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A Conbi natorial Base for Sone Optinal

Matroid Intersection Al gorithns

Stei n Krogdahl

1. [ ntroduction

The al gorithms for which a theoretical base is givenin this
paper, have been known for sone time, and were first devel oped by
E. Lawler. However, the proofs given for the correctness of these
al gorithns have used |inear programmng concepts such as prinmal and
dual solutions, and have been rather difficult to understand. Hopefully,
the proofs given here will be easier to understand, and thereby will

give deeper insight into the nature of the problens involved.

2. Sone Properties of Matroids

In this section we shall develop the properties of matroids on
which the following theory is built. W denote a matroid ME) , and
thereby mean a matroidian structure defined on the finite set E . It
I's assumed that the reader knows the basic properties of matroids, and
we will use the follow ng notation: If Ac E and ecE , then A-e
and A+e shall nean A- {e}] and AU {e} respectively. The closure
of a set Ac E, or the span of A, will be denoted sp(a).1 f
| < Eis independent and e ¢ sp(I)-I , then the unique circuit in

I+ e will be denoted C(e,I) .



Qur first theoremis the follow ng:

Theorem 1. Assune that ME) is a matroid and that | and J are
subsets of E such that | is independent and J < sp(I) -1 . Further
assume that a one-to-one mapping d: J - I is defined such that for
all ecJ, a(e)eC(e,I), and for all nonempty sets A c J there is
an ecA such that for all e'c¢A- e we have d(e) £C(e',I) . Then
we can concl ude:

A. the set 1' = 1uJ-4(J) is independent;

B. sp(I') = sp(I), thus d(J) < sp(I') -1' ;

c. for all eeJ we have ecC(d(e),I') .

Pr oof . For later convenience let us first choose one element e in

each A c_J such that for all e'ecA-e we have d(e) £c(e',I), and.
call it S(A)
Part B of the conclusion is a sinple consequence of part A since
11 = |1 and everything goes on within sp(I) . To prove part A

we assune that I' contains a circuit Cqy Because | is independent,

Ay = conJ is not enpty, and we set e = S(AO) .

and eec(e,I)ﬁCO , we can find a circuit C, Wit hin C(e,I)UCO—e

such that d(e) eC, , and we know A, =C NI CAj-e . If A £ 9

Because d(e) eC(e,I) -Cy

we' choose e <A, - Now we have d(e) eCl—C(el,I) and eleclﬂc(el,l)
and we can find a circuit C, ¢ Cluc(el,I)-el such that d(e) <C,, and

we have A, =C,NJ c A -e If A, is not enpty, we pick an e, c4

1 2 2 T2
and repeat this process again, and for sone k , A, nust becone enpty,
since |a.| <|a, ;| . But then c, (which contains at least d(e) )
must be a circuit entirely within I , and this is a contradiction

sutruling the existence of C



The proof of part Cis done by a simlar construction as the one
used to prove part A but a little nore care is needed. First we order
the elements of J in a sequence J = {jl,jz,...,jn} , by the follow ng
definition: ip = 8(9), Jp = S(Jljl) Do gy B S(J-jl- 'jn-e) ,
in = s({jn}) . W then observe that if p <q, then d(jp))éc(jq,l) .

Now assume eeJ , and we will show eccC(d(e),I') . Suppose
e=j , » then we know B, = d(J) nc(e,I) c_{d(e) , d(jﬁ_l) R d(jn)} :
[f now B, = {d(e)) we nust have C(d(e),I') = C(e,I), and we are
done. If not, let Py be the snallest g such that

d(jq) ¢By -d(e) . Now d(jpl) eC(e,I) ﬂc(jpl,l) and

eecC(e,I)-C(j_ ,1) . Thus we can find a circuit ¢, c c(e,I) UC(j_ »!) -d(J

such that eeCl. W& now know t hat

Bl=d(J)ﬂCl§{d(e),d(jp+l)l, @ 405} MowifB -d(e)fp,

we choose p, as the smallest q such that d(jq) eBl-d.(e) , and

| et C, be a circuit in ClUC(j 1) -d(j ) containing e . Define
p2 p2

B, = 4(J)NC, , and if again B,-d(e) # ¢ we choose p; as m ni num

such that d(] o ) eBE-d(e) and go on in this way. W nust then get
3

Pi < D4y and for sone k |, Bk—d( e) nust become enpty. Then Cy

is a circuit, containing e , whose only element outside I' can

be d(e) . Since 1I' is independent we nust have d(e) €Cp and

al so c(d(e),I').= Cy - Thus eeC, = c(d(e),I') as cl ai ned.

Note that we also can add, to I* in the theorem at |east one
element not in sp(I) , and renmove as many el ements as we wish, and

still rely on the independence of 1'.



Theorem 2. Assune that | and J are independent sets in a matroid
such that J < sp(1) . Then for each e «J-I , C(e,I) N (I-J) £ ¢ |

and for each g'c J-1 the set I'= (I-J)ﬂ( U C(e,I)) i's such
eed!

that |J'| < |1'] .

Pr oof . The first statement must be true, or else J would contain

acircuit. To prove the second we observe that

J'U(Ing) c sp(I'u(Ing)) . Since both these sets are independent

we nust have |J'u(Ind)| <|rru(zng)|, and thus || < |1'] .

%.  The Sinple Border Gaph (SBG of an |ndependent Set

Assune that | is an independent set in a matroid ME) . Then
we can construct a bipartite graph, called the "sinple bordergraph"
(SBG of I, in the follow ng way:

The nodes of the graph are (in one-to-one correspondence with)
the elenments of E, and there is an arc between the nodes e, €E-I
and e el if and only if e € sp(I) and e, eC(e,I) . This neans

“that if e is not a self-circuit-elenment and e ¢E-I , then e has
no arcs onto it if and only if e e¢E-sp(I). Also if e, €E-I and
e, € | and there is an arc between e
i's independent.

and e, then |+ e - &

& now note that the function d used in Theorem 1 corresponds
to a matching in the SBGof | , and that part A of this theorem says
sonet hing about when the interchanges indicated by the arcs in a certain
mat chi ng can be perforned simultaneously w thout destroying the

i ndependence of |



To be able to formulate part A of Theorem 1 in these graphic
terms we define the graph "induced" by a matching in the SBG of | ,
as the graph with node set equal to the set of end-nodes of the matching
and with arc set equal to the set of all arcs between these nodes in
the original SBG Indeed this graph contains the arcs of the matching
itself, and we call these the "main arcs" of the induced graph. Further
a matching is said to be "usable" if the interchange in | of its
end-nodes inside | with those outside | makes a new independent set.
Part A of Theorem 1 then says that a matching D in the SBG
of I is usable if the induced graph of any submatching d* of D

has at |east one main arc which is the only arc to its end node in |

To get this condition on a, for us, nore convenient form we
define a "main cycle" in the induced graph of a matching as a sinple
cycle that uses a main arc exactly each second tine. W will say that
a matching "induces a main cycle" if its induced graph contains a
main cycle, and if a matching does not induce any main cycle it is said

to be "clean".

Theorem 3. A clean matching D in the SBG of an independent set |

is usable.

Proof . VW will showthat if D does not have the property that

every submatching D' of D has at |east one arc whose node inside |
has degree 1 in the induced graph of D', then the induced graph

of D nust contain a main cycle. Therefore assune that D* is a
submatching of D inducing a graph where all the nodes inside |

has at |east two arcs onto it. Then start at any node of D' outside | ,

pass along the main arc to its endpoint inside | , and take any of the

p)



other arcs from here. Then we are back at the outside end of another
main arc, and we repeat the process. This process nust eventually
| ead back to a main arc which is used before, and then a main cycle
in the induced graph of p* is found, and this is also a main cycle
in the induced graph of D

W conclude this section by giving a theoremthat assures the

exi stence of matchings under certain conditions.

Theorem 4. Let | and J be independent sets of a matroid such
that J < sp(I). Then there is a matching in the SBG of | such
that J-1 is exactly the set of end-nodes of the nmatching outside I

and all the inside end-nodes are within I-J .

Proof. By Theorem 2 each node in J-1 nust have at |east one arc
leading into I-J , and these arcs nust be so arranged that for every
Jt< J-1 the set in 1-J directly reachable through an arc from nodes
in J' has greater cardinality than g*. Thus, by a well known theorem
about matchings in bipartite graphs the matching required by our theorem

exists

L. I ntersections of Matroids

In the following we shall deal with two matroids here called M
and My (the red and the blue matroid), both defined on the sane set E .
A subset of E which is independent in both My and MB is traditionally
called an "intersection" of My and My and our task shall be to
develop algorithms for finding optimal (in a certain sense) intersections.

In a later chapter weights are given to the elenents of E and the task

6




is to find an intersection with the maxi num sum of weights. However,
we shall first treat the sinpler case where all the weights are one,
that is, to find a maxinum cardinality intersection.

For sinplicity we assune that neither M, nor MB has self-circuit-
elements. If any of themhas, these elenents (which cannot figure in any
intersections) can be deleted first, or they can sinply be ignored by

any al gorithm

5. The Bordergraph (BG of Intersections, and Alternating Paths

If 1 is an intersection of M, and My we define the
"bordergraph" (BG of | to be, in a certain sense, the union of the
SBG of I in M. and in M. That is, the set of nodes of the BG
of Iis again in one-to-one correspondence with E, and the arcs
are exactly those fromthe SBG of | in My colored red, and exactly
those fromthe SBG of | in My colored blue, and only these.

If a node outside |I has no blue arcs onto it, it is said to be
"unicolored", with color red, and if it has no red arcs onto it, it is
uni colored with color blue. If it has neither red nor blue arcs onto
it, it is also said to be unicolored, now with color white. Coviously
(if the matroids contain no self-circuit elenents) an elenment is outside
spB(I) if it is unicolored with color red or white, and outside
spR(I) if it is unicolored with color blue or white.

V& now define an "alternating path" in the BG of an intersection |

as follows: Either it is a single unicolored white node outside |

or it is a sinple path or cycle of length at |east one which uses



red and blue arcs alternately and which is such that any end-node of
the path outside | is unicolored. ("Sinple" is here used in the
sense that no node is "used twice" along the path.)

If Pis an alternating path in the BG of | we denote its
set of nodes outside | as " out(P) ", the set of those inside I
as "in(P) ", and the set | -in(P) Uout(P) as " P(1) ". Further
we say that P is "usable" if P(l) is an intersection of the two
mat r oi ds l\/h and My .

For later use we will classify the alternating paths in four
groups: Wpaths, N-paths, Mpaths and Opaths. An Opath is a cyclic
path, a Wpath is one with both (unicolored) endpoints outside | (wth
the single white-node-path as a special case), an Npath is a path with
one (unicolored) endpoint outside | and one inside | , and an Mpath

is one with both end-points inside I



r—

WA

W pat hs N- pat hs
f\f\é f\ j\, /\f i
M pat hs O pat hs

Exanpl es of alternating paths. The unfilled nodes nust be unicolored,

and the | ower nodes are assumed to be inside | .

By considering only the red or only the blue arcs of an alternating
path, a red and a blue matching (of which one or both may be enpty) is
defined. |If both these matchings are clean in their own SBG then the
alternating path is also said to be clean.

By Theorem 3, and the comments after Theorem 1, we get the follow ng

t heor em

Theorem 5. A clean alternating path is usable.

Qur main interest is in Wpaths, because if P is a usable Wpath,
then P(1) is a newintersection with one elenent nore than | . The
foll owi ng theorem assures-the existence of Wpaths in the bordergraph

of I , if greater intersections exist at all.



Theorem 6. Let | and J both be intersections such that

|T|< |5| . Then there is an alternating path P of Wtype in the
BG of | such that out(P) ¢ J-I and in(P) < 1-J .
Pr oof . If J contains an el ement outside spR(I) UspB(I) , then this

is aunicolored white elenent and it is usable as a Wpath al one, and
we are done. Therefore suppose J < spR(I) UspB(I) and define

J' =J-I . Now partition J' into the sets Jg > Jp and ‘]0 as
being the unicolored red elenents, the unicolored blue elenents and
the rest of the elements of J'. By Theoremu we can now find a red

mat ching using exactly the nodes of J uJ, outside | and only nodes

inl-J inside | , and a blue matching using exactly the nodes of
JgUdy outside I and only nodes in I-J inside I . Now define
Ip v Iy and |0 as the nodes in 1-J which have only a red arc onto

it, only a blue arc onto it and one red and one blue arc onto it
respectively in this matching. Ve know that |1, UI UI.| < [1-7] <

IJ—Il:\JRUJOUJBl , ‘IRUIOl - |ogud,l end lIBUIol = Jagud,l

Therefore we nust have [1,| < |J sl

gl and |51 < |9

The arcs we have got now nmust obviously forma set of alternating
paths of various types. However since every Opath wll '*consume"
nodes only from Iy and '0 and each N-path will consune exactly one

' ' ' ' 1us
node in In and one in I, Oronein JB and one in IB (p

possibly sone in J, and I at 1least one path nust extend froma

0 0 )

node in JR to a node in Jg - This path is a Wpath in the BG of | ,

and it obviously neets the requirements of the theorem

10



6. Shortcutting of Alternating Paths

Suppose we go along an alternating path P fromone end to the
other, or around an Opath, and are just about to |eave a node by an
arc of color X . If we then, fromwhere we are now, find another
arc, also of color X, leading to a node further ahead on our path,
we can delete all nodes and arcs |ying between these two nodes on the
path and insert this new arc instead, thus obtaining a new alternating
path of the sanme type. This operation is called "shortcutting", and
the resulting alternating path is called a shortcut of P . W obtain

the follow ng theorem

Theorem 7. If P is any alternating path where no further shortcutting

is possible, then P is clean, and thus usable.

Proof . It is easy to see that if either the red or the blue matching
in the graph induce a red or blue main cycle, then at |east one short-

cutting edge nust exist.

7. Maxi num Cardinality Intersection Al gorithm

V& can now construct a rather straight-forward al gorithm for

finding a maxinum cardinality intersection of two matroids.

If we have an intersection I, with k elements, then Theorem 6
tells us that if its BG contains no Wpaths, then I, is a maxi mum
cardinality intersection. If not, we can take any Wpath in the BG
shortcut it until no shortcut is possible, and by Theorem 7 we know

that it is now usable and will bring us to an intersection Ik+lvvith

11



k+1 el enents. Starting with I, = ¢ this will give us an algorithm
for finding a maximum cardinality intersection.

W shall not elaborate on how such an al gorithmcan be inplenented
or optimzed here, but only notice that if we have a way of deternining
in polynomal time if a set is independent in M, or in M then
we can also find CR(e,I) and CB(e,I) , and thus build the BG in
polynom al time. The search for Wpaths and a possible shortcutting
process can obviously also be carried out in polynonmal time, which
al toget her gives a maxi mum cardinality algorithmworking in polynom al

tine.

8. \Wighted Mtroids

W will now consider the case where the elenents of the set E
over which M, and Mo are defined has weights. That is, a mapping
wfromE to the real nunbers is given.

V¢ al so define the weight of a set A c E as the sum

WA) = L we)

ech

Also we define the weight of an alternating path P in the BG of | as

w(P) = w(P(I)) -w(1) . This is obviously equivalent to

w(P) = w(out(P)) -w(in(P))

An intersection | is said to be k-maximal if [|I| =k and for
all intersections 1I* such that |1'] = k we have w(I') < w(I) .
Qur aimin the following is to showthat if | is k-maxinmal and Pis

a weightiest Wpath in the BG of | which cannot be shortcutted w thout

12



lowering its weight, then P(l) is a k+1 -maximal intersection.

If | is k-maximal-then the weight of any usable alternating path
of type 0 or N nust be less than or equal to zero, or else a
weightier intersection with k elenents could have been found.

A consequence of this is the follow ng:

Theorem 8 . [f I is a k-maximal intersection and P is any alternating
path in the BGof | such that any shortcut of P will give a path

with less weight, then P is clean, and thereby usable,.

Proof . W will show that the assunption that one (or both) of the
mat chings given by the path P induces a main cycle, (that is, P is
not clean) leads to a contradiction. Therefore assume that e.g. the
red matching induces a main cycle. Now, if the alternating path is of
O-type renove any blue arc to obtain a linear structure.

The idea of the proof nowis really quite sinple, nanely that each

tine the main cycle contains a "shortcut-arc" in P like this

we know that w(A) <w(B) because any shortcut is supposed to give |less
weight. (W assume that the red arcs are fully drawn, and that the
| ower nodes are inside | .) On the other hand, if we have a "cross-over"

structure like this:

15



D -

and if we know that neither the blue matching nor the red matching
(including the crossover-arc) involved contains any nmain cycle, then
the local Opath formed is usable and W(C) >w(D) or else | would
not be k- maximal

W will afterwards show if there exists any main cycle at all
then we can find one (in the same or in the other color) in which each
crossover arc obeys the conditions above. First, however, we will show
that this would lead to a contradiction.

Suppose that we have obtained such a main cycle in red, and that
we, as above, draw the alternating path so that its red arcs go down to
the right. Then every red crossover arc in the main cycle will go up to
the right, and every red shortcut arc will go up to the left. The main
cycle nust obviously contain a leftnost and a rightnost main arc in this
drawing, and we will use this to partition the main cycle as follows:
Part 1 is what you pass if you start bygoing down the leftnost main arc
and followthe main cycle until the top of the rightnost main arc is met.
Part 2 is the rest. Part 1must in a way be dom nated by crossover arcs,
although it may have many back-steps by shortcut arcs. Part 2 nust
|'i kewi se be domnated by shortcut arcs. For exanple, the two parts can —

l ook like this:

14



Part 1 Part 2

Note that the two parts cannot use the same main arcs, and there
will generally be many red main arcs not in the main cycle in between
those used by the cycle. Now let U be the set of all upper nodes on
the part of the path covered by our main cycle, except the |eftmost one,
and let L be the lower ones except the rightmost node. W have
|L] = |u| > 0 . By summing along Part 1 we get w(L) >w(U) but by
summing over Part 2 we get w(L) <w(u) . For exanple in the above
illustration, w(Ll) > W(Ul) ,W(Lg) <w(U2) ,W(LB) zw(Ui) s
w(Ty) 2w(Uy) 5 wkg) < w(uy) ,w(ly) >w(Uy) w(L,) < w(u,) ,
W(L8) 2W(U8) , and W(L9) < W(U9) . This contradiction woul d now
conplete the proof, if we knew that the existence of an induced main
cycle inplied the existence of one in which each crossover arc forned
a local clean (and thus usable) O path.

To see that this is correct, assume that there is an induced main

cycle in one of the colors. If, inside the subpath that this main cycle

15



covers, there are other main cycles in this or the other color, then
choose one for which there is no other main cycle that covers a strict
subpath of the subpath that this one covers.
Now we nust |ook at each crossover arc in this main cycle.
Consi der the following possible picture within a "great main cycle"
whi ch includes the crossover arc AB :
E c B

O - 0 O
A F D

Here there will now be no main cycle induced by these blue (dotted) arcs,
nor by the red main arcs crossed by the AB-arc. However, if we also
consider AB as a main arc, as we do when we look at this as a |ocal
Opath, there can still be a main cycle as indicated above: BAC DEFB .
Then, however, we can delete AB fromour great main cycle and insert
ACDEFB instead to forma new great main cycle. The new crossover arcs
formed by this process (AC and FB) nust be shorter than the original
one, and therefore a repetition of this process nust termnate. \Wen
this happens all crossover arcs nust form clean O paths, and the proof

i's conplete.

9. Opaths, Npaths, and Cut N paths

An imedi ate consequence of Theorem8 is that the BG of a k-naxi mal
intersection cannot contain any Opath or N-path with positive weight at
all.  For if one such positive path existed, we could go on performng
such shortcuts on it that would not lower its weight until such shortcuts
no longer were possible. (Note that such a process cannot make the path

shorter than two nodes.) The resulting path could then only be even nore

16
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positive, and according to Theorem8 it woul d be usable. This, however,
is inpossible if the intersection is k-maxinal.

For our next main theorem we also need a slightly different fact,
namely that if we, in the BG of a k-maximal intersection, have a Wpath
and an Mpath which are node-disjoint, then the sumof the weight of these
two paths nust be zero or less. To see this we can put themtogether to
forma special N-path with one arc mssing in the mddle. W wll call
such a path a "cut" N-path. As a cut N-path we will also accept a Wpath

together with a single node inside |

C\/’v) f\ le .

Cut N paths. Unfilled nodes nust be unicolored.

Now assune that the weight of such a cut N-path is positive and
shortcut it exactly as we did above. |If a shortcut crosses the cut, this
| eads to an inmedi ate contradiction since we obtain a positive N path.

[f not, we can show that both matchings involved are clean, by argunents
simlar to those used to prove Theorem 8. However, now a crossover edge
may also forma local N-path (which is equally good), and we do not have
to worry about the usability of the local N or Opaths forned. Since
both matchings are clean the cut N-path is obviously usable and cannot
have positive weight.

W state these results as a theorem

Theorem 9. If | is a k-maximal intersection then the B¢ of | contains

no O-path, N-path or cut N-path with positive weight.

V¢ now prove the -following theorem which is the wei ghted counter-

part of Theorem 6
17



Theor em 10. Suppose that | is a k-maximal intersection, and that
J is any intersection with k1 elements. Then there is a Wpath P
in the BG of | such that W(P) >w(J) -w(l) , and this P can be

chosen so that out(P) < J-1 and in(P) c1-J .

Proof. The proof given for this theoremis very simlar to that
given for Theorem 6.

First look at the case that J has el enents outside spR(I) UspB(I) :
and let e be any of these elements. In the BG of | |, e wll now
be a white unicolored node and can serve as a Wpath P alone. Since
J-e is another intersection with k elements, we nust have

WJ-e) < w(I) which inplies w(P) >w(J) -w(I) as required.

Then assune that J ¢ spR(I) UsPB(I) and partition J-1 into
parts Jp , Jp and J, find a red and a blue matching, and define
di sjoint subsets T o I and I, inl-J exactly as we did in the

proof of Theorem é. The figures formed nmust now, as then, be a set
of disjoint alternating paths of the four different types, and there nust
be at |east one Wpath.

Now there may be elements in 1-J which are in neither I I
nor in I, » that is, they are not reached by any of the arcs in the

matchings. Call the set of these I, . Asan exanpl e [ ook at the

follow ng picture:

18




/ g N
JR JO JB JNI
f ™
0O O

It follows now that the nunber of Mpaths plus \Illnust al ways

be exactly one less than the nunber of Wpaths. An easy way to see

this is first to observe that the follow ng equation nmust hold:
bl -y = dogl gl = 1+ gl

Then "renove" all N-paths. since each N-path has either exactly one

node in JR and one in IR , Or onein J

equations above nust be kept true

B and one in IB , the

But now we nust al so have

|J

|7 = nunber of Wpaths

g 5

|z

|z = nunber of M paths.

Al 3
Al'so we have (from the first equation)
w1 = 5l v I

which gives exactly what we want.

19



Now it is easy to see that any of the Wpaths present is good
for our purpose. Choose one of themas P, and pair the rest of them

to either an Mpath or an element in |1 This must fit exactly,

1l
and forma set of cut Npaths. The rest of the present paths nust be
either N-paths or Opaths. By Theorem9 this inplies that

w(J -1 -out(P)) <w(T-J-in(P)) . This is equivalent to (since

out(P) < J-1 and in(P) < 1-J): w(out(P)) -w(in(P)) > w(J-I) -w(I-J) .

This is again equivalent to what we want, nanely:

w(B) > w(J) -w(!)

10.  Concavity

In this section we shall prove that the weight-increase we can
obtain froma k-maximal to a k+1 -maximal intersection cannot be
greater than the increase obtained froma k-1 -to a k-maxinmal one in
the sane pair of matroids. This property could suitably be called
"concavity", and it will help us to determne when a maximal weight
intersection is found. Fromwhat is proved until now we can easily
construct an algorithmgiving us a kt1 -maximal set if we have a
k-maxi mal one, and if intersections with kt1 el ements at all exist.
However, not even if all the weights are positive, wll the weight of
a k-naximal set always increase with k , and the concavity wll guarantee
that we have obtained a maximal weight intersection the first tine we"
cannot get a weightier intersection by taking in one nore elenent.

W will prove two theorens, whose combination imediately wll

give us the concavity. The first is a stronger version of Theorem 9,
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namely that even if a Wpath and an Mpath are not disjoint the sum of
their weights cannot be positive in a k-maximal intersection. The
other is that if Pis a clean Wpath in the Bg of | , then P will
appear as an Mpath in the BGof P(1) , with weight -wP)

For the proof of the stronger version of Theorem 9, we introduce
the concept of an "alternating wal k" as being exactly the same as an
alternating path, except that it may use the sanme nodes and arcs nore
than once on its way.

The weight of an alternating walk is defined so that the weight
of a node is counted as many times as the node is used by the walk.
The wal ks are classified as Wwal ks, N-wal ks, Mwal ks and O wal ks

exactly as for paths. W can then prove the follow ng theorem

Theorem 11. Assume that | is a k-maximal intersection. Then there

is no Owalk or Nwalk in the BGof | with positive weight.

Proof . Ve wi |l show this by induction on the Iength of the walk,

expressed as the nunmber of nodes used, in the sense that each node is
counted once each tine it is used.

Any Nwalk or Owalk has at least length 2 , and if the length
is 2thenit is obviously also an N or 0O-path.Thereforethe
theorem holds in this case.

Now assume that the theorem holds for all lengths less than L ,
and that we have a 0- or N-walk of length L . If none of the nodes of
the walk is used twice (or nore) we have a 0- or N-path, and the theorem
must hold. If not, start in one end of the N-walk, or anywhere on the

O wal k, and pass on to the first meeting with a nultiple-used node.
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Here skip over to a later passage of this node, and follow the wal k
inthe old direction until we reach the end of the N-path, or are back
at the starting point of the Opath. W have then passed through an
N or Owalk with Iength ess than L , so its weight is not positive.
The part of the wal k we skipped nust have been an O-walk with length
less than L, forcing its weight not to be positive. However, the
wei ght of the original path is the sum of the weight of the two parts,
whi ch gives our theorem

Now the theoremwe need follows quite easily.

Theorem 12. Assune that | is a k-maxinmal intersection, that pis
a Wpath and that Qis an Mpath (or possibly only a single node

in I ), in the BG of |. Then w(P)+w(Q) < 0 .

Proof. If the two paths are disjoint, the theoremfollows imrediately
from Theorem 9. Now assume that they are not disjoint, and assune first
that Qis a single node. Then the theoremfollows fromsuming the
wei ght of the two N-paths starting in each end of the Wpath, and ending
at the M path-node.

If the Mpath is a real one, we do a generalization of this. W
choose any node which is used both by the w- and the Mpath, and obtain
two N-wel ks, R, and R,
Wpath, and shifting over to the Mpath at the chosen node. Note that

by starting in one and the other end of the

the direction in which you shall proceed in the Mpath after the shift
is determned by the direction in which you come to the shift-node in
the Wpath. Thus these two N-wal ks cover exactly what the M and the

Wpath covered and w(R +w(R2) . w(P) +w(Q) . But by Theorem 11

1)

< 0 so the theorem foll ows.

W(Rl) < 0 and W(Rz) 0
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Theorem 13. If Pis a clean Wpath in the BG of an intersection

| then this Wpath will appear as an Mpath in the BG of P(Il)

Proof . This theoremis a direct consequence of part C of Theorem 1,
which sinply says that the arcs used in P wll turn up also in the
BG of P(1) , since both the matchings in P are clean. This is

exactly what we need.

Theor em 1k. | f and Ik+ are k-1-, k- and k+1 -naxi nal

Ty 1 Ik 1

intersections respectively, then W(Ik) -w(Ik_l) > w(Ik+l) -W(Ik) .

By the earlier results we know that we can find a clean

Wpath P, in the BG of I such that if 1! = Pl(I t hen

k1 k k-l) !

w(I}'{) = w(Ik), Further we can find a clean Wpath P, in the BG

of I, such that if I, = PE(I}'{) t hen W(Il'£+l) = W(Ik+l) .

now want to prove that w(Pl) > w(PE) . This follows from the fact
that in the BG of I, , P, appears as an Mpath with weight —W(Pl) s

"by Theorem13. Therefore since I, is k-maximal we know by Theorem 12

e

t hat —W(Pl)+w(P2) < 0, which is exactly what we want.

11.  Maxi mum V‘¢i ght Intersection A gorithm

W can now construct an algorithmfor finding a maxi mum wei ght
intersection of two matroids, which is very sinmlar to the maxi mum
cardinality algorithm given earlier. The only change we have to make
is that we now each tine must find a weightiest Wpath in the BG of
the intersection we have. If the weight of this path is negative, or

if no Wpath exists at all, we now have a maxi num wei ght intersection
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by Theorens 10 and 1k. |If this is not the case, we perform weight-
preserving shortcuts on this Wpath as far as possible, and know then —
by Theorem8 that the resulting Wpath is usable. Thus, by Theorem 10, |
the performance of this path will bring us to a k+t1 -maxinal
i ntersection.

W will not here go into further details on this algorithm only
notice that under the sane conditions as for the maximumcardinality
algorithm we can make this algorithm work in polynomal tine.

It may be interesting to notice that if all subsets of E are
i ndependent in one of the matroids, then the algorithm above will

degenerate to the well known greedy algorithm for the other matroid.

12. A Characterization of Optimal Intersections

W concl ude by giving necessary and sufficient conditions for an

intersection to be k-maxinmal and to be of maxinmum weight.

Theorem15. An intersection is k-maxinmal if and only if |1]| = k and
its BG contains no 0-, N or cut N-paths with positive weight. An
intersection has maxi mumweight if and only if its BG has no M-, N-, O-,

or Wpaths with positive weight.

Proof. By earlier results the above conditions are obviously all necessary.
To get the sufficiency in the first part, assunme that | is an intersection
with k elements which is not k-maxinmal. We will show that there nust

exist a positive 0-, N or cut Npath in its BG Since | is not
k-maximal there is an intersection J so that w(J) >w(1) and |J| = |1|

Then we make a construction simlar to the one used in the proof of
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Theorens 6 and 10, and can easily verify that every Wpath forned can
be exactly paired to oneMpath (or one element in J-1 not met by
any arc in the matchings). W have then obtained a set of disjoint
0-, N- and cut N-paths whose out-parts and in-parts exactly form J-I
and 1-J respectively. Since w(J-I)>w(I-J) at |least one of these
pat hs must have positive weight.

For the sufficiency of the second part we first observe that if
the BG of | has no positive M or Wpath, then it cannot have any
positive cut N-path. Thus | is k-maximal, with || =k .

By Theorem 10 and the concavity we know that there cannot be any
intersection 1' such that |1'| > |1| and w(I') >w(I) . However,
by again using the sane technique as in the proof of Theorenms 6 and 10
we obtain that if k > 1 and | is a k-maximal intersection then we
can find an Mpath P in the BG of I such that P(l) is a k-1 -maximal
intersection. Thus, by the concavity again, We know that there cannot be
any intersection I" such that |1"| < |1] , and w(1") > w(I).

Hence the theorem is proved.
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