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Abstract

Gven two random k-ary sequences of length n, what is f(nk) ,
the expected length of their |ongest common subsequence? This problem
arises in the study of molecular evolution. e calculate f(n,k) for
all k, wheren <5, and f(n,2) where n < 10 . W study the
limting behavior of n-lf(n,k) and derive upper and | ower bounds on
these limts for all k. Finally we estimte by Mnte-Carlo nethods

£(100,k) , £(1000,2) and £(5000,2) .
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1. Introduction,.

In the study of thccvolution of long molecules such as proteins
or nuclcic acids, it is common practice to try to construct a large set
of correspondences, or matches, betwcen two such molecules, Mathematical-
ly, this is just the problem of finding a longest common subsequence of
two given finite sequences. A quadratic algorithm for doing this is
available (Sankoff (1972)). It is often difficult to judge whether this set
of correspondences is significantly large, i.e. contains more correspondences
than onc would expect in the case of- two random molecules of thc same
1 ength and subunit composi t ion. Tests of significance are unavailable,
except on a Monte-Carlo basis (Sankoff and Cedergren (1973)), since nothing
is known about the distribution of the length of the longest common subse-
quence. As a first step in the study of this distribution, this note
investigates its mean value.

We introduce the following notation.

Let g = (ql,a .,4,), b = (bl’bz" ..»b ) be two sequences.

2°° n

A common subsequence, or (a,b)-match is a set M = {(ik,j?) 1l <sksm}
with 1 ii<2i<...<im5n, 15-j1<j2<...<jm5nand a. = bj
for each (Z,5)€M . The size of a largest (a,b) -match will be denoted
by v(a,b) . By ak-arysequence we mean one whose terms come from
{1,2,...,k} . We shall study the function f(n, k) defined as the mehn

value of v(a,b) over all the k*™  ordered pairs (a,b) of k-ary

sequences of length n .



1 2. Ixact formulac for f(n, k) with small n

Let g:(al,az, C ,an) and b = (bl’bz’ - ,bn) be two k-ary
sequences.  The pair  (a,b) will be called normal if, setting amj = bj

for all j , we have al = 1 and

a3 < max (al’a2,...,aj._1?r + 1 2<4d=<2n) .

Let N(n,v,t) denote the number of normal pairs (g,b) with v(a,b) = v
and max {al,az, .. .,aZn} =t . Clearly, the number of pairs (g,d) where

¢,d are k-ary sequences of length n with v(c,d) = v is equal to

2n
LN, 1) . (k)
t=1

where (k)t is the falling factorial k(k-1)...(k-t+1).Hence

1rz n

f(n,k) = =5 v N(n’v)t)'(k
k2" vZO tzl 't

n 2n

1
~= J v ) N(n,v,t)
k2n V=0 t=1 ’

u

J st K
j=1

2n  2n n |

1 1 st,d) I oW(n,o,6)k %"
J=1 t=g V=0

n

where s(t,]) are the Stirling numbers of the first kind (Riordan (1958)).

Note that ¥(n,»,2n) = 0 unless v=0 and so

2n-1 2n-1 n i o
f o= T 1 std) ) vh@,v,e)k) 20
J=1 t=1 V=0

Also



n? i f o=l

N(n,v,2n-1) =
0 i fol

and so the coefficient of f(n,k) at k"l s

n
s(2n-1,2n-1) § vN(n,v,Zn-1)=n2.
v=0

We have evaluated N(n,v,t) for 1 <n <5 and arrived at the following

formulae.
Fa,k = k1
F(2.k) = aklosk? a3
73,0 = oL - 27172 4 eok”3 - 71kt 4 32k

6 7

Fla,k) = 16k7 1 - 8ax7? + 380k7% - 1146k7% + 2085k - 20187 + 771K
£05,%) = 25k - 200672+ 1500%7% - 8200k7% + 30640K% - 75096%7C 4

+ 113748%7 - 94790%°8 + 32378%°

The values of these functions for 1 <k <15 are given in the table

below.



VOS] f(2,k) JF(3,k) f4,k) f(5,k)

k=1 1 .000000 2.000000 3.000000 4 .000000 »5.000000
2 .500000 1.125000 1.812500 2.523438 3.246094

3 .333333 .888889 1.477366 2.090535 2.718742

4 .250000 .734375 1.253906 ). 801453 2.363899

5 .200000 .624000 1.096640 1.594317 2.108546

6 .166667 .541667 .977109 1.435968 1.912269

7 .142857 .478134 .881954 1.309838 1.754954
8 .125000 .427734 .803955 1.206201 1.625155

9 .111111 .386831 0 0k 1.119008 1.515694
10 .100000 .353000 .683220 1.044309 1.421763
11 .090909 .324568 .0635470 .979404 1.340005
12 .083333 .300347 .593927 .922366 1.267999
13 .076923 .279472 .557455 871776 1.203953
14 .071429 . 261297 .525179 .826554 1.146514
15 .066667 .245333 .496417 .785862 1.094633

TABLE 1

Morcover, we have evaluated f(n,2) for all n =1,2,...,10 ; the results

arc given in Table 2 in proportion to n,



n fn,2)/n
1 0.500000
2 0.562500
3 0.604167
4 0.630859
5 0.649219
6 0.663330
7 0.674491
8 0.683640
9 0.691303
10 0.697844

TABLE 2

3. Limiting behaviour of f (n,k) .

Klarner and Rivcst (personal communication) have observed that
f(n,k) is superadditive with respect to n , that is, f(n;+n,, k) 2

f‘(nl, k) + f(nz, k) . Thus, by Fekete's theorem (Fekete (1923)),"

lim n"lf(n,k) = sup n—lf._(n,k). (1)
n-eo n

We shall denote the common value of (1) by e Klarner and Rivest

%

asked whether e, = 1 ; we shall show that this is not the case.



A sequence (sl’se’ ...,sm) is said to be a subsequence of
a sequence (ays8ns 4 wsa ) if there is a mapping

o: {1,2,...,m} - {1,2,...,n} such that
1<y = 9(i) < o)
and such that

= i = 1,2,... .
a‘qJ(i) bi for all i 1,2, ...,m

LEMMA 1. Let s be a k-ary sequence of length m, let n be an

integer with n > mand let F(n,-s, k) denote the number of k-ary

sequences of length n containing s as a subsequence. Then

n .
Fn, s, k) =2 5 (&1
~ j =m 04d

Proof . The fornula holds trivially if m=1 or m=n . To prove that

it holds for all choices of s = (sys8p..e =5;), k and n, we shall
proceed by induction on mn . Let s denote the sequence
(s15855..458, 1) ; for every sequence a = (a1s8p wag) , let %

denote the sequence (al,az,...,a Let At , resp. A , denote

n-l) )
the set of all the k-ary sequences (a'l’a'.?""’a'n) containing s as

a subsequence and such'that an = s, resp. a # s, - Cearly,

f acA® if and only if a contains s and g =s_: sinlarly,

aeA- if and only if a contains s and a #s . Hence

F(n,s,k) = |a*| + |a7| = F(n-1, "s~, k) + (k-1)F(n-1, §, k)

TR

The rest follows by the induction hypothesis.



Not e t hat

(?) (-1 > (ji’l )(k-l)n'j'l

whenever j > n/k . Hence

Fn, s, k)_<n %(k-l)n—m for m>n/k . (2)
For every real x with I/k < x <1, we shall set

kx/e-l 1 17X

h (x) =
. K (1-x) 17X

LEMMA 2. Let g(n,m,k) denote the nunber of ordered pairs (a, b)

~

of k-ary sequences of length n with v(a,b)>mM. |t x is a real
nunber with o
1/k < x <1 , h (x) < 1
t hen
g(n , [m], k) = o(k™) (n ~ =)
Proof . Let G(n,m,k) denote the number of ordered triples (a,b, s)

such that a | b are k-ary sequences of length n, s is a k-ary
sequence of' length mand s is a subsequence of both a and b .

~ ~

Cearly,

g(n,m, k) < G(n,m, k) 3)
and

G(n,mk) = % (F(n, s, K))°
with the summation extending over all the k-ary sequences g of |ength m .

By (2), we now have

G(n,m,k) < K" (n(g)(k-l)n-m)2 (k)



whenever m> n/k . Let m= [xn] . By Stirling's formula, we have

s (2 (2 )oY )
(22 (5 )oor=) o I

(b, (x))% < 1

1/n

1]

and so
- 2 2
km(n (r’r‘l)(k-l)n m) = o(k7") (n =)
The rest follows by (3) and (4).
Not e that
. -1/2
hk(l/k) = kl/gk >1 , limh(x) =k / <1

x -1

/2
L0 ® =1 |og(ﬁ—7ﬁ—rlX Ll ) ,

so t hat h, first increases and then decreases in the interval [I/k, 1) .

and

Hence there is a unique solution of
hk(x)zl’ 1/k < x < 1 ;

we shall denote this solution by y, . Values of y, wth2 <k <15

are shown in the following table, to six-decimal accuracy
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Kk Yy
2 0. 866505 |
3 0.786k473
L 0.729705
5 0.686117
6 0 .65098k
7 621719
8 0.596756
9 0.575075
10 0.555971
11 0.5389k5
12 0.523625
13 0. ..
1k 0.497038
15 0.485378
Table 3
THEOREM 1. If k>2 then c, SV, .
Proof.  For every positive ewith ye <1 o\ b (y,be) <1 .

Lemma 2 inplies that

g(n , [(yk+€)n]: k) = o(kgn)
and so

f(n,k) = kB3 v(a, b) < (1-0(1))[(y,+€)n]+o(1)n

Hence

¢ = lim f(n,k)/n < ¥ + €

n-—-w

and the desired conclusion follows.



4. Lower bounds on e -

For cach pair (a,b) of k-ary sequences of length n, we shall
construct a certain (a,b)-match ¥ of size v'(a,b) and show that

f'(n,k) , the average 0 f v' (a,b) over all k2" ordered pairs (a,b) ,

satisfies

) 2
lim »™1f (n,%) = S @
noeo k™ +2k-1

The construction of ¥ is described below. The main idea is to begin by
looking for the "“first" matching pair 7/(a.3,b ;) where ¢ =1or g=1.
For example, suppose we examine the pairs (a1 ,blj, (al,bz), (az,bl),

(al,b and finally find the first matching pair, namely (a

5) 25

-Then we include (as’bl) in ¥ and proceed to look for the "first"

matching pair in the sequences Agslgs. - - 54, and b3,b4,.. . ,bn . We

continue until one or both sequences are exhausted.

STEP 0. Let a, =.a , B, = bi and S(2) = T(@) = ¢ for all
1=1,2,...,n.Let FLAG = 1 and M=¢

STEP 1. If FLAG = 1, check successively

(al,sl))(al}sz)’(az,Bl),"’)(al)Bd)J(ad)Bl)""
until. a or B is exhausted or until we find a pair

with a, = 83, . If FLAG = -1, check the pairs in the

order

(012812 (08135 (01,B)) ooy (081D, (0B ) o

10



STEP 2.

STEP 3.

LEMMA 2.

In the case of exhaustion, stop; otherwise add the pair

(S@i), T@G) to M.
Note that ¢ = 1 or j = 1 or both
If 2< 2 and gs 2 , set
7' = 1:+]_ , jl — j+1
| f2=1 and j > 3, set

J-1  (FLAG = 1)

J  (FLAG

)
|
-
—

IfZ>2 3 and j = 1 , set

. !z (FLAG = 1)
7«’='I:+1, j':

[ i-l (FLAG = -1)
Let p = S(Z')-1., q =T(j')-1 and redefine

8(2) = 3 =
) ptt , (!1: aS(i)

i

) =q+ , B8,
q+j BJ bT(i)

for all 2,7 with 1 <2< n-p

Reverse the sign of F|AG and go to Step 1.

For infinite sequences a* gng p* |
. k3+2k 1
E(it+jr-2) = L 2R
k2

s jl::j"'l‘.

v 1 <] <n-gq.

we have

i',J' are defined as in the preccding algorithm and E(-) denotes

mathematical expectation.

11



Proof. Consider the scquence of pairs in case FLAG = 1 , that Is,

(058105 (@) B0 (ayBy) 5o (@), B ), (g By) e

The cvent that. any of these pairs contains equal tcrms has probability
1/k and this is also the conditional probability given any or all the pre-

ceding pairs. Hence the probability that the r-th pair will be the first

r

equal one is  (k-1) r-1,0 Now,
2 ifr=1,
1'4j'-2 =4 3 ifr=2,
r -ifrz3
Therefore
1 : e e-DT KPe2k-1
E(i'+j'—2)=2-?+3-2k'1+2r =3
k r=3 k k
The same can be shown for case FLAG = -1 .
212
THEOREM 2. For all k , we have ckz =
k¥ +2k-1
Proof. Obviously, it will suffice to prove (2). Let X,,X

12Xy -
be successive values of ©Z'+j'-2 found by the algorithm when applied to

the infinite sequences a* and b* . It is clear that the X;'s are
independent, identically distributed random variables (indeed, in each

cycle, equality or inequality of pairs is independent of all previous

cycles). Let

2k2

x —
k= g3k

The symmetry cnsured by the alternation of sign of FLAG ensures that

after w = 2u cycles of the algorithm, the total number p (resp. q) of



t he a*.'s (resp. b*g's) that have been used up satisfies

E(p) = E(q) = g E('+j'-2) = w/xk .

Furthermore,

Pr [ IR._ 1
[ %

g--vj;‘ > € } = 0{w)

se )=

by the law of large numbers. Now a pair (a,b) of random sequences of

length » can be considered as being the first » terms of a* and b* .
If the algorithm (applied to a,b) halts during the (w+1)-stcycle
then the first v cycles are the same as the first w cycles of the
algorithm applied to a* and b*. Now, after {[nxk]l cycles of the

algorithm applied to a*,b* , we have

k

>.§..]
x

= 0(n)
and so

Pr(n(l-€) < p < n(l+e) a n d n(l-e) < g <n(l+e))=1-g(n) .

Hence with probability 1-0 (n) , at lcastllnxk]j-nc and at most
l[nxk]] + ne cycles of the algorithm (applied to a*,b*) operate within
a and b since mne successive terms in a sequence can give rise to at

most ne cycles of the algorithm. Equivalently,
Pr(fv' (a,b) - 1 nxkﬂl < ne) = 1-0(n)

and so 1lim n’lf' n,k) =
Y

k

Values of =z, with 2 <k < 15 are given in the table below.

13



e

1
k g,
2 0.727273
3 0.562500
4 0.450704
5 0.373134
6 0.317181
7 0.275281
8 0.242884
9 0.217158
10 0.196271
11 0.178994
12 0.164477
13 0.152115
14 0.141465
15 0.132197
TABLE 4

5. Monte-Carlo estimates for f(loo,k)aindcz.

To obtain further information about ¢ we carried out two
series of Monte-Carlo simulations. First, for = = 100 and for each
k=2,...,15, we generated 100 pairs (a,b) of random k-ary sequences
and calculated v»(a,b) in each case. we denote by L the average
value of n’v(g,g)l in a given sample. For large n , this quantity
may be considered an estimate of e, - Values of M 100 are tabulated

in Table 5, and may be compared with the upper and lower bounds in Tables

2 and 4. Table 5 also contains Sk,].OO . where

1k




r r—— r

>

Z .(n_lv(g,g)wnzf )2/(sample size -1)
(2’1&)’) N3t

,n:

. . -1
is an unbiascd estimator of the variance of n “v(a,b) .

k %, 100 %k, 100,
2 0.7814 0.0243
3 0.6855 .| ©.0210
4 0.6242 0.0176
5 0.5778 0.0211
6 0.5332 0.0208
7 0.5065 0.0214
8 0.4812 0.,0219
9 0.4593 0.0211

10 0.4423 0.0208

11 0.4268 0.0200

12 0.4126 0.0193

13 0.4003 0.0212

14 0.3827 0.0212

15 0.3712 0.0198

TABLE 5

To estimate e, more closely, a second series of simulations

were carried out for k=2 and n = 10, 100, 1000, and 5000. Tgpie 6

lists m2n and 8y , » @S well as tl.c size of the samplc used to make
3

these estimates.

15
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L Sk.n sample size
10 0.6991 0.1079 1000
100 0.7806 0.0238 100
1000 0.80529 0.00468 100
5000 0.8082 0.0015 6
TABLE 6

On the basis of these simulations, it seems fair to conjecture

that ¢, >4/5 and that the variance of. v(g,b) is 4(32/3)

16
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