhi le(t,S),ES),  1) z [AS P r*

f , isgotofree(S)~(isqotofree(P)~(MS(S,f)aMS(P,f)),UU),UUI  (S,mkcmpnd(mkuhile(t,S),ES),f) - - -  FlPPL 3 3 5  S  mkcmpnd-
(mkwhile(t,S),ES)  1.
I 133’ MS(append(S,mkcmpnd(mkuhil9(t,S),ES)),f) (334)
B Y  3 3 4  GbTOFl .

E f’lS(S,f)aflS(mkcmpnd(mkuhile(t,S),ES~,f) - - -  S I M P L  336~

I  1 3 3 8 [AS t f ,isqotofr9e(S~~F(MBEXPR(t,f),nS(S,f~~,UUI(S,~,f)  c IAS  t f . itgotofree(S)~~S(mkcmpnd(mkwhi  le(tw’
,S),ES),f),UUI(S,t,f)  (333)  - - -  FlPPL  3 3 3  S  t  1.

I 1339 F(tlBEXPR(t,f),MS(S,f))  c MS(mkcmpnd(mkuhile(t,S~,ES),f~  ( 3 3 3  334) - - -  SItlPL 3 3 8  B Y  3 3 4  ,
1 1340 VT Sl . COND(T,MS(Sl,f)sF(MBEXPR(t,f),HS(S,f~),ID~  c CONO~T,~S~Sl,flsMS~mkcmpnd~mkwhile(t,S),ES),f),ID~

1 (333 334) - - -  U S E  CON01  3 3 9 .
I I341 [AT Sl .COND(T,tlS(Sl,f)sF(MBEXPR(t,f~,llS(S,f~),ID~l  (MBEXPR(t,f),S)  c IAT Sl .COND(T,flS(S1,f)~flS(mkcmpnz

d(mkwhrle(t,S~,ES),f),IO~I~tlBEXPR(t,f),S~  ( 3 3 3  3341 - - -  A P P L  3 4 0  MBEXPR(t,f)  S,
I 1342 CONO(MBEXPR(t,f),~S(S,l)nF(MBEXPR(t,f),MS~S,f~~,IO~  c CONO(MBEXPR(t,f),MS(S,f~~MS(mkcmpnd(mkwhi  le(t,S)..,

‘ES),  f), ID) ( 3 3 3  334) - - -  SItlPL 3 4 1 .
1 1 - - - - - - - - - - - - - -  - - - - - -
1 1 ITRY #1#2#1 COND(MBEXPR(t,f),~S~S,f~~F(MBEX?R(t,f),MS(S,f)),ID)  c tlS(mkcmpnd(mkwhile(t,S),ES),f) SSUB-

ST 320 OCC 3.
1 1 1 __‘------------------
t I I [TRY  #1#2#1#1 COND(HBEXPR(t,f),~lS~S,f~~F(MBEXPR(t,f),flS(S,f)),IO)  c CONDOIBEXPR(t,f),MS(S,f)nMS(mkcmpndY

(mkwhile(t,S),ES),f),ID)  .
1 1 1 __------------------

I I I343 COND(MBEXPR(t,f),~S(S,l)sF(~BEXPR(t,f),BS~S,f~~,IO~  c tlS(mkcmpnd(mkwhile(t,S),ES),f~ ( 3 3 3  3 3 4 )  - - -  N
SSUBST 342 USING 328 OCC 3.

--_---..-------------
I 1344 vs t f . isgotofree(S)  : : [At b .COND(t,b&(t,b),ID)l  (MBEXPR(t,fi,tlS(S,f))  c MS(mkcmpnd(mkwhi le(t,S),E-

S),f) (333) --- SPREF 343,
- - - - - - - - - - - - - - - - - - - -

1345 vs t f . isgotofree(S)  t: WHILE(MBEXPR(t,f),tlS(S,f~~  c llS(mkcmpnd(mkwhile(t,S),ES),f) - - -  I N D U C T  3 3 2  3~
44.
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APPENDIX 5

Proof of the equivalence involving REPEAT for goto-free  programs

5.1 List of LCF conmarlds

TRY 1 INDUCT -;
TRY 1 SPREF j

LWEL  INDUCT;
TRY 2 SPREF; *
USE GOTOF;
APPL - ,S,mkcmpnd(mkcond(mkbexprl(not,  t),mkrepoatG,t),ES),ES),f  1
LABEL HELP;
SIrlPL*- BY COTOFI;
RPPL  . INDUCT,S,  t ,  1;
SIMPL -;
U S E  CONDl  -;
APPL -,tlBEXPR(mkbexprlhot,t),f),S;
SItlPL  - ;
SS+.  HELP;

TRY SSUBST .flSFP OCC 3;
TRY SSUBST .tlSFP OCC 4;
TRY ;QED;

t

I-
!
L
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5.2 Printout of the proof

--------------------
(TRY #l VS t f . isgotofree(S) : :  REPERT(HS(S,f),HBEXPR(mkbexprl(not,t),t))  c HS(mkcmpnd(mkrepeat(S,t),ES),f)w

INDUCT 331 .
I - - - - - - - - - - - - - - - - - - - -
1 ITRY #l#l VS t f . isgotofree(S) : :  UU(flS(S,f),MBEXPR(mkbexprl(not,t),f))  c HS(mkcmpnd(mkrepeat(S,tJ,ES),f),,

SPREF.
I 1332 vs t f . isgotofree(S) : :  UU(HS(S,f),HBEXPR(mkbexprl(not,t),f))  c HS(mkcmpnd(mkrepeat(S,t~,ES),f~  - - -

- SPREF BY .
I --------------------

--------.------------
i (TRY #1x2 vs t f . isgotofree(S)  : : tAb  t .beCONO(t,F(b,t~,IO~l(fiS(S,f~,HBEXPR(mkbexprl(not,t~,f~~  c MS(mkcu

mpnd(mkrepeat(S,t),ES),f)  : WWlE vs t f . isgotofree (S) : : F(HS(S,f),HBEXPR(mkbexprl(not,t),f))  c flS(mkcmpnd..,
(mkrepeat(S,t),ES),f) SPf?EF.
I 1333 vs t f . isgotofree(S) : :  F(HS(S,C),HBEXPR(mkbexprl(not,l),f)I  c HS(mkcmpnd(mkrepeat(S,t),ES),f) (333w

1 --- ASSUHE.
I I334 isgotofree(S)  E Tf ( 3 3 4 )  - - -  SRSSUHE.
I 1335 ,vs P f * isgotofree(S1  : :  isgotofree(P)  : :  HS(append(S,P),f)  I HS(S,f)ohS(P,f) - - -  U S E  COTOF,
I 1336 (AS  P  f  .  irgotofree(S)~(isgotofree(P)~NS(append(S,P~,f~,UU),UUI  (S,mkcmpnd(mkcond(mkbexprl(not,t),mkrep.,

eat(S,t),ES),ES),f)  P [AS  P  f  .  isgotofree(S)~(isgotofree(P)~(HS(S,f)~flS(P,f~~,UU),UU)  (S,mkcmpt?d(mkcond(mkbexprl(w
not,t),mkrepeat(S,t),ES),ES),f) - - -  APPL 3 3 5  S  mkcmpnd(mkcond(mkbexprl(not,t~,mkrepeat(S,~~,ES~,ES~  1.

I 1337 flS  (append (S, mkcmpnd (mkcond (ml. ber.prl  (no t , t ) , mkrepea t (S, t ) , ES) , ES) ) , f ) P HS(S,f)o~MS(mkcmpnd(mkcond(mkbex~
prl(not,t),mkrepeat(S,t),ES),ES),f) (334) - - -  SIHPL  3 3 6  B Y  3 3 4  COTOF  .

I 1338 [AS t  f  .isgotofree(S)~F(MS(S,f),MBEXPR(mkbexprl(not,t),f~),UUl  (S,t,f)  c (AS  t  f  ,  isgotofree(S)~flS(mkc~
mpnd(mkrepeat(S,t),ES),f),UUI(S,t,f) (333) --- RPPL 333 s t 1.

I 1339 F(MS(S,f),MBEXPR(mkboxprl(not,tI,f))  c tlS(mkcmpnd(mkrepeat(S,t),ES),f) ( 3 3 3  334) - - -  SIfIPL 3 3 8  B Y  334~

1 1346 VT Sl . MS~Sl,f~aCOND~T,F~MS~S,f~,n8EXPR~mkbex~rl~not,t~,f~~,ID~  c HS(Sl,f)~COND(T,H$(mkcmpnd(mkrepeat~
(S,t),ES),f),ID)  ( 3 3 3  334) - - -  U S E  CONDl  3 3 9 .
I 1341 [AT  S l  .MS(S1,f~srCONO(T,F(MS(S,f~,llBEXPR(mltbexprl(not,t~,f~~,IO~I(MBEXPR(mkbexprlInat,t),f),S)  c [AT SW

1 .NS(Sl,f~aCOND(T,HS(mkcmpnd(mkrepaat(S,t~,ES~,f~,ID~l(flBEXPR(mkbexprl(not,t),f~,S~  ( 3 3 3  3 3 4 )  - - -  FIPPL 348 flBE-
XPR(mkbexprl(not,  t), f) S .

I- 1342 ~S(S,f~sCOND(MBEXPR(mkbexprl(not,t~,f~,F(HS(S,f~,tlBEXPR(mkbexprl(not,t~,f~~,ID~  c HS(S,f)&)ND(fiBEXpR(w
mkbexpr l  hot,  11, f) ,HS(mkcmpnd(mkrepeat  (S, t) ,ES), f), ID) (333 334)  - - -  SIMPL  3 4 1 .

1 1 - - -  - - - - - - - - - - - - - - - - -
I I (IRY  #1#2#1 HS(S,f~srCONO(I1BEXPR(~bexprl(not,t~,f~,F(flS(S,f~,MBEXPR(mkbexprl(not,t~,f~~,IO~  c flS(mkcmpnd(...

mkrepeat(S,t),ES),f) SSUBST 320 OCC 3.
1 1 1 ----------------  ----
1 1 I (TRY #l#?#l#l HS(S,f~aCONO(HBEXPR(mkbexprl(not,t~,f~,F(HS(S,f~,~BEXPR(mkbexprl(not,t~,f~~,IO)  c MS(S,f).,

cHS(mkcmpnd(mkcond(mkbexprl(not,t),mkrepeat(S,t),ES),ES),f) SSUBST 320 OCC 4.
1 1 1 1 --------i-----------
I I I I (TRY IlX2XlP111 HS(S,f~szCONO(~~XPR(mkbexprl(not,t~,f~,F(~S(S,f),nBEXPR(mkbexprl(not,t),f)),ID)  c flS(,,

S,f~~ONDl~EXPR(mkbexprl(not,t~,f~,HS(mkcmpnd(mkrepeat(S,t~,ES~,f~,ID~  ,
1 1 1 1 - -Lc-----------------

k Ii I ts3 HS(S,f)~COND(HBEXPR(mkbexprl(not,t),f),F(HS(S,f~,~~XPR(mkbexprl(not,t~,f)),I~)  c f’lS(S,f)eHS(mkcmp,,
nd(mkcone(mkbexprl(not,t),mkrgpeat(S,t),ES),ES),f)  ( 3 3 3  3 3 4 ) --- SSUBST 342 USING 320 OCC 4.

1 1 1 ..--------------  - ----

I I 1344 HS(S,f~sCONO(HBEXPR(mkl~exprl(not,t~,f~,F(HS(S,f~,HBEXPR(mkbexprl(not,t~,f~~,ID~  c MS(mkcmpnd(mkrepeaN
tCS,t),ES),f) ( 3 3 3  334) --- SSUBST 343 USING 328 OCC 3.

1 1 ----- -----

mkrepeat(S,t),ES)If)  I 1345 vs-;-;--T  tsgotofree(S)  (333) --- SPREF :: (Ab  344. t .bDcCOlJO(t,F(b,t~,ID~l(MS(S,f~,HBEXPR(mkboxprl(not,t~,f~~ c flS(mkcmpnd(-

I --------------v----- .
( 3 4 6 vs t f . isqotofree(S) :: REPERT(tlS(S,f),flBEXPR(mkbexprl(not,t),t)~  c HS(mkcmpnd(mkrepeat(S,t~,ES),1l  w

- - -  INDUCT 332 345.
----------------.e---
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APPENDIX 6

Proof. of the equivalence involving’ FORT0 for goto-free programs

6.1 List of LCF commands

TRY 1 INDUCT -;
TRY 1 SPREF;

LFlBEL  INDUCT;
TRY 2 SPREF;
USE COTOF;
RPPL - ,S,mkcmpnd(mkforto(i,mkexprl(plusl,  i),e2,S),ES)  ,f;
LF\BEL  H E L P ;
S I M P L  - ;
RPPL .INOUCT,S,  i,mkexprl(plusl,  i),e2,f;
SIMPL -;
USE CON01 -;
FIPPL -,HBEXPR(mkrel(lseq,e,e2),f),S,RSSIGN(i,REXPR(e,f),f);
SIMPL -;
SS+. HELP;

TRY SSUBST .tlSFP OCC 3;
TRY ;QEO;
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6.2 Pf-intout  of the proof

____---a------------

ITRY #l VS i el e2 f . isgotofree(S)  :: FORTO(i,el,e2,tlS(S,f),f)  c MS(mkcmpnd(mkforto(i,el,eZ,S),ES),f) I*
NDUCT 304 .

I _-------------e.----.-
1 ( T R Y  Xl#l VS i el 62 f . isgotofrae(S)  :: UU(i,el,e2,MS(S,f),f)  c MS(mkcmpnd(mkforto(i,el,eZ,S),ES),f) II

SPREF.
I 1365 VS i el e2 f . itqotofree(S)  :: UU(i,el,e2,MS(S,f),f)  c MS(mkcmpnd(mkforto(i,el,e2,S),ES),f) - - -  SPR-

EF BY .
I __--_---------------

-----------4--------

) ITRY X1X2 VS i e e2 f . isgotofree(S)  :: [ X i  e 62 b  f  .COND~MBEXPR~mkrel~lseq,e,e2~,f~,~RSSICNf~,NEXPR~e,f~~
,f)eb)aF(i,mkexprl(plusl,i),e2,b,f),ID)I(i,e,e2,flS(S,f),f)  c MS(mkcmpnd(mkforto(i,e,e2,S),ES),f)  : FlSSUME V S  iw
e e2 f . isgotofree(S)  : : F(i,e,e2,llS(S,f),f)  c flS(mkcmpndfmkforto(i,e,e2,S),ES),f) SPREF.
I 1306 VS i e e2 f . isgotofree(S)  :: F(i,e,e2,flS(S,f),f)  c MS(mkcmpnd(mkforto(i,e,e2,S),ES),f) (306) - - -  RSW

SUlIE.
I I367 isgotofree(S)  B T T  (307) - - -  SRSSUME.
1 1308  , VS P  f  ,  isgotofree(S)  :: isqotofree(P)  :: MS(append(S,P),f)  E flS(S,f)mllS(P,f) - - -  U S E  GOTOF.
I 1309 [AS  P  f  ,  isqotofree(S)~(lsgotofree(P)~MS(append(S,P),f~,UU),UUI  (S,mkcmpnd(mkforto(i,mkexprl(plusl,  i),e-

2,S),ES),f) E [AS  P  f  ,  isgotofree(S)~(isgotofree(P)~(MS(S,f)~~~S(p,f)),UU),UUI  (S,mkcmpnd(mkfwto(i,mkexprl(plusl,~
i),e2,S),ES),f)  - - - FlPPL  3 0 8  S  mkcmpnd(mkforto(i,mkexprl(plusl,i),e2,S),ES)  1.

I 1310 llS~a~~pend~S,mkcmpnd~mkfot~to~~,mCex}~rl~(~lusl,i~,o2,S~,ES~~,f~ 1 llS~S,f~allShkcmpnd(mkforto(i,mkexprl(pI~
usl, t),eZ,S),ES),f) (307)  - - - SIMPL 309 BY 307 GOTOFl  .

I 1311 tXS  i e e2 f , isgotofree(S)+F(i,e,eL, ’ MS(S,f),f),UUI(S,i,mkerprl(plusl,i),e2,f~  c tkS  I e  e 2  f  .isgotof...
ree(S)~MS(mkcmpnd(mkforto(i,e,e2,S),ES),f),UUI(S,i,mkexprl(plusl,i),e2,f) (306) - - -  FIPPL  396 S  i  mkexprl(plusl,z
i) e2 1.

I I312 F(i,mkexprl(plusl,i),e2,MS(S,f),f)  c flS(mkcmpnd(mkforto(i,mkexprl(plusl,i),e2,S),ES),f) (306  307) ---IY
SI$lPL 3 1 1  B Y  307 .

1 $1313 VT Sl H . COND~~,~H~MS~Sl,f~~~F~i,mkexprl~plusl,i~,e2,MS~S,f~,f~,ID~  c COND(T,Hu(MS(Sl,f)~~S(mkcmpnd(m~
kforto(i,mkexprl(plusl,i),e2,S),ES),f)),ID)  (306  307)  - - -  U S E  CONDl  312,

I 1314 txT Sl H .COND~T,~HaMS~S1,f~~~F~i,mkevprl~plusl,i~,e2,MS~S,f~,f~,ID~l~MBEXPR~~reI~lseq,e,e2~,f~,S,RSSz
IGN1I,NEXPR(e,f),f))  c [AT Sl H .COND~T,Ha~MS~Sl,f~JIMS~mkcmpnd~mkforto~l,mkexprl~plusl,i~,e2,S~,ES~,f~~,ID~3  (MBEw
XPR~mCrel~lseq,e,e2~,f~,S,RSSIGN~i,MEXPR~e,f~,f~~ (3’06 307) - - -  R P P L  3 1 3  flBEXPR(mkrel(Isoq,e,e?l,f)  S RSSIGN(i,w
MEXPR(e,l),f).

I I315 CONO~MBEXPR~mkreIflseq,e,e2~,f~,~RSSI(;N~i,flEXPR~e,f~,f~a:FlS~S,f~~arF~i,mkexprl~plusl,i~,e2,MS~S,f~,f~,ID~,
) c COND~MBEXPR~mkrel~lseq,e,e2~,f~,RSSIGN~i,HEXPR~e,f~,f~~~~SfS,f~~flS~mkcmpnd~mkforto~i,~kexprl~plusl,  i),e2,S),w
ES), f 11, ID) (306 307) - - -  SIttPL 3 1 4 .

I I __------------------
i i ITRY  #1X211 COND~NBEXPR~mkrol~lseq,o,92~,f~,~~SSIGN~i,lEXPR~9,f~,f~~~S~S,f~~~F~i,mkexprl~plusl,i~,e2,~S(S~

,f),f),ID)  c HS(mkcmpnd(mkforto(i,e,e2,S),ES),f) SSUBST 293 OCC 3.
1 1 1 _---------------- - - -

I 1 I ITRV #1#2#1#1 COND~MBEXPRfmkrel~lseq,e,e2~,f~,~RSSICN(i,flEXPR~e,f~,f~~MS~S,f~~~Ffi,mkexprl~plusl,  i),e2,-
nS(S,f),f),ID)  c CONO~MBEXPR~nkr9I~Iseq,e,e2~,f~,RSSIGN~i,~EXPR~a,f~,f~sp~MS~S,f~saMS~mkc~pnd~mkforto~i,mkexprl(pI~
u s l ,  i),e2,SS,ES),f)),ID)  .

4 ‘j .I ---*------------  - - -

I I I316 CONO~NBEXPR~mkrel~lseq,e,e2~,f~,~RSSIGN~i,~EXPR~e,f~,f~~~S~S,f~~~F~i,mkexprl~plusl,i~,e2,HS~S,f),f),~
,101 c flS(mkcmpnd(mkforto(i,e,e2,S),ES),f)  (306 307)  - - -  S S U B S T  3 1 5  U S I N G  2 9 3  O C C  3,

1 1 - - - - -  vs-T-,-,;-;.--T

1 131’ . Isgotofree(S)  : : [Xi.e  92 b  f  .COND~~BEXPR~mkrel~lseq,e,o2~,f~,~RSSIGN~~,~~EXPR~9,f~,f~~b~
)tiF(i,mkexprl(plusl,  iJ,e2,b,f),ID)l  (i,e,e2,llS(S,f),f)  c llS(mkcmpnd(mkforto(i,9,92,S),ES),f) (306) - - -  S P R E F  316~

__-_---------------.-
1318 VS i 91 e2 f . isgotofree(S)  :: FORTO(i,9l,e2,MS(S,f),f~  c flS(mkcmpnd(mkforto(i,el,eZ,S),ES),f) - - -  IN,.

DUCT 305 317.
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APPENDIX 7

Proof of the goto-free  factorial program ’

7.1 List of LCF cotntnands

S S +  .RPPLY,.FUNCT,.PRSCAL,.RP,.FUNCCO~P,.ID,.DP,.SP,.~D~
TRY SIHPL;
TRY INDUCT .UHILE:)

TRY 1 SPREF;
S S  +  .CONOj  S S  - .SP;
LRBEL INDUCT;
TRY 2 SPREF;
*LRBEL  Ll --;
TRY CASES -(nd);

TRY 3 SIHPL;

TRY 2;
U S E  RRITHA  .Ll  ,-;
QED -;

TRY 1 SItlPL;
R P P L  .INOUCl,prod  n,xml
SItlPL -;
T R Y  j QEOj
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3.2 Prilitout of the proof

ITRY  #I Vn x , isnat  (n) :: Isnat (x) :: RPPLY(FACTORIAL,n,x)  c FRCT(n,x) SIMPL,
I -_------------------
1 (TRY #l#l  Vn x , isnat  :: isnat : :  RESULT(WRITE(nl,O,MH1LE(MBEXPR(test,O),MS(body,O),RE~D(nl,O,RE~D(~~

2,O,~~E~V(0,n2,INT,O,CREFIV(O,nl,INT,O,FRFI~lEO(FFICTORI~L,INPUT(LIST(n,x)),EOF))))))))  c FRCT(n,x) INDUCT 314 .
-_------------------

1 1 ( T R Y  #l#l#l vn x . isnat  : :  isnat :: RESULT(WRITE(~~1,0,UU(MBEXPR(test,O),MS(body,O),REFID(nl,O,RE~D(~
n2,O,CRERV(O,n2,INT,B,CREAV(O,nl,INT,O,FR~~EO(FRCTORI~L,INPUT(LIST(n,x)),EOF))))))))  c FFICT(n,x) SPREF.

1 1 1318 Vn x . Isnat :: isnat  :: RESULT(WRITE(nl,O,UU(MBEXPR(test,O),MS(body,O),RE~D(nl,O,RE~D(n2,0,CR~
E~V(0,n2,1NT,0,CRE~V~O,nl,INT,0,FR~flE0~F~CTORI~L,INPUT~LIST~n,x~~,EOF~~~~~~~~  c FQCT(n,x)  - - -  S P R E F  B Y  TH8  THS,

; ; - - - - - - - - - - - - - - -  - - - - -
__------------------

1 1 [TRY X11112  Vn x . isnat  :: isnat : :  RESULT(WRITE(nl,O,[ht  b .COND(t,baF(t,b),ID)l(MBEXPR(test,O),M~
S(body,O),READ(nl,0,RE~D(n2,0,CRE~V(O,n2,INT,0,CRE~V(O,nl,INT,O,FR~flEO(F~CTORI~L,INPUT(LIST(n,x)),EOF))))))))  c z
FRCT(n,x)  : RSSUME Vn x . isnat  : :  isnat : :  RESULT(IIRITE(nl,O,F(MBEXPR(test,O),MS(l~ody,O),RERD(~~l,0,RE~D~
(n2,O,CRERV(O,n2,INT,O,CRERV(O,nl,INT,O,FRFIMEO(FRCTORIRL,INPUT(LIST(n,x)),EOF))))))))  c FRCT(n,x) SPREF.

J 1 1319  Vn x . isnat :: Isnat : :  RESULT(IIRITE(nl,O,F(~BEXPR(test,O),~S(body,O),RERD(nl,O,RERD(r~2,O,CREu
AV~0,~~2,IHT,O,CRERV(0,nl,INT,O,FRR~lEO(FFICTORIRL,INPUT(LIST(n,x)),EOF))))))))  c FRCT(n,x) (319) --- RSSUME.

t I F2f
Isnat P T T  ( 3 2 0 )  - - -  SflSSUrlE.

2 ' Isnat  I T T  ( 3 2 1 )  - - -  SfGSUIK. .
1 1 J - - - - - - - - - - - - -  - - - - - - -
J J J (TRY #1#1#2#1 RESULT(11RITI:(nl,O,~(n=O)~F(MBEXPR(test,0),~S(body,O),MS(body,O,FRR~lEl(SP,n,x))),FRRME1(Sp~

,n,x)))  c FACT(n,r) CRSES -(n=O).
I I I I -_------------------
1 1 1 1 (TRY #1#1#2#1#3 RESULT(1IRITE(nl,O,~(n=O)~F(MBEXPR(test,O),MS(body,O),MS(l~ody,O,FRFIME1(SP,n,x))),FR~flE~

l (SP,n,x) ) )  c  FflCT(n,x)  :  S R S S U R E -(n=O)  E F F SIMPL.
[ 1 1 I (322 -(n=O)  E FF (322) --- SRSSUflE.
I I I I 1323 RESULT(IJRITE(nl,O,-(n=O)~F(MBEXPR(test,O),MS(body,O),MS(body,0,FRRMEl(SP,n,x))),FR~flEl(SP,~,x)))~
c FRCT(n,x) (321 322) - - -  SIHPL  B Y  3 2 1  3 2 2  LM4.

1 J 1 1 - - - - - - - - - - - - - - - - - - -  -
J J J J - - - - - - - - - - - - - - - - -  - - -
I I I I [TRY  #1#112#1#2 RESULT(~lRITE(nl,O,~(n=0)~F(MBEXPR(test,O),MS(body,0),~S(body,O,FR~El(SP,n,x))),FR~~~E~

l($#,n,x)))  c FRCT(n,x)  : SRSSUHE q&O) 5 UU ,
I- I I I 1 3 2 4 -(n=0)  E U U  ( 3 2 4 )  - - -  SflSSUME.
) ; 1 1 ; ;?; ;; B UU (320 324) ---  USE RRITHl  324 324.

E UU (320 324)  - - -  INCL 325.
J 1 J J -2 - - - - - - - - - - - - - - - - -
J J 1 J - - - - - - - - - - - - - - - - - - - -
I I I I ITRY #1#1#2#1#1 RESULT~LIRITE~nl,O,~~n=0~~F~MBEXPR~test,O~,MS~body,O~,flS~body,0,FRRME1~SP,n,x))),FR~~E~

l(SQ,n,x)))  c FRCT(n,x) : SRSSUME -(n=O)  E T T SIHPL.
1 1 I I (327 -(n=O)  a TT (327) --- SRSSUME.
I I I I I328 [hn x . isnat(n)~(isnat(x)~RESULT(URITE(nl,O,F(M~EX~R(test,O~,flS(body,O~,R~R~(n~,~,~~R~(n~,~,C~ER~

V(O,n2,INT,O,CRERV(O,nl,INT,O,FRRMEO(FRCTORIRL,INPUT(LIST(n,x)),EOF)))))))),UU),UUl(pred(n),x~~n)  c [An x .isnat(,,,
n)-r(i=nat(x)~FRCT(n,x),UU),UUl(pred(n),r.::n) (319)  --- RPPL 319 pred(n)  xm.

I I l I 1329 RESULT(I1RITE(nl,O,F(MBEXPR(tcst,O),~S(l~o~y,0),FRWME1(SP,pred(n),x;4n))))  c FRCT(n,x) (319 320 32m
1  3 2 7 )  - - - SItlPL 328 BY 320 321 327 Ltll  RRITH2 RRITH3 RRITH4.

1 1 1 1 } ___--__-------------
1 1 1 I 1 ITRY  #l#l#?#l#l#l  RESULT(IIRITE(nl,O,F(MBEXPR(test,O),MS(body,O),FRR~lE1(SP,pred(n),x::n))))  c FRCT(n,x).
I I I I I __---__-------------

I I I I I330 RESULT(~~RITE(nl,O,-,(n=O)~F(~BEXPR(tost,O),MS(body,O),MS(body,O,FRR~lEl(SP,n,x))),FR~flEl(Sp,~,x)))~
c FRCT(n,x) (319 320 321  327) - - -  SIllPL 329 R Y  3 2 1  3 2 7  Lll2.
f 1 1 J - - - - - - - - - - - - - - - - - - - -

I I I I331 RESULT(CIRITE(nl,O,~(n=O)~F(~lBEXPR(test,O),MS(body,O),MS(body,O,FRRflEl(SP,n,x))),FRRfiE1(SP,n,x)))  cw
FRCT(n,x) (319 320 321) --- CRSES -(n=O)  330 326 323.

J J J - - - - -  \In-;-m-;-n;;;n;
J J (332 . s c :: isnat  :: RESULT(LIRITE(nl,O,Iht  b .CONO(t,baF(t,b),IO)1  (MBEXPR(test,B),MS(body,~

0),RERD(~~1,O,RERD(n2,0,CRERV(0,n2,INT,O,CRERV(O,nl,INT,O,FRRI1EO(FRCTORIRL,INPUT(LIST(n,x)),EOF))))))))  c FRCT(n,-
Xl (319) --- SPREF 331 BY 227 280 281 320 321 LM3  Ltll.

- - - - - - - - - - - - - - -
[ [3;;--=Vn  x  . isndt(n)  : :  isnat :: RESULT(~JRITE(nl,O,CIHILE(MREXPR(test,0),MS(l~ody,0),RERD(nl,0,RE~D(~2,O,Ch

RE~V(O,n2,INT,O,CRERV(O,nl,INT,O,FRRflEO(FRCTORIRL,INPUT(LIST(n,x)),EOF))))))))  c FRCT(n,x) - - -  INDUCT 318 332,
I w---^------..-----..--
(334 Vn x . isnat  : :  isnat :t RPPLY(FRCTORIRL,n,x)  c  FRCT(n,x) - - -  SIHPL 3 3 3  B Y  2 0 7  2 0 8  2 1 0  2 1 4  2 8 0  2.w

81 394 306 307 310 311 316 TH13 TH15  THlO  TH12 THll  TH5  TH14 TH2 TH7 TH3 THl.
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AdPENDlX 8

Proof of the McCarthy Airline Reservation System

8.1 List of LCF conmiuds

S S +  .FIPPLY, .FUNCT, .PRSCRL,.FUNCCOttP,  .tlP,  .SP;
TRY SIttPL;
TRY INDUCT *REPEAT!
TRY 1 SPREF;
T R Y  CRSES  -(ell(isq)r3); 4

TRY 3 SIWL;
TRY 2; USE RRITHL  -,-------;  Q E D ;
TRY 1 SIflPL;

LFIBEL  , INDUCT;
TRY 2 SPREF;
T R Y  CRSES -(ell(isq)o3);

TRY 3 SItlPL;
TRY 2; USE RRITtil  -,--o----i  QED;
ss+ .COND,  .  ID;
TRY 1 SIflPL;
RPPL  . INDUCT, tai I1 isq,mkpair(stupdt(isq,p,q),osqJ,stupdt  (isq,p,q),ulupdt  (isq,p,q)i
SIMPL -;
TRYJ  9ED;

69

I
I
‘L .

t
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8 . 2  Priritout  o f  t h e  p r o o f

_-------------------
ITRY #l V i s q  o s q  p  q  ,  isufsq(isq)  : :  iswfos(osq)  : :  isint(p) : :  isint(q) :: APPLY(McCRRTHY;p,q,isq,osq)  c BOY

OKING(p,q,  isq,osq) SIHPL.
-w------------------

1 ( T R Y  #l#l Vlsq  o s q  p  q  ,  isufsq(isq)  : :  iswfos(osq)  :: isint(p)  : :  isint(q) : :  OUTPUT(dlEXPR(rct,O,MS(BoOY,~
O,RERO(st,O,RERD~ul,O,FR~MEl(p,q,isq,osq~)~~)~3~~REPERT(flS(BODY,O),flBEXPR(mkbexprl(not,mkrel(oq,rq,mknumconst(3)~
)~,0~,O,MS(BOOY,O,RERO(st,O,RERD(w~,O,FRRMEl(p,q,isq,osq~~~~~,~S(BOOY,O,REF\D(st,0,RERO(wI,B,FRFIME1(p,q,isq,osq~)~
))) c BOOKING(p,q,isq,osq) INDUCT 308 .

_--_----------------
; / ITRY #l#l#l V i s q  o s q  p q  .  iswfsq(isq)  :: iswfos(osq)  : :  isint(p) : :  isint(q) : :  OUTPUT(T(flEXPR(rq,@,NS(B*

ODY,O,RERO(st,O,REFlD(wI,O,FRClMEl(p,q,isq,osq)))~~=3~~UU(MS(BODY,O),FIBEXPR(mkbexprl(not,mkt~eI(eq,rc~,m~cnumconst(3)~
)),O),O,MS(BODY,O,RERO(st,O,RE~D(wl,O,FR~MEl(~~,q,isq,osq)~)~),~S(BODY,B,RE~D(st,O,RERD(wl,~,FR~NEl(p,q,i;q,~sq)),
1)) c BOOKINC(p,q,  isq,osq) SPREF,

I I 1335 iswfsq(isq)  s T T (335) - - -  SFISSUME.

I I 1336 iswfos(osq)  I T T  ( 3 3 6 )  - - -  SRSSUHE.
I I I337 tsint(p)  5 TT ( 3 3 7 )  - - -  SRSSLME.
I I 1338 ~sint(q)  E T T  ( 3 3 8 )  - - -  S R S S U M E .
J J 1 ----------^-----  - - - -
I 1 I 1 fRY #l#l#l#l OUTPUT(~(ell(lsq)=3)~UU,~S(BODY,B,FRRnE2(~,q,~sq,osq)))  c BOOKINC(p,q,isq,orq) CWES  w

-(ell(isq)=3).
J J J 1 - - - - - - - - - - - - - - - - - - - -
J 1 J 1 (TRY #1#1#1#1#3 OUTPUT(~(ell(isq)=3)~UU,MS(BODY,O,FR~~E2(p,q,isq,osq)))  c BOOKING(p,q,isq,osq)  : SRSS,,,

WE

I I I
339)

I /
I I

UllE
I I

-(ell(isq)=3)  s F F SIHPL.
I 1339 -tell(isq)=3)  z F F  ( 3 3 9 )  - - -  SASSUtlE.
I I340 OUTPUT(~(ell(isq)=3)~UU,~S(BOOY,8,FR~tiE2(p,q,i~q,osq~~~  c BOOKING(p,q,isq,osq) (335 336 337 33&

- - - SIMPL' BY 335 336 337 338 339 LM3.

; -------------------- ----- ---------------
1 ITRY #1#1#1#1#2 OUTPUT(~(ell(lsq)=3)~UU,flS(BODY,O,FRAnE2(p,q,isq,osq)))  c BOOKINGtp,q,isq,osq)  : !jflSSu

-(ell(lsq)=3)  z u u  .
I 1341 -(ell(isq)=3)  z UU (341)  - - -  SRSSUME.

I I I I 1342 T T  B UU (335 341)  --- USE ClRITHl  341  335.
-I I I I _-_-----------------

i 1 1 1 ____________________

I 1 I I ITRY #l#l#l#l#l OUTPUT(~~ell(lsq)=3)~UU,~(BODY,O,FRAnE2(p~q,isq,osq)))  c BOOKINC(p,q,isq,osq)  : SASS.,.
UtlE -(ell(isq)=3)  E TT SIHPL.

I I I I 1343 -(ell(lsq):3)  t TT ( 3 4 3 )  - - -  SFISSUME.

I 1 I I 1344 OUTPUT(~(ell(isq)=3)~UU,MS(BODY,O,FR~ME2~p,q,isq,osq~~~  c BOOKINC(p,q,Isq,osq) (343) - - -  S I M P L  N
BY  343  TH6 .

1 1 1 J -m-----^-----^-----..

I I I 1345 OUTPUT(~(ell(isq~=3~~UU,IlS(RODY,O,FRRflE2(p,q,isq,osq~~~  c BOOKINC(p,q,isq,osq) ( 3 3 5  3 3 6  3 3 7  338) w
- - -  CRSES -(ell(isq)=3)  344 342 340.

1 ( 1 __--___-------------

I I 1346 Vlsq  o s q  p q . iswfsq(isq)  : :  iswfos(osq)  : :  isint(p)  : :  isint(q) : :  OUTPUT(-(llEXPR(rct,O,MS(BOOY,O,R~
~~DIst,B,~RO~ul,O,FRRMEL(p,y,  isy,osc~~~~~~=3~~UU~MS~RODY,01,~lREKPR~mhhex)~rl~not,mk~~eI  (e(l,rC(,mknltmconst  (3))),0),0...
,f~S~~OOY,O,REFIO(~t,0,RERD(ul,O,FR~~IEl~~~,~~,isq,osq~~~)),MS(BODY,O,RERD(st,0,RERO(wl,O,FRCI~IEl(p,q,isq,osq~~~~~  c B-
dOYING(p,q,rsq,osq) --- SPREF 345 BY 335 3.36 337 338 LM9  LM2.

;
-__---_-------------

1 ________------------
I J ITRY #1#1#2 Vlsq  -osq  p q  .  Isufsq(is;j)  : :  iswfoslosq)  : :  isint(p)  : :  isint(q) : :  OUTPUT(-(MEXPR  (rq,O,MS(BN~

~DY,O,RE~D~~~,O,RE~D~U~,O,FR~~~E~~~,~(,I~~~,~~~~~~~~=~~~~~B  T  f  .BdZOND(T,F(B,T,f),IO~l  (MS(BODY,O),MBEXPR(tnkbexprl(~
not,mkroI  (eq,rq,m~numco~~st(3~~~,O~,O,MS(BOOY,O,RERD(st,0,REFlO(wI,0,FR~~IEl(p,q,isq,osq~~)~~,MS(BOOY,0,RE~D(st,~,R~
E~O(uI,0,FRfWlEl(p,q,~sq,osq)))))  c BOOKINC(p,q,isq,osq) RSSUME V isq osq p q isIdfsq(iw
=I) : : iswfos(osq) : : isint(p) : : islnt(q) : :  OUTPUT(-(!lE~PR(rq,O,llS(BODY,O,RE~D(st,O,RE~O(wi  i FRflMEl(pW
,q,isq,osq)~)~)~3~~F(~S(BODY,O~,~~BEXPR(mLberpr~l(not,mkrel(eq,rq,mknrtmconst(3~~~,O~,O,MS(BDDY,U,RERD(s~,I),RE~D(~1*.
O,FRFIME1(~~,q,~sq,osq~~~)~,~S(BOOY,O,RERD(st,0,RERO(wI,~,FRFl~El((~,y,irq,~sq~~~~~  c BOOKING(p,q,isq,osq)

;.
SPREN

I 1 I347 Vtsq o s q  p q  ,  iswfsq(isq)  : :  Iswfor(osq)  : :  isint(p)  : :  isint(q) : :  OUTPUT'(~(~~EXPR(~~,O,~~S(BOOY,O,R~
ERO(st,O,RE~D(uI,0,FR~llEl(p,q,~sq,osq~~))~=3~~F(MS(BODY,O~,MBEXPR(mkbexprl(not,mkreI(eq,rq,mknumconst(3~~~,0),0,~
MS(BOOY,O,RERO(st,O,REFIO(ul,O,FR~MEl(p,q,~sq,osq)~~~~,MS(BODY,O,RERO(st,U,RE~O(ul,0,FRF\~lEl(p,q,~sq,osq)~)))  c BOW
MING(p,q,isq,osq) (347) - - -  RSSUHE.

I J I348 isufsq(isq)  3 TT ( 3 4 8 )  - - -  S R S S U H E .
1 1 1349 isufos(osq)  z T T  ( 3 4 9 )  - - -  SRSSUflE~
I I 1350 isint(p) E TT (350)  - - -  SRSSUME,
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I I 1351 i s i n t  ( q )  r T T  (351)  - - -  SFISSUHE.
-----------^--------

1 1 1 ITRY #1#1#2#1  OUTPUT(~(ell(i~3q~=3~~CONO(MBEXPR(mkbe~~~t~l(not,n~~reI  (eq,rq,mknumconst  (~))),D),F(MS(BDDY,O)~
,flBEXPR(~nkboxprl(~~ot,ml’r~eI(eq,rq,m~:numconst(3~)~,0~,0~,ID,flS(BODY,O,HS(BODY,O,FRRflE2(p,q,)~q,o~q)))),flS(BODy,D,F~
RW’lEZ(p,q,  isq,osq)))  c BOOKING(p,q,  isq,osq) CFlSES -(ell(isq):3).

1 1 1 1 ------------------..-
1 1 1 1 ( T R Y  #1#1#2#1#3  DUTPUT(-.(eIl(isq)=3~~CDND(MBEXPR(mkbexpr1(not,mkreI(eq,rq,mknumconst(3))),9),F(~~S(BOD~

Y,0~,MBEXPR(mkbexprl(not,mkreI(eq,rcf,m~nu~nco~~st(3~)~,U),0~,ID,MS(BODY,O,MS(BODY,O,FRRHE2(p,q,i~q,o~q)))),MS(BODy~
,O,FRFlMEZ(p,q,  isq,osq)))  c BOOKING(p,q,  isq,osq)  :  SRSSUHE -(ell(isq)=3)  I F F SIHPL.

I 1 I  I  1352 -(ell(isq)=3)  3 F F  (352) - - -  S R S S U H E ,
I I I I 1 3 5 3 OUTPUT(~(ell(isq~=3~~COND(MBEXPR(mk~exprl(not,mkrel(eq,rq,mknumconst(3~~~,9~,F(~S(BODy,~~,MBEXPR~

(mkbexprl(not,mkrel(eq,rq,mknumconst(3))~,~),~~,ID,HS(BOOy,~,HS(BOOy,9,FRRflE2(p,q,~sq,o~q)))),MS(BODy,~,FR~flE2(p~
,q, isq,osq)))  c BOOKING(p,q,  isq,osq)  (348 349 358 351 352)  - - -  SIHPL BY 348 349 350 351 352 LM3.

1 1 1 1 --------------------

c

1, .-

?
c*

I 1 1 I --------------------
I I I I ITRY #1#1#2#1#2 OUTPUT(~(ell(isq)=3~~COND(MBEXPR(m~bexprl(not,m~:rel(eq,rq,mknumconst(3~~~,D),F(~~S(BDD~

Y,9),MBEXPR(ml:bexprl(not,mkreI(eq,rq,mln~tmconst(3~~~,0),0~,ID,MS(BODY,O,MS(BODY,O,FRFIME2(~~,y,isct,oscf~))),flS(BODy~
,U,FRWlE2(p,ct,  isq,osq))  1 c BOOKINC(p,q,  isq,osq)  : SQSSUME -(ell(isy)=3)  E U U  ,

I I I I 1354 -(ell(,sq)=3)  5 UU (354)  - - -  SRSSUHE.
I 1 I I 1355 T T  E UU (348 354)  - - -  USE RRITHl 354  348 .
1 1 1,  I --_---------------  - -
1 1 1 1 _-_--- - - - - - - - - - - - - - -
I I I I (TRY #1#1#2#1#1 OUTPUT(-.(~I~(I~~)=~)+COND(MBEXPR(~~~~~~~~  (not,mkrel  (eq,rq,mknumconst  ( 3 ) ) )  ,I)) ,F(MS(BOD~

Y,0),MBEXPR(mkbexprl(not,mkreI(eq,rq,mkt~umconst(3))~,U~,0),ID,HS(BOOY,O,MS(BODY,O,FRFIME2(p,q,isq,osq)))),~~S(BODy~
,O,FRlWE2(p,q,  isq,osq)  1) c BOOKING(p,q,  \sq,osq)  :  SRSSUHE -(ell(isq)=3)  E T T SIMPL.

I I I I 1356 -(ell(isq)=3)  I TT (356)  - - -  SRSSUHE.
I I I I 1 3 5 7 [xlsq  osq p q . iswfsq(isq)-,(iswfos(osq~~(isint(p~-,(isint(q~~OUTPUT(~(HEXPR(rq,U,MS(BODY,~,RE~D(s~

t,G,REFlD(wI,O,FRFIME1(p,q,isq,osq~~~~~=3)~F(HS(BODY,O),MBEXPR(mkbevprl(not,mkreI(eq,rq,mknumconst(3))),6),9,~~S(BO~
OY,8,RERO(st,O,RERD(wI,O,FRRMEl(p,q,isq,osq~~)~~,HS(BOOY,O,RERD(rt,O,READ(wI,B,FRArIE1(p,q,isq,osq~)~)~,UU),UU),U~
U),UUl  (tail1(isq~,mk~~air(stupdt(isq,~~,c~~,osq),stupdt(tsq,p,~~),wlupclt(isq,p,q~~  c IXisq  osq  p q , isufsq(lsq)+(isw5
fos(osq)~(isint(~~)~(isint(q)~BOOKING(p,q,isq,osq),UU~,UU),UU),UUI(t~~Il(isq),mkpair(stupdt(isq,p,q);osq),~tup~t(~
isq,p,q),wlupdt(isq,p,q)) (347) - - -  R P P L  3 4 7  tailitisq)  mKpair(stupdt(isq,p,q),osqb  stupdt(isq,P;q) bdlupdt(isq,w

P,q)*
I I I I 1358 OUTPUT(~(el3(isq~=3~~F(MS(6ODY,O),MBEXPR(mkbexprl(not,mkrel(eq,rq,mkn~~mconst(3)~~,O~,U,flS(BODy,~~

,FRFfMES(p,q,  ~sq,osq))),MS(BOOY,O,FRQHE3(p,q,  isq,osq))) c BOOKINC(p,q,isq,osq) (347 348 349 350 351 356) --c SIM,,,
PL 357 BY 348 349 350 351 356 LH7 LH2 LH5  RRITH2  RRITH3 RRITH4  ARITHS  LH4.

1

I

!
i’L

----_---------------
1 1 I 1 1 1 1 1 1 I ( T R Y  #l#l#?#l#l#l OUTPUT(~(el3(isq~=3~~F(HS(BOOY,O~,HBEXPR(mkbexprl(not,mkrel  (eq,rq,mknumconst(3)))W

,O),O,MS(BODY,O,FRAME3(p,q,  isq,osq))),HS(BOOY,O,FRFlHE3(p,q,  isq,osq)))  c BOOKING(p,y,  isq,osq) .
1 1 1 1 1 - - - - - - - - - - - - - - - - - - - -

I I I I I359 OUTPUT(~(eI1(isq~=3~~COND(~lPEXPR(mkborprl(not,mkreI(eq,rc~,mknlcmconst(3~)~,0~,F(MS(BOOY,O),MBEXPR~
(mkbexprl(not,mk’rsl  (eq,rq,mknumconst(3~~),0),0~,ID,HS(BODY,~,~lS(BODY,O,FRRHE~( L p,q,  isq,osq)))),MS(BODY,0,FRAME2(pW
8 ,q, LM6. lsq,osq)))  c BOOKING(p,q,  isq,osq)  (347 348 349 359 351 356)  --- SIMPL 358 BY 227 281 348 349 350 351 356 LMa,

1 1 1 1 --_--_--------------

L *
I I I 1360 OUTPUT(~(eI1(isq)=3)~COND(I1BEVPR(mkherpt~l(not,mt.rcI(oc~,rq,mknumconst(3~~~,0~,F(MS(BOOY,O),I.~BEXpR(m~

kbexprl(not,nlkroI  (cq,rcf,ml’numconst(3~~~,U),0~,ID,flS(BODY,O,US(POOY,O,FRRflEZ(p,q,  isc(,osq)))),HS(BODY,0,FRQME2(p,q,.,
, Isq,o;q))  1 c BOOlrING(p,q,  isq,osq)  ( 3 4 7  3 4 8  3 4 9  3 5 0  351)  C R S E S  -(ell(isq)=3)  3 5 9  3 5 5  3 5 3 .- - -

1 1 1 ^---_---.------------

l

L

I

L

I I 1361  Visq osq p q . iswfsq(lsq)  :: iswfos(osq)  :: isint(p)  :: isint(q) :: OUTPUT (1 (MEXPR (rq, 0, MS Re(BODY, 0,
E~D(st,O,RE~O(~l,U,FRR~lEl(p,q,i~q,osy~~l)~=3~~(~B  T f .B~~CONO(T,F(B,T,f),~ID~I(MS(BOOY,O),~~BEXPR(m~~e~prl(~ot,mkr~
eI(eq,rq,mknumconst(3)~~,8),O,HS(BOOY,O,RERO(st,9,REClD(wI,O,FRFl~lE1(p,q,isq,osq~~)~~,MS(BODY,O,RERO(~t,,~,RE~D(w~,~
O,FRFlMEl(p,q,  tsq,osq)))))  c BOOkING(p,q,  isq,osq)  ( 3 4 7 )  S P R E F  SbO B Y  2 8 8  3 4 8  3 4 9  3 5 0  3 5 1  ~t-19  Lri?.- - -

I I ---_----------------
I 1362  V i s q  o s q  p  q . isufsq(isq)  : :  iswfos(osq)  :: isint(p)  :: Isint(q) :: OUTPUT(~(HEXPR(rrt,O,MS(BODY,O,REFl~

D(st,O,REflD(wl,O,FR~HEl(p,q,  isq,o~t~~~~))=3~~REPE~f(HS(BODY,O~,MBEXPR(mlber:~~rl(~~ot,mkreI  (cy,t4q,mkn~mco11~t  (3))),0)~
,O,MS~AODY,U,REFID~st,8,RERO~wI,O,FR~HEl~p,~~,isq,osq~~~~~,HS~BODY,O,RERD~st,O,READ~wI,U,FR~MEl~p,q,  isq,osct)))))  c,,,
BOOKING(p,q,  isq,osq)  I N D U C T  3 4 6  3 6 1 .- - -
I --------------------
1363 Vis_q osq p q , iswfsq(isq) :: iswfos(osq) : :  isint(p) :: islnt(q) : :  APPLY (McCARTHY,p,q, isq,osq) c BOOKI-

- - -NC(p,q,  -------------------- isq,osq) SIMPL 362 BY 207 208 218 280 303 326 333 334 LMl TH2 TH5.
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