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Abstract

Given two random k-ary sequences of length n , what is f(n,k) ,

the expected length of their longest common subsequence? This problem

arises in the study of molecular evolution. We calculate f(n,k) for

all k, where n 5 5 , and f(n,2) where n < 10 . We study the

limiting behavior of n-lf(n,k) and derive upper and lower bounds on

these limits for all k . Finally we estimate by Monte-Carlo methods

f(lQk) ) f(lO00,2) and f(5000,2) .
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1.. llltrotluctioll,

In the study of the evolution of lqng molcculcs  such as prote ins

. .

or nucleic acids, it is common practice to try to construct a large set

of c.orrespondences,  or matches, between  two such molecules, Flathematical-

ly, this is just the problem of finding a longest conmlon  subsequence of

two given finite sequences. A quadratic algorithm for doing this is

available (Sankoff  (1972)). It is often difficult to judge whether this set

of correspondences is significantly large, i.e. contains more correspondences

than one would expect in the case of- two random molecules of the same

1 ength and subunit composi  t ion. Tests of significance  are unavailable,

cxccpt  on a l~lonte-Carlo  basis (Sankoff and Cedergren (1973)), since nothing

is known about the distribution of the length of the longest common subse-

quence. As a first step in the study of this distribution, this note

investigates its mean value.

We introduce the following notation.

Let a = (al’~2,.  . . ,a,), b = (bl $2,. . . ,b,) be two sequences.

A common  s u b s e q u e n c e ,  o r  (a,b)-match  is a set M = {(i,,j,)  : 1 5 k < m}’L
with 1 5 i < i <...< i1 2 m -<n, 1 s.j, < j2 <..,< jm 2 n and a. = b.z t9
for each (<,j) E M . The size of a largest (Q) -match will be denoted

bY Q&l ’ By a k-03 sequence  we mean one whose terms come from

{1,2 ,...,kl  . We shall study the function f(n, k) defined as the mehn

value of  u&b) over all  the k2n ordered pairs (s&l o f  k - a r y

sequences of length n .
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2.  Ilx;)ct formulae  for $(n, k) w i t h  s m a l l  n  .

Let c = (al ,a2, . . , ,a,) and k = (bl $2, . . . ,h,) be two k-ary

scqucnccs. The pair (%!?I will be called nomad if, setting an+j = b j

for all j , we have al = 1 and

a. 5 inax (a1’ a ,...,aim13 +2 1 (2 53 j 2 2-z) .

Let rJ(n,u,t) denote the number of normal pairs (@II) w i t h  v&b) =  v

and max {a a1’ 2 , . . .,a2J = t . Clearly, the number of pairs (s& where

&,fi are k-ayy sequcnccs  o f  length  n w i t h  ~v(~,d)  = v is equal to

2n
1 Wn~t-)*  (Wt

t=1

where vat is the falling factorial k(k-1) . . . (k-t+l)  . H e n c e

1
pL

n
c

v=o
V

t J-c sGLm
j=l

2n 2n n !

= 1 1 s(t,j) 1 vN(n,v,t)kj-2n
j=l t=j v=o

Wllf3X s(t, j) are the Stjrling numbers of the first kind (Riordan (1958)).

Note that N(n,v,2n) = 0 unless v=O and so

2n-1 2n-1 n
f (n,7c) = 1 C W,i) C vfl(n,v,t)k j-2n

.
j=l t=1 v=o

Also
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n* i f  U=l
N(n,v,2n-1)  =

. . 0 i f  v>l

a n d  s o  I-lx cocfficicnt o f  f(n,k)  a t  k-1 i s

s(*n-1,2n-1)  F vN(n,v,2n-1)  *=n .
v--o

We have e v a l u a t e d  N(qv,t) for 1 5 n < 5 and arrived at the following

formul.ae.

f&7<)  = k-l ,

f ( 2 , k )  =  dk-l - Sk-* -I- 3k-3 ,

f&k) = 97<-1  - 27k-* + 6okm3  - 71k-4 + 32k-’ ,

f(4,k) = I,k-’ - Slk-* -I. 380k-3 - 1l46k-4 + 20S5k-’  - 2018k-6 + 771k-7 ,

f&k) = zsk-' - 2007<-*  + lsook-3  - 82007~-~  + 30640k--’ - 75g96k-6 +

+ l13748k-7 - 94790k-8 -e 32378k-’  .

The values of these functions for 1 2 k 2 15 are given in the ttible

below.
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k= 1 1 .oooooo

2 ,500000

3 .333333

4 .250000

5 .200000

6 .166667

7 S42857

8 .125000

9 .llllll

10 .100000

11 .090909

12 .083333

13 .076923

14 .071429

15 a066667

f (J- J:) f(:! ,%I
----

2.000000

1.125000

.888889

.734375

.624000

.541667

.478134

.427734

.386831

.353000

.324568

.300347

.279472

# 261297

.245333

--&s,k)

3.000000

1.812500

1.477366

1.253906

1.096640

.977109

.881.954

‘803955

l 738692

.68322O

a635470

.593927

.557455

.525179

.496417

f(4 ,k) f Lkl-- -
4 .oooooo 5.000000

2.523438 3.246094

2.090535 2.718742

3.. 801453 2.363899

I..594317 2.108546

1.435968 1.912269

1.309838 1.754954

1.206201 1.625155

1.119008 1.515694

1.044309 1.421763

.979404 1,340005

.922366 1.267999

.871776 1.203953

.826554 1.146514

.785862 1.094633

TABLE 1

Moreover  , we have evaluated f(n,-2) for all n = 1,2,. . . JO ; the results

arc given in Table 2 in proportion to n ,
‘1

\ ’

.
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3. Limiting behaviour of

--

7-l

1

2

3

4

5

6

7

8

9

10

f @,*v~~
- -

0.500000

0.562500

0.604167

0.630859

0.649219

0.663330

0.674491

0.683640

0.691303

0.697844

TABLE 2

f OLkl l

Klarner and Rivcst (personal communication) have observed that

f (n,k) is superadditive with respect to n , that is, f(n +n1 *A2

f(n,l k) + On,, W . Thus, by Fekete’s  theorem (Fekete (1923))) ’

.

lim n-‘f (n,k) = sup n-lfi(n,k)  . (13
n- n

\\‘c  shall denote the common value of (1) by Ck . Klarner and Rivest

asked \;hether c* = 1 ; we shall show that this is not the case.



A sequence (sl,s2,...,sm) is said to be a subsequence of

a sequence (apa*, l **, an) if there is a mapping

tp: (1,2,...,m] + {1,2,...,n) such that

i<j * P(i) < dj>

and such that

"cp(i) = bi
for all i = 1,2,...,m .

LEMMA 1. Let s be a k-ary sequence of length m , let n be an

integer with n > m and let F(n,-s, k) denote the number of k-ary- -

sequences of length n containing s as a subsequence. Then
CI

n
F(n, s, k) = cM j=m 0

; (k-l)"-j .

Proof. The formula holds trivially if m = 1 or m = n . To prove that

it holds for all choices of s = (s1’9 l l l , sm) , k‘ and n , we shall
N

proceed by induction on m+n . Let ^s denote the sequenceN

( sp 9 l l �Y  Srn-l
) ; for every sequence a = (aN pp l **Y an) , let GN

denote the sequence (al,a2,...,anWl)  . Let A+ , resp. A' , denote

the set of all the k-ary sequences (al,a2,...,an)  containing s as

a subsequence and such'that an = sm , resp. an { sm . Clearly,

aeA+ if and only if a contains ^s and a =sN N n m
; similarly,

aEA' if and only if & containsh)
s and an f sm . Hence

F(n y sy k) = IA+1 + IA-1 = F(n-l,^s, k)+ (k-l)F(n-1, 2, k) .
N N

The rest follows by the induction hypothesis.
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L
I.
1 -

Note that

(k-l>n'j > jrl (k-l)n-j-l
4 >

whenever j 2 n/k . Hence

F(n, s, k) < n l (k-l)n'm
- 0

for m ,> n/k a (2)

For every real x with l/k < x < 1 , we shall set

hk(x)  =
kx/2-1 k 1 1-x

⌧⌧(1-⌧)1-⌧  - l

LEMMA 2. Let g(n,m,k) denote the number of ordered pairs (a, b)
N N

of k-ary sequences of length n with v(a,b) 1 m g If x is a realN N
number with

l/k<x<l , hk(x) < '

then

g(n Y ~~1, k) = o(k2n) (n 34) 1 .

Proof. Let G(n,m,k) denote the number of ordered triples (a,b, s)
N CI N

such that a , b are k-ary sequences of length n , s is a k-aryN cv N
sequence of' length m and s is a subsequence of both a and b .

h) N
Clearly,

and

dn,m, k) ,< G(nymy k) 3)

G(n,m,k) = z (F(n, s, k))2

with the summation extending over all the k-ary sequences s of length m .h)
By (2), we now have

G(n,m,k) ,< km (n(i)(k-l)n->' (4)



whenever m ,> n/k . Let m = [xn] . By Stirling's formula, we have

nL~~(km(n(~)(k-l)n-m)2  k-2n ,""

= limn4,(kxn((i)(k-l)n-xn)2  k-2n )""

= (hk(x))2 < 1

and so

= o(k2") (n 4031 .

The rest follows by (3) and (4).

Note that

hk( ‘lk) = k1/2k > 1 lim hk(x) = k42Y < 1
x41

and

2 hk(x) = hk(x) log

so that hk first increases and then decreases in the interval [l/k, 1) .

Hence there is a unique solution of

hk(x) = ' , l/k <x <l ;

we shall denote this solution by yk . Values of yk with 2 5 k 5 15

are shown in the following table, to six-decimal accuracy.
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k
'k

2 o 9 866595
3 0.786473
4 o-729705
5 0.686117
6 o 0650984

7 o l 621�719

8
0 l 5967%

9 od75o75
10 o-555971
11 0.53@45
12 0.523625
13

0 l  5 0 9 7 3 0

14
0 l 497038

15 0.485378

Table 3

THEOREM 1. If k>2 then
�k-<yk  l

Proof. For every positive E with yk+& < 1
, we have

Lemma 2 implies that
h&k+E)  < � l

g(n Y [(yk++l,  k) = o(k2n)

and so

f(n,k) = k-2n x v(a, b) < (1-o(l))[(y,+E)n]+o(l)nNN - .

Hence

'k = lim f(n,k)/n 5 yk+ E
n-0

and the desired conclusion follows.

9



L

b

L

L
t

4. Lower  bounds on ck .

F o r  each pair (Q) of k-ary sequences of length n , we shall

construct a certain (s,b)-match M of size V’ (zt,b) a n d  s h o w  t h a t

f'hk)  9 the average  o f  2)’ (s,b) over all k2n o r d e r e d  p a i r s  (s,b) ,

satisfies

l i m  rilf’(n,k)  = ‘k
2 ,

n-- -k3+2k-1 *
(23

The construction of M is described below. The main idea is to begin by

looking for the f’first” matching pair (a. ,b .) where i = 1 or j = 1 .
5% 3

For example, suppose we examine the pairs (al 3,) 9 (9 ,b21 3 (a2 41 J

(a1 ‘b3) and finally find the first matching pair, namely (a b )3’ 1 .

-Then we include (a3,bl) in M and proceed to look for the “firstl’

matching pair in the sequences a4,a5,.  . . ,a, and b3,b4,.  . . ‘bn . We

continue until one or both sequences are exhausted.

STEP 0, Let ai = a. , f$ = b
z c and S(i) = T(i) = i for all

i = l,&...,n . Let FLAG = 1 and M = pl .

STEP 1. If FLAG = 1 , check successively

until a or f3 is exhausted or until we, find a pair

with a; = 6. .
3

If FLAG = -1 , check the pairs in the

order

10
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In the case of exhaustion, stop; otherwkc add the pairc

(S(i), T(j)) to M .

S’I’W 2. Note that i = 1 or j = 1 or both .

If i 5 2 and j 5 2 , set

i’ = i+l ) jr = j-d .

I f  i= 1 and j 2 3 , set

If i 2 3 and j = 1 , set

C’
i

=i+l, j’=
(FLAG = 1)

.

i
i-l (FLAG = -1)

STEP 3. Let p = S(9)-1 , g = T(j’)-1 and redefine

f o r  a l l  i,j with 1 ,< i < n-p , 1 5 j i n-q .

Reverse the sign of FLAG and go to Step 1,

LEKMA 2. For infinite sequences z* and k* , we have ,

3
E(if+jI,2)  = k +2k-1

k2
.

where i I, j’ are defined as in the preceding  algorithm and E(*} denotes

mathcrnatical  expectation.

11



Proof. Consider the scquencc  of pairs in case FLAG = 1 , t.hat is,

The

l/k

ted

cvcnt that. any of these pairs contains equal terms  has probability

aud this is also the conditional probability given any or all the pre-

ing pairs. Hence the probability that the r-tb pair will be the first

equal one is (k-1) r-l/kr . Now, .

I 2  i f  r=l,
73.j'-2 = 3  i f  r=2,

r - i f  r23.

Therefore
00 3

E(il +j l-2) = 2 . i + 3 . ‘k-1 + 1 p (k-l)r = k +2k-1
k2

.
r=3 kr k2

The same can be shown for case FLAG = -1 .

THEOREM 2. For all k , we have Ck 2 2k2

k3+2k-1 ’

Proof. Obviously, it  will  suffice to prove  (2). Let X1,X2,. . .

be successive values of il+jf-2 found by the algorithm when applied to

the infinite sequences g* and b,*‘ . It is clear that the Xi’s are

independent, identically distributed random variables (indeed, in each

cycle, equality or inequality of pairs is independent of all previous

cycles). Let s

2k2
xk =  - -k3+2k-1 ’

The symmetry ensured  by the alternation of sign of FLAG ensures that

after w = 2u cycles of the algorithm, the total number p (resp. (7) of

I2



t h e  a*$? (resp.  b*.‘s)
3

that have been used up satisfies

E’(P) = E(q) = 5 E(it+jt-2) = w/xk ’

Furthermore,

by thz law of large numbers. Now a’ pair @,b) of random scqucnces  of

length n can be considered as being the first PZ terms of s* and &* .

If? the algorithm (applied to a,b) halts durilig  the (w+l)-st cycle ’

then the first \V cycles are the same as the first w cycles of the

algorithm applied to s* and b* . Now, after 6kx,D cycles of the

algorithm applied to g*&* , we have

Pr(p > n(l+&) or p < n(l+c))  = Pr

= O(n)

and so

Pr(n(l-c) 5 p 5 n(l+e) a n d  n(l-E) 5 9 s n(l+Q) = l-a(n) .

Hence  with  probabi l i ty  l-o (n) , at least I[??zk]l  - nc and at m o s t

b?sk~  + n& cycles of the algorithm (applied to z*&*) operate within

2 and b, since nc successive terms in a sequence can give rise to at

most nc cycles of the algorithm. Equivalently,

Wl~’ (g&l - 1 nxkil 1 5 nc) = l-o(n)

and so lim n-‘fl(ntk> =IL’
n-

k . .

Values of xk with 2 5 k 5 15 are given in the table below.
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I
i

k xk

2 0.727273

3 0.562500

4 0.450704

5 0.373134

6 0.317181

7 0.275281

8 0.242884

9 0.217158

10 0.196271

11 0.178994

12 0.164477

13 0.152115

14 0.141465

15 0.132197

I

TABLE 4

1 5. Monte-Carlo estimates for f(loo,k)  and c2 .

L
1

To obtain further information about Ck , we carried out two

series of Monte-Carlo simulations. First ,  for .n = 1.00 and for each

k=2 ,...,15 , we generated 100 pairs C&b) Iof random k-ary sequences

:/
L

and calculated IJ(@) in each case. \Ve denote by mk n the average
3

- 1value of n u(Q) in a given sample. For large n , this quantity

i
L

may be considered  an estimate of c
k ’ Values of mk 1oo are tabulated

#
in Table 5, and may be compared with the upper and lower bounds in Tables

2 and 4. Table 5 also contains Sk loo , where
3

14



2
‘k,n = ( lb). (n%$&“$  n)2/(sample s i z e  -1)

,a,, b.)
in

sample

is an unbiased  estimator of the variance of n%(.a_,b)  .

i
h

i

k

2

3

4

5

6

7

8

9

10

11

12

13

14

15

“k, loo ‘k, loo,

0.7814

0.6855 _
0.6242

0.5778

0.5332

0.5065

0.4812

0.4593

0.4423

0.4268

0.4126

0.4003

0.3827

0.3712

0.0243

O.O2PO

0,0176

0.0211

0.0208

0.0214

0,0219

0.0211

0.0208

0.0200

0.0193

0‘0212

0,0212

0.0198

TABLE 5

To estimate c2 more closely, a second series of simulations

were carried out for k=2 and n = 10, 100, 1000, and 5000. Table 6

lists m2 n and
S2,n ’ as well as tl>

these estimates.

NC size of the sample used to make .

15



t

n
mk,n ‘k,n sample size

10 0.6991 0.1079 1000
100 0.7806 0.0238 100

1000 0.80529 0.00468 100
5000 0.8082 0.0015 6

TARJ,E  6

On the basis of these simulations, it seems fair to conjecture

t h a t  c2 > 4/S and that the variance of. u&k,) is o(n 213) .
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