RANDOM INSERTION INTO A PRIOR ITY QUEUE STRUCTURE

by

Thomas Porter
Istvan Simon

STAN-C S-74-460
OCTOBER 1974

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

- ——

Random Insertion into a Priority Queue Structure

by
Thomas Port er
—
[stvan Sinon

Abst r act

The average nunmber of levels that a new el enent nmoves up when
“inserted into a heap is investigated. Two probabilistic nodels, under
which such an average nmight be conputed are proposed. A "lenma of
conservation of ignorance" is fornulated and used in the derivation of
an exact fornula for the average in one of these nodels. It is shown
that this average is bounded by a constant and its asynptotic behavior
is discussed. MNumerical data for the second nodel is also provided and

anal yzed.

Keywor ds and phrases: Priority queue, heap insertion, heap sort,
anal ysis of algorithns.

CR Categories: 5.25, 5.31

. */ On | eave of absence from the Instituto de Matemdtica e Estatistica
da Universidade de S&o Paul o, depto. de Matemdtica Aplicada.

This research was supported in part by the National Science Foundation
grant nunber GJ 36473X and by the Fundacdo de Anparo a Pesquisa do
Estado de S&o Paulo under grant nunber 72/425. Reproduction in whole
or in part is pernmtted for any purpose of the United States Governnent.

Random Insertion into a Priority Queue Structure

1. [ntroduction

In this paper we investigate the average number of levels that a
new el ement nmoves up when inserted into an (n-1) -heap to form an
n-heap. An n-heap [WIIlians - 1904, Knuth - 1972] is a conplete
binary tree of n nodes such that the key associated with each node
is larger than the keys of both of its sons. Gven an (n-1) -heap,
a new node can be inserted by placing it initially at the bottom of
the tree, thereby creating a conplete binary tree of n nodes, and
then repeatedly conparing the key of the inserted node, x , with the
key of its father, 'y , exchanging the two nodes if x >y . [f at
any stage x <y the resulting binary tree is an n-heap. Since a
conpl ete binary tree of n nodes has {1g(n)|+1 | evels, i/the
inserted node moves up at most | 1g(n) | | evel s. Hence we can create
an n-heap by repeated application of this process in less than n|lg n|
operations. This suggests that the heap insertion method just described
could be used in the heap creation phase of heapsort [Knuth - 1973,
Section 5.2.3, Algorithm H. One mght expect that the average behavior
of the heap insertion nethod is still nuch better. Actually williams®
INHEAP routine in his original paper is essentially the insertion nethod
just described, and he states without proof in the comment acconpanying
his routine that the average nunber of exchanges is two. In one of the
model s proposed in this paper we shall prove that the average is bounded

by a constant |ess than two.

*
X/ 1g n denotes log, N .

To avoid anbiguities we state now the precise description of the

insertion algorithm In this description we make use of the well known
conpact representation of a conplete binary tree in an array k ,

where k[1] is the root, and k[j] has left son k[2j] and ri ght

son k[2j+1] . W also assume that each node consists only of its key.

If there are other fields of the node besides the key, the corresponding
nodi fication of Algorithm | is trivial, and it obviously has no effect

on the average we are investigating here.

Algorithm I. This algorithminserts the n-th node into a heap. The
heap is stored in k{1],k[2],...,k[n-1] and k[n] is the node to be
I nserted.

I1. [Initialize.] Set p ~n, q«Ln/2], k « K[n]

I2. [Sift it up.] Wile g >0 and k[qg] < k do
begin k[p]l-k[a]l, p « q » q «Lp/2)] __

I3. [Insert.] Set k[p] « k . 0

2. The Mbdels

Let H(n) denote the nunber of n-heaps with n given distinct
keys, kjky @® . The following closed formis known [Xnuth - 1973,
Section 5.2.3] for H(n)

H(n) =

wher e S, Is the size of the sub-tree rooted at node K[i]

Definition: Let A(n) denote the average nunmber of |evels the n-th

node is noved up by AlgorithmlI.
To find A(n) we consider two nodel s:

Mdel 1: W assume that each of the H(n-1) possible heaps with the

(n-1) elenments already in the heap [k ..ok

1’72’ n—l}
and that the key of the n-th node kn is equally likely to occur in any

is equally likely,

1oKos sk In Section & we

shal| derive a sinple recursive fornula for A(n) in this case.

of the n intervals determned by k

Furthermore, we shall prove several properties of this fornula in
Section 5.

The assunption that each of the H(n-1) possible heaps is equally
likely is justified if one uses the heap creation algorithm of heapsort
[Knuth -1973, Section 5.2.3, Algorithm H, heap creation phase] to build
the (n-1) -heap and then applies Algorithm | to insert the last elenent.
It is shown [Knuth -197%, Section 5.2.3, Theorem H that each (n-1) -heap
occurs W th equal probability in this case. One could hope that a
simlar theoremwould hold for heap creation by repeated application of
Algorithm |. Unfortunately, this is not so, for certain heaps wll
occur nore-often than others if-we apply Algorithm| successively to a
random pernutation of 1,2,...,n . To see this, let us conpute the

probability distribution for the two possible heaps when n = 3 . It

‘is easily verified that the permutations 123, 132, 215

and 312 are transforned into the heap , While 231

and 321 are transforned into . Hence is twce

as likely as if we assune that each pernutation is equally

likely. An even nore striking exanple of this fact is that the heap

o
o.@ is generated by 228 T-permutations while its
€606 |
(1)

reflection @ 0 is generated by only 12 , a ratio of 19:1 !

Therefore we are led to our second nodel in a natural way.

Model 2: W assune that the H(n-1) heaps occur with a probability
distribution induced when Algorithm | is applied successively n-|
times to a random pernutation of 1,2,...,n . Then we determne the

average A(n) when applying Algorithm | once more to insert K, -

In Section 6 we shall discuss the average according to Mdel 2.
Al'though we do not provide an exact fornmula for Mdel 2, we do present

nunerical data that shows results relatively close to those of Mdel 1.

3. Conbi natorial Prelimnaries

In this section we present a combinatorial |emma about k-arrangenents
which appears to be useful in a variety of situations. In particular
we shall use it to prove Theorem 1 in the next section. The result
was suggested to us by D. E. Knuth and has been previously used in the
solution of several problens, but to our know edge has not been precisely

formul ated before.

Throughout this section, n and k denote fixed positive

integers with n > k .

Definition:

(1) A k-arrangenent of n objects is an ordered k-tuple of these
objects. A k-arrangenment of k objects is called a k-pernutation.
W shal |l consider only k-arrangenents of {1,2,...,n} .

(2) Let o be the set of k-arrangenents of {1,2,...,n} and let =
be the set of k-pernutations of {1,2,...,k} . The function

f: 0 - & such that f((al,--w,ak)) = (bl'.."bk) inplies

a. <a.. e b, <b,
i J i 3

is called the renunbering function preserving relative order. It

is obvious that for each n and k the renunbering function f
preserving relative order is unique

3) A property P of k-arrangenents is said to depend only on the
relative order of its elenents when P(a) « P(f(a)) for all

aco . (Note that since <o, f(a) eo and hence we can talk

about P applied to f(a) .)

Exanpl es:

(1) The property that the first elenent of the k-arrangenent is the

| argest one is a property that depends only on the relative order

of its elenents
(2) The property that the first k-1 elenents of the k-arrangenent

forma (k-1) -heap is also such a property.

Definition: A random variabl e over a certain space with uniform
probability distribution will be called sinply a random variable over

that space.

W observe that the renunbering function f induces a partition
over the set o, where two k-arrangenments belong to the sane equival ence
class, if and only if they are both mapped into the sane k-pernutation

by f

Lemma l:i/ Let P be a property of k-arrangements that depends only
on the relative order of its elements. A random k-arrangement of
{1,2,...,n} satisfying P remmins random under the renunbering

function f preserving relative order.

Proof : Al we have to prove is that an equal number of k-arrangenents
that satisfy P are mapped by f into each k-permutation that
satisfies P . Notice that since P depends only on the relative
order of the elenents of the k-arrangements, those that satisfy P

are always mapped into k-pernutations that satisfy P . Furthermore,
if any k-arrangement of an equival ence class satisfies P, then al
k-arrangements of that class satisfy P . Hence we may sinply show
that each equival ence class has the same nunber of elements. But there
are exactly k! equival ence classes each corresponding to a k-pernutation.
Now consi der any k-subset of {1,2,...,n} . Permuting its elenents in
every possible order, it follows imediately fromthe definition of f

that exactly one of these k! pernutations falls into each equival ence

Wi L. Cuibas has suggested that this | emma be named a "Principle of
Conservation of Ignorance", because the randommess is preserved
through the renunbering process

class. Thus, since there are (i) k-subsets of {1,2,...,n} , there

are exactly (?{) el ements in each equival ence class. O

L, The Anal ysis by Mdel 1

In this section we derive a formula for A(n) in Mdel 1. The
input to Algorithml can be thought of as a conplete binary tree of n

nodes, kl,kg,...,kn, such t hat

(i) The nodes k

1’k2"“’kn-l forman (n-1) -heap.

(2)

(ii) The n-th node, k_ , of the binary tree is the new node

to be inserted.

Ievell---—-.._..... @
i@ B & B

\
. \\
| evel Llg n] '
Figure 1. Input to AlgorithmI| when n =9 .

The situation is depicted in Figure 1 when n = 9 . The nodes connected

with solid lines formthe (n-1) -heap, and the broken edge connecting

k9 to the tree is used to indicate that k9 is the node to be inserted

into the heap. Thus, at this point k9 is the only node that m ght
violate the heap condition key(son) < key(father) . It is inportant

to notice that as long as the relative order of kl’k2""’k9 s
preserved, the values of the keys thenmselves are irrelevant as far as
the conplexity of Algorithm | is concerned for this input.Inother
words, Algorithm 1 will execute exactly the same sequence of instructions

for two inputs k,,k,, . . .,k and k ok satisfying condition (2),

t 1
l} 2) .
provided that their relative order is the sane. Therefore we may as well

assune that

{kl,kg,...,kn} = {L,2,...,n} = M . (3)

W now prove the following formula for the average A(n) in Mdel 1:

Theorem 1: The average A(n) under the assunptions of Mdel 1

satisfies the recurrence relation

.A(n-2l) for n > 2

L +n-|
n

An) ==

where L = |1g n] and ¢ = ng(%n)_] and

A1) =0 .

Proof : Let L = 1gn] be the level of the inserted node, and let T

denote the subtree of the root that contains k . Let T be the ot her
subtree and | et T be the subtree T Wi thout the node k . Thus T
and T' are both heaps. Each possible value of k occurs W th
probability |/n . If k =n, AlgorithmIl wll nove it up exactly L
levels, since in this case the inserted node has naxi num key, and
therefore it will be at the root when the algorithmtermnates. If

kn;én, then nis already at the root and knvm'll eventual |y

settle at some level in T . Therefore we my wite
I R
A(n) = =L+ == alT] (%)

where A[T] denotes the average number of levels k| is moved up in
the subtree T . The subtree T has exactly n-2' nodes, where

a = ng(% n)] . (Note that ¢ = L-1 if Tis the left subtree of
the root and £ =L if it is the right one.)

Qur aimnow is to show that

ATl = a@m-2f) . (5)

Fixing a particular T and varying the possible heap arrangenents of

the nodes of T' we see that each T occurs exactly H(al-l) times
among the original (n-1) -heaps, Wwhich are assunmed equally |ikely by
hypot hesis. Therefore each possible T is equally likely and we can
compute A T] over the space of possible T-s . Keeping also in mnd

t hat k will eventually settle at some level in T, since k eM _,
and n is already at the root, this neans that everything works as if

we were inserting k) into T rather than into the original (n-1) -heap.

Let us therefore assune fromnow on that our input is T . The input T

)

has k = n-2" nodes chosen from M and it can be regarded as a

1
k-arrangement of {1,2,...,n-1}- such that its first (kx-1) elenents
forma heap. As we have seen before, this is a property of k-arrangements
that depends only on the relative order of its elements, and hence a
-random T remains random under the renunbering function f preserving
relative order, by Lemma 1. Furthernore by observation (3) above, the

renunbering process preserving relative order does not change the nunber

of levels that the inserted node is noved up by Algorithml. Hence we

10

can conpute the average A[T] over the space of the renunmbered trees.

But this is precisely A(n -2'2). -

5. Sonme Properties of the Average A(n)

In this section we shall explore sone of the properties of the
average A(n) derived in Section 4. In particular we shall show that
at any level L of the tree the |eftnost node, 2l has the | ar gest
average. W then proceed to prove-that A(ZL) Is always bounded by a
constant and approaches this constant as L approaches infinity, thus
showing that A(n) is bounded by a constant for all n . W then
derive a closed formila for n of the form 2¥% -1, which is the
rightnost node at level L , and show that actually in this case A(n)
is bounded by 1 and approaches 1 as L approaches infinity.

Finally we exam ne the asynptotic behavior of A(n) , where n varies

along an arbitrary path of the tree.

Theorem 2: | f ny and n, are two nodes at the same |level L such
that n, is to the left of n, (i.e., n, <mn,), and if

&l s 2
A(ny -2 7) > A(n, -27) where £, = ng(gni)J » then A(n)) > A(ny)

Proof : By Theorem 1,

A(n) = -13—‘ + (1 - nl.)A(ni-Q i)
[} 1
Si nce A(nl -2 l) > A(n2 -2 2) ’

4
A(n)) - A(ny) > (ﬁlz - E]Z)L - (% - i)A(ng -2 8

b1 1
(L-A(n2—2)) (az-a—g—) .

L 4

Now L -A(n2 -2 2) > 0, because (n2 -2 2) is a node at |evel
L- , and it can nove up at most L-1 levels. It follows that
A(n;) > A(ny) . 0
Corol lary 1: At each level L the leftnost node 2" has the |argest
average val ue.
Proof : The proof is by induction. At level 0 the result is trivial.
Now assume the corollary at level L-1 . Let n, be the |eftnost
node at level L, and |et n, be a node to its right at the sane

22 ll

level. Then n,-2 is some node at level L-1 , and n, -2 is

2 1

the leftnost node at that |evel (since L = ng(% nl)J = ng(% 2L)_| = L-1,

]] I}
and nl-el:QL'l).Therefore A(nl-21) >A(n2-2

i nduction hypothesis, and the corollary follows from Theorem 2.

2 by the

O

W now exami ne the average at the |eftnost nodes at each |evel.

Since A(n) = A(n -2’)+TL*‘LI(IE'—221 it follows that A(n) > a(n -2%)

for all n. In particular if n is the leftnmst node, i.e., n=2L,
then n-2! = ol-d » hence A(2L) is a nonotonically increasing sequence
with L. It isnot difficult to showthat this sequence has a limt A,

and hence it is bounded by this limt. By virtue of Corollary 1 this

implies that A(n) < X for all n, i.e., AMis a constant that

bounds A(n) . Furthernmore A is the best conceivable such bound

si nce IimA(QL):h.
L ~w
W shall now determine a closed fornula for A(2L) and use it to

derive an expression convenient for the numerical conputation of A .

Theorem 3: The bound N satisfies the equalities

A= Lim A(Y = D Tl_ = 1.606695152k . . .
L-w j>1 2°-1
Proof: W have A(2L) = LL + (1-2'L)A(2L'l) by Theorem 1. Let a;
2
L L
denote A(27) and | et b, = =3 Then
T (2™
1<j<L
L -L
a; = —23 +(1-2)a‘L-l and
%) L .\ b1
T (-2 T @Yy T @),
1<ji<L 1<i<L 1<ji<L-1
i.e.,
. L
b ——+Db (6)
L = 2L TT (1_2-3) ‘e .
1<ji<L
Iterating equation (6) we get
i
b, = b, + : (7)
L ° 1<i<n 2t T @2
1<5<i

15

But b, =a, =0, hence (7) yields

0~ "0
i T (1-2-))
‘ 1<3 <L
ar 2 I > (8)
1<i<t 28 7 (1-279)
1<j<i
Let P =T (1-2-j) ana P, = TT (L-2-j) . 1f L approaches
j>1 1<j<i
infinity, a; approaches A , hence
i
AN=P Z 3 ‘ (9)
i>1 27 P

By Euler's partition formula [Knuth - 1973, exercise 5.1.1-16],
i

L .3z z — Settingz:%xand
j>0 (1l-aqjz) >0 T (1-9Y)
1<j<i
q=—2"L=2'1 yi el ds
1 i
R(x) = TT — = 1+ 3 X : (10)
i>1 1-27% i>1 2%
Let rj(x) -1 - Then r;(x) = 4 r.(x) = —21—2
1-279x% - dx "3 (1-2"3x)

Taki ng derivatives of (10) and noting that R'(x) = 4 TT rj(x)> =

- ' (x) LoL-L
R(x) % we have R'(x) = R(x) .& — 1 . 3 ix

. X J ~dJ
J>1 J j>1 2 (1-2 X) izl 27 P

~~

Bl K

In particular for x = 1 , noting that Rr(1) =-1l;, we have

1k

1 1 -
=L — = & 2 Fi nal | b
Pisieda i1 o' Y. by (9),

D SR S (11)
j>1 291
|
The sum (11) is rapidly converging and can be used to find A
numerical | y.

W can al so derive a closed formula for the average at the rightnost

node of each |evel.

. . . i+l
Theorem 4: If nis the rightnost node at level L, (i.e., n=2 -1),
then A(n) =1 -HTl.
Proof : A sinple induction on L . 0

The proof of the following corollary is now trivial:

Corol lary 2: If nis of the form 2L+l-1 t hen

(1) A(n) <1

(ii) lim A(n) =1 .

i)

Theorems 3 and 4 give asynptotic values for the average A(n)
along two particular paths down the tree. W can describe any path
-on the tree by a binary sequence « where the L-th elenent of the
sequence, Qg is Oif we go fromlevel L-I to L taking the
left branch and 1 if the right branch is taken. Wth this convention

the nunmber 1 followed by the first L bits of a, in binary, gives

15

the node at level L along that path. W denote this node by ol .f/

Hence the limt A(a) = lim A(2L-a) , if it exists, gives the

L~

asynptotic value of the average along the path defined by a . If
the limt does not exist we say that A(a) is undefined. For exanple
a(o) =000. .. refers to the path of leftnost nodes at each |evel,
and thus A(ot(o)) = N according to Theorem 3, while oz(l) =111 . ..
refers to the path of rightnost nodes at each level, and thus

A(&) =1 by Corollary 2.

Definition:
(1) Two binary sequences o« and g have the sane tail if there exists

an i and j such that a,, for all k >0 .

k = Bisx

]

(2) If m= n-2", where ¢ = [_lg(% n)] then we say that the average

at node n depends on the average at node m.
This definition is notivated by Theorem 1.

Theorem5: If o and g are two binary sequences that have the
sane tail, then A(@) and A(B) are either both undefined or both

defined and equal .

¥ This notation is notivated by regarding o as associated with the

a

real nunber a = 1+ 2 —% Then the node denoted by 2lbeais
L>1 2

clearly the node L2L-&_| . Note however that this correspondence

between a and @ is not |-1 , for sequences that are of the form

O Gy e 1000 ... and o, . .. 0111... correspond to the

same real while defining distinct paths on the tree.

16

Pr oof : Let n, be a node at level i and |et ny be the node

at level i-1 such that the average at n, depends on the average

/]
at n, =N-,-2 O It is an imediate consequence of Theorem 1 that
the average at node eng (node enytl), the left (right) son of n,
depends on the average at node en, (node en +1) the left (right)
son of n, - Now gi ven 8(0) such that 216(0) =1, | et 5(1) be

- epvine gila(D) (0) _ (1)
the binary sequence satisfying 2 3 =n, and Bivk = 61-1+k for all
itk ((0)y _ itk 1 i-1+k (1)

k>0 . Then A(2 o)) = W+ (l - W)A(E))
Letting k approach infinity we have

Ltk o

Sitk ((0) T

1

Hence if A(6(0)) =lim A(2L~6(o)) exi sts then so does
L-o

A(e(l)) = 1lim A(2L-6(l)) and A(b(o)) = A(&))

L o
The above construction, given a node n, at l evel i and a path

6(0) passi ng through n, constructs a corresponding path 8(1)

passi ng through n, at level i-1 , such that the average at D,

depends on the average at n, and A(b(o)) and A(s(l)) are either

-both undefined, or both defined and equal. So i successive applications

of this construction reduces 6(0) to a path 5(1) such that

i) (1) (0) :
59 - 8{) torall k>0, and A6 and A8(?) are either

bot h undefined or both defined and equal. Consequently if a and p

17

have the same tail then they are reduced by this process to the sane

path & such that a for k >0 for sonme i and j |,

i+k = Pyrx = By
and A(8) , A(x) and A(@ are either all undefined or all defined

and equal . 0

Corollary 3: If @ is a binary sequence ending with an infinite

sequence of 0's , then A(a) exists and A(a) = A\ .

Pr oof : | nmedi ate from Theorens 3 and 5.

Corollary 4: If ais a binary sequence ending with an infinite

sequence of 1's, then A(@) exists and A(a) = 1 .
Proof : | mrediate from Corollary 2 and Theorem 5.

Corollary 5: There exists an a such that A(x) is undefined.

Proof : Let 8 be any sequence ending with an infinite sequence
of Os . Since A(6) =N, given any ¢ > 0, there exists an N
such that for L >N, |n -A(2L-6)| <e. Simlarly for any

sequence y ending with an infinite sequence of 1's, since
A(y) =1, there exists an N' such that for L >N',
|1-A(2L~7’)|<e.Now1 <N, so let ¢ > 0 be such that

l+e < AN=-¢ . Then construct a as foll ows.

Step (1): Let == .= ockl = 0 where k, is the | east
ky kg
integer such that |A-A(2 ~.a)| < e. Note that 2 ~.a

is determned by the first k, bits of o only, so

this condition is well defined.

18

Step (2): Now | et ak1+1:ak412=' ..=ak2:1vvnere k, IS

the | east integer greater than k such t hat
ll-A(E’kzOt)‘ < €.
Now at any odd step (r) add sufficiently nany 0's to have

k
|»-a(2 "® a1 < and at any even step (s) add sufficiently many 1's

k
to have |1-A(2 %) <e. It is clear that A(e) nust be undefined

for such an a . o

Corol lary 3 asserts that no matter which node of the tree we start
at, if we always take the left branch the asynptotic value of the
average is A, while if we always take the right branch then the
asynptotic value of the average is 1 by Corollary k.

The relation of two sequences o and g having the sane tail is
clearly an equivalence relation. In virtue of Theorem 5 the asynptotic
val ue of the average is invariant over any equival ence class. Corollary
3 and 4 give two distinct equival ence classes that have two distinct
asynptotic values, and Corollary 5 shows that there are equivalence,
cl asses over which the asynptotic value of the average is undefined.

W conjecture that indeed the only two equival ence classes wth defined

asynptotic values are those nentioned above.

6. Remar ks About Mbdel 2

Table 1 shows the conparison between Mdel 2 and Mdel 1. The
val ues under Mbdel 1 were conputed using the recurrence relation of
Theorem 1. For Mbdel 2 the average for n < 9 was determned by

considering all possible inputs to the algorithm For greater val ues

19

Level

n

W

~N O W F

10
11
12
13
14
15

16

17
18

19

20

21
22
23
2L
25
26

28
29
30
31

Table 1

A(n) , according to the assunptions of:

Mbde

0

0.55

.88
.67
75
57

o o O O

L1k
93
.98
19
.05
.85
.91
-3

o O O 1B O O O M

32

.1k
.96
20
00
.05
.88
.26
.05
.09
.91
.16
0.95
1.01
0.8k4

S K H H O K P R O R PP -

I._l

1

Model

0.50
0.55

S O O O

o O O b O O O +

O H O KH O HKHPFP O F FHHO KH - p

.92
.67
75
55

2L
9Ok
99 + 0
81+ 0.
.05+0

0

0

[02]
o
I+ |+ |+

I+ 1+ |+ |+ 1+ |+ |+ [+ |+ |+ |+

0.

|
O O O O O O O O O O O O O O o o

2

.03
03
.03
.03
03
.03

.0k

04
.0k
0L
.0h
Kol
.oh
.0k
.0k
.0k
.0k
.0k
.0k
Nollt
.0k
.0k

Zi g- Zag

0

0.50

0.33

0.59 + 0.02
0.83 + 0.02
0.66 + 0.03
0.8%3 + 0.02
1.08 + 0.03
0.86 + 0.03
1.07 + 0.03
0.78 + 0.03
1.07 + 0.03
0.84 + 0.03
1.05 + 0.03
0.72 + 0.03
0.82 + 0.03
1.12 + 0.03
1.00 + 0.0k
1.17 + 0.03
0.92 + 0.0k
1.26 + 0.03
1.02 + 0.0k
1.18 + 0.0k
0.83 + 0.03
1.13 + 0.03
0.99 + 0.0k
1.2k + 0.0k
0.91 + 0.0k
1.2k + 0.03
0.99 + 0.0k
1.23 + 0.0k

Level

n

32
53
46
b7
18
L9
62
63

an
65
9k
95
96
97
126
127

128
129
190
191
192
193
o5l
255

Table 1 continued

A(n) , according to the assunptions of:

Mbdel

1.43
1.22

.10

.95
Lo

.19

H 2 O B

.08
0.90

=

1.51
1.30

.13
.96
.48
.27

H = O

=

.12
0.94

1.55
3k

-

H H O p
n
NV

1 Model

1.50 +
1.27 +

1.10 +
0.91 +
1.43 +
1.20 +

1.03
0.85

P+

1.56
1.33

I+ |+

1.08

0.95
1.57
1.30

I+ 1+ 1+ |+

1.05
0.85

I+ I+

1.74
1.42

I+ [+

1.09
0.91
1.63
1.46

b+ 1+ 1+ 1+

1.01
0.88

I+ I+

21

2

0.05

0.0k
0.0k
0.04
0

0.0k
0.0k

0.05
0.05

.0k
.04
.05
.05

o O O O

0.0k
0.0k

0.06
0.05

.ok
.0k

.05
.06

O O O o

0.04

Zi g- Zag

1.37 +
1.1k +

.19
.93
3k
.10

H 2 O B

I+ 1+ I+ |+

1.16
0.88

I+ 1+

0.96
.21

|+

'_l
+

o

= O = P
O W
o\

+ I+ + 1+

v
O
I+ 1+

1.h2
1.20

I+ |+

.24
.94
il
. 20

B e O
1+ I+ + +

I+ 1+

0.92

0.0k
0.0k

0.03
0.0k
0.04
0.04

0.04
0.0h

0.04
o)

.05
.0k
.04
.0k

o © O o

o

.05
0.0k

0.05
0.05

.0k
.0k
.05
.05

o O O O

0.0k4
0.0h

of n we sinulated heap creation on 1000 randomy selected inputs
thus determning an estimate of the average and its interval of
confidence. These results indicate that the average is relatively
close in the two nodels. In general the behavior of Mdel 2 is nore
extreme than that of Mdel 1: the worst case, at each level, is now
worse than the worst case in Mdell and asynptotically exceeds A ;
on the other hand the best case, at each level, is now better than in
Mdel 1. In this section we give an intuitive explanation for this
- behavi or, and suggest a method for snoothing out the difference between
the worst and best case. W consider L-lI levels of the heap already
created and exam ne what happens when inserting the nodes at |evel L
To sinplify the notation we discuss the case where L = 3, but the
argunent applies as well for the general case.

Let us first assume that heap His random (See Figure 2.)

When kg is inserted it can exchange with k , k

5 and kl . These

are the sane nodes that k9 w |l encounter, hence k@ wi || be conpeting
with nunbers greater than or equal to kg 's conmpetition. Consequently
the average at node 9 will be smaller than that at node 8 . Let us
now | ook at the leftnost node of the right subtree, k., Wen it is

inserted it will be conpared with kg, k5 and kl . The only one of

these nodes that could possibly have been affected by previous insertions

at this level is k) But k12 i'S compared to kl only when it is
greater than k5 ; therefore we mght expect that the average at 12
is only slightly smaller than the average at 8 . By this sane kind
of reasoning the average at 15 should be the smallest at this |evel
The above discussion shows that the average will have an undul atory

behavi or at each | evel

22

Fi gure2

23

Actually the heap H, as we know, will not be random but this
will only accentuate such behavior. The heap H is not random because
|l arge keys tend to drift to the right, thus further |essening the
averages of the elements in the right subtree. To see this, consider
the input as a random pernutation of {1,2,...,15} . W know that after
all nodes have been inserted, 15 will be at the root, and we shall

examne the chances of k, or k3 being 14+ . W have several cases

to consider. The nunmber 1% will settle as the left son k2 i f

(1) 15 and 1k both enter the tree on the left;
(2) one of thementers at the root and the other on the left;
(3) 14 enters on the left and 15 enters previously on the right;

(4) 1k enters on the right and 15 enters later on the left.

Sinmlarly there are four corresponding cases where 14 settles as
the right son k5 Conparing these cases we find that the difference

between the probabilities that 14 settles at k5 rather than k, IS
the probability that 14 enters on the same level as 15 but on the
opposite side.

In order to danpen the latter effect we suggest a "zig-zag" nethod
alternating the direction of insertion at each level. Table 1 also
shows the averages found by this "zig-zag" nethod, when even levels are

inserted fromright to left. The effect is to balance the tree nore by

upsetting the ordinary drift of large elements to the right.

T. Acknowledgments

The authors wish to thank Prof. Knuth for his guidance and

suggestions throughout the development of this research

2k

Ref er ences

[Knuth - 1968]: D.E. Knuth, The Art of Conputer programming, Vol. 1

Addi son- sl ey, 1968.

[Knuth - 1973]: D. E. Knuth, The Art of Conputer Programming, Vol . 3

Addi son- sl ey, 1973.
[(Williams - 1964]: J. W.J. Williams, Al gorithm 232: HEAPSORT, CACM 7
(196k), 347-348.

25

