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I. INTRODUCTION

We are concerned with the error bounds for the numerical

computation of the eigenvalues of differential or integral operators.

T denotes a linear operator on a Banach space X , and Tn its

approximation n = 1, 2,.... 11 . ]I is the norm on the algebra L'(X)

of bounded linear operators on X . 1 is the identity operator on X .

There exists a wide variety of approximation methods, the most important

of which belong to one of the three following classes:

0 Class '1 : uniform qproximation.

Definition: T, Tn es(X), II T - Tn 11 + 0

Example: the Rayleigh-Ritz and Galerkin methods, where the differential

operator is approximated byrestrictionto a finite dimensional subspace.

They correspondto the uniform approximation of the inverse, t21, II419

VI, L-81 .

0 Class 2 : collectivelv compact approximation.

Definition: T, Tn 4$X) , ( T - Tn ) x3 o for any x in X , and the
n+a

sets { ( T-T,) x ; ]lx]]I 1 1 , n = 1, 2,..., are relatively compact.

Remark Tn - T is T - compact, according to Kato ([5], p. 194).

Examples: (1) approximation of an integral operator by using approximate

quadrature formulas (Anselone [l]). Consider X = C(O,l) with the

uniform norm,

I

1

T : f(x) E Xl+ K(x,y)f(y)dy , where K is continuous on [0,112 .
0



Tn :f(x)EXw n
c

wn K(x,yn > f(y, > 9 where 0 < Y. < 1
j=J J j j

-
2 -

l and the weights w 1

2
such that :

f(x) dx

0

for any f in X (the rectangular, trapezoidal, Simpson,
Weddle

and Gauss quadrature rules satisfy this condition ).

(2) approximation of a differential operator by finite

differences, when considering T-' (Vainikko [9] )

e Class 3 : neighboring approximation;

Definition: T, Tn are closed operators, with domain of definition

D(T) = D(T,) . T - Tn is closed and ( T-T, ) ISS z for

L.

my x in D(T) .

L

I/ ( T - Tn) ( T-z1 )-',,-+ o
n+m

for any z in C such that ( T-zl)&(X) .

Examples: approximation of a differential operator by a neighboring

differential operator (Pruess [7]) .

(1) Consider X = C (0,l) with the uniform norm,

D =  CXEX: X~EX and x(o) = x(l) = o ] ,

T : XED~ -xv + q.x ,

Tn: XEDH -x1' + q
n .x >

where q, qn are real-valued continuous functions on [O,l]

and max
- OdKl

1 q(t) -'g(t) I-+ 0
- - n-b-

T-T, is the multiplicaGi.on  operator defined by q-9, ,

II T - Tn II = II q-c& II,+ 0 '



i

f
!. .

L
L
L

F’

(2) A less obvious example is given by

Consider X = C (0,l) with the uniform norm ,

D = {XCX ; x%X and x(0) = x(l) =

the following:

03,

T: x&4 pod’ + p,u' + p2u ,

Tn: xeD,+ p, ( >n u" + p ( >n u' + ( >n
1

( >

P2 u,
nwhere pi ) p i 9 i = O&2, are real valued continuous functions

on [O,l] and max 1 p. >-1 P.~ (1 1~ o .- Weo<t<1 suppose that p < 0
m =

0 Y
- -

pan ( > 5 6 < 0 l

Hn =T-Tn is an unbounded operator, but it is T-bounded, according

to Kato ([5], p. 189).

Definition: An operator A , whose domain D(A) includes D(T) is

T-bounded if :

II hc 11 5 a II x ,, + b ,I TX f, , for x in D(T) .

The proof that Hn is T-bounded is in [5], p. 193. We get

1, Hnx 11 < an 1, R 1, + bn IJ TX 11, for- IED 9 and- a b + 0 ,n' n

Consider x = R(z)y f for z on r , enclosing an eigenvalue A of T .

I, HnR(Z)Y I, 5 an l,RWY 11 + bn ,I (T-zl)R(z)y + zR(z)y ,I

5’ (&n + 1 ’ 1 bn)lI R(Z) ll + bn I Il y II .

Thus
II Hn R(z) ,, + 0 l



Various convergence proofs are given in the literature, adapted to each

type of method under consideration: norm convergence for class 1 [8] ,

compactness argument for class 2 [l], [9], norm convergence of the

inverse for class 3 [5],(see [7] for the Sturm-Liouville operator).

We present here these three classes of approximation as special cases of

a more general approximation. With this unifying treatment, we are able

to give the general type of error bounds that hold for eigenvalues and

the gap between invariant subspaces. It remains, however, for each

special case, to derive specific error bounds from the general ones

given here. It should be noted that the approximation theory proposed

here applies to unbounded closed operators as well.

The approximation will be defined so that the Newmann series of the

approximate resolvent is convergent. Then the approximate and exact

invariant subspaces have the same dimension for n large enough and the

approximate eigenvalues converge to the exact eigenvalue. The proofs

depend heavily on the perturbation theory developed by Kate in [5]. The

main results (theorems 1, 2, 3) are due to Jacques Lemordant (University

of Grenoble).

II. THE APPROXIMATION Tn OF T

Let X be a Banach space, T a closed linear operator from

x to x, with domain of definition D(T) l

h is an isolated eigenvalue of T , with finite algebraic multiplicity m .

r is a positively oriented rectifiable curve enclosing h , but excluding

any other point of the spectrum of T .



P is the spectral projection associated with i :

P = - 1 (T - zl )-'dz ,
2in

PX is the invariant subspace

r

associated with h .

R(z) = ( T-21)-l is the resolvent of T,, for z in the resolvent

set of T.

We want to approximate x and PX.

Let TnJn=1,2, . . . . be an approximation of T . The precise meaning

of "approximation of T 11 is stated below: (2.1) to(2.4).

It will be shown in Section III that the spectrum of Tn inside r is

discrete and that there are exactly m approximate eigenvalues for n

large enough: hni,i=l, . . . . m .
Y

Pn is the spectral projection associated with all the eigenvalues of

Tn lying inside r .

R,(z) = (Tn - zl)-' ; for z in the resolve& set of Tn.

In general, we consider the approximation of A by the arithmetic mean:

h, = c”f=j
h
n,i

53 is the weighted mean of the h-group, according to Kato [5] .

Definition of the approximation Tn .

Let Tn, n = 1,2, . . . . be a sequence of closed linear operators from

x to x, with domain of definition DqJ Y and such that:

(2.1) D(T,) r> D(T) , n = 1,2,*..  ,

(2.2) T - Tn is closed , n = 1,2,... ,



(2.3) T,- TX for any x in D(T) ,

@J+) ,I[( T - Tn) R(Z) I2 1, + 0 , for any z on I'.
IHo0

Then Tn is said to be an approximation of T .

First we need the following:

lkmma 1 (T-Tn)R(z) is uniformly bounded in n , for any z on r ,

and II (T - Tn) P ,, -+ 0 .
Mao

Proof : Since T - Tn is closed, and R(z) is a bounded operator

on X with range D(T) , (T - Tn)R(z)is a closed operator with domain

X , hence bounded for any n , by the closed graph theorem.

(T-T&3( Z)X + 0 for any x in X , then (T - Tn)R(z) is uniformly

bounded in n by the principle of uniform boundedness. On the other

hand, (T - T,)P , which converges pointwise to zero, converges uniformly

on the finite dimensional subspace PX .

Let S be the reduced resolvent in z = h , S =&ii R(z)(l-P) .

Lemma 2 II((T - T,)R(z))~ 11 + 0 implies I/(@ - Tn)s)2 11 + 0 l

Proof : Let H = �j?  - Tn l

n

- HnR(z)(l - P) HnR(z)(l - P) = (H,R(z))~ - HnR(z)PHnR(z)

- HnR(z)HnR(z)P + HnR(z)PHnR(z)P .

Since T and P commute, R(z)P = PR(z) . Then:
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,l(HnR(z)(l  - p)‘2 II 5 11 (,HnR(z)J2 II + II HnP II /I Rd)I( (IHnR(z) /1<2 + 11 p 11)

--+O , for any z on r .
n-b

Since (Hnx(z)(l - @I2 is holomorphic in z inside r, its norm at

Z = 1 is less than or equal to its norm at any point z on l-' . We

then have:
,,(H,s)2,,  -+o l

Remark: 11 (HnR(z))' 11 + 0 for z on I' implies that it tends to zero

for any z # h inside r , as it is easily shown:

(HnR(z) )* = (HnR(z)  (P + 1 - P) )2 can be expressed in terms of

H,R(z)P = H,PR(z) and H,R(z)(l - P) which is holomorphic inside r.

The desired result follows.

The definition of Tn includes the three classes defined above:

Class 1 : T, Tn bounded and I/T - Tn 11 -) 0 .

Class 2 : T, Tn bounded and ((T - Tn)B] relatively compact where B

L
L

is the unit ball of X l

Then C = 1 T - Tn) R(z)B ) is relatively compact for any z on I" and

( T - Tn)R(z) , which is bounded on X and converges pointwise to zero,

converges unifotiy on C , i.e. (2.4) .
\:

Class 3: T, Tn, T - Tn closed and I/(T - Tn)R(z) II + 0 , for z on r .

III. EXISTENCE OF THE SECOND NEUMANN SERIES OF R,(z)

Let Hn denote T - Tn : T = T - H
n n

and let z be any point

on r .
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The key point in the whole theory is the following:

Lemma3 R,(z) can be represented by the second Neumann series:

R,(z) = R(z) ; (H,R(z))~
k4

Proof: (3J) Tn- zl = T - zl - Hn = (1-HER) (T - ZI) .

(1 - H,x(z))-1 exists and is represented by y (H,R(z))~  , if this
k=C)

series is convergent.

7 (H,R(z))~ = (1 + HnR(e) > !? ~$R(z))*~  I
k=O k=O

and by (2.4), k&z))2k is a convergent series for n large

enough. Then, from (34, we get the expansion of the lemma.

Remarks (1) R,(z) - R(z) = R(z) y (H,R(z))~
k=l

(3.2) = R(z)HnR(z) +RCz) (i+H$z))  :
k=l

(H,$d) 2k .

Put En = max I, (HnNd)2  ,, , ll y oyw )2k 1, 5 $ l

Zd-

1
-n

In general, Rn(z) does not converge to R(z) in norm. But it does,

for example, for Tn in class 1 ( llHn\/ + 0) or in class 3 (~,H$z)// + 0).
1

So,- if Tn is in class 3, (Tn-zl)-' is an approximation of (T-zl) which

belongs to class 1 .
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(2) Lemma 3 would be still valid if the assumption (2.4)

was replaced by: 3 p>O such that ,, (H-R(Z)? II + 0 for z on r .
11

Corollary 1 There are exactly m eigenvalues of Tn converging to

h when n tends to infinity.

n

Proof : Let n be fixed such that ,,(H,R(z))~,, < 1 . And consider

the perturbation of T defined by:

XE [o,ll : T(x) = T-xHn

T(O) =T and T(l)= T
n'

The second Neumann series of

(T(x) - zl)-' = R(x,z) exists for any x in [O,l].

When x + 0 , 11 R(x,z) - R(z) ,, -+ 0 and ,, P(x) - P ,, + 0 .

For x small enough such that ,, P(x) - I? ,, < 1 , dim P(x)X = m .

But P(x)

that dim

This means

Since this

h (because

is uniformly continuous in x on KM 1 , we then deduce

P(1)X = m .

that there are exactly m eigenvalues of Tn inside r .

is true for any curve r' inside P , arbitrarily close to

(2.4) holds for any z f 1 inside r ) , then:

lim Ani=h,i=l ,***, m.
Y

Tn
is said to be a strongly stable approximation of T (Chatelin [3]).

on - P)x= 2

$
,(z) - R(z))x dz , for any XEX .

2in
r

From (3.2) we get readily that II (Pn - P>x ,, 4-0 .

Since PX is m-dimensional, we even get II (P;P) PI, + 0 .
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Following [I] and [81 :

(P, - P)Px = -1
s2% r

( R,(z) - R(z))Pxdz,for  any x in X ,

A

) R(z)Px dz .3- -1
girr J

R,(z

Nz)P = PR(z), then:
r

> (Tn- T

II (‘n - p>p 11 <- mk >
2rr

m=(ll  R,(z)  /I II R(z) 11) l ,ro-TJP,, Y
ZE:r

where m(r) is the length of r , and ;F IIR,(z) II is uniformly

bounded in n . Since the dimensions of PX and PnX are the same

for n large enough, it is not difficult to carry out a bound for the

gap between PX and PnX ( see definition in SectionV) in terms of((Hnp 11.

E'or the eigenvalues, a bound of type: Ih
n - A 1 <_~II$,.J~ canbe

derived, in this general setting, following the lines of the proof given

in [8] for a collectively compact approximation.

In order to get a more precise expression for the bound, we have to go

into a more detailed analysis of the perturbation of T by Tn - T = -Hn .

IV. THE OPERATOR Pn - P .

Theorem 1 There exists a decomposition : P - P = Pin + P2n ,
n

such that : a) PIn 4x) Y Pin xc px Y PlnP = 0 ,

b) p2n a (x> y 11’2, II 5 ’ ll HnP II y

for n large enough.

The proof of theorem 1 contains five intermediate steps.



)
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Proof :

7. 1 , an eigenvalue of finite algebraic multiplicity m ,
is a pole

of order I (1 < 1 < m ) of R(z)- - , whose Laurent expansion can be

written cr51 y pe 180) :

R(z) =“c (z ._ h)‘ks(lt”l >
k=-R

3

with S ' = -P( 1

s -( k) = -Dk ,k>l, D =- 0 - a1 >P

S (k) = Sk , kl 1 , S = lim R(z) (I
- -a

Using the Neumann series of R,(z), we get:

Pn-P= -1
2c

\

R(z) "c (H,R(& dz
i=l

="c p
r

.,
i=l nY1

with: P
n,i = -1

5%
Jr

R(z) (H,~(z))~ dz

= -1
zig s

R(z) (H, ; (~-1)~ S(k+l))i dz .

r k=-R

(4.1) P I
k

n,i =
k

S ( 1)
Hn '

( 2) S ( 1ki
kl+k2+..+k. ' t

. . .
1+7 ==

H ,cki+' )
n Y

.~

kj>_ -1+l, j=l,..,i+l
k.

( J)
"n

(cf Kato L53, PA).

2. It is easy to show that a'theorem l-type decomposition Pin + P'
2n

holds with /I P& I, -+ 0 :

Let us go back to the expansion (3.2). By integration on r :



P n - P =-I

[,

R(z)HnR(z) dz + R(z) (1 + H R(z))[ ;(H,R(z))"kl dz
2in n 1 1r r

If we substitute in the first integrand the Laurent expansion of R(z) ,

only the coefficient of 1 contributes to the integral :
Lq

-1
rrr I

R(z) HnR(z) dz = SaHnD'-' + S14HnDP-2 + . . . + SH,P

I-
- P Hns - D HnS2 - . . . - D'-'HnS' .

obviously : 11 S'HnDa-' + . . . + s HnP II < SC II HnP II J-

and P'In
= -PHnS - . . . _ D'-'H sp

n
has its range included in

px Y and PTlnP = 0 .

The second integral can be bounded in norm by :

where m (r) is the length of r . Then : I/P&J/ + 0 .

In order to bound 11 P2n 11 in terms of 11 HnP 11 , we have to go back to

the expansion of Pn - P in terms of Pn i .
3

39 Consider (4.1).

Let N(i) be the number of terms in that sum. N(i) is also the
.

absolute value of the coefficient of zi in the series expansion of

-
or else the coefficient of z

li +I-1 in the expansion ofco
c 3c z

k i+l =
(1 -

-i-l
d l

k=o



.
d1 I-. - = (-l)ii! = di (1 + z + z2 +

dz= I-~ (laz)i+' az'
. . .

)
.

The coefficient of zs in 1 is then

(l-z)i+l

(i+s)(i+s-l)...(s+l)  = Cs
i+s

i!

N(i) = cdi+R-l
(d+l)i+l-1  l

Making use of the Stirling formulae, we can easily show that there exists

a constant a (depending on R only) such that:

N(i) < ai , i- = I, 2, . . . . -

4' 'In will be the sum of all
k.

Un (J) whose norm is not going to zero

(such that S(')H S , S(m2)H S3H S
-

n n n , etc..). Such terms correspond to

sequences (kl,k2,..,k.1+1 ) i = I, 2 3 0'3 in1 which kj > 1 for- j>2,-

since II HnS(k)  II + 0 for any nonpositive k ,

%
+ . . . + ki+l 2 i implies k

1
= i -

(%
+ . l + k > < 0 .i+l - Then

L each operator such that kl 5-0 , kj 2 1 for j >, 2 is a bounded

operator with range in PX .

We have to prove that Pin is bounded.

kj 2 1 3 j=&.. , i+l

Let us recall that $ = Ij(H S)2 I/-+ 0
n

n+c0
. We shall prove that for i

k.
large enough, each U( )J '- n In the above sum contains enough factors of the

(HnS)2 type, in order to ensure the absolute convergence of iy [Si] .
=



I
/
L

r

L

I
1
1
I

Namely:

I
0-L)

For i>_21-1,each U J
n with k, < 0 ,- kj 2 1 for j 2 2 ,contains

I at least pe ( i-21+3 ) times the factor
2

and at most 1 - 1

I times the factor HnS
k

, k = I, .., a , where pe (x) is the integer

I part of x.

This isshownby a close study of the sequence of exponents kj subjected

to the above constraints.

Then, for iz2! - 1 :

llsil/’ ai?J 63e(i-2&+3)
- n 2 &I

1 52 3

where
K1

= max
k=? 3**9

SUP 11 H,Sk II , $ = mix
1 n k=O

II  Dk II l

,..,R-7

The series P7n will be absolutely convergent for n large enough so

that a$ < I,
n

P P=
In 0 follows from SP = 0 .

5. P2n will be the sum of all Un
Ckj)

for which there exists a

jc f 2,.. , i+l 3
a0 co

Pf& = c c
p=l i=l

c
*

such that kj < 0 .-
(k >,'

‘n J = C C
P i

Let us then decompose
'2n into:

OPYi

k, + k2 + . . k
i+l

=i

kj >- - R +I ,'i=l,2 3 ..,i+l

there exist exactly p indices j , jc ( 2,.,.
> i+l J

such that kj 5 0 .



i
11 Hnsk 11 S II Hns II 11 Sk-' 11 < 11 H S 11 11 S II k-7

n .

L
L
L

15
Co&ider

Op,i for a given i and p .

c k
jt7 ,kj>_'

j 5 i + (p+7) (R-l) .

For i 2 (p+l> (21+7) , \ (k >.
each U Jn , with k

constraints * 3
satisfying the

, contains at least pe i - (p+7)(21+7) + 2
(

the factor (H SJ2 , at most
2 ’ >

times

n (p+7)M times the factor HnSk ,

= 7,.., (P+l)(2~-1) 3 and p factors of the type HnDk,

I k = 0,7,..,R-7  .

HnDk = Hn(T-hl)kP = HnP(T-A7)kP , since P and T commute.

Then
I' HnDk II 511 Hnp II II DkIj 3 k = o,.,.,R-~ .

. We get ) for i 2 (p+1)(21  +7 > = I(p) :

11 op,i Il <

- c

‘ai 17

n
peQm(P+JJ(2i+7)  +2

' . 11 H,Pj/ ' rp I/ HnS I$??+~ )(21-7)

11 s +P+’ )2(2a-l)m
3

.

II ‘2n II 5 Y $ II H p 11’ ( ‘ilai O” ’ l

p=7 n -I-
i=7

C a1 qnt ) .
i=I

I-7
c

ix7

ia

03
C ( aqn+ )i
I

I-l
a - 7
a-
a - 7

< a’
a - l

< 3 for n such that
1

aqnz < 7 .
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33
Hence II Pen 11 5 C

p=-l
K4p II HnP IIP

< K5 II HnP II 7-

which completes the proof of theorem 1 .

Corollary 2 For n large enough :

II ('n - p> q 2 K II Hn I? II 9

II (‘n - p) P,lI -5 K ll Hn I? II l

Proof : 0r-i- p> p = P2nL

(Pn - P) Pn = (Pn-P)2 + (P,-P) P ,

and ( Pn - P)2 = P2nP1n + P,n P2n + P22, , since 'ln P=O

The results then follow.

For approximations of class 1 and 3, we have : II p - pn lb0 l

V. CONVERGENCE IN GAP OF THE INVARIANT SUBSPACES

Let us borrow from Kato ([5], p.l97), the definition of the

gap between two closed subspaces MandN, of a Banach space X :

6 (M,N) = SUP dist (x,N) ,
XEM

l1q = ’

i (M,N) = max [ 6(M,N), 6(N,M) ] is the gap between M and N .

The following property holds: 6(M,N) < 1 implies dim ML dim N Y

and i (M,N) < 1 implies dim M=dim N.
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Theorem 2

Proof :

For n large enough:

ii (PX Y PnX > 5 K 11 HnP 11 .

We have the inequalities :

6 m, pnx > 5 Il(p,-m 113

and 6 (P,XY PX > 5 Ir(p,-P)P_ 11 .

Theorem 2 follows from Corollary 2.

Remark : If Tn is an approximation

forany xcX,andany z on r,then

finite-dimensional, Il(P, - P)P 11 +O .

of T such that R,(z)x + R(z)x

Pnx + Px and, since PX is

This implies that dim PX <-

dim PnX : there are at least m approximate eigenvalues lying inside r .

We need sOme additional assumption to show that /(P,- P)P, II+ 0 and

dim PnX < dim PX .- This assumption is provided here by the hypothesis (2.4).

VI. CONVERGENCE OF THE EIGENVALUES

6.1 Series expansion of in - 1 \

The trace of a linear operator A with finite rank is denoted by tr A.

If A is of finite rank and -B continuous, the identity tr AB = tr B A

holds, (K&o [5] p. 379).

For the following, refer to Kato [5], p. 77.

m
tr TnPn = C h ,

i=1 n, i,

CT,- A') R,(z)  = 1 + (z-h)  R (z)n
,
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(Tn - Al) Pn = -1
5%

I

(Tn - hl)R (z) dz
n

= -1

I

( z -
2in

h) Rn(z) dz = -7 (z-~)R(z)
2i7-r

&H$z))~  dz
p=b

r
= (T-AI) P - dz1.2m

1
ln -A = 1 tr (T,- Al)P, = -1 t r

I

h)R(d "c (HnR(z))'dz ,
m 2inm p=l

r

since tr (T-11) P = 0 .

Using d R(Z) = (R(z))~ , we get
dz

$z(HnR(z))p = aH R(z) . ..HnR(z)] = HnR(z)...HnR2(z)+...+HnR2(z)  0. HnR(z)e
dz n

tr

/

(z-h) d ( HnR(z))' dz = p tr
dz /

(z-~)(H~R(z))' dz .

r r

This can be proved by using the Laurent expansion in A of R(z),

integrating on r , then using tr AB = tr BA , since each term contains

P at least once. Then :

h, - A = -1 c tr
2inm P=l . J

1 (z-h) 2 (H,$z))~ dz
P

r

= 1 c tr
2irm p=l

I

1 (H R(Z) )' dz (integration by parts)
F n

r

(6.1) 1, - A = I 7 HnS
(k, >

1 tr c l . . HnS
(kp)

m p=l p kl+k2+..kp=p-1

kj’  -!+I, j=l 3**, p-
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6.2. We prove the following:

Theorem 3 For n large enough:

1 'n -h/L
,'I trHPn

1 + K II Hnp II ’

Proof : All operators which appear in (6.1) contain at least one

operator with finite rank, so we can apply the bound :

For p = 1 we get _?_ tr HnP ,
m

which appears to be the principal

term in 1
n

- h for most approximation methods.

0 = 1 E 7 tr C HnS (k’ > HnS (k 1
ii p* p

. . p can be easily bounded

in norm by

Corollary 3

K/ HnP 11 by using the technique developed in Section

For n large enough:

IV .

Ih,-h 15 & ftr HnP + F tr c H Sckl) ..H SckP)

P+ k,+..+$=&l n

kj>_ 1, j=l,..,p-1

-R+ls $7 O-

Proof : As previously, we can decompose the sum over the k
j

into the sum

over the k
3

where one k
j

is nonpositive, then two k
j

are nonpositive,

and so on. The result above is obtained by considering one
kj s O ' and

noticing that we have p operators with the same trace.
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For example, if h is a semi-simple eigenvalue, 1=1, $=O,

co
k, +..+k

P-1
= p-l implies kj=l, j=l,.., p-l, so that the sum. C

2
00

reduces to: -tr(HnSHnP + (HnS)2 C (H,S)' . H,P) .
p=o

VII. APPLICATIONS

7.1. uniform approximation

11 Hn 11 + 0 implies 11 Hn* fl + 0 J where Hn* is the adjoint of Hn .

We can then bound o more precisely.

Theorem 4 For n

1 an-a

1 An-h

large enough:

1 < -- ’ 1 tr HnP 1 + K II Hnp 11 11 Hn*p
m n

1 < 1 1 tr (H,P - i HnSk HnD- - k-1) I+K
m k=l

II ’

II f&II II HnP II r’H”,P”

Proof: Consider o :

For p = 2 we get : -1 tr ( HnSHnP + HnS2 HnD . . . + H S'H D'-') . For
m

n n

l<k<R, tr HnSkHnDk-' = tr PHnSkHnPDk-l  , then :- -

II II Hn*p II lI 1 tr
m ) ,

1 5 K II Hnp

For p = 3 , the bound is given by : l? IIH II II HnP II II HnscF II ln

then: 11 o 11 < "c-
p=2

Kp-“ II Hn llp-2 IIHnpll I I  Hn*p 11 <, K llHnplI  IIHn*wlI  l

The second bound then follows.
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For example, if 1 = 1 , we get the principal term :

11 tr(1 -HnS)HPl .n
m I

Remark : The first bound is the same as the one given by Osborn [8] :
m

1 tr HnP = C ((T-T,) cpj, 'pj* > Y Where (~j)j=1 is a basis
m j=l , . ,m

of PX and (cP~*)~=, m the adjoint basis of WX* . On the
Y**Y

I other hand, IJ(T-Tn)P  II 5 II P II l ll (T-T,)  1 px Il l
See [81, [21I

for various examples.

Using the second bound we can derive the asymptotic equalities that

we get in [43 , for a Galerkin-type approximation of a normal operator

in a Hilbert space if Tn = nnTn 7~ is a sequence of
n

, where
n

orthogonal projections such that I-T~X + x , XEX , then:

7 tr (TT~T-T)P
m

where cp belongs to PX .

7.2. collectively compact approximation

Obviously the bound in theorem 3 holds. It has to be compared to

the bound : 1 h-Anl5 K I I (H,)I PX II given by Osborn [8] .

Theorem 5
I

For n large enough:
a

I
I

k-l
An --- A 1 c I 1 tr HnP - tr c HnSk HnD 1 + Cyn IIHnP II 3

m k=l

I where
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co

Proof: Consider i = 1 C tr
m p=3

k' +*a+kP==p-l

HnS ( >kl H Sh). . n .

kj>_l, j=l,..,p-1

-I+15 kP50

Since Tn is collectively compact , 11 HnSrHnSt II +O , for r,t>l .-

Let en= max II HnSrHnSt II , where V is the finite set of indices:
(r&v

l

(1 13 (2 13 1 . ..* 0, 1) 3

11 i II 5 “c a’ enPep;l) c Ke,- for n large enough.
p=3

Theorem 5 follows from corollary 2, with a/n = K en + II HnPl( .

7.3. Tn belongs to class 3

Since 11 H$z) 11 + 0 , for zEr , 11 HIS 11 + o .

Theorem 6 For n large enough :

I an- h I.<1 1 tr f&p] +cunlliHnPll- -
m 3

Proof : This follows readily from theorem 5 and II HnS 11 + 0 .
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If T and Tn are self- adjoint in a Hilbert space we get the bounds for

n large enough:

I 'n -a' 5 ,' 1 tr HnP I + K II HnP II2 3

I 'n -a '5 11 tr(H,P- h
m k=l

HnSkHnDk-') 1 + K II Hns II II HnP II2 l

The proof is easily adapted from the proof of theoren 4 by using the fact

that 11 HnS II + 0 .

7.4. T has a compact resolvent

Since R(z) is compact, II HnSk II = II HnS.S k-1 11 -b 0 for2sk<R.-

Theorem 7
I

For n large enough :

I I a,- A ’ < 1 ’ tr ((1 - H,S) H,P) ’ + an 11 HnP 11- -
m

F. C.
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