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| NTRODUCTI ON
W are concerned with the error bounds for the numerical
conputation of the eigenvalues of differential or integral operators.
T denotes a linear operator on a Banach space X , and T, its
approximation n = 1, 2,.... . |lis the normon the algebra L' (X)
of bounded |inear operators on X . I is the identity operator on X .
There exists a wi de variety of approximtion nmethods, the nost inportant
of which belong to one of the three follow ng classes:

e Jass 1: uniform approximation.

Definition: T, T e£(X), 11 T-T | +0

Exanple: the Rayleigh-Ritz and Gal erkin methods, where the differential
operator is approximated byrestrictionto a finite dinensional subspace.
They correspondto the uniform approximation of the inverse, [2], [4],

(6], (8] .

e dass 2 : collectively conpact approximation.

Definition: T, T eL(X), ( T'Tn)ﬁf_';’mo for any x in X, and the

sets {(TT)x;nxllk1l}, n=1, 2,..., are relatively conpact.

Renar k T, - Tis T -_conpact, according to Kato ([5], p. 194).

Exanpl es: (1) approximtion of an integral operator by using approxinate
quadrature formulas (Anselone [1]). Consider X = ¢(0,1) with the

uni form norm 1

T : f(x) e Xxm K(xy)f(y)dy , where K is continuous on [0,1]
| 0
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n
T, : f(x) eXm z W

K(x,yn.) f(yn.) , where 0 <_ Yn <1
j=1 9 J J 3

]

_ !
.and the weights w : et
g n, such that : z: Whjf(yn';re.[ fi(x) dx
= 0

r an i ' i
for any f in X (the rectangular, trapezoidal, Sinpson, Weddle
and Gauss quadrature rules satisfy this condition ).

(2) approximation of a differential operator by finite

di fferences, when considering T ' (Vai ni kko [9])

e G ass 3: neighboring approximation;

Definition: T, T, are closed operators, with domain of definition

D(T) = np(r)) . T - T, is closed and ( T-T, ) z= o ¢

any X in D(T) .
(T-7)( T21) = 0 - -1
n ”ﬁ-sw for any z in C such that ( T-z1)" eg(x) .
| Exanpl es:  approximation of a differential operator by a nei ghboring
differential operator (Pruess [7]) .
(1) Consider X = C (0,1) with the uniform norm
D= { xeX : x"ex and x(o) =x(1)=01,

T : xXeDwn -x" o+ q.x ,

wher e g, q are real -val ued continuous functions on [0,1]

andogié l Q(t)-’qn(t)lzi*g

T-T, is the multiplication Operator defined by q-q ,

nrT-T 1 = q-q, [[m-aO.

L
L
L
[
|



(2) A less obvious exanple is given by the foll owi ng:

Consider X = C (0,1) with the uniform norm,

D

{xex ; x"ex and x(0) = x(1) = 01},
T. xeDpp pou" + p1u' + pyu
(n)

Tn: XeD by u" + pl(n)u‘ + pz(n)u s

n) . . .
wher e P, > p(i), I = 0,1,2, are real valued continuous functions

n
on [0,1] and max | p, - p-’l()l"’ 0 . W

that 0< 0
<t< m = suppose p 4

H =T - T, is an unbounded operator, but it is T-bounded, according
to Kato ([5], p. 189).

Definition: An operator A, whose domain D(A) includes D(T) is

T-bounded if :

Il Axfi<a |l xjf + bliTx| , for x in D(T)

The proof that H is T-bounded is in [5], p. 193. W get

B i< e =0+ By [l T i; for- xeD(T) , and 3 b 4 0,
Consider x = R(z)y , for z on F | enclosing an eigenvalue A of T .

|, B R(2)y |, < & IR(z)y I + b i (T-21)R(z)y + zR(z)y |l

sCay + 12 [ o IR I+ v THy ).

Thus H R(z) | »0 .



Various convergence proofs are given in the literature, adapted to each
type of nethod under consideration: norm convergence for class 1[8],
conpactness argunent for class 2 [1], [9], norm convergence of the
inverse for class 3 [5],(see [7] for the SturmLiouville operator).

W present here these three classes of approximation as special cases of
a nore general approximation. Wth this unifying treatment, we are able
to give the general type of error bounds that hold for eigenval ues and
the gap between invariant subspaces. |t remains, however, for each
special case, to derive specific error bounds fromthe general ones
given here. It should be noted that the approxination theory proposed
here applies to unbounded closed operators as well

The approxi mation will be defined so that the Newmann series of the

approxi mte resolvent is convergent. Then the approximte and exact

invariant subspaces have the sane dimension for n |arge enough and the
approxi mte eigenval ues converge to the exact eigenvalue. The proofs

depend heavily on the perturbation theory devel oped by Kato in [5]. The
main results (theorems 1, 2, 3) are due to Jacques Lenordant (University

of Grenoble).

II. THE APPROXKKMATION T OF T

n

Let X be a Banach space, T a closed |inear operator from
X to x, wth domain of definition D(T) .
Ais an isolated eigenvalue of T, with finite algebraic nultiplicity m.
ris apositively oriented rectifiable curve enclosing A, but excluding

any other point of the spectrumof T .




Pis the spectral projection associated with A :

P = -1 J'.(T - z1 )"az, PXis the invariant subspace
2im
associated with A . r

R(z) = ( T-z1)'1 Is the resolvent of T,, for z in the resol vent
set of T.
W want to approximate A and PX
Let T ,n=1,2, .. .. be an approxinmation of T . The precise neaning
of "approximation of T " is stated below (2.1) to(2.k4).
[t will be shown in Section Ill that the spectrum of T, insideI'is

discrete and that there are exactly m approxi nate eigenvalues for n

| arge enough: A . , i=1, .... m.
n,!l

P is the spectral projection associated with all the eigenval ues of

Tnlying inside T .

Rn(z) = (Tn - z1)"1 , for z in the resolvent set of T, -

In general, we consider the approximation of a by the arithnetic mean:

m

A, = 1y .

n — hY i
n,l

’\n Is the weighted nean of the h-group, according to Kato [5] .

Definition of the approxi mation T, -

Let Tn’ n =1,2,. . . . be a sequence of closed linear operators from
X to X , with domain of definition D(Tn) , and such that:
(2.1 D(Tn) S DT) , n=1,2,...,

2.2 T - Tn is closed , n =1,2,...,



(2.3) T X~ Tx for any x in D(T) ,
N0

(Q-h)ll[(T-Tn)R(Z)]QH-—» O ,for any z on T.
N oo

Then T is said to be an approximation of T .

First we need the follow ng:

Lemma 1 (T—Tn)R(z) is uniformy bounded inn, for any z on T

and ||(T-Tn)P”-»O.
N4
Proof Since T - T, is closed, and R(z) is a bounded operator
on Xwith range D»(T) , (T - Tn)R(z)S a closed operator with donain

X, hence bounded for any n , by the closed graph theorem

(T-Tn)R(z)x + 0 for any x in X, then (T - Tn)R(z) is uniformy
bounded in n by the principle of uniform boundedness. On the other
hand, (T - Tn)P , Which converges pointwise to zero, converges uniformy

on the finite dinmensional subspace PX .

Let S be the reduced resolvent inz =X, S =&i R(z)(1-P) .

Temma 2 | [|((T - Tn)la(z)»)2 =+ 0 inplies Jj((T - Tn)S)2 I+ 0.

Proof Let H.T-T .
n n

- HnR(z)(1 - P) HnR(z)(1 - P = (HnR(z))2 - HnR(z)PHnR(z)
- HnR(z)HnR(z)P + HnR(z)PHnR(z)P .

Since T and P commute, R(z)P = PR(z) . Then:



_— o

2
IR = 207 (R 41+ 1 B2 1 Ry IBR() (2 + 2 )

— 0, for any z on r .
n 4

Since (H R(z)(1 - P))" is holomorphic in z jnside r,its norm at
z = 1S less than or equal to its normat any point z on I' . W

then have: Il (Hns)2 | 0

~

Remark: I (H R(z))* ||+ O for z on T jnplies that it tends to zero
for any z #xinside 1 | as it is easily shown:

2
(H,R(z))" = (B.R(z) (P + 1 - P) )2 can be expressed in terns of

H R(z)P = HPR(z) and H R(z)(1 - P) which is hol onorphic inside T.

The desired result follows.

The definition of T, includes the three classes defined above:
Gass 1: T, T, bounded and T -1 (40 .

Cass 2 : T, T, bounded and ((T - Tn)B} relatively conpact where B
is the unit ball of X.

Then = ={ T - T,) R(z)B } is relatively conpact for any z on r and
(T- Tn)R(z) , Which is bounded on X and converges pointwi se to zero,

converges uniformly on £ , i.e. (2.4)
§

Qass 3: T, T, T -1 closed and (T - T )R(z) |l + 0, for zon T .

[11.  EXISTENCE OF THE SECOND NEUVANN SERI ES OF Rn(z)

Let H denote T - T, Tn= T - Hn and let z be any point

on T .



The key point in the whole theory is the follow ng:

Lemma3 Rn(z) can be represented by the second Neumann seri es:

(B R(z))"

Proof: (3.1) T - 21 = T - 21 - H = (1-HR(2)) (T -21)

(1 - H R(z))'1 exists and is represented by CJZO(H R(z))k, if this
n k=0 n

series is convergent.

£ (1 R(z),

T (1 R=)* = (1 + HR:) ) B

k=0

(@ @)
and by (2.4), kgoHnR(z))ek is a convergent series for n |arge

enough. Then, from(3.1), we get the expansion of the |emm.

o k
Remarks (1) R (z)- R(z) = R(z) T (HR(z))

k=1
o ok
(3.2) = R(z)H R(® +R@ (1+HR(z)) =  (HR(z)) " .
k=1
2 2k
Put g = én?;f [, (HnR(Z)) ] ,1|| %o (HnR(z)) Il < Lin .

In general, Rn(z) does not converge to R(z) in norm But it does,
for exanple, for T in class 1 ( HHnH # 0) or inclass 3 (HHnR(z)H 5 0).

So,- if T isin class 3, (Tn-z1)°1 is an appfoxi mation of (T-zl) which

bel ongs to class 1.



(2) Lemma 3 would be still valid if the assunption (2.4)

1Y
was replaced by: 3 p>0 such that || (Hﬁl}(z)) Il = 0 for z onr .

Corol lary 1 There are exactly m eigenval ues of T, converging to

A when n tends to infinity.

Proof : Let n be fixed such that ”(HnR(z))£“ < 1. And consider

the perturbation of T defined by:
xe [0,1] : T(x) =T - xH

T(0) =T and T(I)= Tn . The second Neunmann series of

(T(x) - z1)'1 = R(x,z) exists for any x in [0,1].

When x 5 0 , || R(x,2) - R(z) ||+ 0 and || P(x) - P » 0.

For x small enough such that || P(x) =P J]/<1, dimp(x)X = m.

But P(x) is uniformy continuous in x on([0,171, we then deduce
that dim P(1)x = m.

This nmeans that there are exactly m ei genval ues of T, inside r .
Since this is true for any curve p' inside I' , arbitrarily close to
A (because (2.4) holds for any z # x» inside ), then:

1lim J\n,i=>\,i=1 seeey M
Do

T, is said to be a strongly stable approximation of T (Chatelin [3]).

2im

(Pn - Px= FH(Z) - R(z))x dz , for any xeX .
r

From (3.2) we get readily that ||(B, - P)x || 3 0 .

Since PX is mdinensional, we even get |l (Pn-P) Pl + O .
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Following [1] and [8]:

(pn -P)Px = -1 J( Rn(z) - R(z))pxdz ,for any x in X ,
2im

- 2_11_;r fRn(z) (T~ T) R(z)Px dz .
R(z)P = PR(z), then:

(e, - P)P g < nr) ma.x(H R.(2) ) I R(z ||) (T-T)7I >
21T  zZel
wher e m(r) is the length of r, and meafx ”Rn(z) [[ is uniformy
Z
bounded in n . Since the dinensions of PX and PnX are the sane

for n large enough, it is not difficult to carry out a bound for the

gap between PX and P X ( see definition in SectionV) in terns of ||H o, .

Eor the eigenvalues, a bound of type: [r - a | <K|[HP| can be
derived, in this general setting, following the lines of the proof given

in [8] for a collectively conpact approximnation.

In order to get a nore precise expression for the bound, we have to go
into a nore detailed analysis of the perturbation of T by T -T = H_
IV.  THE CPERATCR P - P .

Theorem 1 There exists a deconposition :nP -P = Pt Py

such that : a) Pm e,g(x),P1 XcPX,P, _P=0

n n

.

b)Pen e (X) 5 NIByy || SH|HP |

for n |arge enough.

The proof of theorem 1 contains five intermediate steps.



—y

Proof

1. A, an eigenvalue of finite algebraic nmultiplicity m,

is a pole

of order £ (1 <¢<m) of R(z) | uhose Laurent expansion can be

witten ([5], p. 180) :

R(z) = & (z - )\)\ks(kﬂ)
k=-¢

2

with s ()= _p

-k k
s( )=-D »k>1, D= (r-an1)p

S(k)= Sk, k>1, s=1imR(z) (0 - p)
Zs )

Using the Neumann series of R(z), e get:

P, -P= -1 fR(z) £ (HR(z))' dz
2in i=1

with: P . = .1 .
2im /R(z) (HnR(z))l dz
r

= 1 R(z) (8, £ (z-1)% sy gz |

—

21 =a
7 r k=-y

K X K, K,
2 S(’\‘))Hns(2),. S(.l)HS(,'H)

4 o g ’
k.] k2+"+ki+1 i n J

]

(4.2) P,

TN

k
kj_>_ =0+, F=1,.. 141 Uz(1 J)
(cf EKato [5], p-76).
2. It is easy to show that a'theorem |-type deconposition P;n + P
2n

holds with jj 2} |l »0:

Let us go back to the expansion (3.2). By integration on p :



5

Pn-P = -1 R(z)H R(z) dz + (R(z) (1 + H R(z))[ n(H R(z))**] az
51T n n pon
r r
If we substitute in the first integrand the Laurent expansion of R(z) ,

only the coefficient of 1  contributes to the integral

Z-)
1 fR(z) gR(z)dz = sfu o T+ ¢ lu b 4 . . 4w
~ n n n n
2im |
- PHs -Dus-. .. -plgsh.
n n n
obviously : HﬁHDb1+ +SHP || <¥|| HP]]
y N : N < 0 )
C -1 4 , . .
and PIn =-PS-. .. -D HS has its range included in

(] —
PX,andeP— 0.

The second integral can be bounded in norm by :

m(r) max || R(z) || - (7 + | HnR(z) 1) e,
zer 1-€n

where m(r) is the length of r. Then : |} ||+ 0 .

In order to bound || B, |/ in terms of I HP| , we have to go back to
t he expansi on of P -P in terns of Pn,i :
3.  Consider (4.1).

Let N(i) be the nunmber of terms in that sum N(i) is also the

absol ute value of the coefficient of z- in the series expansion of

@ k%) i+
z z )
k=-£+1

or else the coefficient of z

[: ; zg]i-H N
k=0

£2.%2-1 41 the expansion of



. - r . r— T

~—r—— L

i _ i, i
g__i 1 _(-1)}: =L(1+z+z2+...)
azt 1.z (1-z)*" dzt

o S .
The coefficient of z in 1 is then (i+s)(i+s-1)...(s+1), = s

1+1 ) ) - i+s
(1-2) i
N(i) - Cfl-i-ﬁ-'l
(£+1)i+g-1

Maki ng use of the Stirling formulae, we can easily show that there exists

a constant a (depending on £ only) such that:

NGi) <al, i =1, 2

: k,
b powill be the sumof all y (3) yhose normis not going to zero

(o) (-2), &3
(such that s HnS’ S Hns Hns , etc..). Such terms correspond to

sequences (k1,k2,.¢,k:1_i.+1)i =1,2, -«» in which kj >1 for 3>2,
since nas™ ) 4o iti
n + 0 for any nonpositive k ,
: o . .
ky + ki+12 I inplies k1 =1 - (k2 t.. +ki+1) < 0 . Then
each operator such that k, <0, k >i1for j > 2 is a bounded
52 >
operator with range in PX .
We have to prove that P, i's bounded.
O .
k
Pin = <'Z1 [ Z s(k) g g(ke) .. slkis)
i=
k1+k2+.. k+1
sk <O
kJ. > 1, J=2,.. , i+
, = 2 .
Let us recall that q, = (2 8)" l= 0 . we shall prove that for i

Ny

k.
large enough, each Ur<1 3) i1 the above sum contains enough factors of the

oo

(HnS)2 type, in order to ensure the absolute convergence of _ g [si] .
=1



———"""‘r‘v—‘
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Nanel y:
(ky)

For i>24 - u-ae i i '
> » each - wth x <0, Kk >1for j > 2 ,contains

at least Pe ( i-21+3 ) times the factor
2

(HnS)2 , and at nost g -1

i k
times the factor HS , k=1,..,,a, where Pe (x) is the integer

part of x.

This is . shown by a close study of the sequence of exponents kJ. subj ect ed

to the above constraints.

Then, for i>o24 - 1:

Isg i< ety PeldBon)

n 2 K1 K2,

wher e K1 = max sup || H sk [ = max k
- J - D
k=? seegd 1 n K2 k:O,-.,l—'l I I

The series P, ~will be absolutely convergent for n large enough so

1
that an2 < 1.

PInP=OfoIIows fromSP = 0 .

. (k.)
5, Pon w il be the sumof all U, J° for which there exists a
el 1+ } such that k; <0 . Let us then deconpose p ipto:
2n '
5 % e (k.)
= b3 dJ _
2 PR = 3 .
g p=1 i=1 % D b J
k1 + k2 + .. ki+| =i
* kj 2 -+ J is= 1) 2) ey i +1

there exist exactly p indices j , je{2,...
such that kj <0.

> i+1 ]
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Conside i i
r gp,ifora given 1 and p
z Ki < i+ (p+1 -
_ i < p+1) R-1) .
Jf1 ,kJ.y

_ (k)
For i > (p+1) (24+1) ,  aqcn U with k satisfying the
J

pee’ - (1) (2e+1) * 2 times
2 )

constraints * = contains at |east

th 2 .
e factor (Hs), at nost (p+1)¢-1 times the factor . k
n !

k =1,.., (p+1)(2£-1) » and p factors of the type HnDk,

k, k-
) ST < BS 18 < H Sy s g
K _ k
|. D = B (TA)'P = HP(T-A1)% | since p and T commute.
k
L Then Il HD i<y HP || | & s K =0,...,2-1
- Ve get , for i > (p+)(2z +1)=1I(p):
[ e .l < [ai Pe(l=(e)(ern) +2) b
[ p,i m, 5 NESTR: Kep I B8 ”(p+1 )(20;3-1)
2
, js g (e*1) (21-1)11} |
© p I-1
”P SZKB Hﬁ”p( Zal + O}:o&.l']—’%)
p= i=1 i =l h
7 I-1
5 al - a-7 < aI
i=] a-7 a |
o0

1 .
T (ap2 )t 7 )I
My )7 < (an ) 1 »for n such that 4y 7.
n

1 —aﬂf



16

x> p P
Hemce 1%y Il < B INEF

< K Il HP Il

whi ch conpl etes the proof of theorem1 .

Corol lary 2 For n large enough :
11 (B, -B)P) <K Il H P,
Il (Pn - P) PIL.< K H PI.
Proof : (Pi. )P = Py P

(p, - P) B = (Pn-P)2 + (P -P) P,

2 2

- = i P =
and (P, P) PopPin t Pyp Bop t Py, o SINCE P, 0
The results then fol | ow.
For approximations of class 1 and 3, we have : || P - P, [P0,

V. CONVERGENCE IN GAP OF THE | NVARI ANT SUBSPACES
Let us borrow fromKato ([5], p.197), the definition of the

gap between two closed subspaces M and N , of a Banach space X :

8 (M,N) = sup di st (x,N) ,
xeM

I =1
}; (M,N) = max [ §(M,N), 5(N,M) ] is the gap between Mand N .
The following property holds: s(M,N) < 1 inplies dimM< dim N,

and 5 (4,N) < 1 inplies dim Medim N.
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Theorem 2 For n | arge enough:

g(PX,PnX)SK”HnP“_

Proof Ve have the inequalities :

5 (PX, PX ) < ||[(B,~P)P ||,
and ¢ (P.X, PX ) < [[(P-P)P | .

Theorem 2 follows from Corollary 2.

Renmark : If T is an approximtion of T such that Rn(z)x + R(z)x
for any x¢X , and any Z On T , then PX 4 Px and, since PX is
finite-dinensional, H(Pn -P)P 40 . This inplies that dimPX <

di mPpX: there are at least m approximate eigenvalues lying inside r .
Ve need some additional assunption to show that /(e - P)P |~ O and

dimPnX < dimPX . This assunption is provided here by the hypothesis (2.4).

VI. CONVERGENCE OF THE EIGENVALUES

6.1 Series expansion of A_-2a

The trace of a linear operator A with finite rank is denoted by tr A

If Ais of finite rank and -B continuous, the identity tr AB = tr B A

hol ds, (Kato [5] p. 379).

For the following, refer to Kato [5], p. 77.
m

tr T P = X A .
nn 1= n,l\‘

(Tn- A1) Rn(z) =1 + (z-2) Rn(z)
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(Tn - A1) P, = -1 (Tn-M)R Sz) dz

oim
r
oo
= 4 (z-NR(2)dz =-7 J(Z-X)R(z) Z (K R(z))? dz
23T 2im p=0
[
r r
= (T-M1) P -gg {(z-0)R(z) S (H.R(z))P
2im | p=1 o
A -A= 1 tr (T- A1)P. = -1 tr (z-\)R(z) ¥ (H R(z))Paz
n = n n T osra ps D z
I
r
since tr (T-11) P=0 .
)2 we get

Using d R(2) = (R(z)
dz

%Z(HnR(z))p = 4lH R(Z) . . BR()] S B R(2).. . H B2 (2)+.. 48 R (2) .. HR(2).

5

tr f(z-h) _d ( HnR(z))'p dz = p tr /(z-)\)(HnR(z))p dz .

r r
This can be proved by using the Laurent expansion in y of R(z),
integrating on r, then using tr AB = tr BA , since each term contains

P at |east once. Then :

(o@)
A - A= -1 3 tr f1 (z-1) _d (HR(2))? az

n —

5imm  pel . b iz

T
O
= | T tr 1 (HR(z) )P dz (integration by parts)

2imm p:| | P n

r
e (k1 ) (kp)
(6.1) A -A=1 % 1tr T HpS .. . BS
n m p=l P Iy Hy b =D

ka_ =L+, j=15+5P
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6.2. W& prove the follow ng:
Theorem 3 For n large enough:

lkn-)\fg%ltanP]+K||HnP||.

Proof : Al operators which appear in (6.1) contain at |east one

operator with finite rank, so we can apply the bound :
Litral< pay.
m

For p = 1 we get :_ntr H P which appears to be the principal

termin )\n -y for nost approxi mation methods.
_ @

- (k1 k :
o 1_m_ I_)71:r T H S ) . HnS( p) can be easily bounded

z
p=2

in normby gy H P |l by using the technique developed in Section

V.
Corollary 3| For n |arge enough:
® k k
l;\n-)\’ggnltr HP+ztr E Hns( ”..H S( p)|+1<mf4 G
P2 Kyt =p-T n Co e

ka 1, 3=1,..,p1

-i+1< k< 0
Proof : As previously, we can deconpose the sum over the K. into the sum

over the kj where one kj i's nonpositive, then two K  are nonpositive
J H

and so on.  The result above is obtained by considering one kj <0, and

noticing that we have p operators with the same trace.
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For example, if A is a sem-sinple eigenvalue, =1, kp=O,

k, +..+1«:p_1 = p-1 inplies kJ.=1,j=1,.., p-1, so that the sum g

oo(HS)p H P) .
p=0 "

reduces to. -tr(H SH P + (H S)2
n n n

VI1.  APPLI CATI ONS

7.1.  uniform approxi mation

Il H |l 0 inplies | H* |l +0, where H * is the adjoint of H

W can then bound ¢ nore precisely.

Theorem k4 For n large enough:

| A ] < 1[ tr HP | + K| HP| || HX*PX ||,

RESE J_ | tr ( P—kzI“.HSkHD ) [+KIVEJ I HP || EPE|
Proof:  Consider ¢ :
For p = 2 we get : -%tr( HSHP + Hn82 BED. . . *+ HnSZHnDZ-U . For
1<k<2, tr H SkH o1 = gr PHnSanPDk'1 ,  then :

(z H s"% D ) < K P I H P

For p =3, the bound is given by : 'S ”Hn|| 1R T [ W |
® 21 2
then: |l o |l < (pge 7, )P )anPn || B *P* || < K ||H _P| ||H *P¥||

The second bound then foll ows.
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For exanple, if £=1, we get the principal term:

1] tr (0 -HS)HP].
m A

Remark : The first bound is the same as the one given by Gsborn [8]:

m

tr HP = ((T-Tn) ©ss cpj* ) , where (

is a basis
il ’

2 %303=1, . m

of PX and (cpj*)j=1’“,m t he adjoint basis of P*¥* . On the

~other hand, }|(T-Tn)P <1021 . (T_Tn) | ox Il - See [8], [2]

for various exanples.

Using the second bound we can derive the asynptotic equalities that

we get in [4], for a Galerkin-type approxination of a normal operator
ina Hlbert space if T = m T where m, 1S a sequence of

orthogonal projections such that mx 4 X, XX, t hen:
n 2
1% tr (TTnT'T)P =\ j§1((1"ﬁn)cpj:coj ) =2 H(“T&l)cpll

where cp belongs to PX .

7.2. collectively conpact approxi mation

Qbviously the bound in theorem3 holds. It has to be conpared to
the bound : | A-A |< K | |(Hn)|PX|| given by Gsborn [8] .
Theorem 5 For n | arge enough:
l -
A - A<y tr HP - tr 3 HnSk HnDkI | + o  IH P
o m k=l

n...oa
wher e Otn—-; 0



® k Kk
Proof: Consider g = 1% tr Z__ g s .HnS( )
mp=3  k +e.tk =p-l n
kj21 5] j=1 3 o’p-1
-1+1< k <0
S S
Since T is collectively conpact , | HnSanSJG | 40, for r, t>1.
Let g = max || HnernSJC Il , where Vis the finite set of indices:
(r,teVv
V = (1;3) )
(1,2-1) 5 (2,4-1)
(1,1) (2,7 )  eeue (£, 1) 1.
'-?-1
- © P
Noll < % a’ e, ) < Ke, for n large enough.

p=3

Theorem 5 follows fromcorollary 2, with o =X e, T I HPI

1.3. T bel ongs to class 3
Since || HnR(z) | »0, for ze , | HS| +0.
Theorem 6 For n | arge enough :
| A - A |1 | 4r HnPl+a;n|j(HnP”
m

Proof : This follows readily fromtheorem5 and || HS| + 0 .

22
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If T and T, are sel f- adjoint in a Hlbert space we get the bounds for

n | arge enough:
A, -2 <1
m

_a|(1_
m

2
| tr (B P - %

2
| tr B P [+ K || E P )",

k-1 2
HnSanD ) | + K HS || I 5P Y|,

The proof is easily adapted fromthe proof of theoren 4 by using the fact

that |HS| + 0 .
n

7.4, T has a conpact resolvent

Since R(z) is conpact, | HnSk Il =1l 58.8

Theorem 7 For n |l arge enough :

k-1 |+0 for2<k< /.

DA A | <-1I’;L tr ((1 - HnS) an) | + o, I H P
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