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Abstract. A computer implemented algorithm to solve the following

graph theoretical problem is presented: gjyven the empirical formula

for a molecule and one or more non-overlapping substructural fragments

of the molecule, determine all the distinct molecular structures based

on the formula and containing the fragments. That is, given a degree
sequence of labeled nodes and one or more connected multigraphs,
determine a representative set of the isomorphism classes of the connected
multigraphs based on the degree sequence and containing the given multi-
graphs as non-overlapping subgraphs.
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MOLECULAR STRUCTURE ELUCI DATI ON 111

1. Introduction. This paper is the third in a sequence of papers

on the derivation of combinatorial algorithns necessary for the devel opnent
of a package of conputer prograns designed to assist the analytic chem st

1) The first

in determning the topol ogical structure of organic molecul es.
paper [1 ] described an algorithm for |abeling the nodes or edges of a

graph, and the second paper [2] described an algorithm for determnfng al:
the distinct graphs based on a given degree sequence of nodes. The rel evance
of these algorithms to structure elucidation problens in analytic chemstry
is discussed in [SJ.Q)

The present paper addresses itself to a frequently encountered probiemin
anal ytic chemstry. Nanely, by applying spectroscopic neasuring devices ard
varicus | aboratory techniques to an unknown organic conpound, the chem st
can often determne the nolecular fornula of the compound as well as the

topological structure of several fragnents of this nolecule, at |least up tc

sone unspecified bonds. 3 What is desired then is a conplete and irredundant,

1) Throughout, we view a chem cal nolecule as a connected graph whcse

(1 abel ed) nodes represent the atonms in the nol ecul e and whose edges
represent bonds, i.e., as the gekule diagram of the nolecule.

?) [3.] also contains nunmerous references to articles describing specific
chem cal applications of these algorithms.

) : : . .
7 these | aboratory techniques usually yield nuch nore infornmation about

the unknown nol ecule, e.g., excluded fragments and nmultiple bonding
patterns. Integration of this other information into our program
package will be described in later papers.



i.e., nonisonorphic, set of the topological structures based on the ol ecul ar
fornula and containing the known fragnents. |n some cases these known
fragments may overlap, i.e., have atoms in commn. However, we will consider

here only the case in which the fragments are assumed to be disjoint.

2. Problem Fornulation. In order to fornulate this nolecular structure
problemin precise, graph theoretical terms, we make the following definitions.
2.1. Let N ={nl, cee nk} be a collection of k, not necessarily distinct,
ordered pairs of the form n, = (1_.1, vi) wher e 1i is an al phanumeric synbol,
(the label of ni) and v, is a positive integer (the valence value of ni). e

call such a collection N an atomset. By a graph based on the atomset N we

-mean a | oop-free, connected nultigraph G = (N, D) with node collection N

and edge collection D such that the degree of each ni in Gis equal to v.l‘),
1

& say that two graphs based on N, say G= (N, D) and H= (N, E) gre
i sonorphic if and only if there is a graph isomorphism? from G to H which
preserves |abels, i.e., ¥ is a permutation of N such that the multiplicity
gf each (ni, nj) in Dis equal to the multiplicity of (S”(ni), V/(nj)) in E
and L/’(ni) =n3 inplies 1.1 = 13. Since G and H are graphs based on X,
such a ¥ must, necessarily, also preserve val ence val ues.

If G=(N,D)and H= (M E) are graphs where the node collections N and
M are both atomsets, then His said to be a subgraph of Gif there is an
injection ¥ from Minto N which preserves connectivity, |abels and val ence
values, i.e., the multiplicity of each (mi’ m3)in E does not exceed the

miltiplicity of (W (m.), Y (mJ)) inDand V(m),=n, inplies m and n.,

J

4 Note that we distinguish here between the val ence value of an atom and

its degree as a node in a graph.



have the sane |abel and val ence val ue.
In terns of these definitions, our nolecular structure problem can now
be stated as fol | ows:
Gven: An atomset N and a list of.q loop-free, connected nultigraphs
Hy = (M, B,y H, = (Mq= Eq) Wth each M anatom set and
satisfying
i) The disjoint union of the M, is a subcollection of N
ii) The degree of a node in any H, does not exceed its
~valence val ue.
iii) In each H, at | east one node has degree less than its
val ence val ue.
Determine: A representative set of the isonorphism classes of those
(loop-free, connected, multi-) graphs based on N which contain

H,, H

5s e+ s and Hq as pairwise disjoi nt subgraphs.

4 s

Using our current techniques, a direct, effective, conputer inplenentable
solution to the above problem does not seem possible. Qur solution strategy,
- therefore, consists of reducing this problemto an iterative sequence of
simpler probl ems which, when solved, yields a collection of graphs containing
the desired representative set but possibly with redundancies, These

redundancies, as produced, are pruned fromthe collection. W now describe

our problem reduction technique.

2.2, - = i - i
Let K, mje M (val ence m, degree in H, of mJ).ki is called the
free val ence of Hl' It corresponds to the nunber of unassigned val ences in

the fragment whose known structure is represented by H.,. By assunption, k,1
IS positive.

Since we consider only connected graphs, in any solution graph at |east



one of the free val ences of H, must be used for an edge going froma node
in M, to a node not in Ml. Moreover, those free val ences used for edges
goi ng between nodes in M, must occur in pairs. Accordingly, we |et
B = {(bl,.*a , bq) ,O<‘u].1$ki » b=k, (nod 2)} | where each difference
k, - b, i ndicates the nunber of free valences to be used by edges going
bet ween nodes in M, .

Let Yoo o oo yq be q distinct atomlabels different than any of the

| abel s of the atons in N.  For each b = (b , bq) in B, |et ¥° denot e

K
the atom set obtained from N by deleting fromN all the atoms in the disjoint
uni on of the M, and adding to the remaining atoms the set of g new atoms

{xl = (yi, bi) ]i =1, . R q}. For each so nodified atom set Nb, consi der
the followi ng sequence of constructions:

L. Construct a representative set of the isonorphism classes of the

graphs based on P,

For each graph G° constructed in step 1, for i =1, . . . , a,

no

iteratively construct a representative set of the isomorphism
classes of all the graphs ' obtained fromall the graphs G"I as

fol | ows:
a) Add (ki - bi)/2 edges to H, in such a way that the resulting
degree of each node rr}] in H, does not exceed the val ence val ue
of m,.
J

b) ‘Delete the atom X fromG - |

and repl ace each edge in Gi' of

of the form(ns , Xi) with an edge of the form(ns , ms) in such
a manner that the resulting degree of each n% is equal to the

val ence val ue of inj.



Each graph produced by this sequence of constructions will be a graph
satisfying the conditions of our nolecular structure problem \preover,
if for each b in B we performthese constructions, the resulting collection
of graphs will contain, up to isomorphism, all solution graphs of our
original problem but possibly with redundancy.

W have previously devel oped and inplenented an al gorithm which, given
a degree sequence of nodes representing the atons of an organi C molecule,
determnes a representative set of the isonorphismclasses of all |oop
free, connected nultigraphs based on that degree sequence [2]. This
algorithmyields an effective solution to step 1 of the above construction.
Thus, up to redundancy elimination which is discussed in Section 3.6,our
mol ecul ar structure problemis reduced to the problem of deriving an
effective algorithm for step 2 of the construction. W call this latter

probl em the fragment enbeddi ng problem

3. Fragment Enbedding. In this section we will give an independent, nore
precise formulation of the fragment enbedding problem and we wll ghow

that this problemcan be represented, at |east partially, as a special double
coset representative problem

3.1. Let G=(M D) and H= (N, E) be connected, |oop-free, multigraphs
vith disjoint node sets M={m , ..., m } and N={n, . ...n } and
edge sets D and E, respectively. Here, the edge sets are considered as
unordered pairs of nodes with nultiple edges appearing multiply. For nodes
m in M and nJ in N we now formally define an enbedding of H at ng in G

at m, where degree (n,) - degree (mi) i s non-negative and even. To sinplify

J
the notation we assume, without |loss of generality, that i =j = 1.



An embedding of H at n in G at m is a multigraph A = (B, ¢) where
) i) The node set B consists of MUN\{ml, nl}, i.e., all the

nodes of both G and H except m, and n, .

ii) The edge set C consists of

{(mi, mj)éD J1i#1,3#1) U{(ni, nj)éE |

e

#1,3#1}UF UK,

where F satisfies:

a) Every element in F is an edge of the form(mi, n,) where

J
(my , mi)ED and (nl, nj)C‘E.
b) For each n3 in N the nunber of edges in F having nj as an
endpoi nt does not exceed the multiplicity of the edge (nl, nJ.)
L in H.
¢) For each m, in M the nunber of edges in F having m, as an
endpoint is equal to the nultiplicity of the edge (ml, mi) in G

and ¥ satisfies:

al Every elenent K is an edge of the form(ni, n,),1 #], were

J
both (n,, n,) and (ny rb) are inkE.

b) For each 1, in N, the sumof the nunber of edges in F having
n, as an endpoi nt and the nunber of edges in K having n, as an
endpoint is equal to the nultiplicity of (nl, ni) in H
That is, C consists of all edges in D except those w th endpoint m, al l

edges in E except those with endpoint n_, the connecting edge set F and the

l)
internal edge set K. Note that by definition, an enbedding is a connected,

| oop-free multigraph, and it is conpletely determned by the edge sets F and K.5)

5) This formul ation of the enmbedding problem corresponds to the formulation in
the previous section as follows:

a) G corresponds to a graph _i-
’ P EER L and the he

b)Hc -‘responds to the fre~m--i =



Qur objective is to develop a reasonably efficient, conmputer inplenentable
al gorithm which accepts as input the graphs G and H and which outputs a

representative set for the topol ogical isonorphism classes of the enbeddi ngs

of H at nlln G at m .

W consider first the special case where degree (ml) = degree (nl), i.e
the case where the internal edge set X is enpty.

3.2 Letw = degree (ml) = degree (nl), and | et 5, denote the full
permutation group on {1,2 . .. . w}. Ve index from1 to w all edges in
D of the form (ml‘, mi), say index (ml, mi(t))=t,t= 1, . . . . w wherey
for definitiveness we require that tl<t2 inplies i(tl)si(tz), Simlarly,
we index fromlto wall edges in E of the form (nl, n.), say index
J

(n, nj(t)) =t, where t,<t, inplies j(t)<i(t,). Fror any ¥ in SW’We

ine F( ' =1, . . . . :
define F(¥) as the set of (multiple) edges {(mi(t)’nj(v’(t)))lt 1, w}
F(Y¥) is a connecting edge set of an embedding of H at n, inGat m.
Conversely, if Fis a connecting edge set for an enbedding of H at n, inG

at m, , we define the map 7 (F) iteratively as follows:

For t =1, ..., w n(F)(t) =t where t, is the least unassigned index

1
such that (m .\, n )is in F. TM(F) is a well-defined permutation in
JORESRCH

SW. Moreover , for any connecting edge set X, F(T/(x)) = X. Hence we have:
Lemm 1. Let degree (ml) = degree (n;) = w. Relative to an indexing of
~he edges of G with endpoi nt m and the edges of H w th endpoint Ny t here
IS a surjective correspondence from the el enments of 8, onto the enbeddings
of H at ny in(;atm:L

Ve will now show that there is a surjective correspondence between a

certain set of double coset, representatives in s, and the topologically

distinct, i.e., nonisonorphic, enbeddings of H at n, in G at m, .



Let Grp(G) be the topol ogical symmetry group of G considered as acting

on the nodes of G and let Stab (G be the stabilizer in Grp(G) of m,
i.e., Stab (O = {deGrp(G),g(mlﬁml}. If, as above, we index those
edges of Gwith endpoint m, then each node map & in Stab (G naturally
induces a well-defined pernmutation T(e) in s, follows: For any index t,
(m_l, mi(t)) is the edge in Dwth index t and (ml,«(mi(t))) nmust al so

be an edge in D. Mreover, both (ml, mi(t)) and (ml, o((mi () ) ) have the
same multiplicity in G say k. Let x and y be the least indices of the

1
mul tiple edges were indexed in sequence, t = x + b for some 0€£b<k, and

k edges (rrL_L,mi<t5) and the k edges (m,, oc(mi(t))), respectively. Since
we define ¥(a)(t) =y + b. Since Stab (G is a subgroup of Grp(G), the
set 1(Q = {¥(x) | €& Stab(C-)} is a subgraup of s_.

For each i such that (m, mi) isin D say the nultiple edges (m, mi)

are indexed by Xoy X ¥ 1, ..., X+ k-1 where k is the miltiplicity
of (ml. m,)in G let S(i) denote the full permutation group on
{xi, Co X k- l} considered as a subgroup of 8. Let MG denote

the internal direct product of all the s(1) such that (nl, mi) isin D
Then, 1(Q "MG =MG .I(G and I (G and MG have only the identity
in common.  Hence, the set product UG =1(Q .MG is a subgroup of
Swwith order ({GQ) = order (I(QG) .order (MQ).

In a conpl etely anal ogous manner, we define the subgroups I(H, MH)

and UH) of S, corresponding to H at n .



Lerma 2. Let ¥ and § be two elements in S, lying in the same double coset
of UH and u(c)ins ,i.e., UH Yu(e)=UH &(G. Then, the enbeddings
Cy and CS of H at n, in G at m determined by ¥ and § , respectively, are
t opol ogi cal |y i somor phi ¢ graphs.
Proof. Since §is an element of UH ¥ WO, 872’2’1 =y, ¥ for
some T, € 1(0), T, € MC), V) , e I(H) and v, € M(H). Let
Te Stab(G and VI3 Stab(H) be el ements inducing "L’l and \71, respectivel y.
By definition, both CX and Cg have the same node set L = DUE o, Y
we define a mp ¥ on L by ‘r"(mi) = ¥ m) ... w(n.l) Y (a) . Since
Tm) =m and V) (n)) = ng, ¥ is a wel|-defined pernutation of L.
Yoreover, since Te Grp(c), Y restricted to the subgraph of Cy consisting
the edges of Cb’ of the form(mi, n&) is an isonorphismfromthis subgraph to
the corresponding subgraph Of C¢  Similarly, ¥ determines an isonorphism
from the subgraph of the edges of the form(n.l, nj) in Cy to the corresponding
subgraph of C¢ . Thus to show that ¥ is an isonorphism from Cy to Cg , we
need only consider the action of ¥ on F(¥). W claimthat (M, n) is in
F(B‘)ifandonlyif(w(mx),‘p(n\)) isinF§). o

For any pair (mx, n ‘% let ¥ (m)z = m and l/’(ny) =n_. Then, by

definition of F(Y), (mx ) is in F(Y) iff

n

Yy
i) x=i(t) andy = j(¥ (t)) for sone index t. By definition of ¥, (i)

is true iff

ii) uw=1 (T,(t)) and v = (v, ( ¥(t))).
Since 7,'2 only moves the index of an edge with endpoint m, to the index of
one of its multiples and sinmilarly for \?2, (i) is true iff

i) u=1 (’Z'E'z'l(t)) and Vv = }§ (\?2\?1‘((1;)), By assunption, (iii) is

true, iff
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iv) u=j (’2’2’3'1(1;)) and v = § (X?Z@r (t)) By d fnition Of F(§ ),
(iv) is true iff(Y¥ (mx)’ Yn)isinFE)
g .
Hence, Wis an i somor phi smfromcv to CS

Let H and G be the graphs in figures la and |b, respectively.

n =—
1/ \2 4 1 \ N
A B %
F‘lg.io. Fig. 1}

rere A B and Care the node (atom) labels. 5. Gp(Q and Grp(x)
P

consi st of only the identity map and, using the image vector notation
for elements of S4l
u(e) = {(1,2,3,4), (1,3,2,4)} eand

U(E) = {(1,2,3,4), (1,2,4,3)}.

There are seven doubl e of and G inS
cosets UH UG A set of double

L
coset representatives is:
a. (1,2,3,k) d. (4,2,3,1)
b, (-29193314) €. (3,1,)4,2)
c. (3’2,131‘) f (l,h,3,2)
g (2,3,4,1)
The corresponding enbedding are given in Figure 2.
A — 0 —
c C\ B-C-C
L1 e P
Be(C —¢ — 7
<, A c—c
c N\ 7/
c

(a) (b)



C—c

A:C-‘C/

(c)

ﬁguvg
Note that the enbeddings (d) and

As shown in the above exanple

The difficulty here is that an em
by symmetries of its conponents. -

resul t:

>edding nag have symetries not i
hav

11

(a)

2.

(e) are topologically | SOOI phic

» the CCnverse of Lemma 2 is not
true.

Ve do nduced

, homever, t he following
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Lemma 3. Let ¥ and § be elenents of 8, with associated enbeddings of H at
n, in G at m 5 Cy and Cg , respectively. If there exists an (node)

i sonor phi sm ¥ from Cy to Cg such that Y(p \ {ml} )= D~ {'ml} , i.e.,
SP pernutes the nodes of G and hence. also those of H among thensel ves,
then ¥ and § are in the sane double coset of UH and UG in SW.

Proof. By the definition of an enbedding, there is a T in Stab(G such
T and ¥ agree on the subgraph of Cy consisting of all edges of the
form (mi, mj). Simlarly, there is an \Qe Stab(H) such that v and ¥
agree on the subgraph oOf C\‘ consisting of all edges of Cy of the form

] J)isin F(K)iff(W(mi),W(nJ))isin F(§).
Thus we have that (m,, nj) is in POY)ife(¥(m), v (nj)) isin F(6).

(ni, n,). Also, (mi, n
Let’l’l and V]l be el ements of WG and UWH induced by ¥ and v ,
respectively. Then, up to a pernutation of indices on multiple edges, we
have that for any index t:

(m,

1(6)° By(w(s))) in FO¥) inplies

(mi('t:l(t))’ nj(\’h?r(t))) isinF( §)inplies
§7,(v) = ¢, ¥ (b).

Hence, \Ql-l § ’L’l =Y up to pernutations of the nultiple edge indices,

and's € UH ¥ U G.

The above results yield a nethod for determning all enbeddings of H

at n, in G at my where degree (m) = degree (nl

1. Construct the subgroups WG and UH of S,

)=w. Nanely,

2. Construct a set of double coset representatives for UH and UG in

S .
w
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3. Construct the set of graphs determned by these double coset
representatives.

L, Elimnate any isonorphic duplicates fromthis set of graphs.

Al though this method does produce initially a set of graphs with possible
redundancies, a great deal of enpirical evidence leads us to believe that
at least in the case of graphs of organic molecules, the nunber of duplicates is sta-
tistically relatively smll, e.g., less than 10% Moreover, since the resulting
graphs are needed later in a canonical form the additional effort needed

to prune out duplicates is not excessive.

3.3. W will consider first the problem of determning the groups UG
and WH). The essential problemis given a graph G= (M D), a node m in
M say degree (m) = w and an indexing from1l to w of the edges in Gwith
endpoi nt m, where multiple edges are indexed in sequence, effectively
determ ne the subgroup I(GQ of S, i nduced on the edge indices by Stab(G,

the subgroup of the topological symetry group of G which fixes m . The

“derivation of WG fromI(GQ is a straight forward process.

Most graph symmetry group' algorithns are based on the follow ng

t echni que:
1. Partition the node set Mof the graph G such that each nenber of the
partition is a union of orbits of nodes with respect to the
t opol ogi cal i somorphismgroup of G
2. Via a recursive backtrack generation schene, systematically generate
t hose node permutations which preserve the partition, i.e., which
carry-a node m to an elenent in the nenber of the partition

containing m. Ilere, the 1th level Of generution IS choose the
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I mge of m subject to the condition that the partially determ ned
permutation preserves the adjacency structure of G.
Oten the partitioning of Mis done via a sequence of partitions Pl, o pk,
where associated with each partition Pt'is an i sonorphism invarient node
wei ght function V&. Here two nodes m, and nﬁ are in the sane nmenber of the
partition P, if and only if m and m, are in the same nenber of P, ., and
W, (mi) = W, (mj). A sinple exanple at such a node weight function is the
degree function. The finest partition of the nodes would be the orbit
partition. However , since one wants a partition which is relatively cheap to
conpute, a conprom se which yields a partition coarser than orbits is
usual |y used, for exanple, the Mrgan partition [4].
For the problem of determning 1(G, enpirical evidence indicates that
the follow ng sequence of node weight functions yields an effective partition:

Wi(mi) = | abel of node m, .

wg(mi) =1 if m is adj acent to m, el se 0.

; W3(mi) = degree (mi)

wk(mi) giiwk-l(nﬁ ) where the sumis over all nB adj acent to m, count ed

with miltiplicity, k>3,

The partitioning is done iteratively until either all nmenbers of the current
partition are singleton sets or two, not necessarily successive, iterations
do not yield finer partitions.

Since we need only the pernutations induced on the edge indices by

Stab(G, the follow ng econonmies are nade in our algorithm
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1.  The singleton set {ml} is made a nmenber of the first node partition,
and the node mlis not considered further in the partitioning process.
2. For the backtrack pernutation generation routine, the nodes are

ordered so that:

a) Those nodes which occur as singleton sets ip the final

partition come first, say m | = m.
*1 *k
b) O the remaining nodes, those which are adjacent to nl cone
next, say m s e, I,
- +1 %

c) The nodes in each nenber of the final partition are in sequence.

Then, the backtrack generation starts at |evel X4l and, whenever

an allowabl e permutation is generated, the algorithm backtracks
“imediately to |evel Xt'

An algorithnfor generating I(G which inplenents the above ideas is

given in Appendix I11.

3.4 Ve will now consider the double coset problem. The probl em of
effectively determining a set of double coset representatives for two
subgroups A and B in s, is very difficult. |pn fact, at least to the author's
know edge, no generally effective, conputer inplementable algorithmto
perform this task is known. However, in the case of fragnent enmbedding in
graphs of organic nolecules, both w and the nunber of double cosets are
usual Iy sufficiently small that a fairly weak algorithm suffices.

The doubl e coset representative algorithm which we present here is

based partially on ideas due to Charles Sins [5].



The group Sw adnits a natural-total ordering " << ". Namely, we
associate with each 7 e S, the vector (7(1),7(2), . . s w(WwW)),
and for « and /B in SW » Wwe define « <</Q if and only if the associated
vector of o is lexicographically less than or equal to the associated
vector of Z. If X is a subset of Sw, we wite xe¢X if and only if

o << x for every x€X.

W select as the canonical representative ¥ of a double coset A4rB
of Aand B in S, the least element in A?"B, i.e., that ¥ in A#B satisfying
¥ << A®wB. Since a double coset is determned by any of its menbers, i.e.,
A7B = AxB if and only if *e€ A™B, we have that for o in A®B,
<< ATB if and only if o<cc AxB.
Clearly if ¥ is the least elenent in A¥B, then ¥ <« A¥ and
¥ << ¥B. The converse, unfortunately, is not true. FEven so, if we can
determne all¥ in S_satisfying ¥<< A¥Y and ¥<<¥B, we have

effected a considerable reduction of the double coset problem

Lemma 4. (Sims [6]). Let B be asubgroup of §,. Let 0., 1=1, .. .. wl
be the orbit of i with respect to the elenentwi se stabilizer in B of
{1,2,L..,i-1} Qe 0, ={™1) | ™eB ana 7 (3) = 3, 12 3<i}.
Then for v & Sw, WV €< ¥B. ifendonly if (i) V) (x) for every x
in O, i=1,. . . . w-1.

1

The above |emm yields a very powerful nethod for generating those &
in Swsatisfying ¥<< ¥B. However, relative to our functional notation
for permutations, it is only applicable to left cosets. The technique
that we use for determning those ¥ satisfying Y<< A Y , is mch

nore direct, and it is based on the following elenentary ol
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Let A be a subgroup of 5. Then ¥e s satisfies ¥<< A Y if
and only if (3j) = MIN-{ ( Y(J))}- _where ? ranges over
STAB, (¥(1), «v., ¥(3-1)) = { €A | o« (¥ (x)) = ¥(x), x=1, +++» -1}
In particular, (1) nust be the least elenent in its A orbit.
Qur nethod of generation of representative permutations s
based on a backtrack scheme where the j-th level of the backtrack tree
corresponds to selecting the image of j under 8§ . Since we seek only
those ¥ & S which satisfy . Y<< AYB and hence, ¥<< ¥ B and
¥ << AY we note that:
1. If apotential imge k for j under ¥ is rejected because it
violates the condition of Lemma 4, then by the above observation,
we can also elininate from consideration the val ues

{7 w|re sTAB, (¥ (1), .... Y(3-1))} as potential values

for ¥ (J). '
2. Let Al, Akbe the orbits of A i.e., the Aiformthe
partition of {1, ... . w induced by the equival ence relation

xny iff y=(x) for some « € A Here, we canonically index
the A orbits via MIN{xe A} 4 MN  xe A }. Let B be the

B orbit of 1. Then, if‘o“(l) '3 IA‘ i>1 and J&€B,, we can

1
elininate from consideration as values for ¥ (j) the elenents
of AlUAQU...UAi 1"
Based on the above ideas, we now present an algorithmin an ALGOL
type format, which given w and two subgroups A and B of S, first generates
those ¥ in S satisfying ¥ << AY, ¥ << ¥B and ¥ (1) £ o(?S/B(l)
for every oe A and A€ B. Ve note that the set of all Y€ 5,

satisfying the above conditions does contain the canonical double coset
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representatives for A and B in §_. Mreover, such a X satisfies
¥<<AYB if and only if ¥<< “\’/3 for all pairs o € A and BéB
satisfying X'l x™ Y (1) = /@(1). This latter condition is used
directly by the algorithmto test each pernutation as it is generat ed.

A proof that the algorithm does produce the desired output is given in

Appendi x 11

Algorithm 1.
| nput : An integer W>0 and two subgroups A and B of S,

output: The canonical set of double coset represetnatives for A and B in S,

BEG N
Determ ne the Oi of Lemma L, i=1,2,...,W-1

Deternine R, = {J | Leoj, J<i}, i=2,3,...,W
A

Determne the orbits of A A ..» AT where MIN{xeAI}

l’ 2’ .

< mn{xe A}
Initialize: k<1, j&2, Pl<—l, SB2<-—IF le R2 THEN 1 ELSE 0,
e {2, ..., W}
VWH LE k<T (T = nunber of A orbits) DO
BEG N k-1 oop
VWH LE I # ¢ DO
BEG N | M| oop
Pj<MIN{ x € IMJ}
IF P <SB3 THEN

J

Det erm ne SJ = STAB, (Pl, cees Pj-—l)

IM, € TM, \ f't(Pj) | e sj}
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ELSE
J&J +1
SBye-Max {p_ ) xeRr ]
|F J<w-1 THEN
IM \
< {1.2,....1] {»,. Py Y
N {1F 1= R ¢ o, THEN g
HSEAD: o i1 3
ELSE
P#—E ({1, . A
< ELEMENT ({ f...,PW_I})'
IF P < SB_ THEN
w w
Ir ¥ = (Pl,...,Pw) satisfies
g«uylg for all pairs
e A,/36 B satisfying
-], -
i1y (1) = (1) THmy
output X
J€&y -1
termne S, =
Det er m 3 STABA (Pl, ey Pj_l)
I
M IM, \ {'}:(PJ) | e SJ}
END | M1 oop
IF J >2 THEN
J&J -1

Det i S =
ermine STAB, ( P, P

J
e <O
Iy € IH, N {'t(pj), “Ye s, 3
ELSE

J-l)

k&k + 1
IF k< T THEN

P., ",
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8B MAX (P | x¢R,}
v, < {1,2,0 d0ady ()

END k-1 oop

END.

3.5. The above algorithm coupled with algorithms to determne the rel evant
groups, to performthe necessary edge indexing and to output the enbedded
structures yields an effective, conputer inplenentable schene for solving
t he enbeddi ng problemin the case where the degree of the replaced atom
in the molecule is equal to the nunber of unassigned valences in the
fragment, i.e., in the case that degree (m) = degree(nl).

The case where degree (nl)>degree (ml), degree (nl) = degree (m) (nod 2)
can be handled by a sinple extension of the above techniques. This is the
case where some of the bonds to be allocated are internal to the fragnent.

Let k = (degree (n,) - degree (ml))/e. W construct a new graph

1
G' obtained from G by adding k new bivalent nodes all with a [abel different
" than any |abel occurring previously in G say NIL, where each NIL |abeled
node is double bonded to m, . The enbedding problemfor Hin G'is of the
abave considered type and thus cun be handled by our algorithms. 1In the
resul ting enbedded structures, the NIL |abeled nodes are then sinply
erased |eaving bonds internal to the fragnent. Since we want to generate
only loop-free structures, the following constraint is inserted in the
backtrack double coset representative generation algorithm

No pair of (successive) edge indices which correspond to a double

bond to a node with label NIL in G'can map to a pair of edge indices

whi ch correspond to two nultiple edges from a node n; to n, in H
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A simple flagging of the relevant edge indices yields an econom ca
method for testing this additional constraint.6)
3.6. As shown by the exanple in section 3.2, the doubl e coset

algorithm as well as the overall technique, can produce isonorphic
structures. These duplicate structures are elimnated by a direct

pruni ng based on a canonical node indexing schene.

There are numerous canonical node indexing algorithms in use, i.e.,
al gorithns which index the nodes of a graph in such a nanner that two
graphs are isomorphic if and only if relative to the indexings, they
have identical adjacency (or indidence) matrices. The indexing algorithm
nost used for chemical structures is due to Hm Mrgan [4]. Mrgan's
i ndexing schene is based on a node weight classification simlar to that
used by our group deternmination algorithm This scheme is the basis of
the Chem cal Abstract% Serial Index of Oganic Conpounds. - an index
contai ning, at present, about three mllion structures.

Since it was desired that the structures produced by our prograns
be conpatible with Chemcal Abstract's Serial Index, all output from our
structure elucidation package is in a Mrgan-type canonical form. In
particular, as each structure is produced by the enbedder, it is checked
agai nst possible additional constraints given by the user, and, if it

satisfies these constraints, it is put into canonical form. This

6)

Several types of constraints on the enbedded structures can be
introduced at the backtrack generation |evel by using edge flags.
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canoni cal i zed structure is then directly conpared with the previously
generated structures for possible duplication. In the process of

canonicalizing a structure, a sinple many-to-one one word isonorphism
invarient structure key is determned: This key is used to econom ze

structure comparison.

L. Inplementation. The above described fragment enbedding al gorithm has
been coded in SAIL, an ALGOL |ike language. This conputer inplenentation
makes use of numerous devices to speed up the conmputation, for exanple,
the cases w £3 are handled directly - bypassing the double coset

algorithmentirely, and the stabilizers STAB (P ) are reconput ed

A(PyseeesPy g
only when necessary.

The fragment enbedding program has been extensively tested using the
Stanford University Medical Experinental Computing Facility (SUMEX). This
facility is based on a PDP-10 conputer running under the TENEX operating system
The average execution tine is about .3 seconds per conpleted structure.

The embedder program is incorporated in the general nolecular
structure elucidation package under devel opment at Stanford as part of
t he DENDRAL project [3]. This package has a chenist-oriented I/O interface
which permts the user to input only the emperical formula for a nolecule,
the desired fragments in graphical form and several other types of
i nf or mati onabout the unknown conpountm The package driver itself then

calls the necessary structure generation routines, thus freeing the user

fromthis task.
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Appendix |.  Exanpl e

The fol l owing exampl e was chosen' for its convenience in illustrating

the operation of the fragnent enbedder rather than for its chemca

rel evance.

-

Atom Set: {(c,h),(C,h),(C,h),(C,3),(c,3),(c,3),c,2),(c,z),(o,g),(R,1)3

This atom set represents the emperical formula (Jélﬁ%q where Ris a

monoval ent radical and the bonding of the hydrogen atoms to the carbon

atoms is known, nanely there are three CH's and two CHz's.

Fragments:
Atom c Form Label - Val ence Form
CH (c,3)
\
Fl: ‘ p Cc= l (C,4)=(c,b)
CH (c,3) -
F2: 0=¢C - CH (Oa2)=<ca)+)_ (093)

Fragment F1 has free valence 4 and fragment F2 has free val ence 3. W\
assune that it is not known how the free valences are distributed between
bonds internal and external to the fragment Fi; and that the free val ences
on fragment F2 are all used for external bonds. Hence there are two cases.

Namely, F1 has one additional internal bond and FL has no additional interna

bonds.

Case 1. Fl has one additional internal bond. Reduced atom set

§ (71,2),(F2,3),(c,2),(c,2),(R,1)] .

There are seven non-isonorphic graphs based on this atom set.
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C - R F1 - C _C
| I | | R- Fl - Feq\ |
F2- C , F2 - C , c
/ /
R R
F1
R-c-r2” | C=F2-Fr-C- R
\: ’ B B
v

C=F2-C-Fl ~-R Fl=F2-C-C-R

Ve will consider only the first graph. Then

3 NL
7,
: ¢ X Mm%
\ | 2
F2 -¢
/
R

W want first the enbeddings of Hat FVin Gat Fl1. |f we index the
rel evant edges as indicated, then U(H)=u(G)= £(1,2,3,4), (2,1,3,4),
(1,2,4,3), (2,1,4,3)¥. There are three double cosets of UH and UG
in Sh‘ The canonical set of double coset representatives is

- (1,2,3,4),(1,3,2,4), (3,4,1,2)}. The first representative viol ates
the bonds to NIL atomcondition and is discarded. The second and third

representatives give, respectively, the follow ng structures ng



2T
C -~ ¢
1
. / / \\
G, R 3 p C-c
NN
C C
C
iy \ €
' 3 / /7
"2 R=F c-c |
AN/ N
C

The graph H corresponding to F2 is:

Fv
" Ve \3
cC — ¢
%O

The associ ated groups are:

u(E) = {(1,2,3),(2,1,3)} ,
vler)) = {(1,2,3)},
ulery) = {(1,2,3),(2,1,3)} .

The canoni cal set of double coset representatives for UH and U(G'l) in

s.is { .
3 11,2,3), (1,3,2), (3,1,2)}. These representatives correspond,
respectively, to the follow ng structures:

C -
N AT TN
c-¢ c-¢
Ve Ny

R "c-¢C

R C—c
N C\-/C

C ¢
7 N\ 7/



C — C
0 - /\\\
~cC C~2C
N \
c c
R .
c

The canoni cal set of double coset representatives for UH and U(G’2)

in S, is {(1,2,3) »(1,3,2)}.  These correspond to the structures:

N\ 7N ~
¢ oo c=c |
7 ~ N
R C C
0
N\
C ~C I
/ \ yd
P ¢c=c I
R X\ / N
C C

A1 of the final structures are distinct. Thus there are five enbedded

structures based on the first graph and with one allocated bond internal
to the fragment F1

Case 2. No additional internal fragnent bonds. Reduced atom set:
{ (F1,4), (F2,3), (c,2), (C,2), (R,1)}. There are eight distinct graphs

based on this atom set.
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’ = _ F =
R
/F]\ ¢ —F)—R
C\{ i Ll
C—F
F2° : ’
c
c= F2-F1% /!C
R-¢C-Fl
\
R
’ \\_,__2
C
7 :
L veren
1 ' e

We will consider only the first graph. Then:

Go: F2 - b
-3 Fl.-¢c-c-n&
HV: FV
014
¢\
/]
c
/\



-

30

Relative to the above indexings,
{(I,Z,B,h),(z,l,3,4),(1,2,4,3),(2,;,1.,3)} and
VO = 101,2.3,80,(2,1,3,0),3,2,1,4),(1,3,2,8),(2,3,1,8), (3,1,2,4)} -

The canonical set of double coset representatives for U(H) and U(G) in

U(H)

Sy is 4(1,2,3,4),(1,3,4,2)}. These representatives correspond,
respectively, to the following structures G':
G, : C-c-Cc-R

] )
FZf \C

\C/

\/

‘The associated groups are:
uH) = {(1,2;3),(2,1,3)1,
u(e)= {(1,2,3),(1,3,2)3,
uey)= 101,2,3),(2,1,3)1.

The canonical set of double coset representatives for U(H) and U(G;) in 53

is 4(1,2,3),(3,1,2)}. The corresponding structures are:



——

0

N\

Cc-C - c - C ~ R

/ AN

c /“C"‘\

\1/

The canonical set of double coset representatives for U(H) and U(Gé) in

53 is {(1,2,3),(1,3,2)}. Thses correspond to the structures:

Using our programs, we have determined all embeddings of the fragments
Fland F2., There are 46 distinct structures based on the given atom
set and containing the non-overlapping fragments Fl and F2 where one
F1 .has one additional internal bond and 68 distinct structures where Fl

has no additional internal bonds.
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Appendix tf. Proof of the correctness of the double coset algorithms.

Lemmal LetTre SW be generated by the algorithm of Section 3.4.
Then:

a) T« AT.

b) fr<< 7B

c) 7(1) £ «7B(1)for every €A, BEB .
Proof. a) Choose any &€ A. Then o(77(1)) is in the A orbit of 27(1).
By choice of 77 (1), ™ (1) was least in this orbit. Hence 7 (1) €7 (1)
Assume I ) £ T (t)f o rift<j - 1<Ww-~1 ., If for any t in
this range, W (t)<x7(t), then " << . Thus, we may assume that
T(t) = «xT(t),i£t<j-1, and, hence, o€ S = sTAB, (77(1),
77(_j - 1)). Since S is a subgroup of A, every orbit of A is a (disjoint)
union of orbits of S. Let le be as in the algorithm, i.e., IMJ. is the
set from which 77°(j) was chosen. By the design of the algorithm and the

above remark, H;l. is of the form

{1, oWl N ), oo, MG-D} U (S-orbit of x),
x€ T

for some subset Tof'[l, .. .. W). Assume 7 (j)> &7 (j). Since ™7 (j)
was chosen as least in lM,,J,d'IT(j) is not in le. Hence either < 77 (j)
is in-r { TO), « .. 77(1'-1)} or o7 (j)is in S-orbit of x for some
XE T. However, both of these alternatives contradict the assumption that
X is in S. Thus T(j) €« (j) and, by induction, (i) €oLZ(i)f or

1

I\

i€W-1. Hence Tr<< 7T,
b)By the design of the algorithm, 77 (j) > MAX {ﬁ(x)leOx, x<j}.

Hence, by Sim's Lemma (Lemma 4, Section 3.4),  Te</rs.
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c) By choice, (1) is the least element in some A=A orbit

of (1). For o€ A and ﬁEB,Iet A'c be that A orbit containing

0(77/8 (M. Thenﬁ/?(])eAt.Also ﬂ(l)O]=B -orbit of 1. Now,

it k =1,70) =1 an dﬂ(l)fofﬁ}g(]).lfk>l,t h e nﬁ/e(l)ﬁA]U..

Hence t >k and (1) =MlN{x6Ak}5M I N{xéAt}de/@(l).

Lemma 2. Let7/"é$wsatisfy:

a )fre< AT

b ) 7F<< 7B,

c )W(l)fdﬁ'/?(])for every o«éA ,/QéB.

Then 7 is gen_grated by the algorithm of Section 3.4.

Proof. Since T7<<B,bySim's Lemma @ (j)<77(t) for any j and t such
that tE(J). ,t# j. Also, t€0j., t#j implies t>j . Hence 7 (j)> SEj"
2 << .

Since W<LATW, 777 (1) must be the least element in A = A - orbit of
(). Hence (1) =P
™(s) = Ps,
implies o () is the least element in U = STABA(P], . 'j-?' ) - orbit of

]for some pass of the algorithm. Assume

1<s< j<W for some pass of the algorithm. Now TF << A T

() . Also, (c) implies that ’/T(j)EAkU...UAT if j is in B-orbit
of 1. Thus, on the initial pass to select Pj’ ’IT(j)é le' Since IM.J is
only decreased by some orbit of STABA(P], ooy Pj-l) on any pass, W(j) is
eliminated from lMJ. only when all of U is. Now IMJ. is used as the selection
set for Pj until IM.J = 0. Thus an element from U must be selected on some
pass; and, since 77(.3) is least in U, it must be the first element of U so
selected. Moreover, since '7f(j)> SB._,'IT(_I) is not rejected. Hence, by

J
induction, at some pass PJ = 77(j), 14j9W unless P] =mTQ), . ...
7 (w-2), P17 Py # - (W), occurred earlier and was rejected because

PW-Z =
PW<SBW' In this case we would have PW_I:W(W),PW:/IT(W-]) and

Ua

k-1°
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(W) (’IT(W = 1) since the algorithm generates the permutations in

lexicographical order. But then F (W< #(w-1) < SB _ _
W which is

impossible.



35

Appendix Ill.  Symmetry group generation.

Let G be a node indexed graph, x a node of G and Stabx the subgroup
of the topological symmetry group of G stabilizing x. The following
~ algorithm is used by our program to generate, as node index permutations,
a subset S of Stabx maximal with respeét to the property that distinct
elements of S induce distinct permuations of the edges with endpoint x.
. ALGORITHM. 1) Place the node X in a singleton class and classify the
remaining nodes by weight according to the scheme given
in Section 3.3.
2) If all the node classes are singleton classes, then output
the identity permutation and exit.
3) Order the node classes so that
a) The singleton classes come first.
b) Following the singleton classes are the non-singleton
classes which contain nodes neighboring node x listed
in non-decreasing size.])
c) Following the neighbor classes of (b) are the remaining
non-singleton classes listed in non-decreasing size.
4) Reindex the nodes so that node a preceeds node b if and only

if the class containing node b does not preceed the class

containing node a.

N Our weighting scheme is such that either all the nodes in a given class

neighbor x or no node in the class neighbors x.
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5) Execute (for effect) with initial parameter value START

the recursive procedure given by the SAIL program listed

below where the external variables are initially defined

as follows:

a)
b)
c)

f)

g)

PROGRAM.

NUMBEROFNOOES = number of nodes in G.

START = number of singleton classes + 1.

STOP = total number of nodes in singleton classes or
neighbor classes

ADJACENCYMATRIX [I ,J] is the (i,j)th entry in the
adjacency matrix for G relative to the node indexing
formed in step (4).

LOWBOUND [JJ1 is the least index of the nodes in the J-th
class (relative to the class ordering of step 3 and the
node indexing of step 4) and UPBOUNDLJ] is the greatest
index of the nodes in the J-th class. Here J > START.
IMAGE(!] =1 for 1 <1<  START

MAPPED[I] = FALSE for START <_l< I\EJMBER OF NODES
CLASS[I! = class index of the class containing the node

with index |I.

RECURSIVE BOOLEAN PROCEDURE PERMUTATION (INTEGER I);

BEGIN "PERMUTATION"

INTEGER J,K;

IF I LEQ NUMBEROFNODES THEN

BEGIN

FOR J <--LOWBOUND [CLASS[I]] STEP 1 UNTIL UPBOUND [CLASS [I_] DO



37

BEGIN ''J LOOP"
I F MAPPED [J] THEN
CONT I NUE*'J LOOP""
FORK<=- 1 STEP 1 UNTIL I-1 DO
IF ADJACENCYMATRIX [I ,K] NEQ
ADJACENCYMATRIX [y, IMAGE([K]]
THEN CONTINUE ''J LOOP”;
IMAGE [1]<-J;
MAPPED [J]4- TRUE;
IF PERMUTATION (I+1) AND | » STOP THEN
BEGIN
MAPPED [JJ]&- FALSE;
RETURN (TRUE) ;
END
ELSE
MAPPED {JJ<=- FALSE;
END ''J LOOP”;
RETURN (FALSE) ;
END
ELSE
. BEGIN
INDUCED PERMUTATION; COMMENT:  INDUCED PERMUTATION IS AN EXTERNAL
PROCEDURE WHICH COMPUTES AND STORES THE PERMUTATION OF THE EDGES
OF G WITH ENDPOINT X INDUCED BY THE NODE INDEX PERMUTATION
| =<? IMAGE [I-J;
RETURN (TRUE) ;
END; '

END “PERMUTATI ON”;



