STABLE SORTING AND MERGING
WITH OPTIMAL SPACE AND TIME BOUNDS

by
Luis Trabb Pardo

STAN-CS-74-470
DECEMBER 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Stable Sorting and Merging

With Optimal Space and Time Bounds

Iuis Trabb Pardo

Abstract

This work introduces two algorithms for stable merging and stable
sorting of files.

The algorithms have optimal worst case time bounds, the merge is
linear andaﬁhe sort is of order n logn . Extra storage requirements
are also optimal, since both algorithms make use of a fixed number of
pointers. Files are handled only by means of the primitives exchange

and comparison of records and basic pointer transformations.

This research was supported by the National Science Foundation grant
GJ-36473X. Reproduction in whole or in part is permitted for any
purpose of the United States Government. .

1. Introduction

An algorithm which rearranges a file is said to be stable if it
keeps records with equal keys in their initial relative order. This
work presents an algorithm for méiging two contiguous files in a stable
manner (the PARTITION MERGE). As an immediate application of this,

a stable algorithm to sort a file (the PARTITION MERGE SORT) is given.

The algorithms attain optimal worst case bounds with respect to
time, the merge is of order n and the sort is of order n logn .

Both algorithms require only a fixed number of pointers for auxiliary
storage. Furthermore, the algorithms are completely general, in the
sense that they treat files as sequences of unmodifiable records, with
the keys evaluated from the record contents and not necessarily stored
within then.

While D. E. Knuth was preparing his book about sorting techniques,
he noted that the known algorithms for stable sorting either were of
order n2 or they used approximately n pointers for additional memory
space. Therefore he asked ([Knuth], Section 5.5, exercise 3) whether it
was possible to do stable sorting in less time than order n2 » using at
most 0(log n) pointers for additional storage. The first progress on
this problem was made by R. B. K. Dewar ([Dewar]), who developed a

1.5

stable sorting algorithm of order n , using 0O(log n) pointers.
Further improvements in the running time were made by V. Pratt ([Pratt]),
F. Preparata ([Preparatal]), R. Rivest ([Rivest]), and A. Nijenhuis
([Nijenhuis]). E. C. Horvath ([Horvath]) constructed stable merging

and sorting algorithms with optimal time and space bounds; however, his

algorithms involve the operation of key modification, thus they apply

emlv 40 F1leg 4 A A

\Jll.-l_‘y LU L LATO 1.1 Wiliil
The algorithms in the present paper make use of a minimum set of

primitive operations on files (exchange and comparison) and in this sense

appear to offer the final solution to Knuth's problem, except of course

the time and space bounds.

This paper is self-contained; Section 2 introduces the notation and
a set of transformations of files upon which the main algorithms are
built. In Section 3 the merging strategy is presented, while Section L
deals with means to keep storage requirements low enough. With all the
background of the previous sections, Sections 5 and 6 finally describe
the PARTITION MERGE and PARTITION MERGE SORT in full detail, together

with their respective analyses.

r—-

2. Basic Concepts

This section presents the notation used throughout the paper and
describes a set of elementary operations on files that will be used for

further definitions of more complex transformations.

2.1 Notation
A record R is a unit of information; its contents cannot be
altered.
The key k of a given record R results from the evaluation of a
certain funcﬁion K applied to R
k = K(R)

A file F is a sequence of records

F = <R1)R2; . --:Ri: “')Rn)

Each position in a file has associated with it a pointer value, an integer

in the range [1,n]
If 1 and j are pointers, two primitive operations (and only
these) may be used to access the file:

-- an exchange primitive, denoted by exchange(i,j) . An

application of exchange(i,j) or of exchange(j, i)

transforms % into
F = <Rl, . .,Ri_l)Rj,Ri+l, .o .,Rj-l’Ri’Rj‘f‘l’ . .,Rn> H

-- a comparison primitive, denoted by F(i) < F(3) , whose value

is true if and only if K(Ri) < K(Rj) . Since the other
relations < , = , £ , > 5 > can be easily expressed

in terms of one or two < ts they will be used in the definition

of algorithms, as a shorthand for the corresponding relation

expressed in terms of the < primitive.

A block U (of length p) is a subsequence of p consecutive
elements of %

. .,Rnl—'-p_l> .

The length of U will be denoted by IUI 5 thus in the above case

|U| = p . The block U will be also identified by the pointers to its
first and last elements and denoted by F[m: mtp-l] . The first and
last records of U will be first(U) = R~ and last(U) = Rm+p—l .

The term prefix (suffix) of U will refer to an initial (final)

sequence of contiguous records of the block U

The number of distinct keys in a block U will be A(U) . Obviously

A(U) §'|U| , with the case A(U) = ‘Ul corresponding to a block composed
of records with distinct keys.

A segment X 1s a sequence of contiguous blocks Xi

A segment will be also regarded as a block with the notations IX‘ B
~ first(X) , last(X) and AN(X) having the previous meaning.

Normally only nondecreasing order will be considered. The predicate
ordered(U) is true if and only if the block U is ordered in nondecreasing
order.

A stable transformation is a permutation of a file, that preserves

the relative order of those records with equal keys. In particular, this
work is concerned with two stable transformations:

-- the stable merge of two contiguous ordered blocks U and V

denoted by merge(U,V)

and

-- the stable sort of a block U (denoted by sort(U)).

In the examples a file will be represented by the actual sequence

Example 2.1: Let us assume that the file % is

3231256L4
ABCDEFGH

Then F(4) =D and K(F(4)) = K(D) =1 . The pointer values range

from 1 to 8 . Let U be the block F[2:5] , then

lu| = 4% , first(U) =F(2) =B ,

last(U) = F(5) = E , 3 and ordered U is false.

z
)
I

Applying exchange(1l,3) or exchange(3,1l) yields

323125654
CBADEFGH
In this file exchange(1l,3) is not a stable transformation, but

exchange(k4,5) is.
|

Algorithms will be presented as ALGOL-like procedures. The language
used will be ALGOL W with the addition of a new type pointer. Pointer
values will be operated upon in a similar way as in the case of integers.
The inclusion of the type pointer pretends to emphasize that its range
depends only on the length of the common file. Thus if the latter consists
of n records, only [log n] bits will be needed to store a pointer
value.

For convenience in exposition the algorithms will be written in terms

of the operations ' p+q ' , ' p-q ', ' pxqg ', ' floor(p/a) ',

%

it will be clear that the optimal time and space bounds can also be

achieved using only the primitive pointer operations
p+1l , p-1 , p+tq , p=q and p:i=q ,

by straightforward modifications.

2.2 Some Basic Transformations Using Minimal Extra Storage

This subsection defines in a precise manner a set of straightforward
transformations of blocks and presents time bounds for each of them, so
they can be used in the description of more complex algorithms within the
rest of this work.\ None of the algorithms will be recursive, SO no
'hidden' pointers are implied.

The reader is referred to Appendix A for a formal description of the
algorithm and derivation of time bounds for each transformation.

In the following paragraphs U and V will denote the blocks

U = Flu and V = F[vl:vg]

130

2.2.1 Reversal of a block: REVERSE(ul,ue)

An application of REVERSE(ul,uQ) transforms U into
SR 15 e R X .
o’ Ul o

The time bounds are:

TREV(U) = o(|u]) . (2.1)

2.2.2 Exchange of blocks of equal length: BLOCK EXCHANGE(u Uy Vy5Vy)

Let U and V be non-overlapping blocks of equal length (lul = v -
Then an application of BLOCK;EXCHANGE(ul,uE,vl,ve) or
BLOCK;EXCHANGE(vl,vg,ul,ue) -exchanges the contents of U and V,

without changing the values of U o, Uy s Uy vy

6

The running time is bounded by

—~
N
.
no

~

T (U V) = o(fu]) = o(|v])

2.2.% Permutation of two contiguous blocks: PERMUTE(ul,uE,vl,VE)

Let U and V be two contiguous blocks, with U preceding V .
That is, the common file is of the form
o - ATTVR (where A R are blocks)
J L0 VoW \"LL\,_L\— ~dl b 17 ol & N s SawD
Applying PERMUTE(u.,u.,v.,v,) yields

L c 4 fad
F = AVUB , :

and the corresponding redefinition of Uy o U, 5 Vq and Vs
The permuting process is done by application of three successive reversals:

-- first reverse UV yielding VU ,

-- then reverse VR vielding VUR 5

-- and finally reverse UR , thus obtaining the permuted pair VU
Since the reversals are linear so is the permute process:

TPERM(U,V) = o(lu| + |v]) . | (2.%)

2.2.4 Stable insertion of two contiguous ordered blocks:

INSERT(ul,ug,vl,vg,fl,fg)
Let U and V Dbe twe contiguous ordered blocks, that is F = AUVB.
Then H\ISERT(ul,uE,vl,vg,fl,fg) yields
F = AV'UV"B where V'V" =V
and
last(V') < first(U) < first(v")
and sets the pointers in such a way that
— . 1 — - ' — T .
U = F[ul.ug] , VU= F[Vl'V2] and V' = F[fl.fg]
Intuitively it can be said that the insertion of U into V moves

U as forward as possible, but keeping the transformation stable.

Two basic facts, direct consequences of the above definition, can

be stated as claims.

Claim 2.1: Let U, V, V' and V' be as above, then the insertion of

U into V reduces the merge of U and V to the merge of U and V",

-hat s
nat 1s

merge(U,V) = V' merge(U,V") . 0

Claim 2.2: Let U and V Dbe as above, and U = U'U" . After inserting
U" into V , thus yielding V'U" V" , the merge of U and V is
reduced to
merge(U,V) = merge(U',V') merge(U",V") . O
The insertion proc;ss consists of
-~ a linear search over V in order to find the place where to
insert U ,

followed by

-~ the permutation of U and V'

Since both steps can be accomplished in linear time, the time bounds
result:

Ts(Us V) = o(lul + vy (2.1)

or if desired, since \V'\ < \V|

T (G, V) = o(|u] + |v]) . (2.5)

INS(

2.2.5 Direct merge of two contiguous ordered blocks:

BLOCK_MERGE_FORWARD (u,,u,,Vv,,Vv,) and
BLOCK_MERGE_BACKWARD (u,,,V;,7,) -
Let U and V Dbe two contiguous ordered blocks, so % = AUVB.

Applying either BLOCK MERGE FORWARD (u;,Up,VysV or

o)

8

BLOCK;MERGE_BACKWARD(ul,uE,vl,vg) vields the merge of U and V , thus
transforming % into
% = A merge(U,V) B
The forward merge is accomplished by an iterative process of
insertions of successively smaller suffixes of U into successively
smaller suffixes of V . Thus,Aéfter a stable insertion of U into V
as in Section 2.2.L4 yielding V U, (where

1 1

U, is the largest subblock with first(U,) > first(V,)), and the

IIVé , U is partitioned U

problem reduces to merge(Ue,VE) . The backward merge is similar, but
the insertions are done in a backwards direction.

The time bounds result

-- forward merge

f .
2{F) 0,1 = o(fulr)) +o(|v) (2.6)
where V' is that prefix of V (V = van) such that

last(V') < last(U) < first(v") ;

-- backward merge

(back.)

TarockM

U, v) = o(|v|rn(v))+o(lu"]) (2.7)

where U" is that suffix of U (U = U'U") such that

last(U') < first(V) < first(U")

Instead of introducing the definitions of V' and U" the block
merge processes could have been bounded by the overall lengths |Vl
and |U| , but these bounds pretend to emphasize the fact that the running
time is only a function of the elements that are actually exchanged by the
process. That is, no matter how long the suffix V" (forward merge) or
the prefix U' (backward merge) are, the running time for the merge

processes doesn't change.

2.2.6 Direct stable sort of a block: STRATGHT _INSERTION_SORT (u,,u,)

This process sorts the block U in a stable manner. Since it must
be done with minimal extra storage, the straight insertion sort
([Knuth], Section 5.2.1) is chosen. The only extra storage needed is
a fixed amount of pointers.

Time bounds result

Toorp(W) = o(|U|2) . (2.8)

10

This section outlines the basic strategy on which the partition
merge algorithm is based, without considering eithcr storage requirements
or time bounds.
roduces the segment inse
a stable transformation that is basic to the stable merge, while the

second subsection analyzes the strategy itself.

5.1 The Segment Insertion Process

This stable transformation deals with two contiguous ordered
blocks U and V , of length equal to a multiple of a given value £
This last condition on the length allows treating U and V as

segments of blocks of length f , and thus

U :Ul"'Ui"'Uk
and vV = Vi Vj . .Vz
for some k >0 and £ >0 , (3.1)
with the block length
lUi| = lVJ| = f

for 1 <i<k and 1<J <!

Informally the segment insertion can be described as a permutation of

the sequence of blocks U U, v V, yielding the minimum number

10U Vy eV,
of inversions, but, of course, being stable.
In order to characterize such a permutation it can be argued that

any block Ui in U cannot go after any block in V that could contain

a vwecord with key equal to any key of the records in Ui . Thus a block

11

such that

last(Vj) < flrst(Ui) < last(VJ.+l) .

(In order to make the above equation hold in every case, the

fictitious blocks VO and V£+l must be assumed, with

last(Vo) = -» and last(V = +o)

£+l)

J+1l

(3.2)

Since equation (3.2) might yield the same value of j for various

consecutive blocks Ui » Ui+l 5 ey Ui+p 5

it must also be stated that

the permutation must retain the original relative ordering of blocks

in U and V . 8o in this case the final layout will contain the
segment Vj Ui Ui+l ce Ui+P Vj+l
Example 5.1: As an example, let us consider U and V as below, for
a block size f =2 :

U v

l12f22]l23lks5}68j11123]133]55
ablcdlef|gh|ij|]ABICD|EF|GH

Up U [U3 | U | Us |V [Vo [V5 | W
Applying equation (3.2) to U, we see that
la.st(VO) = -» < first(U;) =1 < last(vl) =1
ThLlS Ul will go before Vl' For the blocks U2 and U5 »
last(Vl) =1 < first(Ug) =2 < 1ast(V2) =3
and last(Vl) < first(U3) =2 < last(Ve) s

S0 U2 and U5 will be positioned between Vl and V2 , with

U

2

preceding U, . After considering U, and U. it can be seen that the
3 ;)

p)

12

P

final permutation will be

1el11l22]23}23|33|ks5)55]68
ab|]ABlcdlef|]CDIEF|gh{GHI|1LI]

U %) U

1 1 o Vo, 1. V.

of V5 { Uy | iy | U

) p) -

The final result of the segment insertion can be characterized as

the sequence of segments

A4
V2 Y Ty e Y 2y Y Dy (3.2)
where ‘YlYé... %i...Yt = U and ZlZQ ...Zd ...Zt = V and all the

segments Yd and Zd containing at least one block, with the

possible exception of Yl and ZJC

Renaming Y and 2% as

a a

Y, = Y'L with |L.| = £

a d~a a (% 1)
and Zy = Fy2} with lel = f

(that is, Ld is the last block in Yd and Fd is the first one in

Zy), the followins rectrictions apply to the layout in equation (3.3)
(1) last(Zd_l) < first(Yd) » l<dac<t (3.5)

and (ii) first(L;) < last(Fy) , 1<d<t . (%.6)

The characterization given by equations (3.3) to (3.6) is no more
than a formal statement of the initial considerations. Thus in the

example considered above,

¥ =0 =N

Y2 = UQU:5 Z2 = V2V5

Y5 = Uh Z5 = VL
13

Equations (3.5) and (3.6) state boundary relations between contiguous
segments. Somehow they give us the hint that a merge of U and V could
be reduced after segment inserting U and V , to a sequence of "local"
merges of the pairs of segments Yd and Zd . That is the idea underneath

the partition merge strategy and so it is the topic of the next subsection.

5.2 Description of the Partition Merge Strategy

Let U and V be two contiguous ordered blocks of length greater
than a given value £
lu| >f anda |v|] > £ . (3.7)
For the sake of simplicity, and only for the time being, it will be
assumed that U is of length equal to a multiple of £
lu] = x.f for k >1 . (3.8)

The partition merge will proceed in the following way:

® Segment insert U and the longest prefix of V of length equal

to a multiple of f .

. "Finish up" the merge, by means of local merges.
So, let
U = Ul Ui' Uk
(3.9)
vV = Vl 'Vj' Vva
with |v.| = |v.] = £ and |T | < f
i J v
The segment insertion of U and Vi ...Vk yields
lel"'YdZd"'Yt-th-lYtZtTv

with the segments Y. and Z., as described in equations (3.3) to (3.6)

da da

of the previous subsection.

1k

In order to analyze the finish up process we shall first consider
the rightmost portion of the file, in particular the situation at the

boundary of Y, and 2, . It is assumed that 2Z is not empty. The

t t t

case Zt empty will be quite similar.

By comparing last(Yt) with first(Zt) two cases may arise:

(i) 1f last(Yt) < first(Zt) then the segment Y Z T is already

in order and, what is more important, in its final position within

the merged file. This last statement is a direct consequence of

the segment insertion definition, since by equation (3.5)

last(Zt_l) < first(Yt) (3.10)

and so all records of Zl "'Zt-l must precede first(Yt) . But
also last(Yt_l) < first(Yt) because U was originally in order.
Thus, all the elements to the left of first(Yt) must precede it,
so the above statement is true. Then nothing needs to be done

about this segment, and the finish up proceeds by replacing t

by t-1 .

(ii) 1If last(Yt) > first(Zt) it is going to be necessary to proceed

with the finish-up of the segment Y, 6 Z

£ 'bTv , as described below.

The finish up of 'ItZtTV_ will consist of three steps. In order
to describe them, let us adopt the notation of the previous subsection,
and for reasons that will be immediately clear, let us rename TV as

Ct+1 . By doing so, the rightmost portion of the file can be written as

1 1 4
Zi o1 Yo by Ty 25 O (3.11)

where Y/L =Y, and F. 2! =2 Wwith I | = |7l = £

15

This initial disposition is depicted in Figure 3.1(a). Notice
that Figure 5.1 shows the values of the keys along the vertical axis,
thus displaying the relative ordering of records.

The first step in the finish up process is to stable insert Lt
3 3 3 ' "
into Ft , thus transforming LtFt into thLt L such that

last(F}) < first(L.) < first(F) . (3.12)

Figure 3.1(b) shows the situation after this first step. It can be seen

that all the elements in Lt and F!Z!C are greater or equal to

t 7t Tt-1

those towards the left of Lt . This last assertion can be formally

stated as the following claim.
Claim 3.1: After step 1, first(Lt) is already in its final position
within the merged file, and the overall merge has been reduced to the

respective merge of the records to the left and to the right of first(Lt)

Proof': All the elements to the right of first(Lt) are greater than
or equal to it since
-- those originally in U are greater than or equal to first(Lt) B
by the initial order of U ;

-- those originally in V are greater than or equal to first(Fg) B

and, by (3.12), it is first(Lt) < first(Fg) . (The block Fi
is never empty, since first(Lt) < last(Ft) » by equation (3.6),
and then by equation (3.12) at least last(Ft) must belong
in FY .)

Similarly the elements to the left of first(Lt) are less than or equal

to it:

-- those originally in U Dby the initial ordering;

16

‘/-

t-1

Value

_-\l =

l\«\\\ /‘ _ \i f‘,\,\\’@ O, X\

t+1

(a)
Initial
Lay~out

(b)

After
inserting
Lt into

Fy

(e)
After
merging
forwards

Lt into

thtct+l
and
merging
backwards

F% into

1 4
e

C] i
I !(—- merge(Y ,C!)-—-—) (——merge(o FY Ztct+l)

!(—— merge(Y),F!) —

Figure 3.1: "Finish up" merges for the rightmost section of the file.

17

-- those originally in V are less than or equal to last(Fé)
and by (3.12)

. .
last(F%) < first(Lt)

In the case that F! resulted empty the first element
t y

originally in V to the left of I is 1aSt(Zt-l) , and

by equation (3.5) and the initial order of U

last(Zt_l) < first(Yt) < first(Lt) .)

Hence, the stability of the merge imposes that first(I%) remain in its
current place, since it was originally in U . And clearly the overall

merge is reduced as stated in our claim.

d

So, the second step in the finish up is the merge of L

't with

"ozt
thtct+l .

Now let us consider Y% and F% , if Yé is nonempty. Assume that
F% is of the form

FL = C.CY where last(Ct) < first(Y%) < first(C%) . (3.13)

(This partition of F% is identical to the one that would have been

obtained by stable inserting Y! dinto TF! .) .

t t
The third and last step in the finish up process of Yf.ZtCt+l is
the merge of Y% and F% . But by Claim 2.1 the merge of Y% and F%
yields
1 1 —_ t 1
merge(Yt,Ft) = Cy merge(Yt,Ct) . (3.1h)

If Y% is empty, the third step does not take place, and Ct is

simply taken to be F%

Tt is possible now to issue the following claim.

18

Claim 3.2: After step 3 all the elements to the right of Ct are

already in their final position.

Proof: Only the case Y% nonempty needs to be considered. When Y%
is empty the claim follows trivially from Claim 3.1.

Consider flrst(Yt) By equation (3.13) and the stability of
the merge it must occupy the first position in merge(Y%,C%) . Also by
a similar reasoning as in Claim 3.1 (but applying equation (3.13) instead
of (3.12)) it can be seen that it is in its final position within the
merge. Clearly the rest of the elements in Y% and those in C% must
be placed to the right of first(Y%) » and by Claim 5.1 to the left

of first(Lt) . Then, all the elements in

t
merge(Y},C/!) merge(L A t+l)
must be in their final positions. 0
The final result of the finish up of Y’ Z C is shown in

t+1
Figure 3.1(c).
It is left to the reader to verify that the above process is valid

also in the case of empty Zt . The only difference is that Ct+l plays

the role of Ft » and F% can therefore be empty.

The overall finish up will consist of the application of the above

4412 Y4124 1C¢ s »++ ¥y 2 Cy « The proof

that this process yields the merge of U and V is a straightforward

process successively to YtZ C

induction on t , using Claim 3.2.
A remark must be made about the initial restriction on the length
of U, given by equation (3.8)

lul = k.f

19

The general case
|u| mod £ £ ©

can be reduced to the one considered here by partitioning

U = urg" » (3.14)

(with |U'| mod £ = 0 and |U"| < f) and stable inserting U"
into V , thus yielding U'V'U" V" . By Claim 2.2 the overall merge
is reduced to

merge(U,V) = merge(U',V') merge(U",V")

and now the partition merge strategy can be applied to merge U' and V'

So, in the general case the partition merge strategy will be:

(a) 1Insert the suffix U" into V yielding U'V'U" V"

(b) Segment insert U' into V'

(¢) Finish up the merge of U' and V' : for 4 = t%,%-1,...,1:
(c-1) Stable insert Ly into Fy .

- "t

(c-2) Merge Ly and Fy23Cqrq -
-] 1

(c-3) Merge Y) and F}

(d) Merge U" and V"

To conclude it must be noticed that in all the merge processes, at

least one of the blocks to be merged is of length f or less. As it
will be seen later this is a key fact in order to achieve linear time

bdunds.

20

Any algorithm dealing with files will, at least, need to store some
pointer values in order to identify records to be compared and/or
exchanged.

That is why an algorithm using only a fixed amount of pointers (and,
of course, the space needed to store the file) will be said to have

absolute minimum extra storage requirements. Since each pointer requires

FloggnW bits, the minimum requirements are 0(log n) bits.
Sc far, no analysis has been ma
actual implementation of the partition merge, and it is not obvious how
to implement-it using only absolute minimum extra storage.

This section introduces the concept of internal buffer, and presents
the implementation of another merging technique (the BUFFER MERGE), later

used as a local merge for the finish up phase, and an implementation

of the segment insertion process.

4.1 The Concept of Internal Buffer

Let B be an ordered block consisting of records with distinct keys,
that is
ordered(B) and A(B) = |B| . (4.1)

Then B will be called an internal buffer.

Two useful characteristics of internal buffers may be singled out
in advance:
-- Permutations of an internal buffer do not affect the stability
of a sorting or merging process (since the internal buffer might
always be sorted back in a stable manner). This property is the

basis of the BUFFER MERGE technique presented in the next subsection.

21

L
¢

-- A given permutation of |B| or less elements can be "stored"
in a buffer B by simply permuting its elements correspondingly.
This will be the key to the implementation of the segment insertion

process, appearing in Subsection &.5.

Both properties could be used provided an internal buffer is present
in the file being processed. Nevertheless, whenever a buffer is needed
to process a block U it is possible to rearrange U in order to produce

the desired buffer. Such a process will be called buffer extraction.

Definition k.1: Given an ordered block U , the extraction of a buffer

B of at most £ records transforms U into U'B , with U' and B
also ordered blocks, such that
merge(U',B) = U (k.2)

and B is an internal buffer

|B| N(B) and ordered(B) (5.3)

and lBl

min(£,N(U))
O

That is, the buffer extraction collects at most £ distinct keyed
records (or if the block U has only N({U) < £ records with distinct
keys, only MN(U) are collected) placing them at the end of the original
block; the rest of the records are compressed in U!

Tn order to satisfy condition (L.2), for any sequence of records with
equal keys in U , the last one is picked, so when merging U' and B,
the original block U is obtained.

A similar definition could have been given for an unordered block, ‘ i

but it is not needed for the purposes of the present work.

22

The buffer extraction technique will be illustrated by means of an
example. The reader interested in the actual algorithm and a more

detailed analysis is referred to Appendix B.

Example L.1: A buffer of lengthhat most 5 is needed to process the
following block U :

11113333444 405666779
ABCDEFGHIJKLMNOPQRST

In order to extract the buffer we start scanning from left to right
until finding the last record with key 1 (that is 1D). This record
will be the first in the buffer. We repeat the search, now for the last
record in the sequence of those with key 3 :
rmM
1111433 313k
t
ABCIDIEF G'H'I
('}
At this point we know that 3H is also going to be in the buffer. So we
exchange the previously collected record with the sequence of records with
key 3 , except 3H .

Proceeding in a similar manner:

1113531344505
ABCEFGDHIJKLMN

1113334444136
]
ABCEFGIJKLDHMMO

(Notice that in this case the exchange is null, since 5N is the only

record with key 5)

1113334444135 5]66607
[I |
ABCEFGIJZKILi|DHMNDNIO PE%}R

11133345844 466/103456|7T709
ABCEFGIJKLOPDEHMNGQIRS 7

25

At this point the collection is finished (we already have an internal
buffer of length 5), so the collected buffer is exchanged with the

rest of the file to its right, thus obtaining the final configuration

111333448l 6677913456
ABCEFGIJKLOPRST|IDHMDNQ

U’ B

-
To conclude the present discussion, the following facts (analyzed

in Appendix B) must be pointed out:

(1) The buffer extraction technique can be applied to a fixed number
of contigtous ordered blocks (in our case we shall be interested
in the extraction of a buffer out of the two blocks to be merged);

(ii) The extraction process needs only a fixed amount of pointers as
extra storage;

(iii) The time bounds result proportional to

-- +the length of the block(s) from which the buffer is
extracted;
-- the square of the length of the extracted buffer.
S0, in the case of the extraction of a buffer B out of two
contiguous ordered blocks U and V the time bounds are

r (U, 0,00,7,8,0) = offul +)+ o(I3l®) . (4.4)

4.2 Merging Using an Internal Buffer: The BUFFER MERGE

The BUFFER MERGE of two contiguous ordered blocks U and V reguires

an internal buffer B of length

1Bl > min(|ul, [v]) (%.5)

ok

that is, the buffer length must be greater than or equal to the length of

the shortest block to be merged.

Let us assume first that |V| < |B| . Then the buffer merge can

be described as follows:
-- Exchange the contents of V with the first |V| records of B ;
-- "Merge exchange" U and the first |V| records in B ; the result

goes in the place previously occupied by UV .

The term "merge exchange" in the above description will be clarified

by the following example:

Example 4.2: The figure below shows the contiguous blocks U and V

to be merged, and the buffer B :

U v B
14k 8ol 135
abecdlaB| T lapy

After exchanging V and B we obtain:

U

1 k8213 245
abcdaap| |ABY

where the pointers i and j point to the last non-merged element in U
and V ; the pointer m points to the first "free" place in UV .
Comparing F(i) and F(j) we decide that F(i) must be the last

element of merge(U,V) , so we exchange it with F(m) ,

144318 2 45
abepaldl |ABy
i m - J

25

and update the pointers i and m . (The area to the right of m is the
portion of the file already merged.) Now, F(j) is equal to F(i) and

so it is the next element to be exchanged:

144348 215
abcpgiBd o Aoy
im J

Similarly we obtain:

14348 215
abglcBA U Aoy
im J
154 448 215
a BlbeBd T Ay
im J
12 ¥ 4 4 8 315
alAbcBd T B Oy
i,m J

At this point all the records originally in V are in their final
.positions. Thus the remaining prefix of U is also in its proper
place and the merge is complete. 1In the case that U is exhausted
before V, the remaining elements of V should be exchanged with

the initial position of UV . O

It is important to realize that at any point in the process,
the "buffer zone'" in UV (that is, the zone filled with elements
originally in B) has the same length as the non-merged portion of V .
In other words, if the internal buffer B was F[bl:bg] , the following

relation

26

m-i = j—bl+l

is an invariant throughout the merge.

It is possible now to formalize the previous description by means

of the following procedure:

procedure BUFFER MERGE_BACKWARD (pointer ul,ug,vl,vg,bl,be);

if (u:L < u2) A (v, < ug) then

1

begin comment: both files are nonempt

V is F(vl:ve), and u
B is F(bl:b2) and b,-b
pointer m, 1, J;
comment: exchange contents of V and B;
BLOCK_EXCHANGE(v, ve,bl,bl+v2—vl) H
comment: merge backwards;
1i=u,3 J t=by+vy, =V mo:= Vo3
while (i E'ul) A (F z'bl) do
begin
if F(3) > F(1)

then begin exchange(j,m);

J = 3-1
end
else begin exchange(i,m);
is=1i-1
end

m :=m-=1;

end;

2

y, U is F(ul:ue),

= vl-l .

12V Vs

comment: copy remaining portion (if any) of V;

27

while j > bl do

begin exchange(j,m) ;

end

end buffer-merge-backward;

In order to bound the running time the following facts must be

considered:

(iii)

The exchange of V and B takes time proportional to the
length of V , that is
T(5) - o({v]) . (4.6)
The merge backwards loop keeps exchanging elements originally
in U or V wuntil either one is exhausted. So two cases arise:
(a) V is exhausted first, hence U must be of the form
U =yuyrg" (k.7)
where last(U') < first(V) < first(U") , and the excharge

takes time
T(iia) = o(lu| + |v]) . (4.8)
(b) U is exhausted first, and then V must be
v o= V'V (4.9)
with last(V') < first(U) < first(V") , with time bounds
f
T(iip) = o(lu| + |v'|) . (%.10)
The copy of the remaining portion of V +takes place only if U
has been exhausted before V , and that portion happens to be V!

as defined in equation (4.9). Thus, with the same cases as above
(a) V 1is exhausted first:
-0 . (k.11)

T(i11a)

28

(b) U 1is exhausted first:

T(i1iv) o(jvt]) . (L.12)

The time bounds result
(a) If V is exhausted first
= + +
Ta = Ty * Traia) ¥ Tridta)

o(|v]) + o(lu"| + |v]) + 0

I

o(fu"]y + o(|v]) . (k.13)

il

(b) If U 1is exhausted first

o = Ty * Tamw) T T(aiip)

i

“=o(lv]) + o(ful + [v']) + o(|v'])

o(lul) + o(|v]) : (L.1h)

I

Comparing (4.13) and (4.14) it is possible to write a unique
expression for the time bounds as

(back)

TBUFM

(U,v,8) = o(lu"]) + o(|v]) (4.15)
where U = U'U" and last(U') < first(V) < first(U")

since in the case that U is exhausted first according to (L4.9)
first(V) < first(U) , and then U" =U (with U' empty), so T,
reduces to T_ .
a

Equation (4.15) reiterates a point already considered when discussing
the block merge (Subsection 2.2.5): The running time is bounded by the
number of elements that are actually exchanged, and hence it is not
dependent on the length of the prefix U' (that is, the elements that

were already placed in their proper positions before the merge was

carried on).

29

(3 8%

(BUFFER_MERGE_FORWARD) apply to the case in which |U| < |B| and
U is merged forward into V .

The time bounds result:

(forw.), \ T . - ; .
o) (U,v,8) = o([u]) + o([v]) (.16)

where V = V'V" and last(V') < last(U) < first(v") .

4.3 Implementation of the Segment Insertion Process

This subsection describes how the segment insertion can be implemented
with the aid of an internal buffer, using as extra storage only a fixed
number of pointers.

Recalling the definition stated in Subsection 5.1, the two contiguous

ordered segments U and v

Uu=1U,...0,...0
P (4.27)
v =Vl . Vj"'Vll
where |U| = |V| =f
1 J
are transformed into
YlZl"'YdZd"‘YtZt

where the segments Y, and Z; are defined by equations (3.3) to (3.6).

By considering the segments Zd—le Zde as
Zg-1 = V5op vt Vs
Yd - Ui : Ui+p
(4.18)
Z, =V 'R
d J J+q
Yar1 = Uiwprl o Uguprs

equations (3.5) and (3.6) yield

last(Vj_l)
< first(Ui) < vl < first(Ui+p)
< 1a.st(VJ.) < ... < last(Vj+q)
< first(Ui+p+l) (k.19)

Equation (4.19) indicates an easy method to determine the final order
of the blocks. Consider sequentially Ul’ U2 >, ete. until reaching the
smallest p with

last(VJ_) < first(Up)

Then U, ...U are the first blocks in the final permutation. Now

1 p-1

consider Vi, Vé > etc. until reaching the smallest q with

first (Up) < last(Vq) s

1

The process is now repeated until U and V are exhausted.

thus establishing that the sequence V "'Vé-l will come after Up-l .

The above process gives us a method to compute the permutation that
must be applied to the blocks in UV . But somehow that permutation must

be stored before permuting the blocks, since its definition is based on

~ the original ordering of the blocks. Thus the algorithm will have two

- phases:

-~ Compute and "store" the permutation.

-- Permute the blocks.

In order to "store" the permutation, an internal buffer will be used.
The key point is that the permutation as defined in (4.19) can be computed

by inspecting the blocks in the exact order in which they are going to be

31

permuted. Then it is possible to "remember" the final position of each
block by exchanging one of its elements (say.the first one) with the
element in the buffer that corresponds to its final position (recall
that a buffer is an ordered block). After that, the permuting phase
becomes simply a sorting process in which each block has as its key

the key of its first element. Let us.gonsider the following example.

Example 4.3: Let U and V be as depicted below, with f =2 , and

let B be a buffer:

U | Up | U |V] Y, B
1223331123 2%L468
a bjc dje £|A B|C D T lap s oe
D q m

In order to compute the permutation the pointer p will point to the
first element of the block Ui currently being considered, while g
will point to the last record in Vj . The pointer m points to the
element of B that will be exchanged.
We start by comparing first(Ul) (i.e., F(p)) with last(Vl) (i.e., F(q)).
Since F(p) < F(q) we decide that U, will be the first block in the
permutation. So we mark Ul by exchanging its first element with the

first element of B , obtaining

21212 313 311 1|2 3 13468
d|bjc die f|A BIC D apB7Yod e
p q m

Now since last(vl) < first(Ug) (that is, F(q) < F(p)) v, must go
before Ul > and so it will be the second block in the permutation. So

after marking it and updating the pointers, there results:

32

2l2{2 3|3 3}13] 1|2 3 11468
ofble dale fllgBlc | T |a Ay s ¢
P q m

After three more marking steps, all the blocks are marked, yielding:

Ul U2 U5 Vl V2 B

212114 3l6[3l13] L8] 3 1123%2
afbliyl d fl| 8| Blie| D o aAceC

Notice that by inspection of the marking elements we can tell that the
permutation is UlVlUQUBVé

We proceed now to permute the blocks. As said above,
this permut;tion is simply a sort. But we must choose a sorting method
that minimizes the number of exchanges, since they are block exchanges,
involving f elements at a time. The '"straight selection sort"
([Knuth], Section 5.2.3) is well suited for our purposes. This
method looks for the minimal element and exchanges it with the one in
the first position, then it does the same but only considering the
remaining elements and putting this new minimal in the second position

and so on.

After sorting we obtain:

2f 21131 1{|4f 3}{6] 3|8 3 11232
o|vlls| B[y alls| fllelp] T |a A c ec

Finally, we exchange the first element of each block with the corresponding
element in B , thus completing the permutation and restoring the original

contents of the buffer:

12112333273 23468
abABcdefcD| |lagysce

33

The following procedure formalizes the above description:

procedure SFGMENT INSERT (pointe? ul,ug, LE v2,f,bl,b2);
begin
pointer m, p, g, T} - -
comment: compute the permutation marking the blocks;
p := ul; q := vl+f-1; m := bl;
mark U and V:
while (p < 1, A (g <v,) do
if F(p) < F(a)
then begin exchange(p,m);
p:=p+f
end

else begin exchange(q - f+1,m); ‘

q .= q+f

end;
comment: mark the blocks of either U or V that haven't been
marked already;
.nark_remaining_U' s:
while (p < u2) do
begin exchange(p,m); -

p:=p+fym:=m+1

3L

mark remaining V's:

while (q <v,) do

5)
begin exchange(q - £+ 1, m);
q :=q+fym:=m+1
end;
comment: permute the blocks;

permute blocks:

for r =0y step f until Vs -2xf+1 do

begin
comment: find the block with minimal key;
m :=71;
for s := r+ f step £ until Vo
if F(s) < F(m) then m := s;

-f+1 do

comment: exchange blocks;
BLOCK EXCHANGE(r ,r+f-1,m,m+f-1);
end;
comment: restore the initial key of each block;
restore keys: |
for s := 1 step 1 until (v

2
excha.nge(ul+ (s=1) x°f, b, -1+ s)s

-ugt 1)/f do

end segment insert;

The following analysis establishes time bounds for the segment

insertion:

Let N be the number of blocks, namely ([U| + |v|)/f

35

(i) In order to compute the permutation (and mark the blocks), each
block in U and V is compared and marked once (while loops
labeled "mark U_and V", "mark remaining U's" and "mark remaining V's "
Thus this process is linear in the number of blocks, that is

T(i) = o(N) . (4.20)

(i1) The permutation process (loop labeled "permute blocks") can
be viewed as follows:

for p := 1 until N-1 do
begin
Search through the first keys in the p+l, pt2, ..., N-th
blocks for the minimal one;
Exchange the p-th block with the one with minimal first key;

end

Since for each value of p the search for the minimal first key

takes time O(N-p) and the exchange O(f) , the time bounds are

T(33) = Z1cpepo1 (O0-D)+0(1))
O(Eiéglil) + O((N—l)-f) . (h.gl)

(iii) Restoring keys ("restore keys" loop) is linear on the number of

blocks, so

T(iii) o(n) . (k.22)

The overall time bounds result:

Topem (U Vo0 = Tay * Tragy ¥ Trags)

il

o) + o 1M=Ly 4 o((w-1)-£) + o(w)

O(NE) + O(N.T)

o((Jul + [v)B/) +o(ful + |v]) . (k.23)

Il

56

[
ct

*”

"

r

larger, the overall time bounds are linear on the length of UV .

57

5. The Partition Merge Algorithm

Section 3 presented the partition merge strategy. In Section 4 the
necessary tools to keep storage requirements minimal were considered.
With that background it is now possible to introduce the partition merge

algorithm and bound its running time.

5.1 Description

The algorithm here presented closely follows the process introduced
in Section 3, except for the additian of an initial buffer extraction
step and, of course, a final merging step to merge back the internal
buffer previously obtained. Figures 5.1, 5.2, ... illustrate the

process on a particular example.

Let U and V be two contiguous ordered blocks to be merged.

The following procedure defines the partition merge algorithm:

procedure partition_merge (pointer value u ,u ,v ,V)3

begin comment: U is F[ul:ug] and V is F[vl:vg];

pointer n, f, b, tl, t2, V5, vy, 21, 22, Wys LY w5, W) D3

. - + .
noi= v, -ug 1;

Step 1: Extract an internal buffer of length at most

[o=]

buffer extraction:
BUFFER_EXTRACTE(ul,uQ,vl,ve,ceiling(sqrt(n)),bl,bg);

b :=Db,-b +1; f := floor(n/b);

28

1222k555
abcdefgh

U.2 Vl V2

6791111333344 440455667709
i jkABCDEFGHIJKLMNOPQRS

lu] =11 lv] =19
n|ul + |v] =30
[T] -
Figure 5.1: Initial layout.
U & B
st Yo (V1 Vo [Py Py

l222k555
abcdefgh

lur| = 11
iy
Figure 5.2:

679113334k Lhhkh5679|134567
i jk[ABDEFHIJKMOQS|ICGLNZPR

|vt| =13 |B| = 6

b =6

3]

[l

Il

= Ln/b] L30/61 =5

After step 1.

29

This step transforms UV into U Vi B , where B 1s an internal
buffer of length b = b2 -bl+ 1.

Let f = |n/b]

i

Step 2: If either |U'i or iV'i has length less than or

equal to f , then merge them directly and proceed with the final

step (merging back B).

check lengths:

if (ug-ul+l) <f

then begin
i -u, +
if (u2 uy 1) >b
then BLOCK MERGE_FORWARD (u,Un,Vy,V,)
else BUFFER_MERGE_FORWARD (UqsUn,VysVpby505)5
go to merge back B;

end
else if (v2 -Vt 1) < f then
begin
if (V2 —vl+l) >b
then BLOCK MERGE BACKWARD (ul, Uy Vs vg)
else BUFFER MERGE_BACKWARD (ul’uE’vl’VE’bl’bz);
g0 to merge back B;

end;

Notice that depending on the length of the buffer, the algorithm chooses
either block merge or buffer merge . This choice allows linear

running time as will be analyzed below.

Lo

~v -

r——

Step 3: Prepare things for segment insertion by getting rid of that

suffix Tu of U' of length

|T | = IU'I mod f
u

ins ert_suffix:
. . . - - . P + -
b, Uy Uy = u, (ue u, + 1) mod f; tl = u,+ 1

. " 2 - 3 - .
comment: U" ig F[ul.ue] and Tu is F[tl.tg],

INSERT (tl) t2) Vll V2) VB) V)*‘-) 5

comment: V" is now F[v,:v.] and V"' is Flv

17 31V, 15

After the insertion U'V' becomes U" A Tu V"' , where U"TUL = U’
and V'V"' = V' . By the characteristics of stable insertion the
merge of U' and V' is now reduced to the merge of U" and V"
and that of Tu and V"t

Now |U"| mod £ = 0, by the choice of T, S0 U" and

V" can be viewed as segments such that:

U :Ul._,Ui..-Uk and
v o= Vl_,,VJ_...V[TV
where lU | = IV] =

and |T | < f
v

b1

b for lgi_<_k and 15352

& u" >| € Al > T V" B
U, Uy U A Vj VT,
tlv3
b U |V Vol T2| vy by
1222455567113 3344404567 91911234567
abcdefghijABDEFHIJKMOQ k|[S|CGLNPR
Uy U, vy A T, | Ty
lur| =10 " T |V B
. u
Figure 5.3: After step 3.

L2

*__—_----.-......l.!!!!!l....l........l|llllllllllllllllllllllf!fflllllllllllllllllllIE—F'E

“ . . .
Step b: Segment insert Uy e Uy -++ U, into vy ...V& eV,

segment insertion:

SEGMENT INSERT (ul,ug,vi,v? -(Vé —ijfl) mod f, f’bl’bQ);

The next step will be the finish up process (see Section 3), but
some discussion is needed first.
Assume that the layout after the segment insertion is

W ...W corresponds to

177" m k+2

; 1"ne
wl ...wm ...Wk+£IQJRZV B , where W

YlZl "'ded""xtzt as presented in Section 3. Unfortunately there

is no explicit information about the way the blocks Wh are grouped to
form the segments ded - But fortunately the local merges must be

performed only on those pairs Y4Zq such that last(Yd) > first(zd) s

hence the finish up can be done by repeating the following sequence
until the whole segment wl ...WhA...wk+l TV has been processed;
° In order to locate the next pair YdZd to be merged, scan to the
left until a block Wm » such that
last(wm) > flrst(wm+l)
is found.

- ° Perform the local merge:

1lst step: Insert wm in W 10 thus transforming WﬁWﬁ*

mt+ 1

3 1 n
into W Dﬁnw
end step: Merge wm forward.

Jrd step: Merge W' backward.

43

T VH t

u
wl Wm wki—! v
vz
uy u2 vy, bl b7
1222411333555674%444567 91134567
abcdeABDEFfghijHIJKMORQ SICGLNPR
71t
wl W2 W5 Wh TV Vv B
In the notation of Section L
V»IlWEIrJBT/JLL = YlZlYEZQ (t = 2)
with the following grouping:
Y]_=W1=Ul Z1=w2=V1
YE:W5=U2 Z2=W1F=V2
Figure 5.4: After step k.

L

Both definitions result in equivalent operation if the merging
method stops once the merge is complete. In this case the bounds are
preserved simply by the existing order in the file, thus making
unnecessary to keep track of them. In other words, the grouping of
Wi,"'wm ...wk+2 into lel "'ded ...ytzt is useful to prove that
the algorithm works (and, as will be seen later, to compute its time

bounds) but it is not needed to take it into account for implementation

purposes.

b5

Step 5: Finish up the merge of W, ...W_...W, . T
- o,

finish up:
P =V, (v2 -Vt 1) mod f3 if p = Vs then p := p-f;

while p >u, do

1
begin

comment: find next pair Y to be merged;

a%a
while (p >u;) A (F(p) < F(p+l)) do p := p-f;

if p > uy then

begin comment local merge;
comment: W_ is F[ll:£2] , W L1 is F[wl WE]’
EI i=p~f+1; 22 = P;

Wy i= prly Wy i= min(ptf, VE);
INSERT (zl’IQ’Wl’WE’WB’WLI-);

- t 3 - LA B - .
comment: now W' is F[wl.wg] and W'" is F[WB.W)_L],

comment: in order to do the merges

" 1" -
forward (of Wm) means F[WB.Vg],

"pbackward (of W')" means F[ul:wl-l];

comment: depending on the size b of the buffer the
algorithm chooses:
BUFFER_MERGE if b > f
BLOCK_MERGE if b < f3

if b > ¢
then begin
BUFFER MERGE FORWARD (2 17 2 2,w5,v2,bl,b 2) ;
BUFFER_MERGE_BACKWARD (ul,wl-l,wl,we,bl,bg)
end

else begin
BIOCK _MERGE_FORWARD (2 12 i oI w5 s v2) 5

BLOCK_MERGE_BACKWARD (ul,wl-l,wl,we)

end ;

p := p-f
end if p

end while p;

L6

Layout after segment insertion:

Y Dy

Pz by Pl Yo

122241133355567 /4444567
abcdelABDEF|fghi JJHI J K M|O Q

When

Y

122241133%3[55567
abcdeABDEF|fghi]j

1222411333444 1%4
abcdeABDEFHIJK

21 2

HIJK|fghiJjiM

W' W W

merge backward of W']. merge T

forward of
Wm stops here

stops here

When p =p), , again F(p) > F(p+l) , so

W
m

|
|
|

After merging:

bl

Figure 5.5:

1222411333
abcdelABDETF

WH

Vo

1112223334000 h55556677
aABbcdDEFeHIJKfghMioOjaQ

merge (U",V'")

bt

L hh hsleT]o
HIJXKMoQk

679
0Qk

555566779
fghMio jQk

T
u

After inserting Wm

VH

by

Pa

134567
CGLNPR

yielding W' empty and W" = Wm+

by

165347
CPNGLR

BI

P =D, F(p) > F(p+tl) , and the first local merge is done:

After
inserting

wm into Wﬁ+l

After
merging
(BUFFER_MERGE

is used)

(in this case

1

b
2

The finish up process applied to the example.

It must be noticed that the algorithm chooses either BLOCK MERGE

or BUFFER MERGE depending on the relative sizes of the blocks and the

buffer.

Step 5 transforms the layout into
merge(U”,V”)Tu\F” B!

where B' 1is a permutation of B (and B' =B if block merge was

used in step 5).

- 11"
Step 6: Merge T, and V

merge_Iu_V"':
ifb >t -4, +1
then BUFFER_MERGE_FORWARD (t,,t,,Vs,v),D,,b,)

else BLOCK MERGE_ FORWARD (tl’tQ’VB’vh);

This step completes the merge of U' and V' , thus yielding merge(U',V')B!

Step 7: Sort B' and merge it backward.

merge back B:
’ STRAIGHT INSERTION_SORT (bl’b2>;

BLCCK _MERGE_BACKWARD (ul’vh’bl’bE)

end partition merge;

And step 7 finally yields the desired merge of U and V .

L8

Figure 5.6: The general case after step 5 wi

S

merge(U",V") yre B!
and after step 6 there results:
merge(U', V') B!
merge(U',V') B!

4

111222333400 005555667799/1653M4T7
aABbcdDEFeHIJKfghMiO0OjQkS|ICPNGLR

Figure 5.7: Final result.

merge(U, V)

1111222333300 005555566677T799
aABCbcdDEFGeHIJKLfghMNiOPjQREKS

k9

h

The storage requirements for the partition merge are the fixed
number of pointers declared at the beginning (14 in total, though a
more careful usage could have saved some) plus those needed by the
different procedures called. Since those procedures (BUFFER_EXTRACT2,
BLOCK MERGE's, BUFFER_MERGE's, INSERT, SEGMENT_ INSERT, and
STRAIGHT_INSERTION_SORT) require also a fixed amount of pointers (and
clearly there is no recursive call involved) the overall storage

requirements are absolute minimum, that is 0(log n) .

5.2 Time Bounds for the Partition Merge Algorithm

The partition merge is executed as a fixed sequence of steps. The
algorithm chooses the sequence in step 2, among the following two
possibilities:

(1) 1f |u'| <f or |v| <f:

steps 1, 2, T3
(i1) 1f |U'| >f and |V'| > £ :

steps 1, 3, 4, 5, 6, 7.

Hence, calling Ti the time bounds for the i-th step, it results
that time bounds for the overall partition merge are either

(i) Tl+T2+T7

or (ii) T +Ty+T) +T +T6+T7

> 2

The analysis of time bounds for each step follows.

50

L

2.2.1. Time Bounds for Step 1

The buffer extraction is given by equation (.4

Tpp(Us VU, v, B,2) = o(ful + |v]) + O(IBIE)

Since the buffer B is restricted to

sl < (VR],

the time bounds are
oful + |v]) + oUWUl)

o(lu] + vy . (5.1)

T

1

N

5.2.2. fime Bounds for Step 2

In the case that |U'| <f or |v'| <f, this step yields a merge

of U' and V' . Assume]U'l < f ; here two cases must be considered.

(a) |U'| >b : this results in BLOCK_MERGE_FORWARD(U',V') , with

bounds given by (2.6)

T, = o({v]) + o(Jur|-aqur)) . (5.2)
But f > |U'| >b, and by definition f = LM—:;M-J , 80

[u| +|v|] >b° and then
b < "-\/IUI + |v] 1 : (5.3)

Recalling that the buffer extraction in step 1 asked for a buffer

of length [—VIU]+-|V|-] » and applying equation (L4.3), implies
b o= ANUV) . (5.4)

Now since A(U') < A(UV) , it is possible to bound

51

e
—~
3
-
p
(A
o
—~
\n
i
p -

C

Hence

o({ur|nur)) = o(£-p)

of ol 1vl | 0
|)

o\ LT

"
-
4
~

.*.
—~
1

N
ey

(@)
—~

= g

Equations (5.2) and (5.6) and the fact that |V'| < |v| give
the final bounds

T, = o(lv']) +o(lul + [v]) = o(lu] + |v]) . (57

(b) |u'| < b : then it is BUFFER MERGE_FORWARD(U',V',B) , that
yields, by equation (L.16)

T = o(fur| + [v]) = o(Jul + |v]) . (5.8)

Clearly, the case \V'| < f is similar, so by equations (5.7) and

(5.8), it is possible to conclude that

T, = o(|ul + |v]) : (5-9)

5.2.5. Time Bounds for Step 3.

The insertion of Tu into V takes time proportional to the sum
of both lengths, as stated by equation (2.5),

T, = o(|T | + [v]) = o(lu| + [v]) : (5-10)

5

5.2.4. Time Bounds for Step k.

The segment insertion process bounds were established in equation (4.23)
in Section L4.3. 1In the case of step 4, U" was inserted in Vi "'Vl , SO

T), = TSEGIN(U ,Vl...Vl,f)

o((|u| + |Vl...V£|«)2/f2) + o(|ur| + |vl...vl|) . (5.11)

52

Clearly

lu"| < |u|l anda |v,...v,] < |V]| . (5.12)

1Yyl

Also

IU"l*'IVl°"Vg

By definition of £

£ = L(ul+ [v)/pd > (Jul +|v])/e-1 = (Jul+|v] -B)/b . (5.14)

With (5.12), (5.13) and (5.14), (5.11) becomes

(lu| + |v| -1)°
T, = O + o(|ul + |v])
b (((lul +|v] -)/0)?)

= ood) +o(lul + V) . (5.15)
And since b < [-V(IU|+ [v) -] ,
o(%) = o(lul + |v]) (5.16)
thus
T, = o(lul + [v]) . (5.17)

5.2.5. Time Bounds for Step 5.

In order to compute these bounds, it is convenient to resort to
the notation in Section 3.

The segment insertion in step 4 transforms U"V" into

lel "'ded "'Ytztct+l , Where
U :Yl"'Yd"'Yt
V' o= ZqeenZy oeaB,C (5.18)

Also, let Ld be the last block of Yd , and Fd the first one of Zd s

thus renaming

55

| < Jurl+|v'] < jurl+|v] = Jul+]|v]-p . (5.13)

— t - t
Yd = YdIﬁ. and Zd = FdZd

with |p,| = |F)| = £ . (5.19)

The finish up process of step 5 can be viewed as:

for 4 :=t step -1 until 1 do

begin

into F! L_ F! ;

insert L., into Fd’ transforming LdFd aLq ¥y

d

merge Ld forward;

' backward;

merge Fd

end

On the basis of the above description, the time bounds for step 5 result

the sum of the time needed for insertions (TI) plus time to merge

forward (TF) plus time needed to merge backward (TB) . So
= + + .
T5 TI TF TB
Time bounds for insertion: Time bounds for insertion of two blocks

are given by equation (2.4)

Tos(%Y) = o(lx| + [¥])
then

1 = 2 tngligTe) = o Z (Ingl+ 15D

= 0 Z|L|)+o ZlFI) : (5.20)
(215d) o2 1

But |Ly| < |¥4] end [F | < |z4] » and since

%IYdI = ,Unl
and

Zz.| < |v]
a ¢ -

5L

equation (5.20) becomes
S 0<‘§|Ydl>+0(§lzdl) = o(fur] +]y (5.21)

Time bounds for merges: The time bounds for block and buffer merge

are functions of those records that are actually exchanged (see remarks
at the end of Subsections 2.2.5 and 4.2).

Claim 5.2 shows that during the finish up of YdZd , all the elements
to the right of Cd+l are already in their final position. Hence when

merging L forward, it merges into F" Z'C 1 regardless of how far

d d~d “d+
to the right of Cd+l the merge limits point. So in order to bound
the running time the process "merge Ld forward" will be regarded as

" - n 1] "
merge Ld forward into :Rizdcdfl .

A quite similar reasoning shows that "merge Fé backward” is
equivalent to '"merge Fé backward into Yé ",

There are two cases depending on whether block or buffer merge is

used, and they will be analyzed separately:

(a) Case b >f : BUFFER MERGE.
By equations (4.15) and (4.16) the time to buffer merge two blocks
X and Y (either forward or backward) can be bounded by

o(|x])+o(]¥]) , so:

T (5.22)

F

% o(fzgl) + % o(|FyziCqy)

3
!

2 ' >3 ' . .23
: o(|Fy]) + 2 o(lvgh (5.23)

Combining (5.22) and (5.23) and manipulating the lengths properly:

25

=

+

H
|

Zo(|lrrn.ph+Z o F{F} 2 > o(lc)
3 (|ddl a (‘ |)+ 1 (ld+l|

o(lu]y +o(fv) +o(|vr]) = o(lu|+|v']) . (5.2%)

(b) Case of b <f : BLOCK MERGE.

Since
Tl(aigquax(xﬂ) = o(|x|an(x)) +o(y) ,
it is
T, = Z o(|Lg| Mry)) +ZO(|Fng1 a1l
= f O(%'?\(Ld))-*- o(|v']) (5-25)
and also
Téﬁﬁ(x,y) = o(|x]) +o(|¥|rn (D))
yielding
7 = T o(l5D)+ 2 (5] -ME)

o(u") + ¢ o(Z K(Fé)) . (5.26)
a

In order to bound the sums in equations (5.25) and (5.26), the

following result is needed:

Claim 5.1: Let U be an ordered block. Consider U as a segment of

k b;ocks U = UlUé ...Ui ---Uk , then

ANU)+k > 2 NUL) . (5.27)

56

Proof: Let

1 if last(Ui) = flrst(Ui+l)
g(i) =
0 otherwise

for 1 <1<k

Then clearly

™

2z
c
I

ANU) + g(1) + oo + g(k-1)

yielding the claim.

d
Applying (5.27) to the sums in (5.25) and (5.26) yields:
2 MLy < 2 MYg) < MU+t (5.28)
1<d<t 1<d<t
2 MEY) < 2 Mzg) < Myt (5.29)
1<d<t 1<da<t
Combining (5.25) and (5.26) and using (5.28) and (5.29), the time
bounds result:
0T = o(un] + |Vr]) 4 £.0(MUT) 4 1) + £ O(MUT) +8) . (5.30)

o1

By the same analysis as in 5.2.2, the fact that f > b implies

AUV) = b , and then

MU' < b and AMV") <b . (5.31)

Also t is bounded by the number of blocks (of length f) in U"

p o< dumvd lutve | lu| + [v] -D

ST S [l hhps S qQuemews o o 0P

Equations (5.31) and (5.32) and the fact that f£:b < |U|+ |V| , applied
to (5.%0) give

T_+T o(lu"| +|v'|) +£-0(b+b) + £-0(b+D)

F B

it

Co(ful+ vy . (5.33)
In summary:

Time for insertion: equation (5.21) shows that

T, = o(jur| + |v|)

Time for merges:
Case b > T : Dby equation (5.24)

T+ T o(lu"|+|v'])

F °B

1l

Case b < f : by equation (5.33)

T +T o(lu] + |v])

F B

1l

Cleé,rly the time bounds for step 5 result

rg = o(ful+ v - (5.34)

58

5.2.6. Time Bounds for Step 6.

By an analysis completely similar to the one for step 2, the time

bounds for the merge of Tu into V"' result

T = o(jul+ |v]) “ (5.35)

5.2.7. Time Bounds for Step 7.

By equation (2.8), the time bounds to sort the buffer B are

Tg = Toom(® = o(IB|%) = o(lul + |v)) . (5.36)

Also the block merge of B into the rest of the file

(back)

TErock

(merge(U',V') , B)
= 0(|merge(u,v')|) +o(|B[n(B)) - (5-37)
But since B is a buffer |B| = A(B) and thus (5.37) becomes

o(fur] + |v|)+ o(|B|%) = o(Jul+|v]) - (5.28)

i
I

Finally

7 = Tg*Ty = o(lul +|v]) . (5.29)

—
1l

5.2.8. Overall Time Bounds

Bquations (5.1), (5.9), (5.10), (5.17), (5.34), (5.35) and (5.39)
show that each single step has time bounds O(|U|4-|V|) . The conclusion
is that the overall process must have also linear bounds, since it

consists of a fixed sequence of those steps.

Tonpm(Ur V) = o(ful+[v]) . (5.k40)

29

The availability of a linear time merge algorithm gives rise to the

possibility of an (n . log n) time bounded sort. A few slightly different

variations of the same basic strategy are possible, and this section

The sorting strategy consists of successive merging passes over
the entire block to be sorted, each pass merging pairs of blocks of

length 1, 2, 4, ...,2k, ... until the entire file is sorted.

6.1 Description
The following procedure sorts a block U , whose first and last

elements are pointed to by Uy and Uy respectively.

procedure partition merge sort (pointer value ul,ug); —

begin pointer p,£;
comment: £ is the length of the blocks to be merged;
£ =13

+ 1 99

.whlle 2 < ug-ul

begin comment: merging of contiguous pairs of blocks of

length £. The pointer p points at the
first element of the second block of each pair;
p:=ul+£;
while p < u, do
begin
partition merge(p-£ , p-1, p, min(p+L-1, ug));
P := p+2¥
end
P o= 2%}
end

end partition merge sort;

N S ~rrm Ao
6 . 2 T.Llllc BUU-U.LLD

Since partition merge is linear on the length of the blocks to be

merged, each merging pass results also linear on the length of the

blceck U being sorted, regardless of the value of f . That is,
denoting by Ml the time bounds for the merging pass of blocks of
length (£ it is

M£:=OHUD . (6.1)

But the merging passes are repeated for lengths
o= 1,2, ...,2% ..., 08

such that 23 does not exceed the length of U :
k k+1

2" < |u] <o . (6.2)

So the time bounds for the sorting process are:

U) = Z (U
Tgﬂﬁmm() 0<i<xk %9()
=z o(lu)) = (w1)o(lu]) . (6.3)
0<i<k

From equation (6.2) it results

ktl = [log, lu| 7 . (6.4)

Finally yielding

Tp 1 sorplY) = o(|u| 1og |U]) . (6.5)

61

T. Conclusions
The most interesting of the results presented here is the
PARTITION MERGE algorithm, since as the reader was able to see, the
PARTITION MERGE SORT resulted as a straightforward consequence of it.
By analyzing the previously published results, especially the
work by Horvath ([Horvath]), it can be concluded that there were two
considerations that led to the general result presented here.

First, the utilization of an internal buffer, without any modification

o

w
(gr

@

=]

Cl

o

}_.I
I

of the keys, to "mark" a permutation of ¢
insertion process to be implemented within extra storage bounds of
0(log n) Dbits.

Secondly, the adaptivity of the algorithm to the characteristics
of the file being processed (by proper choice of either BUFFER or
BLOCK MERGE) resulted in a linear time "finish up".

It is interesting to note that the operation ' ptq ' on pointers is
strictly needed only for the permutation of blocks in the
SEGMENT INSERT process (Section L.3). All the other sums of pointer
values could have been realized by successive ' ptl ' operations within
%he same time and space bounds. It remains an open question whether
these minimum time and space bounds are obtainable only with the
primitives ' exchange(p,q) ', ' F(p) <F(q) ' ' p+tl ', 'p=qa"',

and ' p :=q '.

Acknowledgments

The author is greatly indebted to Professor Donald E. Knuth, not
only for his help and encouragement in the present work, but for the

many things the author learned from him.

62

APPENDIX A

s Analysis of Basic Transformations

This Appendix presents a detailed analysis of the basic transformations
defined in Section 2.2.

Each transformation is defined by means of an ALGOL procedure and
the corresponding analysis of the running time bounds is presented.

The blocks U and V are used as parameters, and they correspond

to F[ul:u and F[vl:v2] respectively.

2
In order to allow dealing with empty blocks, an empty block U

is represented by (ul,ug) with u, = ul—l . The pointers used to
\ .
represent the segment UV have u2+l =V in all cases, even when
one of the blocks is empty.
N
B A.1 Reversal of a block: REVERSE(ul,u2)
N
Algorithm:
- procedure REVERSE (pointer ul,ug);
for j :=u, step 1 until (ugﬂ-ul)/Z do exchange(] > Uy -j—Ful);
Time bounds: Clearly

63

A.2 Exchange of blocks of equal length: BLOCK;EXCHANGE(ul,ug,vl,v2)

Algorithm:

procedure BLOCK EXCHANGE (pointer ul’uQ’Vl’VE);

for j :=wu, step 1 until u, do exchange(J , vl+-3-ul);

Restrictions: |U| = |V|

Time bounds: The for loop is executed |U| times, thus

Tam (U = o(lul) = o(lv]) (8.2)

A.3 Permutation of two contiguous blocks: PERMUTE(u ,u ,v ,V)

Algorithm:

. procedure PERMUTE (pointer ul,ue,vl,vg);
begin
pointer t;
REVERSE(ul,vg); comment: yields V'RUR;
comment: exchange pointers;

1 ¢ l;v2:=v2-u2+ul-l;
REVERSE(ul,ug); comment : VRU;
REVERSE(vl,vg); comment: VU;

end PERMUTE;

6l

Restrictions: U and V must be contiguous with U preceding Vs

vl = u2+l .

Time bounds: Three reverses are executed, all of them linear on the

length of the blocks, so

Tery(Us V) = o(jul+{v)) . (A.3)

A.4 gstable insertion of two contiguous ordered blocks:

INSERT(ul,ug,vi,v?,fl,f2)

Algorithm:
procedure INSERT (pointer ul,ue,vl,ve,fl,fE);

if (ul < u2) A (v, < VE) then

1

begin
comment: search for insertion place;

£, := Vo3

while (fl Svg) A (F(fl) <F(ul)) do £y := £ +1;

comment: now V' is F[vl:fl—l] and V" is F[fl:fE];

Vy i= £,-1; PERMUTE(ul,uE,vl,ve);

end INSERT;

Restrictions: (vl = u2+l) and ordered(U) and ordered(V) .

65

i.e.,

M2 i s M caonwnerh Ammeomas 1
L LNE UOUWIIUS Lllc oscaltll Clllpales U

the first element of V" (V' and V" as defined in Section 2.2.4)
and PERMUTE permutes U and V' , thus the bounds are
Tos (U V) = o(ju] + |v']) (A.L)

with vV o= gty an
w ik v v v Al

il

E

—

)

0
o+
N
<
p g

A
H

A.5 Direct merge of two contiguous ordered blocks: BLOCK MERGE

Only BLOCK MERGE_FORWARD will be considered here.

Algorithm:

procedure BLOCK MERGE FORWARD (pointer value ul,ue,vl,ve);

if (uw; <u,p A (vy <v,) then
begin pointer X15X55¥15Y55C15C03
1 PT W1 Fp T Ups ¥y 2T Vs Vp i Vps
while (xl < XE) A (yl < yg) do
begin
INSERT<X1)X2}Y1:YE)C1:32)5
comment: any element to the left and including Yo

is in its final position. The merge is

yl = Cl; ye = Ce;
if (v <vo) A (F(x,) > F(yp)) then

)

begin comment: discard the prefix of F[Xl:

already in its final position;

while (xl < XE) A (F(xl) < F(yl)) do x. := x_+1;

1 1

end

end

end BLOCK_MERGE_FORWARD;

00

reduced to the merge of F[xl:xg] with b[cl:cg];

Restrictions: v, =u,+tl and ordered(U) and ordered(V) .

Time bounds: Let

U=U;...U0 ..U, , |U;] >0 for 1 <4<t
and 4 (A.5)

Vo= Vo Vy een Uy een Vg s |v;] >0 for 0<i<t

where

la.st(Ui) < firs‘t(Vi)
and (A.6)
last(Vi) < flrst(Ui+l)

With this notation the merge of U and V can be expressed as

r

merge (U, V

tr YT 1 17 T 7

\ _ TT
)= VoYU Vg oo YV By Yy

Furthermore, the block merge process may now be defined as follows:

for i := 1 until ¢t do
begin

insert U:.L .o Ut into Vi-l Vi ces Vt;

if i<t
then search through Ui until reaching the first element

of Ui+15

end

The insertion of Ui - .UJG into Vi-l V.l e Vt yields, according

Uy V; +-+ Vg » hence by equation (A.L4) it takes time

to (A.6), V & Vs

LS

(4.8)

T, = o(|vy 4| * |ug .- U D)

67

i+l
to the length of ‘Ui B
s; = o(lu;]) : (4.9) |
Thus the overall time bounds result - |
Téigggﬁ)(U:V3 - I T+ LTS,
1<i<t 1<i<t

= o(h%vl”.wbln-%l;§<t o(Ju;--u) - (A.10)

Clearly IUi...U' < |u| - Since equation (A.6) implies

o

last(Ui) < first(Ui+l) » the keys in U, are distinct from the keys in
U, - Thus t is bounded by A(U) , and the sum in (A.10) is
Z O(hk.“UtD = o(|u]).t = o(Ju|r(u)) . (A.11)
1<i<t

Renaming VO...V

4.1 = V' and V. = V", equation (A.6) yields

last(V') < last(U) < first(v"') . (A.12)
And finally the time bounds can be expressed as

2T vy o) + o(v]) (8.13)

APPENDIX B

Analysis of the Buffer Extraction Process

The concept of buffer extraction was introduced in Section h.1.
This Appendix presents a slightly more general extraction mechanism
and its application in order to produce a buffer from two contiguous

ordered blocks.

B.l The EXTRACT transformation

Let U = Flu] be an ordered block and M = F[ml:m2 a buffer

1%
(U and M do not overlap). Then an application of

EXTRACT(ul,uQ,z,bl,b2,ml,m2) transforms U into U'B such that

B is a buffer, B =F[b:b,] , |B| <1
(B.1)
U = merge(U',B) ,

no record in B has a key equal to the key of any record in M (that

is, Vi:rm, <i<m Vi: by <3 <b, t F(1) AF(J)), and |B| is

2 b4

as large as possible subject to these conditions.

1

The extraction is similar to the mechanism presented in the example
in Section L.1, with the addition of a check to avoid collecting any
record whose key is already in M .

The following procedure describes the EXTRACT process:

procedure EXTRACT (pointer ul,u2,l,bl,b2,ml,m2);

begin pointer p,q,s;

logical procedure is in M (pointer q);

begin
while (s S'me) A F(s) <F(q)) do s := st+l;

if s >m, then false

else (¥(q) = F(s))

69

end is_in M;
S 1=my; comment: s will point to successive elements in M;
bl 1= Uq3 b2 = uy

comment: collect the buffer;

-1; comment: B is initially empty;

while (b2 <u2) A (b2-b +1 <) do

1
begin
comment: set g to point to the next element to be
included in B,

or set q = u2+l if no such element exists;
P :=q := b2+l;
while (q < u2) A is in M(q) do g := g+l;
while (q <uy) A F(q) = F(q+l)) do g :=gtl;
ifa <u, then

begin comment: permute B and the elements preceding record q;

q := q-1; PERMUTE(b,,b,,P,q);
b2 H= b2+l; comment: include the record q in B;

end ;
end;
comment: permute B with the elements (if any) to its right;
P = Dbytl; PERMUTE(bl,be,p,ug);

end EXTRACT;

In the above program the procedure is_in M checks whether a given
key is or is not in M . 1In the following analysis the execution time for
a call to is in M will be considered fixed, with the proviso that an
o(|M|) time is added to the total time bounds. The reason for the above
statement is that 1is in M 1is called upon to check successive keys in U ,
and thus it needs to run through M only once during the entire execution

of EXTRACT.

T0

The buffer B is collected from left to right. Assume that after

collecting the first i elements of B the block U has been transformed

intA
? 1]
Ul B, Uy (B.2)
where Ui is a prefix of TU' ,
B; 1is a prefix of B, |[B,| =1
and Ug has not yet been considered.

The execution of EXTRACT now proceeds as follows:

search through Ug until reaching the first record g , such
that

Vi:my <3 <my: F(a) £ F(3)) and (a4 = u, or F(q) < F(g+l)) ;
permute Bi with the elements to its right that precede the

record q , and append g to Bi thus yielding
1] "
Vits Bie1 Uina

The time needed to search is proportional to the difference of lengths

between Ui+l and Ui B

s, = c(lui,| - JuiD : (B.2)

The permute time is of the order of the length of Bi and the

distance between q and the rightmost element of B,
. t - ? .
TP, = a(lB |+ fup,l - lug) . (B.L)
Hence the overall bounds result

T (U, 2,B,M) = > (Ts. + TP,) + o(|m|) , (B.5)
EXTR lSilel i i

71

where the O(|M|) term is the "extra" contribution of is in M .

After some manipulation (B.3), (B.4) and (B.5) yield

T (Us £5B5M) = o(|8]%) + o(Jul) + o(lu]) . (B.6)

B.2 Extraction of a buffer from two contiguous ordered blocks:

BUFFER_EXTRACT2(w »2,by,b

17927712 V2 2)

An application of BUFFER EXTRACT2 produces a buffer B , of length
|B| = min(£, NMUV)) , out of two contiguous ordered blocks U and V ,
yielding U'V'B where

merge(merge(U',V'),B) = merge(U,V) . (B.7)

This transformation is implemented by means of two successive applications

of EXTRACT. The following procedure defines the algorithm:

procedure BUFFER EXTRACT2 (pointer ul,ug,vl,vg,z,bl,bg);
begin pointer C15Cpo5
comment: EXTRACT(V,£,B,M) with M empty (thus no restriction
is imposed on the elements to be collected);
c, = 1; C, 1= 03
EXTRACT(vl,v?,l,bl,bg,cl,ce)
if (by-by+1) <1 then

begin comment: previous extraction was not enough;

EXTRACT(ul,uE,2—(b2-blfl),cl,c2,bl,b2)
PERMUTE(cl,CE,vl,v?);
BLOCK;MERGE_FORWARD(cl,ce,bl,bg);

bl 1= cl;

end

end BUFFER_EXTRACTZ;

72

D
Tl

L3

USSR W G S U Lj_g ton

L

L

L

To analyze the time bounds, two cases must be considered:

(i) The first extraction suffices: then by (B.6)

2
gy = oUBI%) + o(lv]) : (8-8)
(ii) Two extractions are needed: 1let B, |Bl| = b, , be the
buffer collected in the first extraction and B, , \132| = b, ,
the second one; |B| = b, +b, . The bounds result
T,y = OB +o(|v])
(ii) 1
2
+ 0(by) +o(|ul) +0(by)
+ 0(b,) +0(|v])

but since B, is a buffer %.(Bg) =b

o , thus (B.9) becomes

2

I

T(53y = 0(5) +0(vg) + o(Jul + |v])

o(|8%) + o(Ju] + |v]) . (B.10)

il

Finally (B.8) and (B.10) yield

T (U,V,U,V',1,8) = o(|u] + |v]) + o(|B|]F) - (B.11)

ol

5

References

[Dewar] Robert B. K. Dewar, "A Stable Minimum Storage Algorithm,"”
Information Processing Letters 2 (April, 197Lk), 162-16k.

[Horvath] Edward C. Horvath, "Efficient Minimum Extra Space Stable
Sorting," Ph.D. Thesis, Dept. of Electrical Engineering, Princeton
University, (August, 197h4).

[Knuth] Donald E. Knuth, The Art of Computer Progremming, Vol. 1:
Fundamental Algorithms, (Addison-Wesley, December 1973)..

[Knuth] Donald E. Knuth, The Art of Computer Programming, Vol. 3:

Sorting and Searching, (Addison-Wesley, 1973).

[Kronrod] M. A. Kronrod, "An Optimal Ordering Algorithm without a
Field of Operation,' Dokladi Adad. Nauk SSSR 186 (1969), 1256-1258.

[Nijenhuis] Albert Nijenhuis, private communication (1974).
[Pratt] Vaughan Pratt, private communication (197L).

[Preparata] F. P. Preparata, "A Fast Stable Sorting Algorithm with
Absolutely Minimum Storage," Istituto di Science dell'Informazione,

Universita di Pisa, Italy (March, 197k).

[Rivest] Ronald Rivest, "A Fast Stable Minimum Storage Sorting
Algorithm," IRIA Report No. 43 (December, 1973).

N
T4

