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I. INTRODUCTION

(a) S U M M A R Y

T h e  o v e r a l l  o b j e c t i v e  o f  o u r  r e s e a r c h  i s  t o  g a i n  m o r e  insight  i n t o  t h e

programming process as a nece ssary step toward building Pr~Q.~~rr1-1~ll(t(~rst~~~~~tirl~  systt~~~~s.

Our approach has been to examine the proces s of synthesizing very simple programs in

t h e  d o m a i n  o f  s o r t i n g . W e  h o p e  t h a t  by b e g i n n i n g  w i t h  t h i s  s i m p l e  d o m a i n  and

developing and implementing a reasonably comprehensive theory, we can then gauge

- - what is required to create more powerful and general program-understanding systems.

Toward this end, we are working on first isolating and codifying the knowledge

appropriate for  the synthesis and understanding of programs in this class and then

embedding this knowledge as a set of rules in a computer program. Along the way, we

have developed some preliminary views about what a program-understanding system

- should know.

O u r  g o a l  i n  t h i s  p a r t i c u l a r  p a p e r  i s  t o  p r e s e n t  a  c/ia(og~t* w i t h  a  ~~y/~~//!(*~iia/

program-understanding system. A dialogue was chosen as a method of presentation

that would exemplify, in an easily understood fashion, what such a system  should know.

The  subject of the dialogue is the synthesis of a simple insertion sort program. Each

step in the dialogue corresponds to the utilization of one or more pieces of suggested

programming knowledge. Most of this knowledge is stated explicitly in each step, The

dialog’ire presented here is  ‘a h i g h l y  f i c t i o n a l  o n e ,  a l t h o u g h  s o m e  p o r t  i o n s  o f  t h e

reasoning shown in the dialogue have been tested in an experimental system.
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We are now in the process of formulating the necessary programming knowledge

as a set of synthesis rules. However, the scope of this paper does not include the

presentat ion of  the current  state of  our  rules. S o  f a r  s o m e  1 1 0  r u l e s  h a v e  b e e n

developed and are being refined in a rule-testing system. The synthesis tasks on which

these rules are being debugged include two insertion sorts, one selection sort, and a

list reversal. We hope to present in a later paper a description of the set of rules.

As wi l l  become apparent  in  the dia logue,  one of  our  conjectures is  that  a

program-understanding system will need very large amounts of many different kinds of

k n o w l e d g e .  T h i s seems to be the key to the f lexibi l i ty  necessary to synthesize,

analyze, modify, and debug a large class of programs. In addition to the usual types of

programming knowledge, such as the semantics of programming languages or techniques

of local optimization, many other types are needed. These include, at least, high-level

programming constructs, strategy or planning information, domain-specific and general

programming knowledge, and global optimization techniques. In Section Ill  we discuss

this further and show where these kinds of knowledge occur in the dialogue.

(b) DOMAIN OF DISCOURSE

t

Topics mentioned in the dialogue include data structures, low-level operations,

and -high-level programming constructs. The main data structures ment ioned in  our

dialogue are ordered sets represented by lists. The-low level operations mentioned

include Gsignment,  pointer manipulation, list insertion, etc. Some of the higher-level (in

some sense) notions or constructs we consider are permutation, ordering (by various
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criteria), set enumeration, generate and test, generate and process, proof by induction,

conservat ion of  e lements dur ing a t ransfer ,  and methods of  temporary marking (or

place-saving)  of  posi t ions and elements.  T ime and space requirements for  var ious

methods are not discussed.

The target language i s LISP, in particular the INTERLISP language [lo]. However,

in the dialogue we represent the programs in a fictitious meta-LISP.

I IL. A DIALOGUE

(a) INTRODUCTION

In this section we wish to exhibit what we consider to be a reasonable level of

understanding on the part of a program-understanding system. It is not obvious how

best to present this in a way that is easy for the reader  to follow, since the s y n t h e s i s

process is rather complex. WC hope that an English language dialogue is adequate. We

have added to the English several  “snapshots” of the developing program that help to

indicate where the system is in the programming process. These diagrams are similar

to the stepwise  refinements used in structured programming [l]. Our dialogue may be

considered as a  cont inuat ion of  the technique of  presentat ion used by Floyd for  a

program ver i f i e r -syn thes i ze r  [2], a l though our more hypothet ical  system has been

-allowed to know more about program synthesis for its domain of discourse.

In c e r t a i n  w a y s w e  f e e l  t h a t  t h e  d i a l o g u e  i s  noi r e p r e s e n t a t i v e  o f  h o w  a

program-understanding -system would appear to the user during the synthesis process
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(a l though such a low-level  dia logue would at  t imes have i ts  place) .  For  expository

purposes the dialogue has certain choices and inferences made by the machine and

o t h e r s  m a d e  b y  t h e  u s e r . Depending upon the appl icat ion,  these decisions and

inferences could reasonably be re-distributed between user and machine, with some

made by other automated “experts”, such as an efficiency expert, and other decisions

f o r c e d  b y  t h e  c a n t  e x t  i n  w h i c h  t h e  p r o g r a m  i s  w r i t t e n .  F o r  e x a m p l e ,  t h e  d a t a

structures for this insertion sort might be determined in advance if the sort routine

were part of a larger system, and all choices made- by the user could be made instead

by rules calculating the efficiency of each branch. A more typical user-machine dialogue

would usually be conducted at a much higher level and in the words used to talk about

the application area for the program. But to present a hypothetical dialogue in which

the program merely said, “OK, I’m all finished,” or, “I wrote a sort program as part of

your operating system,” wouldn’t explicate very much programming knowledge.

The style of the dialogue is not intended to be a strong suggestion about what

t h e  p r o c e s s  o f  sptilying  a  p r o g r a m  s h o u l d  b e .  I n  f a c t ,  w e  f e e l  t h a t  p r o g r a m

specification is a difficult problem in automatic programming research [4],  and we touch

o n  o n l y  a  f e w  a s p e c t s  o f  i t  h e r e . However,  some of  the techniques used in the

dialogue will probably find some, as yet undetermined, place in program-understanding

systems. The obvious techniques include interactive specification, natural language

communication, and the periodic presentation of summaries of the structure and content

of the evolving program.

W e  n-ate that we have endowed our hypothetical system with various abilities,
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including an inference capability, a program simplification capability, and the ability to

illustrate and summarize where it is in the programming process. Further, the dialogue

sometimes takes on the character  of  a  decis ion-tree,  somet imes of  goal-oriented

problem-solving, and sometimes of step-wise refinement, These all seem appropriate

to the task.

Va r i ous  decis ions,  such as how large to  make a  step,  when to  suppress  or

explicate an inference, and when to present a diagram, are somewhat arbitrary, but

tiere made primarily on the basis of what seemed to be the clearest exposition.

-
Before the start of the dialogue, we wish to remind the user that the focus is

not on the particular mechanisms which might be employed to produce the hypothesized

- behavior, but rat her on the reasoning itself.

(b) PART I: Setting Up th M a i n  T a s k s

1. User:  Please write me a sari p r o g r a m . Use linked lists to represent the input and

output, which are ordered sots. The output set should be ordered so that each

element  is  nwwicnlly  grrcltcr C~WI the preceding element.  The input  set  wi l l  be

called INPUT and the output set will be called O U T P U T .

2. Machine: As I understand it, a sort program produces as output a permutation

(of the input) that satisfies a test. In this case, the test is that the elements be

ordered on the basis of  the above-mentioned order ing relat ion,  “numerical ly

greater than”. P l e a s e  c h o o s e  o n e  o f  t h e  t w o  k n o w n  methods1 for f inding a

-----------.---------------c----------- -----------

; The limitation to only two “known” choices is arbitrary, but it is reasonable to expect
a system to have a limited number of choices.
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permutation that satisfies a test:

(a) Generate and test permutations until the desired one is found.

(b) Carefully construct the desired pcrmut at ion.

3. User: Carefully construct the desired permutation.

4. Mzwlxine: Should the output  set  be constructed in the same l ist  cel ls  as the

input set, or should a new list be created?

5. User: A new list should be created.1

6. Machine: Do you want an iterative or recursive program?

7. Uscrt  Iterative. [ W e  wish to remind the reader that  the dist inct ions between

“user” and “machine” are somewhat arbitrary. Yet a decision must be made, so

we have chosen to let our hypothetical “user” make it. Furthermore there is no

reason to expect  the user  to have a preference for  an i terat ive or  recursive

program. We have our user choose an iterative structure over what might be a

more natural recursive structure, because there are fundamental aspects of the

algorithm which are more  explicit in its iterative form.]

8. Machine: Then the program will be in the form of a trnnsfcr  /VO~MV~  which must

b e  ror& The program will transfer all elements from the input to positions in

the output , such that  the f inal  output  is  a  permutat ion (of  the input)  which

. satisfies the above ordering relation, namely increasing by numerical  value.

__-_I-----------------------------------------

t This does -not  preclude overwriting the input set during the sort. Overwriting might be
done in order to indicate which elements have been selected from the input.

6 By “tot al”, we mean that the transfer loop must be repeated until all elements have
been transferred.
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The transfer  paradigmi!

transfer program:
LOOP UNTIL a I I elements of input have been processed:- -

se lec to r :
select the next element from input;

constructor:
add this element to output:

REPEAT,

0,. Machine:  In  order  to wri te  such a t ransfer  program, I  must  achieve several

goals:

( 1) Write a sclccfor. On each call, the selector will find that element of

the input which comes next in the chosen transfer order. The selector

consists of two parts:

(a) selector initializer

(b) selector  body

(2)  Write a con~lrttclor. On each call, the constructor will produce a new

output  (or  modify the old output) ;  so that  the new element is  in the

appropriate posit ion but  that  otherwise the order of  e lements in the

output is unchanged. The construct or consists of two parts:

(a) constructor initializer

__--------------------------------------------

t As illustrated, the transfer program has a “selector” part and a “constructor” part,
The selector produces the elements one at a time, and the constructor builds the new
set. Either the selector or the constructor may re-order the set, i.e., the selector can
produce the element 3c in an order different from the stored order, or the construct or
can build a set with an ordering different from the order of receipt of the elements,

! We will generally present in our diagram s only those parts which seem relevant to
the current cant ext.
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(b) constructor body

Before I can write these parts, I must:

(3) Select a zransjer  or&~ --the order in which the variables will be

transferred from the input to the output.

(4) Select a f ransfu  ttmination mtlrod --a test that ail elements have

been transfered, and a position in the program appropriate to the type of

test selected.

(5) Select a name for the trnnsjcr  uariclble I--a variable which holds as its

value the element being transferred.

After writing the parts, I must:

(6) Combine the selector, constructor and transfer termination test into

a gcnerm cft~f  poccss loop. This completes the final program.
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The basic structure of the program (including test posit ion)t

t r a n s f e r  i n i t i a l i z e r :
s e l e c t o r  i n i t i a l i z e r :
cons t ruc to r  ini t ii31 ize’r:

transfer body:
LOOP UNTIL DONE:- -

t rans fe r  t e rmina t ion  test:
E all elements have been transferred

THEN DONE:- - -  - -
se I ec t or body:

select  the next  elclment  f rom input ;
cons true tor body:

arId the e l e m e n t  t o  output:

REPEAT;
D O N E :  IiALT---I

(1) (a)
(2) (a)

(4)

(1) (h)

(2) (1))

1 0 .  Mwhine: Should the transfer order be hcar with respect to the initial order

or the final order?i

11. User: Linear with respect to the initial order.

12. Machine: Should the transfer  order be ident ical  to the ini t ia l  order or  the

converse of the initial order?

1 3 .  .User:  ident i c a i .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

t Our  syn tax  fo r  i t e ra t i ve statements and exits is that proposed by Zahn [l 11 and
supported by Knuth [G]. Loops arc cxitcd  upon encountering an CVCIII,  such as D O N E  i n
the above example. The program exits to the occurrence of the event label after the
body of the loop. Events are declared after !f~oP !/iTIL.  REPEAT denotes the end of the
loop.

? We define the “initial” and “final” orders to be the conventional list-representation
ordering of the input set and of the desired output set, respectively. By “linear with
rkpect  to an o r d e r ” we mean either identical to that order or the converse of that
o r d e r ;  T h e  u s e r ’ s choice of  “ l inear with respect  to the ini t ia l  order” amounts to
choosing an insertion -sort algorithm, rather than a selection sort algorithm. The full
effect of this choice will be seen when choosing the “construction re-ordering” during
the synthesis of the constructor.
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14. Machine: Now let’s select a transfer termination method. This will consist of a

test and a position for the test. Since the transfer will be tot al, the transfer

termination test must test whether ail elements have been transferred. This is

equivalent to testing whether no elements remain to be selected. This is the

same test which is used by the select or to stop its generation of elements. I will

use this test as the transfer termination test. While writing the selector I will

thus have to write a third part: the selector termination test. Since this test

must precede a call to the selector body, I_ will put the test at the beginning of

the loop.1

IS. Machine: I will use ELEMENT as the transfer variab1e.f

----------------II----------------------------

t For ease in presentation the preceding diagram showed the result of this choice (i.e.,
the test appeared in the proper location), although the choice had not yet been made.
Considering ail of the tests which might have been used and ail of the places where
such a test might have been put, one could imagine a great deal of planning going into
making this-rather difficult decision.

9 To choose meaningful variable names requires knowledge about communication with
the user and is a difficult problem.
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We are about to work on the indicated? parts of the selector

t r a n s f e r  i n i t i a l i z e r :
selector initializer:
const ruc tor  in i t i a l  i ze r :

transfer body:
LOOP UNTIL  DONE:

Q

t rans fe r  t e rmina t ion  tes t :
E al I e lements havr been transferred+

nfl  clcmcnts  hazw Iwn sclcctcci
IT_)! !3J DONE :

se I ec t or body:
sdcct the next clement jrom in/M;

constructor body:
add the element to output:

REPEAT;
DONE: HALT,

Q

“T.1

- 1 6 .  Msohine: I will now choose a sclcction rt-or&ring.  I will use the term “selection

re-ordering” to refer to the relation between (a) the order of the elements in

the input (positional order) and (b) the order in which the elements are selected

by the selector (temporal order). Since the transfer order is /intar and jcwward

----I-------------------I------

t Throughout this dialogue, we will use special characters and type fonts to indicate
different sect ions of t hcse diagrams. We present the meaning of the fonts here in case
confusion arises, but the meaning should be clear from the context,

areas not under cons i dera t i on
[wi th l l l i nd i ca t i ng areas om i t ted1

areas currently  under  consititration
PROGRAIII PARTS JIJsT  COMPLETELI
RESERVElII~nJJn~
-BASIC LISP I'UNCTIONS

USER- OR MACHINE-DEFINED LABELS
*the right arrow indicates a step in the ref inement process



e

PART 2: Synthesizing the Sclcctor * page 12

(that is, identical to the input order), the selection re-ordering must also be

linear and forward.

17. Machine: A selector is a type of stx(xlq  a “total” generator that produces

each element of the input once and only once. Corresponding to the three parts

of a selector, this type of generator  also has three part s;i

(1) a body which actually produces the elements

(2) an initializer which can set up the generator before it is called the

first time

(3)  a  terminat ion test  ( to be used as the transfer  terminat ion test)

which tests whether all clemcnts  have been generated

18. Machine: I  must  now sclcct  the stott*-mjing  scfmt  by which the generat  or will

save its state af ter  each cal l .  In  order  to save i ts  state,  the generator  must

remember how the input set is divided  into two sets;

( 1) those clcmcnt  s which have already  been generated

(2) those clc mcnt s which are yet to be generated

Recall that the generator i s moving linearly through the input list from first to

last to find each new cletni*nt. Therefore  all elements before its current position

in the l ist  have already been generated,  and al l  e lements af ter  i ts  current

posit ion are yet to be generated. To save the state of the generator, I need

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 Technkally,  b e f o r e  t h e s e  p a r t s can be wri t ten,  the product ion re-ordering for  the
generator must be chosen. In this case, it is obviously the same as the selection re-
o r d e r i n g ,  s o  w e  h a v e  o m i t t e d  i t  f r o m  the dialogue  in  the  in te res ts  o f  c l a r i t y .  The
initializer is written after the producer , since in general the form of an initializer is
dependent on the body of the  loop to be init ializcd.
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only save a marker for the generator’s current position in the input list. One

pointer will be sdequat e for this purpose. Let us call this pointer REST.

We are about to work on the indicated parts of the selector body
I

t ransfer  in i t ia l i zer :
l l l

transfer t3ocJy:
LOOP UN'I'I'L  DONE:
. . .

se I cc t or body:
select t h e  n e x t  elcnwnt from i n p u t *

generate the next  e lement  from input=+
podwe dtw~nt;
increment state of gcnerntor;

71
“tp

(2)
(1)

l l l

REPEAT;
DONE: HALT.

19. Mawhine: Now I will synthesize the body of the generator. I need code for

two pieces:

( 1) increment the state of the generator

(2) produce the next element
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20. Maohinet  To increment the state of the generator, I will advance the position

pointer by one. Since the representation is a linked list, the code for this is

merely:

REST + CDR(REST)l

21. Msuhine:  Now I will write the producer. Since the state-saving scheme uses a

pointer, REST, to separate those elements generated from those not yet

generated, and since the next element to be generated is the first element of

the non-generated set, then the process of saving the state will also effectively

mark the next element to be generated.1 To produce the next element, then, I

need merely take the first element of the non-generated set, which is pointed to

by REST.~  Since the represent at ion is linked-lists, the subprogram for this is:

ELEMENT + CAR(REST)

22. Machine:  t now put the pieces of the generator body together into a block:

ELEMENT + CAJUREST);
REST + CDR(REST)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

t Throughout, we will use the standard LISP terminology:
CAR(L) gives the first element of L
CDR(L)  gives the remaining &.?mentS  of L
CONS(X L) creates a new list with first element  X and with the rest of the

elements being those of the list L

NIL is the empty list (and list terminator)

) In 4 selection sort, the code to find the next
considerably more complex since it would need
elements. _

element to be ger
to find the largest

8 There are situations in which the value of the e
be returned, rather than the element itself.

ilement  or a pointer

erated  would be
of the remaining

nto the list might
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We have just finished the indicated parts

t r a n s f e r  i n i t i a l i z e r :
l l l

transfer body:
LOOP UN’I”b  DONE:
l l l

se I ec tor body:._
s e l e c t  t h e  n e x t  clcmcnt f rom input *

generate the tvxt element from input*
pr oclucc c I cmcn  t =,

E L E M E N T  ,- CARtREST);
increment state of c_lenerator*

REST c CDR(REST);
0 l l

REPEAT;
DONE: HALT.

2 3 .  Maohinet I will now write the generator initializer and the generator

termination test. Since I am using the pointer REST to mark the elements not

generated, and since initially no elements have been generated, I must initialize it

to the entire input set:

REST + INPUT

24. M a c h i n e : Now let’s write the generator termination test {which will be used

as the transfer termination test). To test whether all elements have been

generated, I will test whether there are no elements remaining. Since the

elements are being generated in a forward linear order, I simply test for being at

the end of the input list. Since the representation is a linked list, this i s simply a

- test for emptiness:

REST 8 NIL ?
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- 1b

. .

We have just finished the indicated parts

t r a n s f e r  i n i t i a l  i z e r :
s e l e c t o r  i n i t i a l i z e r : *

g e n e r a t o r  i n i t i a l i z e r : *
R E S T  + I N P U T ;

l 0 l

t r a n s f e r  body:
LOOP UNTIL DONE:- -  -

t ransfer tcrminat ion test:
11 a l l  e lements have been transferred*

all elements have been selected-
a i 1 e l ements have been generated*

no e I emcn  t 9 rema i n*
R E S T  - N I L _

TIIEN DONE:
se I ec t or body:

select the next element from input=+
generate the next element from input*

produce c I rrikn t*
ELEMENT + CAR(REST);

increment state of  generator-
REST + CDR(REST);

l l 0

REPEAT;
DONE: HALT,

26. Machine: I have finally finished the generator  which the selector needed. In

fact, that is all there is to the entire selector, so the selector is finished.
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(d) PART 3: Synthesizing the Constructor

We are now working on the indicated parts of the constructor

t r a n s f e r  i n i t i a l i z e r :
s e l e c t o r  i n i t i a l i z e r :
constructor initidizcr:

transfer body:

I LOOP UNTIL DONE:
transfer te rmina t

I

i o n  test:
11 all elements have been transferred-

all elements have been selected
THEN DONE ;- - -

se I ec tor body:
select  the next  element f rom input ;

constructor body:
add the element to outpt;

REPEAT;
DONE: HALT,

$26. Machine:  One way to create an output set that is a permutation of the

elements received by the constructor is to write an inductive constructor that

satisfies the following constraints:

(1) The initial output set must be empty.

(2) Each construction operation must be such that the new output set

consists of the old set plus one new element.1

(3) After each construction operation, the new set must satisfy our

ordering relation.

27. Machine:  To write such a constructor, ivvo decisions must first be made:

_ ( 1) Choose a construction re-ordering.
-------------~---------------------- -m-m -w-w - -

1 It is sometimes convenient to think of the constructor as producing a sequence
of output sets, and sometimes as successively modifying one output set.
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(2) Choose a construction met hod for building a new set, given the old

set, the new element, and the position where the new element should

occur in the set.

After these choices are made, we will produce code for the constructor body and

then the constructor initializer.1

2 8 .  Maohinef I will now choose a construction re-ordering. I will use the term

“construction re-ordering” to refer to the relation between (a) the order in which

the elements are received by the constructor (temporal order) and (b) the order

of the elements in the output (positional order). The re-orderings may be linear

or complex, where linear means same as or converse of. Since the order in

which the elements are received (the transfer order) is the same as the input

order, and the desired output order is not necessarily the same as (nor the

converse of) the input order, the construction re-ordering must be complex (non-

linear).f  This re-ordering will be based on the “numerically greater than” ordering

relation. This means that the correct position of each element in the output list

will ‘be such that all preceding elements are less than or equal to the new

element and all following elements are greater than the new element.8

t Note that we have implicitly decided that the construction consists of two steps: ( 1)
finding the position; (2) adding the element to the set. One might imagine schemes in
which finding a posit ion and modifying the set are interleaved operations,

9 This choice of a complex construction re-ordering, along with the choice of a linear
selection re-ordering, completes the specification of an insertion sort, all of which
follow from the user’s choice of a transfer order “linear with respect to the initial
order”.

g For clarity, we will refer throughout to an element being “less than” or “greater than”
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--

_-

29. Maohinef Now we must select a construction method  for building a new set from

the old one. The choices are:

(a) List insertion: Modify the structure of the old list by inserting a new

_-

-

cell containing the new element.

(b) Shifting; Allocate a new space at the beginning (or end) of the set

-

and shift all elements before (after) the new element by one position,

Then put the new element into the vacant place.1

(c) Copying: Copy the old set into a new space, one cell larger than the

- old space, with the new element taking up the extra position.

-
Which shall I use?

30. User:  List insertion.

-
.

I-

31. Machine: Now I will write the body of the constructor. The body consists of

two parts:

( 1) a /wition  fin&r,  which finds the position where the new element

- belongs

-

(2) a list in JUZU, which inserts the element at this position

32. Machine: When a position has been found, there are several ways to indicate

-- that position. First we must select one of these representations for a position,

------------------~---------------------- w-w --

-

--

another element and mean that the first element precedes or follows the second
element according to the chosen ordering relation.

1 Perhaps, since the “shifting” operation is such an unlikely choice when lists are
being used, it shouldn’t be prescntcd to the user, It could be called forth only
upon questioning or in unusual programming contexts.
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We are considering positions to be between two elements in a list. Since the

construct ion met hod involves inserting a new cell into the list, we must choose a

representat ion appropriate to insertions into linked lists. I know about two types

of such represent ations:

(a) Use one pointer as illustrated:

(posi t ion)

T
BEFORE

In using this representation, a special unique value for BEFORE must be used if
the correct position is at the front of the list. “FRONT” will be used for this
purpose.

(b) Use two pointers as illustrated:

(posi t ion)

E&l+

T T
BEFORE AFTER

In using this representation; a special unique value for BEFORE must be used if
the correct position is at the front of the list. “FRONT” will be used for this
purpose. If the correct position is at the end of the list, AFTER will point to the
empty list.

- Which shal l  I  use?

33. Usey:  P lease use two pointers. [This choice might be based either on looking

ahead or on knowing at this point that the BEFORE pointer is useful for inserting
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into the list and the AFTER pointer is useful for incrementing the state of the

position finder and for testing the correctness of a position.]

84. &whine:  I need variable names for the two pointers. I will use BEFORE and

AFTER.

We arc about to work on the position finder as indicated

t r a n s f e r  i n i t i a l i z e r :
0 0 b

t r a n s f e r  boclg:
LOOP UNTIL DONE:

0 b b

cons t ruc to r  I3ody:
add the element  to output*

find fhf puilim  for the ntw elcrncnf;
insert  the nel.1  e lement into the posit ion;

REPEAT;
DONE: HALT,

36.  Mzd~ine: I am now writing the program that finds the position. First we will

select a S~VYC~  strattq  for searching the output list to find the correct position.

The only strategy which I know about -for linked lists is a jorruart~  /incar  SCWI, so I

will use that strategy.

36. Mzwhine: Since the search strategy is a forward linear scan of a finite list, the

search strategy is total;- that is, all possible positions will be considered. Since

the old output set is well-ordered, and since the ordering relation applies to all

elements involved, one of these possible positions must be correct. Therefore,

- the search for a correct position must succeed, and no exit will be required for

the case of not finding a correct position. So I will use a loop which consists only
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of a test and exit on the correctness of the position and an incrementer. The

inc remente r  w i l l  i nc rement  fhe state of the search according to the search

s t r a t e g y  a n d  s p e c i f y  t h e  n e x t  positio;l  to be considered.  I  wi l l  a lso need to

initialize the loop.

37. Machine: Since the search strategy is forward linear, the correctness test and

the incrementer are independent. This means that the next position specified by

,, the incrementer  does not  depend  on the results of the correctness test, This

allows a simple non-branching incrementcr.J

We are about to work on the indicated parts of the position finder

t r a n s f e r  i n i t i a l i z e r :

t r a n s f e r  botlrj:
LOOP UNTIL DONE:

0 l l

cons t rl.;c t or body:
add thp elenlent t.o output-

f i nd t h e  pas i t i on f o r  the ncr-r e I enlent-
initinlizt* /~ecifiov  fi71tit7  fro/j;
LOOP UNTlJ,  CORRECT POSITION FOUND;

!f jmsltic~u  is sorrccl
TljfY~ CORRECT POSITION FOUND;

inert-mt*nt  sltltf unti  sptcify @ilion;
RCPCATi
CORRECT POSITION FOUND:

i n s e r t  t h e  neu e l e m e n t  i n t o  t h e  p o s i t i o n ;
REPEm
D O N E :  H&J2

3% Machine.’ Now let’s design the incrementer, First we must seiect  a scheme for

T If the search strategy  had been to  use a  b inary chop,  for  example,  then the next
position to be tested would be based on the results of the test.
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representing the state of the search. The incrementer will increment this state

and will also specify the next position to be considered,

39. Machine: Since the search strategy is a forward linear scan of the linked list,

and since the two-pointer position representation has been selected, the two

pointers (BEFORE and AFTER ), which are already being used to represent the

posit ion, are also sufficient to remember the st ate.1

40. Machine: An incrementer for a forward linear scan using the two-pointer

position representation requires two pieces of code: one to reset BEFORE to the

value of AFTER , and one to increment AFTER . This is adequate both for the

general case in the interior of a linked list, and in the special case at the front of

a list, where BEFORE originally has the special value 'q~~~~~@g  and is reset to point

to the first cell in the list. The pieces will be put together in that order,

41. Machine: I am now writing the code to reset B E F O R E  to the value of A F T E R,

The code to do that is:

BEFORE + AFTER

42.  Machine: I am now writing the code to increment AFTER.  Since t h e

representation is a linked list, the code to do that is:

AFTER + CDFUAFTER)

t The position memory and the state memory need not always be the same. For
example, if only BEFORE were used to remember the position, a good choice of state-

memory would probably include a pointer playing the same role as AFTER.
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43.  Machine: Putting these two pieces together, we have the following

increment er for the position finder:

BEFORE + AFTER;
AFTER + CDR(AFTER)

44. Machine: I will also need a position initializer which initializes both the state

of the position finder and the position representation to the first position

according to the search strategy.

46. Maohinet. Since the position representation is also used to represent the

state, we need only initialize the position representation.

46.. Machine: Since the search strategy is forward linear scan, we must initialize

the posit ion represent ation to the position at the front of the list. The

convention for representing the position at the front of the list is that BEFORE has

the unique value “FRONT” and that AFTER points to the entire list.

47. Maohinet The code to set BEFORE to “FRONT”  is:

BEFORE + “FRONT”

48. Machine: The code to set AFTER to the entire list is:

AFTER + OUTPUT

40. Mauhinet Putting these two pieces together, the initializer for the position

finder is:

BEFORE + “FRONT”;
AFTER + OUTPUT



We havo just finished t ho indicated parts of the position finder

t r a n s f e r  i n i t i a l  izer:
0 0 0

transfer body:
LOOP UNTIL DONE:

a 0 0

constructor body:
add the element  to output*

f ind the posit ion for  the new element-
initial ize posit ion f inder loop=+

B E F O R E  + “ F R O N T ” ;
A F T E R  6 OIJTPIJT;

LOOP UNTIL CORRECT POSITION FOUNO!
E posit ion is  correct

THEN CORRECT POSITION FOUND;-..--
increment state and specify posi t ion-

B E F O R E  + A F T E R ;
A F T E R  + CDR(AFTER);

REPEAT;
CORRECT POSITION FOUND:

insert the new element into the position:
REPEAT;
DONE: 1 (ALT,

=a
a

60. Machine: I will now work on the exit test for the correct position. I will first

try to infer the necessary pieces of this test.

61. Machine: Since the set is ordered, it follows from transitivity that the new

element need not be compared against all of the elements of the set, but merely

against the elements immediately adjacent to the position being considered,

6 2 .  Machine: Since the search strategy is forward linear scan, at any point in the

search, all of the elements occurring before the current position in the list have

already been tested and found to be less than the new element. ,This  holds for

all positions including the initial position in which no elements occur before the

position in the list.
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63.  Maohind Thus, the test for correctness of position need only include a test

that all elements occurring after the current position in the list are greater  than

the new element.

6 4 .  Macrhinef To test that all elements occurring after the current posit ion are

greater than the new element, the program must first test whether there are no

elements occurring after the current position. Then, if there are such elements,

it must test whether all such elements are greater than the new element.

66;. Msohine: A test that there are no elements occurring after the current

position is simply a test whet her the list pointed to by the second pointer

( A F TE R) is empty:

AFTER 8 NIL ?

66. Machine:  As noted previously, the correctness test need only consider the

immediately adjacent elements, so that a test that all elements occurring after

the current position are greater than the new element is simply a test that the

first element occurring after the current position is greater than the new

element. To write such a test I need code to extract the first element from the

list pointed to by AFTER and a test whether this element is greater than the new

element.

67. Machine: The code to extract the first element from a list is:

CAIUAFTER)

68. Machine: The code to test whether this element is greater than the new

element is:

CAR(AFTER)  > ELEMENT 1
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60. Machine: Given the two partial tests, the complete correctness test is

ordered OR~ of the two partial tests:

[AFTER . NIL] OR [CAR(AFTER)  > ELEMENT] ?

The indicated parts complete the position finder

an

. -

t r a n s f e r  i n i t i a l i z e r :
a 0 0

transfer body:
LOOP UNTII,  DONE:

0 0 0
constructor body:

add the element  to output-
f ind the posit ion for  the new element-

initial ize posit ion f incler loop*
BEFORE + “FRONT”;
AFTER ,- OUTPUT;

LOOP UNTIL CORRECT POSITION FOUND;
E p o s i t i o n  i s  correct-

no elements occur af ter  posi t ion*
A F T E R  = N I L =a

OR next  e lement is  greater-
CARtAFTER)  > E L E M E N T “il

THEN CORRECT POSITION FOUND:
increnicnt state and speci fy posi t ion=+

BEFORE + AFTER;
AFTER + CDR(AFTER);

REPEAT;
CORRECT POSITION FOUND:

insert the new element into the position;
REPEAT;
DONE: HALT,

60. Maohinc:  Having completed the position finder, we must now write the list

-r----rrr----rrrrrrr------------------------- --

t By “ordered OR” we mean that the second argument is evaluated only if the first
argument is false.
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inserter which takes a new element, a position represented by the two-pointer

s c h e m a ,  a n d  t h e  o u t p u t  s e t ,  a n d  p r o d u c e s  a  n e w  o u t p u t  s e t  w i t h  t h e  n e w

element in the indicated position. The method of inserting an element into a Iist

depends on whether or not the indicated position is at the front of the list. I will

need to write a test to separate  the “front of the list” case from the “anywhere

else” case, and use a different method for each case.

We are about to work on the indicated parts of the list inscrtcr

i n i t i a l  izer:
l 0 l

transfer body:
LOOP IJNTIJ,  DONE:

l 0 0

constructor body:
a d d  the element to output-

f incl the position for the new element:
inser t  the  IWIJ e l ement  in to  the  pos i t ion -

E positilrn  is (11 front a
yu;j fnltl  QIc?ncn  t on to jront eiLll
ELSE insert into interior-___ - al

REPEAT;
D O N E :  lH&T-

61. Mc?chinet A t cst for being at the front of the list is a test whether the value

of the first pointer is @@FRONT?  The code for this is;

BEFORE = “FRONT” 1

62. Machine: The addit ion of  the new element in the “front  of  the l ist”  case

entails no replacement into the list, but instead an addition to the front of the

list.-  The code to do this is:

OUTPUT + CONS(ELEMENT  OUTPUT)
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63. Machine: The addition of the new element anywhere else in the list requires  a

replacement into a cell in the list. The code to do this is:

CDWEFORE)  + CONS(ELEMENT  AFTER)9

The marked parts complete the element adder

t r a n s f e r  i n i t i a l i z e r :
0 0 0

t r a n s f e r  body:
I,OflP UNTIL DONE:

e 0 0
constructor body:

add the element to output;
find the position for the new element:
inser t  the  ne1.r  e l ement  in to  the  pos i t ion*

E p o s i t i o n  i s  a t  front-
B E F O R E  = “ F R O N T ” =+a
TIKN add element onto front*- -.

OUTPUT + CONS(ELEMENT  OUTPUT) a
ELSE i n s e r t  i n t o  i n t e r i o r *
-‘L~DR(BEF~RE) t mvs(EmwENT  AFTER); q

REPEAT;
DONE: HAtT.

6 4 .  Mauhitre: Having completed the list inserter (and thus the constructor body),

we must now write the constructor initializer. Since we are writing an inductive

construct or that must begin with an empty output list, we simply set the out put

list to the empty list:

OUTPUT + NIL

t LISP programmers will recognize this as RPLACD.
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The initializer completes the constructor

t r a n s f e r  i n i t i a l  izer:
0 0 l

constructor i n i t i a l i z e r *
O U T P U T  +- NIL;

transfer body:
LOOP UNTIL DONE;

0 0 0

i3

cons true tot- body:
add the element to output*

f i n d  t h e  p o s i t i o n  f o r  the neLI  element*
initializf3  p o s i t i o n  f i n d e r  loop-

BEFORE + “FRONT”;
AFTER + OUTPUT; -

LOOP UNn'&  CORRECT POSITION FOUND;
Jl p o s i t i o n  i s  c o r r e c t *

no e I ements occur after posi t ion*
AFTER = NIL

On n e x t  element i s  cjreater:,
CAR(AFTER)  > ELEMENT

TIIFN  CORRECT POSITION FOUND;
i net-emen  t state and  spec  i f y pos i t i on*

BEFORE + AFTER;
AFTER + CIlR(AFTER);

RWKAT*- ---II
CORRECT POSITION FOUND:

insert  the 11rl1.r  e lement into the posi  tiona
E position  i s  at f r o n t *

BEFORE = “FRONT”
TlKfl  add  e lement  on to  f ron t --  - -

OUTPUT + CONS(ELEMENT  OUTPUT)
cr(r$-c  insert i n t o  inter-ior-

CDIllBEFORE)  t- CONS(ELEMENT  AFTER);
!!CE~A.
DONE: HALT,

65. -Machine: We have now finished the constructor.
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(e) PART 4: Completing the Program

The final program

L

t r a n s f e r  i n i t i a l i z e r :
s e l e c t o r  i n i t i a l i z e r : *

g e n e r a t o r  i n i t i a l i z e r : *
REST + INPUT;

c o n s t r u c t o r  i n i t i a l i z e r *
OUTPUT + NIL;

t r a n s f e r  body:
LOOP UNTIL DONE:

t rans fe r  t e rmina t ion  tes t :
E a I I e I ements h a v e  been  t r a n s f e r r e d *

al I elements have been selected*
all elements have been generated*

no e I cmen  t s rema i n*
REST 8 NIL

THEND O N E ;
se I ector  body:

select the next element from input=+
generate the next element from input*

produce element*
ELEMENT + CAR(REST);

increment state of  generator*
REST + CDR(REST);

cons true tor body:
add the element  to output*

f ind the posit ion for  the new element*
i n i t i a l i z e  p o s i t i o n  f i n d e r  l o o p *

BEFORE + “FRONT”;
AFTER * OUTPUT;

LOOP IINTIL CORRECT POSITION FOUND:P. - --*
E position is correct=+

no elements occur af ter  posi t ion*
AFTER = NIL

OR next element is cjreater-
CAR(AFTER)  > ELEMENT

. mJ!i CORRECT POSITION FOUND;
i ncr emcln  t s t a t e and spec  i f y pos i t i on=s

BEFORE + AFTER;
AFTER + CDMAFTER);

REPEATi_ ,-- -..
CORRECT POSITION FOUND:

i nser t the IWIJ e I emen  t i n to the pos i t i on*
E p o s i t i o n  i s  a t  front*

BEFORE = “FRONT”
THEN ~1~1  e l e m e n t  o n t o  front-

OUTPUT + CONS(ELEMENT  OUTPUT)
ELSE inser t  in to  in te r io r *

CDR(BEFORE)  * CONS(ELEMENt  AFTER);
REPEAT;
DONE: HALT,
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66. Machine: Having completed the pieces of the Selector and the pieces of the

Constructor, I can assemble the pieces into the final program using a Generate

and Process paradigm with the termination test before the generator.

67. Machine: The final program, without any meta-code  or comments, and its

translation into LISP are given below:

1 [LAMBDA NIL

REST + INPUT; I
OUTPUT b NIL; I
LOOP lJNT& DONE; I

rF I
REST = NIL I

T)IEN_  DONE; I
ELEMENT + CAR(REST); I
REST + CDR(REST); I
BEFORE * “FRONT”; I
AFTER + OUTPUT; I
LOOP lINTII, CORRECT POSITION FOUND; 1

_ E I
AFTER = NIL I
OR CAR(AFTER) > ELEMENT I

THEN CORRECT POSITION FOUND; 1
BEFORE + AFTER; I
AFTER + CDR(AFTER); I

REPEAT; I
CORRECT POSITION FOUND:
E

BEFORE = “FRONT”
THEN OUTPUT +

CONS(ELEMENT  OUTPUT)
ELSE

CDR(BEFORE)  +
CONS(ELEMENT  AFTER);

REPEAT:
DONE: HALT,

(PROG NIL
(SETQ  OUTPUT NIL)
(SETQ REST INPUT)

Ll
(&ND

((NULL REST)
GO L2)))

(SETQ ELEMENT (CAR REST))
(SETQ  REST (CDR REST))
(SETQ  BEFORE “FRONT”)
(SETQ AFTER OUTPUT)

L3
(CON0

((OR (NULL AFTER)
(GREATERP (CAR AFTER) ELEMENT))

GO L4)))
(SETQ  BEFORE AFTER)
(SETQ AFTER (CDR AFTER))
(GO L3)

L4
(CON0

((EQUAL BEFORE “FRONT”)
(SETQ OUTPUT

(CONS ELEMENT OUTPUT)))
(T

(RPLACD BEFORE
(CONS ELEMENT AFTER))))

(GO L1)
L2 (RETURN NIL]
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L.. III. TYPES OF PROGRAMMING KNOWLEDGE

-

-

On reviewing the dialogue, we can see that there are several types of

knowledge involved. We first note that there is significant use of a kind of strategy or

planning knowledge. On one level, we see this in steps 9 and 14, where the system

discusses what must be done to write a transfer program. In step 9 for example, the

sub-steps 3 and 4, where the transfer order and the transfer termination method are

chosen, are really a kind of strategy for determining the form that the basic algorithm

will take. On a different level, we see a kind of global optimization in steps 21 and 39,

where the system decides that information structures designed for one purpose are

sufficient for another. In step 21, for example, the pointer originally chosen to save the

state of the selector (by marking the dividing point between those elements generated

and those not yet generated) is found to be adequate for the purpose of indicating the

next element to be generated. One could imagine, as an alternative to this type of

planning, the use of more conventional local optimization such as post-synthesis removal

or combination of redundant portions.

We also see that the system makes considerable use of inference and

simplification knowledge. Inference plays a role in the global optimization p lann ing

mentioned above, and also appears in steps 16 and 28, where the selection and

construct ion re-orderings are determined. Simplification and inference are both

apparent in steps 50 through 56, where the test for the correctness of the posit ion

was reduced to a simple test on the variable AFTER. Simplification and inference are

also needed in step 36 where the system decides that an error exit (for the case of no

position being found) is unnecessary.
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Addit ional ly ,  there are types of  knowledge which are spread throughout  the

dialogue. R e l a t i v e l y  d o m a i n - s p e c i f i c  k n o w l e d g e  ( i n  t h i s  c a s e ,  a b o u t  s o r t i n g )  i s

particularly necessary in the earlier stages. Language-specific knowledge (in this case,

about LISP) is necessary when the final code is being generated. General programming

knowledge, such as knowledge about set enumeration and linked lists, is necessary

throughout  the synthesis  process. Further ,  one could imagine s igni f icant  use of

efficiency information, although it is not present in our particular dialogue.

The variety of types and amounts of knowledge used in the dialogue would tend

to indicate that much more information is required for automatic synthesis of sorting

programs than appeared in ear l ier ,  computer- implemented,  systems for  writing  sort

p r o g r a m s  [3, 7, 111. Ruth has developed a formulation of the knowledge involved in

interchange and bubble sort  programs [9]. His formulation is aimed primarily at the

analysis of simple student programs in an instructional environment and the analysis task

a s  d e f i n e d  d o e s  n o t  s e e m  t o  r e q u i r e  t h e  s a m e  d e p t h  a n d  g e n e r a l i t y  o f  knowledge

suggested by our  d ia logue. Our intui t ion is  t -hat  a  s ignif icant ly  greater  depth of

programming knowledge would be required to extend his formulation to a larger class of

programs. It is also interesting to compare the informatidn involved in our dialogue to

that found in non-implemcntcd (and not intended for machine implementation) human-

oriented guides for sort-algorithm selection and in text books on sorting. M a r t i n  [8]

gives methods for selecting a good algorithm for a particular sorting problem. Those

algorithms are much more powerful than those we deal with and their derivation would

require considerably more informat ion. W e  n o t e  t h a t  a t  t h e  l e v e l  o f  a l g o r i t h m

.
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_-

d e s c r i p t i o n  p r e s e n t e d ,  l i t t l e  e x p l i c i t  i n f o r m a t i o n  i s  a v a i l a b l e  t o  a l l o w  p i e c e s  o f

algorithms to be fitted together  or to allow slight modification of existing algorithms, A

sorting textbook such as [5], gives several orders of magnitude more information on

_-

: .

sorting than is required for our dialogue.

Can we measure or estimate in some way how much knowledge is necessary for

program-under4 anding systems? The fact that the dialogue describing the synthesis

1 took some seventy steps (with some of the steps rather complex) is an indication that--

considerable information is involved. From our experiments, we estimate that about

-

-

one or two hundred explicitly stated “facts” or rules would get a synthesis system

through the underlying steps of this dialogue. Furthermore, it is our guess that at least

this much knowledge density will be required for other similar tasks, in order to have

the flexibility necessary for the many aspects of program understanding. Although we

are suggesting that such information must be effectively available in some form to a

system, we are not in a position to estimate how much of this information should be

stated explicitly (as, say, rules), how much should be derivable (from, say, met a-rules),

how much should be learned from experience, or available in any other fashion.

. . _ XV. SUMMAnY  AND CONCLUSIONS

- -_

- -

In this paper we have tried to exemplify and specify the knowledge appropriate

for a-program-understanding system which can synthesize small programs, by presenting

a dialogie between a hypothetical version of such a system and a user. Our conjecture
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is that unless a system is capable of exceeding the reasoning power, and even some of

the communication abilities, exemplified by the dialogue, the system will not effectively

“understand” what it is doing well enough to synthesize, analyze, modify, and debug

programs. It appears that a system which attempts to meet this standard must have

large amounts of many different kinds of knowledge. Most such programming knowledge

remains to be codified into some form of machine implementable theory. In fact, the

codif icat ion of  such knowledge is  one of  the main research problems in  program-

understanding systems.

As for our own work, in the near future we expect to refine our experimental

system until it approaches (as closely as seem s useful and possible) the standard

suggested by our dialogue (but without the actual language interface). We hope then

to extend the system to deal with several different types of sorting programs. Perhaps

then we will be in a better position to estimate the requirements of larger program-

understanding systems.
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