
fz-

RANDOM

.

INSERTION INTO A PRI OR ITY QUEUE STRUCTURE

Thomas Porter

Istvan Simon

STAN-C S-74-460

OCTOBER 1974

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UN IVERS ITY

Random Insertion into a Priority Queue Structure

bY

Thomas Porter

Istvan Simon*J

Abstract

The average number of levels that a new element moves up when

' inserted into a heap is investigated. Two probabilistic models, under

which such an average might be computed are proposed. A "lemma of

conservation of ignorance" is formulated and used in the derivation of

an exact formula for the average in one of these models. It is shown

that this average is bounded by a constant and its asymptotic behavior

is discussed. Numerical data for the second model is also provided and

analyzed.

Keywords and phrases: Priority queue, heap insertion, heap sort,

analysis of algorithms.

CR Categories: 5.25, 5.31

J*
On leave of absence from the Instituto de Matematica e Estatistica
da Universidade de S"ao Paulo, depto. de Matematica Aplicada.

This research was supported in part by the National Science Foundation
grant number GJ 36473~ and by the FundacBo de Amparo a Pesquisa do
E&ado de S&o Paul0 under grant number 72/425. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

1

Random Insertion into a Priority Queue Structure

1. Introduction

In this paper we investigate the average number of levels that a

new element moves up when inserted into an (n-l) -heap to form an

n-heap. An n-heap [Williams - 1964, Knuth - 19731 is a complete

binary tree of n nodes such that the key associated with each node

. is larger than the keys of both of its sons. Given an (n-l) -heap,

a new node can be inserted by placing it initially at the bottom of

the tree, thereby creating a complete binary tree of n nodes, and

then repeatedly comparing the key of the inserted node, x , with the

key of its father, y , exchanging the two nodes if x > y . If at

any stage x < y the resulting binary tree is an n-heap. Since a

complete binary tree of n nodes has Llg(n)J+l levels, -I* the

inserted node moves up at most Llg(n)J levels. Hence we can create

an n-heap by repeated application of this process in less than nL& nJ

operations. This suggests that the heap insertion method just described

could be used in the heap creation phase of heapsort [Knuth - 1973,

Section 5.2.3, Algorithm H]. One might expect that the average behavior

of the heap insertion method is still much better. Actually Williamsr

INHEAP routine in his original paper is essentially the insertion method

just described, and he states without proof in the comment accompanying

his routine that the average number of exchanges is two. In one of the

models proposed in this paper we shall prove that the average is bounded

by a constant less than two.

*
J lg n denotes log2 n .

To avoid ambiguities we state now the precise description of the

insertion algorithm. In this description we make use of the well known

compact representation of a complete binary tree in an array k ,

where k[l] is the root, and k[j] has left son k[2j] and right

son k[2j+l] . We also assume that each node consists only of its key.

If there are other fields of the node besides the key, the corresponding

modification of Algorithm I is trivial, and it obviously has no effect

on the average we are investigating here.

m. This algorithm inserts the n-th node into a heap. The

heap is stored in k[l],k[2],..., k[n-l] and k[n] is the node to be

inserted.

2. [Initialize.] Set p + n , q + p/2,1 , k + k[n] .

&2&- [Sift it up.] While q >O and k[q] < k do

end.begin HP] - khl 9 P + q 9 q + LP/~J

2. [Insert.] Set k[p] + k .

2. The Models

0

Let H(n) denote the number of n-heaps with n given distinct

keys, kl,k2, l vk, l The following closed form is known [Knuth - 1973,

Section 5.231 for H(n) :

H(n) n!

lT S.
lLi<n i-

I (1)

where si is the size of the sub-tree rooted at node k[i] .

3

Definition: Let A(n) denote the average number of levels the n-th

node is moved up by Algorithm I.

To find A(n) we consider two models:

Model 1: We assume that each of the H(n-1) possible heaps with the

(n-1) elements already in the heap
☯klh2, b l vknmll

is equally likely,

and that the key of the n-th node kn is equally likely to occur in any

of the n intervals determined by kl,k2,...,kn 1 . In Section 4 we

shall derive a simple recursive formula for e-4 in this case.

Furthermore, we shall prove several properties of this formula in

Section 5.

The assumption that each of the H(n-1) possible heaps is equally

likely is justified if one uses the heap creation algorithm of heapsort

[muth -19'i'% Section 5=2.3, Algorithm, H, heap creation phase] to build

the (n-l) -heap and then applies Algorithm I to insert the last element.

It is shown [Knuth -193, Section 5.2.3, Theorem H] that each (n-l) -heap

occurs with equal probability in this case. One could hope that a

similar theorem would hold for heap creation by repeated application of

Algorithm I. Unfortunately, this is not so, for certain heaps will

occur more-often than others if-we apply Algorithm I successively to a

random permutation of 1,2,...,n . To see this, let us compute the

probability distribution for the two possible heaps when n = 3 . It

-is easily verified that the permutations 123, 132, 213

3
and 312 are transformed into the heap

c%

, while 231

and 3 2 1 are transformed into & . lJ?Ief, & is twice

4

as likely as if we assume that each permutation is equally

likely. An even more striking example of this fact is that the heap

is generated by 228 7-permutations while its.
reflection is generated bY only 12 , a ratio of 1g:l !

Therefore we are led to our second model in a natural way.

Model 2: We assume that the H(n-1) heaps occur with a probability

distribution induced when Algorithm I is applied successively n-l

times to a random permutation of 1,2,...,n . Then we determine the

average A(n) when applying Algorithm I once more to insert Kn .

In Section 6 we shall discuss the average according to Model 2.

Although we do not provide an exact formula for Model 2, we do present

numerical data that shows results relatively close to those of Model 1.

3. Combinatorial Preliminaries

In this section we present a cmbinatorial lemma about k-arrangements

which appears to be useful in a variety of situations. In particular

we shall use it to prove Theorem 1 in the next section. The result

was suggested to us by D. E. Knuth and has been previously used in the

solution of several problems, but to our knowledge has not been precisely

formulated before.

5

Throughout this section, n and k denote fixed positive

integers with n > k .-

Definition:

(1) A k-arrangement of n objects is an ordered k-tuple of these

objects. A k-arrangement of k objects is called a k-permutation.

We shall consider only k-arrangements of {1,2,...,n) .

(2) Let CT be the set of k-arrangements of {1,2,...,n3 and let II

be the set of k-permutations of {1,2,...,k] . The function

f:a-Vt such that f((al,...,ak)) = (b1' l l

.,bk) implies

ai <a.
J

= bi'b.
3

is called the renumbering function preserving relative order. It

is obvious that for each n and k the renumbering function f

preserving relative order is unique.

3) A property P of k-arrangements is said to depend only on the

relative order of its elements when P(a) +S P(f(a)) for all

aa . (Note that since II c CT ,- f(a) ECT and hence we can talk

about P applied to f(a) 4

Examples:

(1) The property that the first element of the k-arrangement is the

largest one is a property that depends only on the relative order

of its elements.

(2) The property that the first k-l elements of the k-arrangement

form a (k-l) -heap is also such a property.

6

Definition: A random variable over a certain space with uniform

probability distribution will be called simply a random variable over

that space.

We observe that the renumbering function f induces a partition

over the set CT , where two k-arrangements belong to the same equivalence

class, if and only if they are both mapped into the same k-permutation

by f l

*
Lemmalz -I Let P be a property of k-arrangements that depends only

on the relative order of its elements. A random k-arrangement of

Cl 2Y f l �9 4
satisfying P remains randam under the renumbering

function f preserving relative order.

Proof: All we have to prove is that an equal number of k-arrangements

that satisfy P are mapped by f into each k-permutation that

satisfies P l Notice that since P depends only on the relative

order of the elements of the k-arrangements, those that satisf'y P

are always mapped into k-permutations that satisfy P . l%rthermore,

if any k-arrangement of an equivalence class satisfies P , then all

k-arrangements of that class satisfy P . Hence we may simply show

that each equivalence class hasthe same number of elements. But there

are exactly k! equivalence classes each corresponding to a k-permutation.

Now consider any k-subset of {1,2,...,n) . Permuting its elements in

-

every possible order, it follows immediately from the definition of f

that exactly one of these k! permutations falls into each equivalence

*
-/ L. Guibas has suggested that this lemma be named a "Principle of

Conservation of Ignorance", because the randomness is preserved
through the renumbering process.

class. Thus, since there are (E) k-subsets of Cl 2Y ,-**, 4 J there

are exactly (nk, elements in each equivalence class. ill

4. The Analysis by Model 1

In this section we derive a formula for A(n) in Model 1. The

input to Algorithm I can be thought of as a complete binary tree of n

nodes, kl,k2,...,kn , such that

(i) The nodes kl,k2,...,knml form an (n-l) -heap.

(2)
(ii) The n-th node, kn , of the binary tree is the new node

to be inserted.

level 0 - - - - -

level 1 - - - -

level 2 - - -

level Llg-nJ

Figure 1. Input to Algorithm I when n = 9 .

The situation is depicted in Figure lwhen n = 9 . The nodes connected

with solid lines form the (n-l) -heap, and the broken edge connecting

8

kY
to the tree is used to indicate that k

9
is the node to be inserted

into the heap. Thus, at this point
k9

is the only node that might

violate the heap condition key(son) < key(father) . It is important

to notice that as long as the relative order of kl,k2,...,k
9

is

preserved, the values of the keys themselves are irrelevant as far as

the complexity of Algorithm I is concerned for this input. In other

words, Algorithm I will execute exactly the same sequence of instructions

for two inputs kl,k2,k. and ki,k;,kn satisfying condition (2),

, provided that their relative order is the same. Therefore we may as well

assume that

[kl,k2,~..,kn] = {1,2,...,n] = Mn . (3)

We now prove the following formula for the average A(n) in Model 1:

Theorem 1: The average A(n) under the assumptions of Model 1

satisfies the recurrence relation

n-l
A(n) = i . L + 7 l A(n-2l) for n > 2

where L = Llg n] and 1 =

A(1) = 0 .

Proof: Let L = Llg-n] be the level of the inserted node, and let T

denote the subtree of the root that contains kn . Let T' be the other

subtree and let T be the subtree T without the node kn . Thus $

and T' are both heaps. Each possible value of kn occurs with

probability l/n . If kn = n , Algorithm I will move it up exactly L

levels, since in this case the inserted node has maximum key, and

therefore it will be at the root when the algorithm terminates. If

- kn+ny then n is already at the root and kn will eventually

9

settle at some level in T . Therefore we may write

A(n) = i l L+G A[T] (4)

where A[T] denotes the average number of levels kn
is moved up in

the subtree T . The subtree T has exactly n-2' nodes, where

a = Llg($ n)] . (Note that 1 = L-l if T is the left subtree of

the root and 1 = L if it is the right one.)

Our aim now is to show that

A[T] = A(n-2l) . _ (5)

Fixing a particular T and varying the possible heap arrangements of

the nodes of T' we see that each T occurs exactly H(2!-1) times

among the original (n-l) -heaps, which are assumed equally likely by

hypothesis. Therefore each possible T is equally likely and we can

compute A[T] over the space of possible T-s . Keeping also in mind

that kn will eventually settle at some level in T , since kn e"n-1

and n is already at the root, this means that everything works as if

we were inserting kn into T rather than into the original (n-l) -heap.

Let US therefore assume from now on that our input is T . The input T

has k = n-2l nodes chosen from Mn 1 , and it can be regarded as a

k-arrangement of (1,2,:.. ,n-l')- such that its first (k-1) elements

form a heap. As we have seen before, this is a property of k-arrangements

that depends only on the relative order of its elements, and hence a

-random T remains random under the renumbering function f preserving

relative order, by Lemma 1. Furthermore by observation (3) above, the

renumbering process preserving relative order does not change the number

of levels that the inserted node is moved up by Algorithm I. Hence we

10

can compute the average A[T] over the space of the renumbered trees.

But this is precisely A(n -2l) .
Ll

50 Some Properties of the Average A(n)

In this section we shall explore some of the properties of the

average A(n) derived in Section 4. In particular we shall show that

at any level L of the tree the leftmost node, 2L , has the largest

We then proceed to prove-that
L

average. A(2) is always bounded by a

constant and approaches this constant as L approaches infinity, thus

showing that A(n) is bounded by a constant for all n . We then

derive a closed formula for n of the form 2wl-l , which is the

rightmost node at level L , and show that actually in this case a-4

is bounded by 1 and approaches 1 as L approaches infinity.

Finally we examine the asymptotic behavior of A(n) , where n varies

along an arbitrary path of the tree.

Theorem 2: If nl and n2 are two nodes at the same level L such

that nl is to the left of n2 (i.e., nl<n2), and if

Aby - 2
5

).
l2

2 A(n2 -2 -) where Pi = L'g($"i)l Y then A(nl) > A (>n2 l

Proof: By Theorem 1,

a.
A(ni) = $- + (1 - 1)A(ni-2 i) l

i i

Since A(nl -2
5

1 2 Nn2-2
I2

> Y

Nq - Ah21

= (L-A(n2-2
I2)) .

Now L -A(n2 - 2
l2

) > 0 , because (n2 - 2
l2

) is a node at level

L-l , and it can move up at most L-l levels. It follows that

Nq > Ah21 l

Ill

Corollary 1: At each level L the leftmost node 2L has the largest

average value.

Proof: The proof is by induction. At level 0 the result is trivial.

Now assume the corollary at level L-l . Let nl be the leftmost

node at level L , and let n2 be a node to its right at the same

level. Then n2-2
I2

is some node at level L-l , and nl-25 is

the leftmost node at that level (since fl = Llg(5 n,)J = Llg($ 2L)J = L-l,

and
5n -l2 = 2L-1). Therefore A(nl-25) > A(n2 -2 I2) by the

induction hypothesis, and the corollary follows from Theorem 2.
0

We now examine the average at the leftmost nodes at each level.

a
Since A(n) = A(n - 2’) + ’ OAF - 2) it follows that A(n) > A(n -2l)

for all n . In particular if n is the leftmost node, i.e., n = 2L ,

then n-2l = p Y hence
L

A(2) is a monotonically increasing sequence

with L . It is not difficult to show that this sequence has a limit h ,

and hence it is bounded by this limit. By virtue of Corollary 1 this

I2

implies that A(n) < h for all n , i.e., h is a constant that

bounds A(n) . Furthermore h is the best conceivable such bound

since lim A(2L) = h .
L+a

We shall now determine a closed formula for LA(2) and use it to

derive an expression convenient for the numerical computation of h .

Theorem 3: The bound h satisfies the equalities

h = lim A(2L) = c -& = 1.6066951524 . . .
L4a j>l 2J-l

Proof: We have A(2L) = L + (l-2-L)A(2L-1) by Theorem 1.
eL

.

Let aL

denote A(2L) and let bL =
aL

n (l-2-j) l

Then

l_<j<L

"L 2L
= L + (l-2-L)aL-l and

T a, 1
n y1-2-9 = $J

L + JJ’l
n (1-2-j) n (1-2-j) ,

l_<jLL lsj_<L lsj<L-1-

i.e.,

bL = 2L
. L

q- &-j)

+ b
L-l l

(6)

Iterating equation (6) we get

c
bL = bO+ l<i<L 2i

i

- - n (1-2-j) l

(7)

l<j<i-

13

But b. = a0 = 0 , hence (7) yields

i n (l-2-j)
l_<j_<L

&L =
c

1LiLL gi jJ- (1-2-j) l

l:jLi

Let P = n (l-2-j) and P
j_>l

i= TT
l_<j_<i

infinity, aL approaches h , hence

h=PC i

i>l 2i
.

-

(1-2-j) . If L approaches

(8)

(9)

By E'ulerrs partition formula [Knuth - 193, exercise 5.1.1-161,

Tr 1 i
- c

Z 1

j>O (1-qjz) - _ TT @-CA
.

i >0
Setting z = z x and

llj,<i

1
q=F=2

-1
yields

R(x) = J--r 1

j>l l-2-jx
=1+x _xi .

i>l 2%i

.

Let rj(x) = ' . . Then r;(x) = $ rj(x) =
2-j

l-2-Jx - (l-2-jx)2 l

Taking derivatives of (10) and noting that R,(x) = d
dx(j$ 'jcx') =

1 i-l
we have R'(x) = R(x) l c

jll 2j(l-2-jx)
=x Lg..-.
ill 2iP

i

In particular for x = 1 , noting that R(l) =--i , we have

14

$ c 1 = c & g Finally, by (g),
j >1 2j-1- i>l 2iPi-

A=c; -A.
jzl 2J-l

u-u
cl

The sum (11) is rapidly converging and can be used to find h

numerically.

We can also derive a closed formula for the average at the rightmost

node of each level.

Theorem 4: If n is the rightmost node at level L , (i.e., n = 2i+l-l),

then A(n) = 1 - y .

Proof: A simple induction on L l

The proof of the following corollary is now trivial:

Corollary 2: If n is of the form
2L+1-1 then

A(n) <l

0

(>ii lim A(n) = 1 .
L-)a

Theorems 3 and 4 give asymptotic values for the average A(n)

along two particular paths down the tree. We can describe any path

-on the tree by a binary sequence Q where the L-th element of the

sequence, ?L Y is 0 if we go from level L-l to L taking the

left branch and 1 if the right branch is taken. With this convention

the number 1 followed by the first I, bits of a , in binary, gives

15

the node at level L along that path. We denote this node by 2Lea .*J

Hence the limit A(a) = lim A(2L~~) , if it exists, gives the

asymptotic value of the average along the path defined by cx . If

the limit does not exist we say that A(a) is undefined. For example

a(0) = 000 . . . refers to the path of leftmost nodes at each level,

and thus A@(0)) = A according to Theorem 3, while a(1) = 111 . . .

refers to the path of rightmost nodes at each level, and thus

A(&)) = 1 by Corollary 2.

Definition:

(1) Two binary sequences a and p have the same tail if there exists

ani and j such that CX+~ = &
3+k

for all k 2 0 .

(2) If m = n-2L , where I = Llg($ n)] then we say that the average

at node n depends on the average at node m .

This definition is motivated by Theorem 1.

Theorem 5: If Q! and @ are two binary sequences that have the

same tail, then A(a) and A(p) are either both undefined or both

defined and equal.

*
J This notation is motivated by regarding a as associated with the

real number & = l+ c 0% L
L l

Then the node denoted by 2 l a is
L>l 2

clearly the node Note however that this correspondence

between a and & is not l-l , for sequences that are of the form

ala2 . . . aklOOO... and ala2 . ..a.rOlll... correspond to the

same real while defining distinct paths on the tree.

16

Proof: Let no be a node at level i and let nl be the node

at level i-l such that the average at no depends on the average

at fO
nl

=n- .
O2

It is an immediate consequence of Theorem 1 that

the average at node 2n0 (node 2no+1), the left (right) son of no

depends on the average at node 2nl (node 2nl+l) the left (right)

son of n (0)
1

. Now given 8 such that 2 6i (0) = n let 6 (1) be
0L *

the binary sequence satiseing 2i+fjw = n (0)1 and 8. 6 (1)
l+k= -i l+k for all

k>O. Then A(2i+k~6 (0)) =- 1 - ,-g&q A(2i-l+k#)) .
>

Letting k approach infinity we have

i+k
p-J5y"

Hence if A(S (0)) = lim A(2 08L (0)) exists then so does
L-)a

A(6 (1)) = lim A(2L.s(1)) and A@(')) = A(&)) .
L 403

The above construction, given a node no at level i and a path

6 (0) passing through no constructs a corresponding path 8 (1)

passing through nl at level i-l , such that the average at no

depends on the average at n1 and A($ (0)) and A@ (1)) are either

-both undefined, or both defined and equal. So i successive applications
.

of this construction reduces 6 (0) to a path 6 i(> such that

6 (0)
i+k =

(>
'k

i for all k 2 0 , and A(6 0)) and A(8 (0)) are either

both undefined or both defined and equal. Consequently if cx and 8

17

have the same tail

path 6 such that

and A@) Y A(a)

and equal.

Corollary 3: If

sequence of 0's ,

, Proof: Immediate from Theorems 3 and 5.

Corollary 4: If

sequence of 193 , then A(a) exists and A(a) = 1 .

Proof: Immediate from Corollary 2 and Theorem 5.

then they are reduced by this process to the same

ai+k = Bj+k = 6k t for k > 0 for some i and j ,

and A(@) are either all undefined or all defined

cl

a is a binary sequence ending with an infinite

then A(a) exists and A(a) = h .

a is a binary sequence ending with an infinite

Corollary 5: There exists an a such that A@) is undefined.

Proof: Let 6 be any sequence ending with an infinite sequence

of O's . Since A(6) =)I , given any E > 0 , there exists an N

such that for L >N , \A -A(2L=S)I < E . Similarly for any

sequence y ending with an infinite sequence of l's , since

A(Y) = 1 , there exists an N, such that for L >N, ,

11-A(2L*r)(< E l NOW 1 < h, so let E > 0 be such that

l+e <k-E. Then construct a as follows.

Step (1): Let al = a2 = . . . = 5 = 0 where kl is the least
1 '

integer such that lh-A(2kl .a)1 < e . Note that 2kl .a

is determined by the first kl bits of cx only, so

this condition is well defined.

18

Step (2): Now let ~52 +1 = ak +2 = . . . = = 1 where
k2 is

1 1

the least integer greater than kl such that

ll-A(2k2a)\ < E .

Now at any odd step (r) add sufficiently many O's to have

(h_A(2kr l a>1 < E and at any even step (s) add sufficiently many l's

to have ll-A(2kS41 < E . It is clear that A(a) must be undefined

for such an a . cl

Corollary 3 asserts that no matter which node of the tree we start

at, if we always take the left branch the asymptotic value of the

average is h , while if we always take the right branch then the

asymptotic value of the average is 1 by Corollary 4.

The relation of two sequences a and @ having the same tail is

clearly an equivalence relation. In virtue of Theorem 5 the asymptotic

value of the average is invariant over any equivalence class. Corollary

3 and 4 give two distinct equivalence classes that have two distinct

asymptotic values, and Corollary 5 shows that there are equivalence,

classes over which the asymptotic value of the average is undefined.

We conjecture that indeed the only two equivalence classes with defined

asymptotic values are those mentioned above.

6. Remarks About Model 2

Table 1 shows the comparison between Model 2 and Model 1. The

values under Model lwere computed using the recurrence relation of

Theorem 1. For Model 2 the average for n ,< 9 was determined by

considering all possible inputs to the algorithm. For greater values

19

Table 1

a-4 Y according to the assumptions of:

Level n

0 1

1 2

3

Model 1 Model 2 Zig-Zag

0 0

0.50

0.33

0.50

0.33

4 0.88 0.92

5 0.67 0.67

6 o-75 o-75

7 0.57 o-55

8 1.14

9 0.93

10 0.98

11 o-79
12 1.05

13 0.85

14 0.91

15 o-73

1.24

0.94

0.99 + 0.03

0.81+ 0.03-
1.05 + 0.03

0.87 + 0.03

0.88 + 0.03-
0.77 + 0.03

16 1.32

17 1.11

18 1.14

19 0.96

20 1.20

21 1.00

22 1.05

23 0.88

24 1.26

25 1.05

26 1.09

27 0.91

28 1.16

29 0.95

30 1.01

31 0.84

1.38 + 0.04-
1.14 + 0.04-
1.14 + 0.04

0.94 + 0.04-
A.24 + 0.04

1.01 + 0.04-
1.01 + 0.04-
0.84 + 0.04-
1.28 + 0.04-
1.08 2 0.04

1.08 + 0.04-
0.91 + 0.04-
1.15 + 0.04-
0.96 + 0.04-
1.00 + 0.04-
0.82 + 0.04-

0

0.50

0.33

0.59 + 0.02

0.83 + 0.02-
0.66 +, 0.03

0.83 + 0.02-

1.08 + 0.03

0.86 + 0.03

1.07 + 0.03

0.78 + 0.03-
1.07 + 0.03

0.84 + 0.03-
1.05 + 0.03-
0.72 +_ 0.03

0.82 +, 0.03

1.12 + 0.03

1.00 + 0.04-
1.17 + 0.03

0.92 2 0.04

1.26 +, 0.03

1.02 + 0.04-
1.18 + 0.04

0.83 + 0.03-
1.13 2 0.03

0.99 + 0.04

1.24 + 0.04-
o.y1+ 0.04-
1.24 2 0.03

0.99 + 0.04

1.23 + 0.04

20

Table 1 continued

A(n) Y according to the assumptions of:

Level n

5 32

3?

46

47
48

49..

82

63

6 64

65..

Yi

95

96

97..

12k

127

128

129...
190

191

192

193..

2;4

255

Model 1 Model 2 Zig-Zag

1.43

1.22

1.50 2 0.05

1.27 2 0.05

1.10

0.93
1.40

1.19

1.08

0.90

1.10 2 0.04

0.912 0.04

1.43 + 0.04

1.20 + 0.04-

1.03 + 0.04-
0.85 2 0.04

1.51 1.56 +, 0.05

1.30 1.33 t 0.05

1.37 + 0.04

1.14 + 0.04-

1.19 2 0.03

0.93 + 0.04-
1.34 + 0.04-
1.10 + 0.04-

1.16 + 0.04-
0.88 + 0.04-

0.96 2 0.04

1.21+ 0.04

1.13 1.08 +, 0.04

0.96 0.95 + 0.04

1.48 1.57 +, 0.05

1.27 1.30 + 0.05

1.13 +, 0.05

1.35 + 0.04

0.96 + 0.04-
1.20 + 0.04

1.12

0.94
1.05 + 0.04-
0.85 + 0.04-

1.17 +, 0.05

1.39 + 0.04

l-55 1.74 2 0.06 1.42 2 0.05

1.34 1.42 + 0.05 1.20 +, 0.05

1.15

0.98

l-53

1.33

1.24 + 0.04

0.94 + 0.04

1.44 +, 0.05

1.20 2 0.05

1.14

o-97

1.oy + 0.04

0.912 0.04

1.63 2 0.05

1.46 + 0.06-

1.01 + 0.04-
0.88 + 0.04-

5-q + 0.04-
0.92 + 0.04-

21

of n we simulated heap creation on 1000 randomly selected inputs,

thus determining an estimate of the average and its interval of

confidence. These results indicate that the average is relati\rely

close in the two models. In general the behavior of Model 2 is more

extreme than that of Model 1: the worst case, at each level, is now

worse than the worst case in Model1 and asymptotically exceeds h ;

on the other hand the best case, at each level, is now better than in

Model 1. In this section we give an intuitive explanation for this

* behavior, and suggest a method for smoothing out the difference between

the worst and best case. We consider L-l levels of the heap already

created and examine what happens when inserting the nodes at level L .

To simplify the notation we discuss the case where L = 3 , but the

argument applies as well for the general case.

Let us first assume that heap H is random. (See Figure 2.)

When ks is inserted it can exchange with k4 , k2 , and kl . These

are the same nodes that k
9

will encounter, hence
kY

will be competing

with numbers greater than or equal to k8 % competition. Consequently

the average at node 9 will be smaller than that at node 8 . Let us

now look at the leftmost node of the right subtree, k12 l

When it is

inserted it will be compared with k6 , k3
and k1.

The only one of

these nodes that could possibly have been affected by previous insertions

at this level is kl l

But k12 is campared to
kl

only when it is

greater than k3 ; therefore we might expect that the average at 12

is only slightly smaller than the average at 8 . By this same kind

of reasoning the average at 15 should be the smallest at this level.

The above discussion shows that the average will have an undulatory

behavior at each level.

22

/ \
I \ / \ I \ / \

Figure2

23

Actually the heap H , as we know, will not be random, but this

will only accentuate such behavior. The heap H is not random because

large keys tend to drift to the right, thus further lessening the

averages of the elements in the right subtree. To see this, consider

the input as a random permutation of [1,2,...,15] . We know that after

all nodes have been inserted, 15 will be at the root, and we shall

examine the chances of
k2 or

5
being 14 . We have several cases

to consider. The number 14 will settle as the left son if

(1) 15 and 14 both enter the tree on the left;

(2) one of them enters at the root and the other on the left;

(3) 14 enters on the left and 15 enters previously on the right;

(4) 14 enters on the right and 15 enters later on the left.

Similarly there are four corresponding cases where 14 settles as

the right son
k3 l

Comparing these cases we find that the difference

between the probabilities that 14 settles at
k3

rather than k2 is

the probability that 14 enters on the same level as 15 but on the

opposite side.

In order to dampen the latter effect we suggest a "zig-zag" method,

alternating the direction of insertion at each level. Table 1 also

shows the averages found by this "zig-zag" method, when even levels are

inserted from right to left. The effect is to balance the tree more by

1E upsetting the ordinary drift of large elements to the right.

70 Aclmowledgments

The authors wish to thank Prof. Knuth for his guidance and

suggestions throughout the developer& of this research.

References

[Knuth - 19681: D. E. Knuth, The Art of Computer programming, Vol. 1

Addison-Wesley, 1968.

[Knuth - 19731: D. E. Knuth, The Art of Computer programmin@;, Vol. 3

Addison-Wesley, 1973.

[WiUA.ams - 19641: Jo W. Jo Wil1ia-m Algorithm 232: HEAPSORT, CACM 7

(@+), 347-348.

25

