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.Abstract. A computer implemented algorithm to solve the following
graph theoretical problem is presented: given the empirical formula
for a molecule and one or more non-overlapping substructural fragments
of the molecule, determine all  the distinct molecular structures based
on the formula and containing the fragments. That is, given a degree
sequence of labeled nodes and one or more connected multigraphs,
determine a representative set of the isomorphism classes of the connected
multigraphs based on the degree sequence and containing the given multi-
graphs as non-overlapping subgraphs.
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1. Introduction.

MOLECULAR STRUCTURE ELUCIDATION III

This paper is the third in a sequence of papers

on the derivation of combinatorial algorithms necessary for the development

of a package of computer programs designed to assist the analytic chemist

in determining the topological structure of organic molecules. 1) The first

paper [I ] described an algorithm for labeling the nodes or edges of a

graph, and the second paper [2] described an algorithm for determinfng al1

the distinct graphs based on a given degree sequence of nodes. The relevance

of these algorithms to structure elucidation problems in analytic chemistry

is discussed in [?-I.*)

The present paper addresses itself to a frequently encountered probiem in

I analytic chemistry. Namely, by applying spectroscopic measuring devices arxi

, various laboratory techniques to an unknown organic compound, the chemist

L zan often determine the molecular formula of the compound as well as the

L
topological structure of several fragments of this molecule, at least up to

some unspecified bonds. 3) What is desired then is a complete and irredundant,

11 Throughout, we view a chemical molecule as a connected graph whcse
(labeled) nodes represent the atoms in the molecule and whose edges
I-epresent bonds, i.e., as the Kekule diagram of the molecule.

?) [3.] 1a so contains numerous references to articles describing specific
chemical applications of these algorithms.

These laboratory techniques usually yield much more information about
the unknown molecule, e.g.,
patterns.

excluded fragments and multiple bonding
Integration of this other information into our program

package will be described in later papers.
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- i.e., nonisomorphic, set of the topological structures based on the molecular

formula and containing the known fragments. In some cases these known

L
fragments may overlap, i.e., have atoms in common. However, we will consider

here only the case in which the fragments are assumed to be disjoint.

1 3-. Problem Formulation. In order to formulate this molecular structure

L-

Lo

rb-

problem in precise , graph theoretical terms, we make the following definitions.

2.1. Let N = cn19 em" s 9
be a collection of k, not necessarily distinct,

ordered pairs of the form ni = (l., v.) where 1

_

11 i
is an alphanumeric symbol,

(the label of ni) and vi is a positive integer (the valence value of ni). We

call such a collection N an atom set. By a graph based on the atom set N we- --p-e

,i
'mean a loop-free, connected multigraph G = (N, D) with node collection N

L and edge collection D such that the degree of each n
i

in G is equal to v 4)
i'

I
We say that two graphs based on N, say G = (N, 0) and H = (N, E) are

L
isomorphic if and only if there is a graph isomorphism Y from G to H which

! preserves labels, i.e, 9 y 'is a permutation of N such that the multiplicity

of each (ni9
a

nj) in D is equal to the multiplicity of (v(ni), Y/(nj)) in E

and p(m) = n
3

implies 1. = 1
1 3'

Since G and H are graphs based on N,

SUCh a q must, necessarily, also preserve valence values.
c

If" G = IN, D> and H = (M, E) are graphs where the node collections N anti

I
M are both atom sets, then H is said to be a subgraph of G if there is an

injection ‘/2 from M into N which preserves connectivity, labels and valence

values, i.e., the multiplicity of each (m,, m
3

> in E does not exceed the

multiplicity of (V((mi), v(mj)) in D and q(m.) = nj implies m. and n.
1 1 J

4) Note that we distinguish here between the valence value of an atom and
its degree as a node in a graph*



have the same label and valence value.

In terms of these definitions, our molecular structure problem can now

be stated as follows:

Given: An atom set N and a list of-q loop-free, connected multigraphs

--

c-

c-

Hl = (5, El)’ . . . , Hq = (Mq, Es) with each Mi an atom  set and

satisfying:

i) The disjoint union of the Mi is a subcollection of N.

ii) The degree of a node in any Hi does not exceed its

valence value.-_

iii) In each Hi at least one node has degree less than its

valence value.

getermine: A representative set of the isomorphism classes of those

(loop-free, connected, multi-) graphs based on N which contain

H
1' Hz, w** 9 and Hq as pairwise disjoint subgraphs.

Using our current techniques, a direct, effective, computer implementable

solution to the above problem does not seem possible. Our solution strategy,

- therefore, consists of reducing this problem to an iterative sequence of

sim@er problems which, when solved, yields a collection of graphs containing

the desired representative set but possibly with redundancies, These

redundancies, as produced, are pruned from the collection. We now describe

our problem reduction technique.

2.2, Let ki =
i

(valence mj - degree in Hi of mj)" ki is called the

free valence of H..
1

It corresponds to the number of unassigned valences in

the fragment whose known structure is represented by Hi. By assumption, k.
1

is positive. -

Since we consider only connected graphs, in any solution graph at least
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one of the free valences of Hi must be used for an edge going from a node

in Mi to a node not in M..
1

Moreover, those free valences used for edges

going between nodes in Mi must occur in pairs. Accordingly, we let

B = c (blp l *a 9 bq) fO<b. fki 9 bizki (mod 2)3
1 , where each difference

ki
- bi indicates the number of free valences to be used by edges going

between nodes in Mi.

Let yi, . . . , y
9
be q distinct atom labels different than any of the

labels of the atoms in N. For each b = (bl, . . . , bq) in B, let Nb denote

the atom set obtained fYom N by deleting from N all the atoms in the disjoint

union of the Mi and adding to the remaining atoms the set of q new atoms

c x. =
1 (yip  bi) Ii = 1, l ** 9 41. For each so modified atom set Nb, consider

the following sequence of constructions:

1
A. Construct a representative set of the isomorphism classes of the

graphs based on Nb.

2” For each graph Go constructed in step 1, for i = 1, . . . , q 9

iteratively construct a representative set of the isomorphism

classes of all the graphs Gi obtained from all the graphs Gi-l as

follows:

a) Add (ki - bi)/2 edges to Hi in such a way that the resulting

degree of each node m
3

in Hi does not exceed the valence value

of m
J

.

b) ,Delete the atom xi from Gi-l and replace each edge in G
i-l

of

of the form (ns , xi) with an edge of the form (ns , m
3

> in such

a manner that the resulting degree of each m
3

is equal to the

valence value of k
J'
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Each graph produced by this sequence of constructions will be a graph

I

i.

satisfying the conditions of our molecular structure problem. Moreover,

if for each b in B we perform these constructions, the resulting collection

of graphs will contain, up to isomorph&sm, all solution graphs of our

original problem but possibly with redundancy.

L
We have previously developed and implemented an algorithm which, given

a degree sequence of nodes representing the atoms of an organic moleculet

determines a representative set of the isomorphism classes of all loop

*-
free, connected multigraphs based on that degree sequence [2]. This

, algorithm yields an effective solution to step 1 of the 'above construction.

L Thus, up to redundancy elimination which is discussed in Section 3.6, our

molecular structure problem is reduced to the problem of deriving an

?ffective algorithm for step 2 of the construction. We call this latter

L problem the fragment embedding problem.

3. Fragment Embedding. In this section we will give an independent, more

;?r'ecise formulation of the fragment embedding problem, and we will show

that this problem can be represented, at least partially, as a special double

coset representative problem,

3.1. Let G = (M, D) and H = (N, E) be connected, loop-free, multigraphs

with disjoint node sets M = f ml Y *** 7 _mk3
and N = c nl 7 . l - 7 no_ 3 and

edge sets 3 and E, respectively. Here, the edge sets are considered as

unordered pairs of nodes with multiple edges appearing multiply. For nodes

m. inM and n1 j
in N, we now formally define an embedding of H at n

J
in G

at mi where degree (n,) - degree (mi) is non-negative and even. To simplify

the notation we assume, without loss of generality, that i = j = 1.
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An embeddin& of H at nl in G at
9.

is a multigraph A = (B, C) where

i) The node set B consists of MUNx{ml , nl] , i.e., all the

nodes of both G and H except
ml

and n
1.

ii) The edge set C consists of :

c (mi, mj)ED I i # 1, 3 f 1) U{(niy nj)EE 1 i # 1, 3 f l]IJ F U K ,

where F satisfies:

i

i

,

a) Every element in F is an edge of the form (mi, nj) where

(lq, m$'D and (n,, nj)CE.

b) For each n
3

in N, the number of edges in F having n
3

as an

endpoint does not exceed the multiplicity of the edge (n,, nj)

in H.

c> For each mi in M, the number of edges in F having mi as an

endpoint is equal to the multiplicity of the edge (y5 mi) in G.

and M satisfies:

a! Every element K is an edge of the form (ni, nj), i # j, where

both (n,, ni) and (n n ) are inE.
1) 3

b) For each ni in N, the sum of the number of edges in F having

n.
1
as an endpoint and the number of edges in K having ni as an

endpoint is equal to the multiplicity of (n,, ni) in H.

That is, C consists of all edges in D except those with endpoint ml, all

edges in E except those with endpoint n1, the connecting edge set F and the

internal edge set K. Note that by definition, an embedding is a connected,

loop-free multigraph, and it is completely determined by the edge sets F and K. 5)

This formulation of the embedding problem corresponds to the formulation in
the previous section as follows:
a) G corresponds to a graph Gi-l

and thf
b) H c 'responds to the ?&--A f* -

;hc
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Our objective is to develop a reasonably efficient, computer implementable

algorithm which accepts as input the graphs G and H and which outputs a

representative set for the topological isomorphism classes of the embeddings

of H at nl in G at
ml

. .

We consider first the special case where degree (y) = degree (n,), i.e
l Y

the case where the internal edge set K is empty.

3.2. Letw = degree ("1) = degree (n,), and let SW denote the full

permutation group on 11, 2, . . . . WI. We index from 1 to w all edges in

D of the form ( ml; mi'Y say index (
1 , milt)) = t, t = 1, . . . . w, where Y

for definitiveness , we require that tl<t2 implies i(t,)si(t
2
). Similarly,

we index from 1 to w all edges in E of the form (n1' nj)Y say index

%' nj(t) ) = t, where tl<t2 implies j(t,)rj(t,). 9For any p in S
We

we

define F(l//) as the set of (multiple) edges {(mi(t), nj(Y(t))) f t=l, . . . . w] .

F(y) is a connecting edge set of an embedding of H at nl in G at m,.

Conversely, if F is a connecting edge set for an embedding of H at nl in G

at 4 3A we define the map v(F) iteratively as follows:

Far t = 1, *.., w, n(F)(t) = t
1 where t1 is the least unassigned index

such that (m
i(t)' nj $1

> is in F. r(F) is a well-defined permutation in

S MoreoverWV * 9 for any connecting edge set X, F(n(X>) = X. Hence we have:

Lemma 1.
IJet degree '"1

> = degree (n,) = W‘ Relative to an indexing of

t;he edges of G with endpoint
?L and the edges of H with endpoint n

1' there

is a surjective correspondence from the elements of SW onto the embeddings

of II at n
1
inGat .

ml

We will now show that there is a surjective correspondence between a

certain set of double coset, representatives in SW and the topologically

distinct, i.e., nonisomorphic, embeddings of H at n1 in G at
ml

.
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Let Grp(G) be the topological symmetry group of G considered as acting

on the nodes of G, and let Stab (G) be the stabilizer in Grp(G) of ml,

i.e., Stab (G) = ☯de GdG)  I& b-,)=y  3 l If, as above, we index those

edges of G with endpoint ml, then each node map o( in Stab (G) naturally

induces a well-defined permutation r(d) in SW follows: For any index t,

$Y mi(t) > is the edge in D with index t and (ml,ti(mi(# must also

be an edge in D. Moreover, both (MY mi(t) > and ("1, o((mi ct ) > > have the

same multiplicity in G, say k. Let x and y be the least indices of the

k edges (ml,mi(t-)) and the k edges (ml, W(mi(t))), respectively. Since

multiple edges were indexed in sequence, t = x + b for some Okb<k, and

we define r(a)(t) = y + b. Since Stab (G) is a subgroup of Grp(G), the

set I(G) = {'?(d ) 1 d d Stab(G) 1 is a subgraup of SW.

For each i such that (ml, mi) is in D, say the multiple edges (ml, mi)

are indexed by x., x. + 1, . . . , x. + k - 1
11 1

where k is the multiplicity

of (In mi) in G, let S (i>
1'

denote the full permutation group on

t X ' 3 x.+k-1
1

. . " ,
I

considered as a subgroup of SW. Let M(G) denote
1

-

the internal direct product of all the S (i) such that (ml, mi) is in D.

Then, I(G) ' M(G) = M(G) l I(G) and I(G) and M(G) have only the identity

in common. Hence, the set product U(G) = I(G) l M(G) is a subgroup of

SW with order (U(G)) = order (I(G)) l order (M(G)).

In a completely analogous manner, we define the subgroups I(H), M(H)

and U(H) of SW corresponding to H at n1 e

k-

c
-
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Lemma 2. Letv and 6 be two elements in SW lying in the same double coset

of U(H) and U(G) in SW, i.e., U(H) ‘IfU(G) = U(H) &J(G). Then, the embeddings

%
and C

6 Of H at 5 in G at
y determined by r and 6 , respectively, are

topologically isomorphic graphs. .

Proof. Since 6 is an element of U(H) x U(G), ZX2Tl = \42yl‘d for

son-e 2, 6 I(G), T2 e M(G), y + I(H) and

re Stab(G) and

y2 6 M(H)* Let

ye Stab(H) be elements inducing rl ard Y
1'

respectively.

By definition, both C
x

and Cg have the same node set L =

We define a map y on L by v(mi) =

Dh ~{y, nl) .

1 1
Since

'?(ml) =y and\1(n >=n

y (m. > a n d  (&n.  > = y hi) l

1 1' y '1s a well-defined permutation of L.

Yoreover, since ?E Grp(G), y

the edges of C

restricted to the subgraph of CK consisting

r of the form (mi, m
3
) is an isomorphism from this subgraph to

the corresponding subgraph of p
�S l

Similarly, ydetermines an isomorphism

from the subgraph of the edges of the form (n., n
1 j

) in Cr to the corresponding

subgraph of C
6 " Thus to show that v .1s an isomorphism from Cy tc C

s ? we

need only consider the.action of y on F(x). We claim that (m

Ff&:) if and only if ( J/(mx), y(n )) is in F(s).
x' "y' is in

Y
Rx- any pair (mx, n ), let 'y (m )

Y = mu ad !bny)

definition of F(x), (m. n ) is inxF( r) iff

=n
VW

Then, by

x' Y
i> x= i(t) and y = j(t (t)) for some index t. By definition of p, (i)

is true iff

ii) z= i (r,(t)) and v = j (y,( r(t))>.

Since 2, only moves the index of an edge with endpoint ml to the index of

one of its multiples and similarly for y2, (ii) is true iff

iii) u = i (r2yl(t)) and v = By assumption, (iii) is

true, iff
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iv) u = i (v2?+) and v= j (VT y (t>)21 l

B

(iv) is true iff(y cm..), (Y(n ) is in F(g)

y e mition of F(6 ),d f'

.

Hence, v
Y

is an isomorphism from C
?f to cs l

E ⌧ a m p l e . Let H and G be the graphs in figures la and lb, respectively.

CI 1P’$’ h

Here A, B and C are the node (atom) labels.
Both Grp(G) and Grp(H)

consist of only the identity map and, using the image

for elements of S
4'

u(G) = c( 1,2,3,4), (1,3,2,4)]  and

U(H) = I( l&3,4), (1,2,4,3&

There are seven double cosets of U(H) and U(G) in S
4'

vector notation

A set of double
coset representatives is:

a- (L&3,4) d.

-b. (U93,4) e.

C, (3,2,1,4) f.

Q*

(4‘,2,3,1)

(W&,2)

(1,4,3,2)

@,3,4,1)

The "Orresponding  embedding are given in Figure 2.

A-C-C

I I> C

B-c-c
\ /

C

(a) *

B - C - C

I 1
\
/fc

A- c-c

‘C’

(b)
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I-

!
L

/

c-c

I I \
/

C
A\

B'
c-c

C/

(4

L--

C - C

C/1 pc
\ /

C - C

I I

A B

Note that the embeddings (d) and
k) arci

As shown in the above example
topologically  isomorphic

) the cc
The difficulty here is that an em]

mverse of Lemma 2 is not

Dedding may have symmetries not i
by symmetries of its components. -We do have

. 9 however
result: , the followi

CAC
\I

C

I
' B

-c

I
-C

I

A

(d)

\

/
C

A -c-c

1 I
\

c-c-cIC

I
B

(f)

.

true.

.nduced

n#3
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Lemma 3. Lets and 6 be elements of SW with associated embeddings of H at

nl
in G at ml 9 Cx andCg , respectively. If there exists an (node)

isomorphism (Yfrom Cy to Cg such that v(D \ (ml) ) = D \ cml] , i.e.,

l/J permutes the nodes of G, and hence. also those of H, mong themselves,

then ‘d and 6 are in the same double coset of U(H) and U(G) in S
W*

Proof. By the definition of an embedding, there is a y in Stab(G) such

7 and y/ agree on the subgraph of Cx consisting of all edges of the

form hi, mj). Similarly, there is an
Y

e Stab(H) such that v and v

agree on the subgraph of Cx consisting of all edges of CV of the form

Ini, njL AJ-sO, Cm.,
1

nj) is in F(‘d) iff@'(m$, p(n,)) is in I?($ ).

Thus we have that (mi, nj) is in F(Y) iff(rt'(mi), y (nJ)) is in F(6).

Let71 and yl be elements of U(G) and U(H) induced by y and v ,

respectively. Then, up to a permutation of indices on multiple edges, we

have that for any index t:

lmi(t)p "~(x(t))) in F(X) implies

(“i( Z,(t))’ “j(y,u(t)) > is in F( 6) implies
-

L
W,(t) = yl’b(tL

Hence, yl-Q2,=\1/ up to permutations of the multiple edge indices,

and‘s E U(H) *If U(G).

i ‘- The above results yield a method for determining all embeddings of H

L-

at nl in G at ml where degree (ml) = degree (nl)zw. Namely,

1. Construct the subgroups U(G) and U(H) of SW.

2. Construct a set of double coset representatives for U(H) and U(G) in

SW. -

i
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3. Construct the set of graphs determined by these double coset

representatives.

4. Eliminate any isomorphic duplicates from this set of graphs.

Although this method does produce initially a set of graphs with possible

redundancies, a great deal of empirical evidence leads us to believe that

at least in the case of graphs of organic molecules, the number of duplicates is sta-

tistically relatively small, e.g., less than 10%. Moreover, since the resulting

graphs are needed later in a canonical form, the additional effort needed

to prune out duplicates is not excessive.

3.3. We will consider first the problem of determining the groups U(G)

and U(H). The essential problem is given a graph G = (M, D), a node y in

M, say degree (ml) = w, and an indexing from 1 to w of the edges in G with

endpoint ml where multiple edges are indexed in sequence, effectively

determine the subgroup I(G) of SW induced on the edge indices by Stab(G),

the subgroup of the topological symmetry group of G which fixes
ml

. The

- derivation of U(G) from I(G) is a straight forward process.

Most graph symmetry group'algorithms are based on the following

technique:

1. Partition the node set M of the graph G such that each member of the

partition is a union of orbits of nodes with respect t-e, the

topological isomorphism group of G.

2. Via a recursive backtrack generation scheme, systematically generate

those node permutations which preserve the partition, i.e., which

carry-a node mi to an element in the member of the partition

containing mi. IIcrc, the ith lcvcl of gcnc?rtLtion is choo:;c? the



image of m
i subject to the condition that the partially determined

permutation preserves the adjacency structure of G.

Often the partitioning of M is done via a sequence of partitions Pl, . . . .
'k'

where associated with each partition P - '
t

1s an isomorphism invarient node

weight function W
t'

Here two nodes mi and mj are in the same member of the

partition Pt if and only if mi and m
J

are in the same member of P
t-1 and

Wt (mi> = Wt (mjL A simple example at such a node weight function is the

degree diction. The finest partition of the nodes would be the orbit

partition. However , since one wants a partition which is relatively cheap to

compute, a compromise which yields a partition coarser than orbits is

usually used, for example, the Morgan partition [4].

For the problem of determining I(G), empirical evidence indicates that

the following sequence of node weight functions yields an effective partition:

wl(mi) = label of node mi.

Wz(mi 1 = 1 if mi is adjacent to ml else 0.

-
W3Cmil

= degree (mi)

wk(mi) =  zwk-l(mj  > where the sum is over all m
iI

adjacent to mi counted

with multiplicity, k>3.

The partitioning is done iteratively until either all members of the current

partition are singleton sets or two, not necessarily successive, iterations

do not yield finer partitions.

Since we need only the permutations induced on the edge indices by

Stab(G), the following economies are made in our algorithm:
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1. The

and

2. For

singleton set {
ml
3 is made a member of the first node partition,

the node mlis not considered further in the partitioning process.

the backtrack permutation generation routine, the nodes are

ordered so that: I

a) Those nodes which occur as singleton sets in the final

partition come first, say m
x1'

. . . . m .
xk

b) Of the remaining nodes, those which are adjacent to ml come

next, S-"Y mxk+l' ".S mxt'

c) The nodes in each member of the final partition are in sequence.

Then, the backtrack generation starts at level xl+l and, whenever

an allowable permutation is generated, the algorithm backtracks

' immediately to level x
t'

An algorithmfor generating I(G) which implements the above ideas is

given in Appendix III.

3,4. We will now consider the double cosct problem. The problem of

effectively determining a set of double coset representatives for two

subgroups A and B in SW is very difficult. In fact, at least to the author's

knowledge, no generally effective, computer implementable algorithm to

perform this task is known. However, in the case of fragment embedding in

graphs of organic molecules, both w and the number of double cosets are

usually sufficiently small that a fairly weak algorithm suffices.

The double coset representative algorithm which we present here is

based partially on ideas due to Charles Sims 151.
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The group Sw admits a natural-total ordering n << ". Namely, we

associate with each %5 S
W

the vector (31(1),3/(2),  . . ..v( \rr>) ¶

and for d and
P

in S
w ' we define d 9

if and only if the associated

vector of o( is lexicographically less than or equal to the associated

vector of p. If X is a subset of SW, we write o<<<x if and only if

O( <d * for every x&

We select as the canonical representative ‘b' of a double coset A71B

of A and B in SW the least element in ATB, i.e., that ‘d in A7?B satisfying

td< AvB. Since a double coset is determined by any of its members, i.e.,

AVB= AFB if and only if 3CE A77'B, we have that for win AtlB,

d<< AVB if and only if dd( A&B.

Clearly if 7 ia the least element in AX'R, then ‘d 44 A 2/ and

y cc h. The converse, unfortunately, is not true. Even so, if we can

determine ally in SW satisming dd<Av and rC<vB, we have

effected a considerable reduction of the double coset problem.

e

Lemma 4.
(Sims CSI 1. Let B be asubgroup of SW. Let Oi, i=l, . . . . w-l,

be the orbit of i with respect to the elementwise stabilizer in B of

i1,2,;..,i-1) , i.e., 0i =feci) 1 WEB ad r(j) = j, lrjdi}.

Then for y t S
W'

y4CYB. if and only if y(i)5 y (x) for every x

in O., i=l, . . . . W-1.
1

The above lemma yields a very powerful method for generating those ?f

in Sw satisfying ‘EJ<< VB. However, relative to our functional notation

for permutations, it is only applicable to left cosets. The technique

that we use for determining those ‘d satisfying *dC< A r , is much

more direct, and it is based on the following elementary 01



I
I

17

i

i

-

L

c-

c-

Let A be a subgroup of SW. Then ‘de SW satisfies VdC A% if

and only if '6(j) = MIN.! ?Y('L((j))f .where '&anges over

STmA (r(l), . . . . d(j-1)) = [=-A 1 d (r(x)) = v(x), x=1, I.., j-1).

In particular, ‘6(l) must be the least element in its A orbit.

Our method of generation of representative permutations is

based on a backtrack scheme where the j-th level of the backtrack tree

corresponds to selecting the image of j underx . Since we seek only

those ‘d e S which satisfy. x44 AXB and hence, rdd XB and
W

x <<Ax we note that:

1. If a potential image k for j under 3 is rejected because it

violates the condition of Lemma 4, then by the above observation,

we can also eliminate from consideration the values

{ y (k) I- STmA (d(l), . . . . W-l> 13 as potential values

2. Let Al, . . . ,
% be the orbits of A, i.e., the Ai form the

partition of Cl, . . . . w} induced by the equivalence relation

xn,y iffy=@(x) for some o(C A. Here, we canonically index

the A orbits via MIN[xE Ai] 4 MIN c x4 Ai+& Let Bl be the
.

B orbit of 1. Then, ifx (1) 6 A., i>l and jeBl, we Can
1

eliminate from consideration as values for y(j) the elements

of Al&2U.-t)Ai 1'

Based on the above ideas, we now present an algorithm in an ALGOL

type format, which given w and two subgroups A and B of Sw first generates

those xin S satisfying y 4< A%', Y<<vB and d(l) 5 &p(l)
W

for every old A and /C B'. We note that the set of all %e SW

satisfying the above conditions does contain the canonical double coset
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i

_--- representatives for A and B in SW. Moreover, such a y satisfies

x44AvB if and only if 'd<< &y/s for all pairs o( c A andP&B
--

L
satiseing  Y

-1 &l
‘d (1) = pm* This latter condition is used

directly by the algorithm to test each permutation as it is generated.

A proof that the algorithm does produce the desired output is given in

- Appendix II
r,

-
Algorithm I.

Input: An integer W>O and two subgroups A and B of SW.

output: The canonical set of double coset represetnatives for A and B in SW.

BEGIN I
i

Determine the Oi of Lemma 4, i=1,2,...,W-1

Determine Ri = {j ) hOj, j<i], i=2,3,...,W

L
Determine the orbits of A; Al, A2, l l l ., AT where MIN{x&AI>

--

5 rnNCxd ++13
-

Initialize: k&l, je2, Pit-1, SB2f'IF 1E.R2 THEN 1 ELSE 0,

c
IJy p, . . . , wl

- WHILE k(,T (T = number of A orbits) DO

c-
BEGIN k-loop

WHILE IMj # fi DO

- BEGIN IM-loop

PjcMIN{x&IMJ)

IF Pj<SB
3

THEN

Determine S
j

= STABA (P,, **es pjwl >
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sBj+m cpX )- xeR )
3

IF jsW-1 THEN

IMjC{l,2,...,W)  \ {P
1' -'0.) P

\ [IF i--l OR j#o, m fl
3 13

ELSE Alum l l UAi-l 3
ELSE

Pw-iELEMENT  ( fl, m m . ,  w }  N c p

1 ’

mm., P

IF P; < SBw THEN
3)w-l l

. IF 'd=(P
1 9..m,Pw) satisfies

lfd<ocYP for all pairs

okA,/& B satisqing

v-l@ql) =/8(l) m

output 8

j+j-1

Determine S

I�☺+ I�☺ �

END IM-loop

Jtj -1

Determine  S
3

= STAB
A

(p
l� l *� p☺-l�

ELSE

k+k + 1

IF kS T THEN

p,

.
I
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573pwP X 1 XCR2}

' IM2e{1,2, l .*,w-j \ {pl]
END k-loop

ct.

i

3.5. The above algorithm coupled with algorithms to determine the relevant

groups, to perform the necessary edge indexing and to output the embedded

structures yields an effective, computer implementable scheme for solving

the embedding problem in the case where the degree of the replaced atom

in the molecule is equal to the number of unassigned valences in the

fragment, i.e., in the case that degree (ml) = degree(nl)m

The case where degree (nl)>degree (ml), degree (n,) = degree (ml) (mod

can be handled by a simple extension of the above techniques. This is the

case where some of the bonds to be allocated are internal to the fragment.

Let k = (degree (n,) - degree (~))/2. We construct a new graph

G' obtained from G by adding k new bivalent nodes all with a label different
-
than any label occurring previously in G, say NIL, where each NIL labeled

node is double bonded to ml" The embedding problem for H in G' is of the

ubovc considered type and thus cun be handled by our algorithm:~. Tn the

resulting embedded structures, the NIL labeled nodes are then simply

erased leaving bonds internal to the fragment. Since we want to generate

only loop-free structures, the following constraint is inserted in the

backtrack double coset representative generation algorithm:

No pair of (successive) edge indices which correspond to a double

bond to a node with label NIL in G' can map to a pair of edge indices

which correspond to two multiple edges from a node ni to nl in H.
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A simple flagging of the relevant edge indices yields an economical

method for testing this additional constraint.
6)

3.6. As shown by the example in section 3.2, the double coset

algorithm, as well as the overall technique, can produce isomorphic

structures. These duplicate structures are eliminated by a direct

pruning based on a canonical node indexing scheme.

There are numerous canonical node indexing algorithms in use, i.e.,

algorithms which index the nodes of a graph in such a manner that two

graphs are isomorphic if and only if relative to the indexings, they

have identical adjacency (or indidence) matrices. The indexing algorithm

most used for chemical structures is due to Hm Morgan [‘)]m Morgan's

indexing scheme is based on a node weight classification similar to that

used by our group determination algorithm. This scheme is the basis of

the Chemical Abstract% Serial Index of Organic Compounds. - an index

containing, at present, about three million structures.

Since it was desired that the structures produced by our programs

a be compatible with Chemical Abstract's Serial Index, all output from our

structure elucidation package is in a Morgan-type canonical fomm In

particular, as each structure is produced by the embedder, it is checked

against possible additional constraints given by the user, and, if it

satisfies these constraints, it is put into canonical form. This

Several types of constraints on the embedded structures can be
introduced at the backtrack generation level by using edge flags.
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canonicalized structure is then directly compared with the previously

generated structures for possible duplication. In the process of

canonicalizing a structure, a simple many-to-one one word isomorphism

invarient structure key is determined: This key is used to economize

structure COmpahSOn.

4. Implementation. The above described fragment embedding algorithm has

been coded in SAIL, an ALGOL like language. This computer implementation

i

L

makes use of numerous devices to speed up the computation, for example,

the cases w 5 3 are handled directly - bypassing the double coset

algorithm entirely, and the stabilizers STABA(Pl,mmm,P
3-l

) are recomputed

only when necessary.

The fragment embedding program has been extensively tested using the

Stanford University Medical Experimental Computing Facility (SuMEX)m This

facility is based on a PDP-10 computer running under the TENEX operating system.

The average execution time is about .3 seconds per completed structure,

The embedder program is incorporated in the general molecular

structure elucidation package under development at Stanford as part of

the DENDRAL project [3]m This package has a chemist-oriented I/O interface

which permits the user to input only the emperical formula for a molecule,

the desired fragments in graphical form and several other types of

informationabout the unknown compountm The package driver itself then

calls the necessary structure generation routines, thus freeing the user

from this task.
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Appendix I. Example

i

The following example was chosen' for its convenience in illustrating

the operation of the fragment embedder rather than for its chemical

relevance.

This atom set represents the emperical formula C OH R where R is a
8 7

monovalent radical and the bonding of the hydrogen atoms to the carbon

atoms is known, namely there are three CH's and two CH2's.

c Fragments:
Atomic Form Label - Valence Form

FL:

CH

I
\

c=c
/

CH

(c,3)

I
\

(c,4)=(c,4)

cc:31 ’

F2: O=C-CH (0,2)=(&W  - (c,3>

Fragment Fl has free valence 4 and fragment F2 has free valence 3. We

assume that it
s

bonds internal

is not known how the free valences are distributed between

and external to the fragment Fl; and that the free valences

are all used for external bonds. Hence there are two cases.on fragment F2

Nmeiy, Fl has

bonds.

one additional internal bond and Fl has no additional internal

Case 1. Fl has one additional internal bond. Reduced atom set:

'; (Fi,2),(F2,3),&,2),&,2),(R,l)] .

There are seven non-isomorphic graphs based on this atom set.
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C - Fl

I I
F2- C

/
R

Fl - C C
\ I R - FL -F2'I

9 F2 - C , 'c 9
/

R

/--
R-C-F2 I\, 9 c = F2 - FZ'- C - R

C =F2-C-Fl-R, Fl=F2-C-C-R

We will consider only the first graph. Then:

-5 NIL
Go: C-1Fl+

I I 2
F2 -C

/
R

H: Fv

We want first the embeddings of H at FV in G at Fl. If we index the

relevant edges as indicated, then U(H)=U(G)= {(1,2,3,4),  (2,1,3,4),

b&4,3)  3 (2,1,4,3)!. There are three double cosets of U(H) and U(G)

in S4’ The canonical set of double coset representatives is

( (G&3,4),  (1,3,2,4), (3,4,1,2)}. The f'irst representative violates

the bonds to NIL atom condition and is discarded. The second and third

representatives give, respectively, the following structures G1. :



/ -

G'l

G’2

C - c

R 3
9 / \\

- F2 C
2\ ;,c

C C

C

R 3- F2
1-y \ ~,c

v
c = c\ll

c .
C

The graph H corresponding to F2 is:
-_

L

i

Fv
H:

g \3
C
- c%o .

L

The associated groups are:

U(H) = 1(1,2,3), &,3)f ,

U(Gfl) = 1(1,2,3)3,

- U(G'2) = t (1,2,3),  (2,1,3)) .

The canonical set of double coset representatives for U(H) and U(Grl) in

S3 is ‘i(1,2,3),  (1,3,2), (3,1,2)). These representatives correspond,

respectively, to the following structures:

0
e / c-c

/ +
C - C c - c

R' \ /
' c - c

R
\ /-

C -C

C / v
\r c-c

1'
c c
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C -C

/
0 --_

/ Tk

-C C --C

\ \I
C

R’ \ /
C

C

The canonical set of double coset representatives for U(H) and TJ(Gf2)

in S
3 is { (l&3) s (1,3,&I* These correspond to the structures:

c

L

i

0 C
*

C
/ \ /

c - c c- c
/ xb /

4

R
l6

C C

0

\
C -C C

/ \ /
C

R’ \ /
c=c I I

\
C C

L

&IL1 of the final structures are distinct. Thus there are five embedded

structures based on the first graph and with one allocated bond internal

to the fragment Fl

Case 2. No additional internal fragment bonds. Reduced atom set:

'( (F1,4), (F2,3), (C,2), (C,2), (R,l)]. There are eight distinct graphs

based on this atom set.
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c

i

F2 = FJ - c

R

C

29

c - R D C = Fl = F2 = C c R,

9
C

C = F2 - FI

'R #

F,fi

C

/\
F2

RH

- C

C --F? R
r

1 II

C -F2 #

R - C - F?

#

C
R-~2=F1'1

We wi l l  consider  only  the  f i rs t  graph.  Then:

Go:  F2 = 4-
3- FI-C-C-R

H : FV

\d
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Relative to the above indexings,

U(H) = !(1,2,3,4),(2,1,3,4),(1,2,4,3),(2,1,4,3)]  a n d

U(G) = i(l,2,3,4),(2,1,3,4),(3,2,1,4),(1,3,2,4),(2,3,1,4),(3,1,2,4)f  .

The canonical set of double coset representatives for U(H) and U(G) in

S4 i s i(l,W,4),(1,3,4,2)), These representatives correspond,

respect ive ly , to  the  fo l lowing s t ructures  G1 :

i

- C - C - C - R

The graph H corresponding to F2 is again:

FV

M

The associated groups are:

U(H)  = ~(1,2;3),(2,1,3)],

W(G;)= f&2,3),(1,3,2)),

U(G;)=  L/(1,2,3),(2,1,3)),

The canonical set of double coset representatives for U(H) and U(G{) in S

is {(1,2,3),(3,1,2)).

3

Th e corresponding structures are:

C - C - C - R
A* .

-c - c -- c
\ \/

c - c
4

0



C-C - C - C - R

The canonica l  set  o f  double  coset representat ives  for  U(H)  and U(G;) in

S3 is ((1,2,3),(1,3,2)). Th ses correspond to the structures:

c
/c

A” \
c ’
I

.c

/
‘I

-_ ol”‘c\c/C - C - C - R

C - C - C - R

Using our programs, we have determined all embeddings of the fragments

-
Fl a n d  F2. There are 46 distinct structures based on the given atom

set and containing the non-overlapping fragments Fl and F2 where one

Fl .has one additional internal bond and 68 dis t inct  s t ructures  where  Fl

has no addi t ional  in ternal  bonds.
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Appendix ? I. Proof of the correctness of the double coset a l g o r i t h m s .

Lemma 1. L e t  9?% SW be generated by the algorithm of Section 3.4.

Then:

a) 7ru A T .

b) r<< 77's  .

c> 77(l)  5 orrp(l) f o r  e v e r y  C% E A ,  /% B .

L Proof . a )  C h o o s e  a n y  o(e A .  T h e n  d (r(l)) is in t h e  A  o r b i t  ofV(l)

B y  c h o i c e  o f  V (l), 9'(l)  w a s  l e a s t  i n  t h i s  o r b i t .  H e n c e  77 ( 1 )  5 CD& .

A s s u m e  31 (t) Z? w&(t)  f o r  15t5j -l<W-1. If for any t in

th is  range, 7?'(t)  < &r(t),  t h e n  7?'<<  OCT. T h u s ,  w e  m a y  a s s u m e  t h a t

1.

1

‘jr (t> = tiT(t),  15 t sj - 1 ,  a n d ,  h e n c e , OCE s = STABA  (n'(l), . . . .

77(j - 1)). Since S is  a  subgroup of  A,  every  orbi t  of  A is  a  (d is jo int )

union of  orb i ts  of  S . L e t  lMj b e  a s  i n  t h e  a l g o r i t h m ,  i . e . ,  IM. i s  t h e
J

set from which e(j) was chosen. By the design of the algorithm and the

,

a b o v e  r e m a r k ,  IM. is of the form
J

1,i . **, W) 1 [77(l), ...3 n(j-1)) U  ( S - o r b i t  o f  x ) ,

xE T

f o r  s o m e  s u b s e t  T of { 1 ,  .  .  .  .  W) .  Assume v(j) >oCp(j).  S i n c e  7?'(j)

was chosen as least in IM., &p(j) i s  n o t  i n  IMj.

- { T(l), l ... 443  or

H e n c e  e i t h e r  clc??  (j)

is in- dp(j) i s  i n  S - o r b i t  o f  x  f o r  s o m e

XE T. However, both  of  these  a l ternat ives  contradic t  the  assumpt ion that

d is in S. T h u s  v (j>5 &r(j) a n d ,  b y  i n d u c t i o n , r(i)sdg(i) f o r

l$ifW- 1 . Hence 7744 47.

b) By t h e  d e s i g n  o f  t h e  a l g o r i t h m ,  r(j).? M A X  {n(x)1 j EOxp x4]-

Hence, by Sim's Lemma (Lemma 4, Section 3.4), %Xfh.
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4 B y  c h o i c e ,  n(l) is the least element in some Ak= A  o r b i t

o f (1) l For c4E A and /C3EB, let At b e  t h a t  A  o r b i t  c o n t a i n i n g

qp (1). T h e n  n'(l) & At. A l s o  /3(l) O1 = B  - o r b i t  o f  1 .  N o w ,

if k = 1 ,  V(l) = 1  a n d  r(l)5 dpp(l). I f  k>l, t h e n  n/(l)# A1 &..uA,-,.

Hence ttk a n d  n(l) = MlN{x&Ak) ,c M I N  fx6Atj 5 oc7rjB(l).
1

t-

Lemma 2. L e t  re SW s a t i s f y :

a )  PLY A1):

b )  7?& PB.

c )  w(l) 4 &n/(l) f o r  e v e r y  OC&  A ,  l&B.

T h e n  ?" is  generated by  the  a lgor i thm of  Sect ion 3 .4 .-_

Proof. S i n c e  VdcC p6, by Sim's L e m m a p (j)fn(t)  f o r  a n y  j  a n d  t  s u c h

that tE0. , t # j.
J

A l s o ,  t  EO.,
J

t # j  i m p l i e s t>j . Hence n(j)> SB.,
J

25j<W.

S i n c e  7744 A'iY, r(l) m u s t  b e  t h e  l e a s t  e l e m e n t  i n  Ak = A  -  o r b i t  o f

V(l). H e n c e  v(l) = P1 for  some pass of  the  a lgor i thm.  Assume

V(s) = Ps, llsCj<W for  some pass of  the  a lgor i thm.  Now 7714 A v

implies V (j) is the least element in U = STABA  (P1, . . . P. ) - orbit of
J-1

. v(j)  l Also, (c) implies that r(j) f AkU . . . (P AT if j is in B-orbit

o f  1 . T h u s ,  o n  t h e  i n i t i a l  p a s s  t o  s e l e c t  Pj, fl (j) E IM.. Since IM. is
J J

only  decreased by  some orb i t  o f  STABA  (P,, '.')  ‘j-1)

on any pass, W ( j )  i s

e l i m i n a t e d  f r o m  IMj only  when a l l  o f  U  is . N o w  IMj is used as the selection

set for P. until IM. = 0. Thus an element from U must be selected on some
J J

pass; and, s i n c e  V(j) i s  l e a s t  i n  U , i t  must  be  the  f i rs t  e lement  of  U  so

se lected . Moreover, s i n c e  n(j)>SB., r(j) i s  n o t  r e j e c t e d .  H e n c e ,  b y

induction, at some pass P. = 7i(j),J15j514  u n l e s s  Pl

PW-2 = 77b+-2),  PWml,  pw + fk4,

= V(l), . . . .

occurred earl ier and was rejected because

Pw<SBWe I n  t h i s  c a s e  w e  w o u l d  h a v e  Pw-l  = v(W), Pw = v(W-1)  a n d
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p (w) &(w - 1) since the algorithm generates the permutations in

l e x i c o g r a p h i c a l  o r d e r .  B u t  t h e n  77 (W)L/T(W - 1) < S B
W which is

impossible.
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Appendix  I I I . Symmetry group generation.

Let G be a node indexed graph, x a node of G and Stabx the  subgroup

of  the  topologica l  symmetry  group of  G s tabi l iz ing x . The fol lowing

algorithm is used by our program to generate, as node index permutations,

i.’
a  s u b s e t  S of Stabx  maximal  wi th  respect  to  the  proper ty  that  d is t inct

elements of S induce distinct permuations of the edges with endpoint x.

ALGORITHM. 1 )  P l a c e  t h e  n o d e  x in  a  s ingleton c lass  and c lass i fy  the

remaining nodes by weight according to the scheme given

in  Sect ion 3.3.

2 )  I f  a l l  t h e  n o d e  c l a s s e s  a r e  s i n g l e t o n  c l a s s e s ,  t h e n  o u t p u t

the  ident i ty  permutat ion and ex i t .

3) Order  the  node c lasses  so  that

a )  The s ingle ton c lasses come f i rs t .

b )  Fol lowing the  s ingle ton c lasses are  the  non-s ingle ton

classes which contain nodes neighboring node x l isted

in non-decreasing size. 1)

c) Following the neighbor classes of (b) are the remaining

non-s ingleton c lasses l is ted in  non-decreasing s ize .

4) Re index the  nodes so  that  node 2 preceeds  node k if and only

i f  the  c lass  conta in ing node b  does not  preceed the  c lass

containing node a.

1) Our weighting scheme is such that either all  the nodes in a given class

neighbor x or no node in the class  neighbors  x ..
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5) E x e c u t e  ( f o r  e f f e c t )  w i t h  i n i t i a l  p a r a m e t e r  v a l u e  S T A R T

the recursive procedure given by the SAIL program listed

below where  the  externa l  var iab les  are  in i t ia l ly  def ined

as

a>

b)

4

follows:

d)

4

f>

9)

h)

NUMBEROFNOOES = number of nodes in G.
.e.

START = number of singleton classes + 1.

STOP = total number of nodes in singleton classes or

neighbor classes

ADJACENCYMATRIX  [l,J] is the (i,j)th entry in the

adjacency matr ix  for  G re la t ive  to  the  node indexing

formed in  s tep (4).

LOWBOUND  [Jl is  the  least  index of  the  nodes in  the  J - th

c l a s s  ( r e l a t i v e  t o  t h e  c l a s s  o r d e r i n g  o f  s t e p  3 a n d  t h e

n o d e  i n d e x i n g  o f  s t e p  4 )  a n d  UPBOUND  LJj is  the  greatest

index of  the  nodes in  the  J - th  c lass . Here J L START.

IMAGE iI] = I for 1 < I < START

MAPPEDCI] = FALSE for START < I ( NUMBER OF NODES- -

CLASSCI!  = class index of the class containing the node

w i t h  i n d e x  I .

i
1

PROGRAM.
)

RECURSIVE BOOLEAN PROCEDURE PERMUTATION(INTEGER  I);

BEGIN "PERMUTATION"

INTEGER J,K;

IF I LEQ NUMBEROFNODES THEN

BEGIN -

FOR J <--LOWBOUND  [CLASSIl]l STEP 1 UNTIL UPBOUND  [CLASS [I-_'] DO
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BEGIN "J LOOP"

l F MAPPED [J] THEN

CONT I NUE “J LOOP"'

FOR K4-- 1 STEP 1 UNTIL I-1 DO

IF ADJACENCYMATRIX [I ,K] NEQ

ADJACENCYMATRIX [J,lMAGE [Kjl

THEN CONTINUE “J LOOP”;

IMAGE [I]<-- J;

MAPPED [JJ d-- TRUE;

IF PERMUTATION (l+l) AND I 7 STOP THEN

BEGTN

MAPPED cJ3 6- FALSE;

RETURN (TRUE) ;

i END

ELSE

MAPPED fJ! + FALSE;

END “J LOOP”;

RETURN (FALSE) ;
s

END

k ELSE

. BEGIN

INDUCED PERMUTATION; COMMENT: INDUCED PERMUTATION IS AN EXTERNAL
- -

c
PROCEDURE WHICH COMPUTES AND STORES THE PERMUTATION OF THE EDGES

OF G WITH ENDPOINT X INDUCED BY THE NODE INDEX PERMUTATION

I -9 IMAGE [I-J;

L

RETURN (TRUE) ;

END; -

END “PERMUTATI ON”;

L


