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ABSTRACT
The use of | ower order approxinations in the neighborhood of

boundaries coupled with higher order interior approximtions is
L, examned for the mxed initial boundary-value problem for hyperbolic
i partial differential equations. Uniformerror can be maintained using
smaller grid intervals with the [ower order approxinmations near the
boundaries. Stability results are presented for approximtions to the
initial boundary-value problemfor the nodel equation u, *eu, = 0
which are fourth order in space and second order in tine in the interior
.and second order in both space and time near the boundaries. These
results are generalized to a class of nethods of this type for hyperbolic
systems . Conputational results are presented and conparisons are nade

wi th' ot her nethods.
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1. Introduction. It has been established that fourth order nethods are

much nmore efficient than those of first and second order for hyperbolic
partial differential equations [5,9,11]. Wen such nethods are used for
the initial boundary-value problem awkward situations arise in the

nei ghbor hood of the boundaries since the interior approximtions cannot
be used there in a straightforward manner. |t is attractive to consider
mat ching | ower order approximations in the neighborhood of the boundaries
to higher order interior approximtions. However, it has been established
by Qustafsson [6] that nore than one order of accuracy cannot be dropped
near the boundaries wthout sacrificing the rate of convergence over the
entire region. Conputational exanples [6,11] illustrate this fact. Con-
sequently, a denser net nust be used with the |ower order approximation
iIf the overall accuracy is to be maintained.

There are many applications where this approach is quite natura
for other reasons. For exanple, oceanographic problens often have
boundaries and associ ated boundary | ayer phenomena which are quite
conpl ex conpared to the solution in the interior. A very fine grid may
. be necessary to adequately represent these boundaries and | ower order
approxi mations nmay be appropriate in the boundary |ayer since the boundary
influence is often of a forced rather than a transient nature (see [5,9]
for details of the error as a function of tine for approxi mations of
different orders of accuracy).

In Section 2 we begin by exam ning nethods for the nodel problem



O, a<x<b, t >0

A

(1.1) u + Cu = 0, c

(1.2) ulx,0) = fx, a<x<Db;

(1.3)  ulp,t) = glt), t > 0

with conpatibility condition f£(b) = g(0). W first consider a centered
di fference approximation to (1.1)-(1.3) which is fourth order in space
and second order in tinme in the interior coupled with the second
order leap-frog nmethod near the boundaries. This nethod is found to be
unstabl e unless the sane grid interval is used with both the |eap-frog
and nore accurate interior approximations. Consequently, this nethod
has limted usefulness. W also consider using the Lax-Wendroff approxi-
mation near the boundaries. Tnhis conbined nethod is found to be stable.
VW conclude Section 2 with general results for nethods of this type for
hyperbolic systens.

In Section 3 we present nunerical results obtained using the
met hods presented in Section 2 and conpare these results with those
obtained in [11] where uncentered approximations of third order were used
in the neighborhood of the boundaries.

W will use the theory of Qustafsson, Xreiss and Sundstrom [7]
and assume that the reader is famliar with the results of that paper
The stability results presented.here for constant coefficients can be

extended to the variable coefficient case in the same manner as those

of [7].



2. The Methods and Stability Results

We begin by examning an approximtion to (1.1), (1.2) and (1.3),

Ve can take a = 0 and b =1 \yithout |oss of generality. Let k> o,

h
c

A

¢}

I/N and h, = hC/M where N and M are natural nunbers Let

k/hC and Af = k/hf. Define grid functions v,,(t) = V(th,t)

for v=0,1,...,n; fv(t) = Z(Vhf,t) for v =o0,1,...,0n and

r,(t) = r(-b +vn ,t) fOr v =0,1,... Muhere ¢t = 0,k,2k,..., S€e
Figure 1. For 2 <v < N-2 we approximate (1.1) by the ¢(¥ + K°)

appr oxi mation

- Figure 1
M oM
| | ror 0 TM
! | | J J 1
V() vl V, V.
2 N-1 N
x=0 x=1

L
(2.1a) v (t + k) = v, (t-k) - cax [5D4h,) ‘%Do(ghc)] v (t)
_ where Do(nhC )vv(t) = (2nhc)-l [va(t) - Vv_n(t) 1.

On the interval [O,Ehm] we approxi mate(l 1 by the @(hi + ke)

appr oxi mation

(2.2a) £t + k) =4 (t -k - c2kDO(hf)zv(t) for v=1,2,... 281,

and at x = 0 by the @(hf + KE) approximation

(2.2b) Lot + k) = 44(t - k) - c@re [ 23(t) - 0.5(2p(t-k) + £o(t + K))]



On the interval [1- hc, 1] we approxi mate (1.1) by the simlar

@(hg + ¥) and On, + %) for mul ae

(2.3a) r\)(t + k) r (t-k) - Cngo(hf? rv(t) for v = 1,2,... Ml

A

and

(2.3p) ro(t + k) ro(t - k) - C2A 4 [rl(t) - O.S(ro(t + k) + ro((t - k)],

Corresponding to the initial condition (1.2) Ve Use

(2.1b) vv(o)‘"z f(\,hc) for v = 0,1,...,N

>
(2.2¢) L’v(O) = f(vh.) for v = 0,1,...,2M,

and
(2.3¢) r\)(O) = f(1 - he+ vy ) for =0,1,...,x.
Corresponding to the boundary condition (1.3) We use

(2.2d) rM(t)= g(t) for t =0 k 2k, .

Ve then Iink the grid functions (t),v (1) and » (¢)
v % \

by
(%l = 1),
) = 00,
((2.1¢) \ vg(t) = EQM(t)

Vi1 (t)= r,(t), and

vN(t) = r (t)

it

for t = 0,k, 2k,... .



Ve conpl ete the specification by giving

(vv(k) = w(vhc) s V= 0,1,...,N
(2.14) £, (k) = W(Vhf) , vV = 0,1,...,2M
rv(k) = w(l-hc+Vhf) sV o= 0,1,...,M

where w is a sufficiently accurate approximation to the solution
u(x,t) at t = k.

It is clear that the equations (2.1), (2.2) and (2.3) deternine
a uni que approxifation Which is consistent with the problem(1.1),

(1.2) and (1.3).

The one-sided formulae (2.2b) and (2.3b) are due to A Sundstrém
and it has been shown in Elvius and Sundstrom [4] that they yield stable
approxi mations for the related initial boundary-value probl enms when used
with the formulae (2.2a) and (2.3a), It is well-known that (2 1a)is
a stable approxinmation for the related Cauchy problem [5,9].

Note that the approxi mations (2.2b) and (2.3b) are only

2 ,
-G(hf+k ) accurate.  However, it follows fromthe results of Gustafsson

[6] that overal |l convergence behavior is not adversely affected.

Assunption. W assune that A, and Ap satisfy stability
criteria which guarantee that our interior approximtions are stable

for the related Cauchy problens.

(2.1a), (2.2a) and (2.3a) are stable for the related Cauchy

probl ens if lc|7\f <1 and | Chc < 6/NV9 + 24 B = 0.7287 . . ..
5



V¢ now investigate the stability of the nethod defined by (2.1), (2.2)
and (2.3). W use the stability Definition 3.3 of Qustafsson et al. [ 7].
In[71,it is established (Theorem5.4) that the stability of two related
quarter-plane problens is equivalent to stability for the two-boundary
problem in the sense of Definition 3.3. These two problenms are sinply
obt ai ned by renoving one or the other of the boundaries and extending the
domain to + « , as is appropriate. W will refer to these as the right
and left quarter-plane problens.

It is inediate that the associated left quarter-plane problem
—o<x <1 t >0, (w extend v over the negative integers in (2.1a))
is stable by Definition 3.3 of [7]1. This follows fromthe fact that (2.1a)
is stable for the related Cauchy problem and that (2.3a) and (2.3b) are stable
on the interval [1 - hc,Jj and provide a v

N
finite t-interval in terns of the data g(t) . It is the independence of

l(t) whi ch is bounded on every

the calculation of the T, fromthe v, that makes this trivial.
The situation is more conplicated for the associated right quarter-
plane problem 0 <x <, t>0. First we nust examne the stability of

the approximation for the Cauchy problem given by (2.1a) with y extended
over all natural nunbers and (2.2a) with y extended over the negative
integers. This is the problemof matching schemes investigated by

Grent [ 3] for dissipative approximtions. This can al so be anal yzed
interns of the theory of [7 ] since we can think of folding the x-axis
at zero and investigating the initial boundary-value problemfor a

),

vect or v 4
( s e

The new net structure is shown in Figure 2.
6
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Mgure 2
7 ~ ~
oM oy I 7 ~
l N N = tom
VO V]_ Vg
x=0

(v,,Z. )" 15 an approximation to the solution of the differentia

VS My
u -¢ O u
Wt_ 0 e w > OSX(oo, tzO

equati on
X

with boundary condition

w(0,t) . u(o,t) .

Thi s technique has been used in [1], [2] and [3] where nore detail ed

descriptions of this process can be found. Under this transformation

" . _
the conditions v,(t) ZQM(t)’ vy (8) = 2,(t) and vy (t) = 2, (t)

_become |

(2.1e1)

and (2.2a) becones

(020" i i ]
2.2a") £,(6+k) = 7 (k) + o 2kDO(-bf) zv(t)

v = 2M-l, 2M_2, coe 0, -l, _2,
7
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1t 1S shown in [7] that stability according to their Definition 3.3is

equivalent to the fact that a determnantal equation (equation (10.3)

of [71) not vanish for conpl ex z such that lzl > 1. This determnantal
equation can be derived formally by seeking the general solutions of
N R

(2.1a) and (2.2a') of the formv, (t) = and 7 (t)
v

whi ch bel ong to L (hc) and le(hf) for t> 0 and all conplex z

such that |z > 1, i.e.,

co

”V (t) 2 = Z v 2 00
v ”£2(hc) hc V= I V‘ < ’
and
y) (t) =h -2 ) 2 ]

Wien this general solution is substituted into the boundary conditions
(2.1c'), a honpgeneous systemof |inear equations for the arbitrary
constants in the general solution is obtained. | ot C be the matrix of

this system The determinant condition (10.3) of [7] ig det C40
for 4|> 1. This is the requirement that there exist no non-trivial
solutions of the assuned formfor [z > 1 which satisfy the boundary

conditions. Qur determnantal condition is equivalent to

1 1 1
-M .
(2.4a) det| k, K, ¢ £0 if o« # K,
2 2 -2M
S 4



and to

1 0 1
(2.4p s -M :
) det | «, 1 ¢ £ 0 i f Ky = Ky
2 -2M
K1 2K2 €

Ky and K, are the roots of the characteristic equation

(2'5) K4 - 8K5 - 6 ch?:z 1) 2

K+8K_l__o

corresponding to_(2.15) such that |« :
a il <1 & is theroot of the

characteristic equation

-8 Foll 1),

2
-1
cAz -

correspondi ng to (2.2a') such that lt] < 1. The fact that .

* K

- 1 2
and ¢ are uniquely defined as the continuous functions of ¢z

satisfying these criteria is established in [7]. It is also shown in

[T that |k l< 1, i =1 2and [tf< 1 for [z] > 1 so the

conditions (2.ka) and (2.hv) are satisfied for |\ 1 &ijco these
| v

deternminants only vanish if « ={""or K - eM L order to

complete OUr analysig We nust exami ne the roots
plete V818 K o f (2.5)

. 1’2
_ _i6
and € of (2.6) for 2= e™. 75 4o this we need the fol lowing |emm.



Lemm 2.1 Let z = % ang Kl(e) and K2(9) be the roots of (2.5)

whi ch satisfy {Kji <1, j =1, 2, when lz| > 1. If we nunber properly

then |« | <1 and [c,| <1 for all a. Let c<o. Define 0,

to be the smallest positive value of & such that

plo) =230 _ \Agyos B --1646
C
then 0 < 6, < /2. Set 9 =T -6y, then p(g,) = p(e,). Define 6,5

6, < 65 < T, by (3(93) = -16. Define 6, T < 6, < 3m/2, by

B(%) = 16. Let 95 be the smallest value of o such that

B(6) = V36 + 96 & = 16.46 . . . , then 3m/e<o . of
o QM¢

8 = 2T - 6, then 6(66) = f3(95). The 6, S0 defined satisfy

O<91562<95<W<9h<95596<2v‘ 91:92 and 95:96

only if IC?\c, = 12/ V36 + 96\/6. The foll owing properties of k,(6) hol d:

if and

KQ:_l for 6 =0
Re K, < 0, IK21=1 for 0<6<6,
|K2| <1 for 6, <6 <6, i f 6, <92
Re Kk, < 0, lKgl =1 for 6, <6< 0,
o =1 for 9=93
Re k, > 0, k| =1 for 65 < 6 < T
Ky =1 for 6 = 7
Re Ky > 0, IKE, =1 for 7 <o <94

10




) x.—-s—&“‘?“‘

K ~1
D = for 6 =296
L
Re k, <0, [k,[ =1 for 6, < 6 <0,
I« | <1 for6. < 6 6
5 5 < 6 i f 95"<86
ReK2<o,lK21=1 for 6, < 6 < o

If ¢ > 0 then k,(0) = 1 and the above properties hold if we replace

6 by o' = o-T.

Proof:  The properties of the 6, followeasily fromthe assumption that

) (2.1a) is stable for the related Cauchy problem i.e.,
L ,C?\Cl <12/V/36 +96 V6, and the properties of cos . |t was shoun

in Lemma 2.1 of [11] that lKlf<1 and |K2' < 1 if 52(9) > 36 + 9%6\/8
- and that one of the 3 satisfied |Kj| =1 and the other |«| <1
J
for each value of @ such that 32(6) <36 +96 V6. From our
- definition of the Qj, 62(9) >36+96\/g for 91<9<92 i f el¥62 and for
g < 6 < O 1T 6 # 8.5 andp(e)<36 + 9 V& otherwise. For
B # 0, +8, + 16 the number of roots of (2.5) with positive real part,

p, and the number W th negative real part, g, are given by

p=V(1, -8, 6 - p°, 88°, g2(s® - 256))
and

Q= V(1,86 - g°,-88%, 2(g° - 256))

11
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- KE(QI) = (-0.2247...) + i(0.974k4...). Similarly, at z = e

wher e V(al,. C an)denotesthenumber of changes of sign in the
real sequence a., 8 . . A (Theorem (40,1) of [10]). W
cal cul ate:

p=3 and q-=1 for 0 < |g] < 8,

p=3 and q = 1 for 8<|gl<16,

P=2 and gq =2 for 16 < |p] .

Exam ning the roots of (2.5) at z =1 and at z =1 +5,8 >0,

we find that K'i':0.127, ;<2:-1 and p =3, g=1 at 6 = 0.

By continuity, since p=3,q=1for 0 <|g|l<8and since «=+1
are roots of (2.5) if and only if g = +16; we can concl ude that <
remains in the left half-plane for the e-neighborhood of ( such that
o<lgl<8. Since + i are not roots of (2.5) for g =+ 8 and

IKEI = 1, we can concl ude that K, remains in the |eft half-plane for

the larger 6-neighborhood Of 0 such that 0 < |p| <16. Exanination
16 16
1

of the roots of (2.5) at zZ=¢€ 1 and z = (1 + d)e shows

ié

® e find
ky(6g) = (-0.2247...) + 1(-0.97hk...). s0, again by continuity, K, (6)
must remain in the left half-plane for |g| >16 since p =2, q=2 for

i6
all such p. Exanmination of the roots of (2.5) at z = e 3 yi el ds
i6
. _ 4 . o L

K2(93)—| and at z = e we find KQ(GLL)—-I so it is «, that
moves into the right half-plane as we enlarge the B-neighborhood of 0
beyond 95 and 6y, - W can concl ude that IKli < 1 and that Re Ky<o

for o< e<63 and 64 < 6 < 2m and Re k, > 0 for 95 <6< 0.

12




This concludes the proof for ¢ < 0. The proof for ¢ > 0 proceeds

simlarly.

It follows from Lemma (6.2) of[7] and the formul ae inmmediately

preceding it that: (1) [¢] = 1 and sign(Be ) = -sign(c Re z) when

z=et?

|sin 6] > l?\fCJ, and (3) ¢ = -1 when z = -1 and ¢ =1 when z = 1.

and 6 satisfies (sin 6] < ’c7\f|, (2) |t] < 1 when

V& now return to the examination of the determ nant condition.
W saw that it was satisfied for |z|] > 1 and now consider z = eiev
It follows easily fromLemma 2.1 and the preceding paragraph that
Ky #¢™ since -|K14 <1 and [t > 1. Now we only have the

o -M . .
condition Ko £t remaining to examne. W consider three cases.

Case I, M=1. |f M= 1, then AC=?\f and

sin 6 ; ; — in 6
—————fo1<__1 if and only if |g(e)] = lglsélen:——'im.

If [sin 9/c7\fl < 1 then Lemmm 2.1 inplies that sign(Rek,) = - sign(Re ¢

since Re t = Re t™1 and lgel < 12. If |sin alrﬂ;\fl.s, 1 then

el < 1 so lg‘ll > 1 and lei < 1. VW can conclude that < 4 ¢t

and that the conbined nethod is stable for the Cauchy problemif

M= 1.

€M=K2 at © = m since t = -1 and

Koy -1 at o =m. The determinant condition is violated and the conbi ned

met hod unstable for the Cauchy problem for any even M.

Case Il, Meven. |f Mis even then

13



Case IIl, M253 and odd. Consider & on the interval 0, <6 <8

b

wher e 92 and 6, are defined as in Lenma 2. 1. KE‘(G) is a continuous

3
function of 9 and IK2 | = 1 on this interval. From Lemma 2.1 we have
arg(KE(GQ)) = 1.797... and arg(K2 (05)) = 7T/2 SO H.I'g(KQ(92>) - arg(Kg(()B) ).

It is easily seen [7] that

i sin0/cn, + Sign(cos 6)(1 - sin®6/cHZ)H2.

e
1

Wen 62_<_9_<_93 then [¢/ =1 and Tm ¢ = sin Q/C?\f satisfies

1.372... _ /36 + 9%6/6 sin 92<Sin9<s_if__9§_

M 12M - c)\f = c7\f - 07\f
M M

-M ) . . .
¢ and ¢ are also continuous functions on this interval.

arg(t) = sin*(sin 9/0?\f) and arg(t™) = -M arg(t) so

-M . -
arg (¢ (6,)) = -M sin - ve6 + 9% J6)/12M] and arg(Q-M(GB)) =
N . )
-Msin ~(- 3 M). W% consider values of gjp 1(8) on [0,2m). It
is clear that arg(C-M(Gg)) < arg(C_M(GB)) and easily seen that
arg (K2 (92 )) > arg(C-M(Gg)) for all M>_3. Thus, we have two

continuous functions, S~ ©) and t™(6), whose ranges coincide for

e 6 e
O]where2< 055

same value for sone ¢ ¢ [92,901 and the determinant condition is

sone interval [6,,6 so they nust take on the

14



violated there. By a simlar argument we can see that there is another

val ue of 6 between 8, and 95 where the determinant condition is
violated. Therefore, the conbined-nethod is unstable for the Cauchy
problem for all odd M> 3.

The stability of the right quarter-plane problem now follows
easily for M= 1 since (2.2b) is stable with (2.2a). This results

fromthe fact that we can represent the v, in terms of { gnd the

v
deternminantal condition to be verified is just that for (2.2a) with

(2.2v) which has already been verified [4]. W have

Theorem2.1. The approxi mation (2.1)-(2.3) is stable for M= 1 and
unstable for all M> 2.

Before commenting on this resultwe will first present a nodified
version of this method.

It is of interest to consider handling the right boundary with
the r, nesh extending from x =1 - 2n, to x = 1 (over two h,
intevals as we have done with the left boundary). This is natural to
consi der for vector equations where there are both inflow and outflow
quantities on both boundaries, and for equations with coefficients
which are functions of t so that the artificial internal boundary
at x =1 - hC may be at tines an inflow and at times an outflow
boundary. W can accomplish this by redefining the grid function
r,(¢) for v=0, 1, . . ., 2Mas r,(6) =r( - 2n_ + vh,, t) and
using the equations

15



r. (t) = g(t)

2M
(2.1e) rM(t) = VN_l(t)
ro(t) = vn_2 (t)

i nstead of those involving the r, of (2.1c)

Let us consider the stability of this nethod. The associated

right quarter-plane problemis the same as before and therefore stable

if and only if M= 1. \W now consider the associated |eft quarter-

pl ane probl em "_Si nce (2.3a) is stable with (2.3b) as previously renarked
we need only consider the stability of (2.1a) coupled with (2.3a) by

the conditions (2.1e) for the related Cauehy problem |f we fold the
x-axis at x = 1 and renunber the v, and r, we again obtain the

conditions (2.4) which we have already examined. W have

Theorem 2.2.  The approximation (2.1)-(2.3) with the r approximation

extended over [1 - th’l] and the rv(t) equations of (2.1c) replaced

by those of (2.1e) is stable for M= 1 and unstable for all M> 2.

The nethods found to be unstable in Theorens 2.1 and 2.2 have
only violated the determnant condition for values of z which lie
on the unit circle, i.e., they satisfy the Godunov-Ryabenkii condition

[71. It is easily seen that the roots K (z) and ¢(z) are sinple

roots of the characteristic equations for those z which violate the

deternmnant condition. Such instabilities have been discussed by

16
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Kreiss [8]. Approximations of this type for problems on bounded x-intervals

have sol utions which grow |ike No‘t, a > 0. Further, the extension

of any estimates obtainable for problems with constant coefficients
to problenms with variable coefficients is, in general, inpossible.

Conput ational experiments with M> 1 for the nodel problem
(1.1)-(2.3) have indicated that these methods can be used successfully
for linmted tinmes to approximate snmooth sol utions. However, experinents
with the equation u, - U - U= 0, 0<x<1 0<y<1 have shown
di sastrous growth when M is even while behaving reasonably for
limted tines vyi'th M odd.

Theorens 2.1 and 2.2 are disappointing. |f we couple |eap-frog
with the centered @(hi +%2) interior approxi mati on we obviously
have no opportunity to refine the mesh to achieve uniform accuracy.
Computational results with M= 1 are given in Section 3. They
illustrate the fact that we really need M > 1 to achieve overall
@(hf+ K°) accuracy when conmpared with results obtained in [11].
However , there are situations where these techniques with M= 1 can
be useful., If the boundary data is rather inaccurate then nothing coul d
-be gained by a refinement, M> 1. |f this is the case and the boundary
is sufficiently renmoved from an interior portion of the domain where
the approximtion is desired, then these techniques with M = 1 can
be useful. O course, the area of integration nust be so large that
the boundary errors will not propagate into the region of interest
during the duration of the conputation.

VW next consider replacing the approximations (2.2) and (2.3)

by the dissipative Lax-Wendroff -method. W replace (2.2a) by

17
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(2.7a) (6 + k) = 1 (¢) - keDy(n) £,(t) +3 R @D,D ¢ ()

for v=1,2,.,., 242

where DD £,(6) = (., (8) - 20, (6) + 2, (6))RF. Ve replace

(2.2b) by

(2.7p)

zo(t + k) = zo(t) - ch+zo(t)

wher e

D £ (t) = (2, (t) - lo(t))hA} .

Similarly, we replace (2.3a) by

l1 .22

(2.8a) rv(t + k) = rv(t) - chO(hf) r,(t) + 5 k% D+D_rv(t)
for v=1,2, . . ., MI

and (2.3b) by

(2.8b) ro(t + k) = ro(t) - ch+ro(t)

The approximations (2-7a) and (2.8a) have local truncation error
G(hi + K°) and the boundary approxi mations (2.75) and (2.8p) have
l ocal truncation error @(hf +* k). The approxi mations (2.7) and
(2.8) have been shown to be stable for the related quarter-plane

problens in [7] and the convergence results of Gustafsson [6] apply

18



in this case as before to tell us that the overall convergence will

not be adversely affected if the nethod is stable. Wen we apply the
sanme techniques to this nethod we again obtain the deterninantal

conditions (2.4), In this case ¢ is the root of

Ac AC
(2.9) (2 - DE-2= (% - 1) - == (-1 -0

such that |¢/ <1 for |z > 1. It was shown in [7] that this condition

uniquely defines ¢, that |t/ < 1 if |z]>1 and c¢> 0, and

ltf <1 if |zl >1,z#1 and ¢<0. |f ¢ <0 and z = 1 then
{ =1 Therefor.é‘, the determnantal conditions (2.4) are satisfied
for all M since IKiI <1, 1=1, 2 and [t™ > 1. |t we consider
the refinement over two intervals on the right hand end of the interval

stability is again equivalent to the conditions (2.4) which we have

already verified. W have established

Theorem 2. 3. The nethod given by (2.1), (2.7) and (2.8 ) with the matching
conditions (2.1c) is stable for all M The anal ogous nethod resul ting
“fromthe extension of r over [1 - 2h_, 1] and the repl acenment of

the r, equations of (21c)by those of (2.1e) is also stable for

all’ M

V¢ present results for this nmethod in Section 3.
It is now easy to see how these results generalize to systems

of equations and that the formof the results is independent of the

approximations used to a great extent.
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Consi der the strictly hyperbolic system

ut:AuX, aS_X:<_b, t> 0

S . .
where u € R° and Ais a constant s X s matrix of the form

> AT <O, All >0 .

To simplify matters we assune that A has already been transformed

to diagonal form.

Let us prescribe initial conditions
u(x,0) = f(x)
and boundary conditions

I_ IT T
u ‘Sau +ga(t) at X =a

-7-r
S.u' +g1|)|(t) at x=b

1A Sa and Sb are

e assune



with their boundary approxinations, are stable for the rel ated quarter-

pl ane and Cauchy probl ems and that A, is stable for the related
Cauchy problem for the given A and Ag defined as before.

In this situation it is nmore natural to consider the second
nethod of linking the net functions together. That is, we |ink the
grid functions at both ends of the interval requiring equality at sone
number of points on the vv(t) grid.  Under the assunption that the
met hods Al and A3 are stable for the related quarter-plane problens
we need only look at the stability of the related Cauchy problens for
t he conbi ned Ay - A2 and A2 - ,63 met hods and we can do this
separately. W only consider one case--the other is sinilar. |f we
| ook at the related fol ded problem for AL - A for a < x <

it is an approximation for the nodified equation

with

~ NI ~I ~ "
u = (u , u I, U_III) ul V)
and boundary conditions

~T ~IIT  ~ ~
u = 1u 5 uIV = uII

W then wite out the appropriate Nodified approximation using nethod

A, for the vector (3%, atl)r

5 and A for the vector (FTIT, vy
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The characteristic equations K (¢,z) and KQ(K,Z) rel ated to the

approxi mations A, and Ay respectively, are polynonmials in «

1
and €, say, with coefficients which are polynomals in z. Si nce

Ay and A2 are stable for the Cauchy problemthe roots of K and

split into two groups as before, -
K, sp group ML,K. and I\%,Ki, with the
property that lKil <1 and !gilgl for |zl > 1 if gl €M
- 1,K
d k. € \ i 1
and «, l\/LK2 and |« | > 1 and 3§il > 1 for |z] > 1 if

6 € ME’Kl and «, € Me, - This is shown in [7] and sinply follows

from stability for the related Cauchy problens, ,
Let Ml’Kl contain
m, roots and M '
1 ,_1’K2 contaln m2 roots.
Then t he my + m2 condi tions
(2.10) Vv(t) = IMV(’G) , v=0 1,... :(ml+m2-l)

for the original problem uniquely determne the solutions in l,. Ve obtain

the determinental condition det C # 0 as before. In this case C
Is equivalent to a block Vandermonde or block confluent Vandernonde

matrix. In fact, if Dis the matrix we would obtain using the

appr oxi mat i ons Ay and A, for u e gt

and D = (d‘l‘g) then we can
represent C as
C=(a,.1)
ij’s
¢

and det C =0 if and only if « = for KiEML, andEJ.GM'

Thus we see that analogs of Theorems 2.1, 2.2 and 2.3 hold in these

.

more general circunmstances. In particular, the matching theorem of

22



Cinent [3] holds if only one of the stable matched schenes is dissipative.

Details on the derivation of the formof C are given in [3]. W

sunmarize in

Theorem 2.4.  The nethod given by the conbination of Al' Ae’ and A3
through conditions of the form(2.10) is stable if g__fM #Ki for

lz| > 1 where the Cj's are roots of the characteristic equations
corresponding to the boundary methods A, and A3 such t hat

lgjj < 1 and the Ki's are the roots of the characteristic equation
correspondi ng te the interior approxination Az such that IKiI <1,
for |zl > 1. In particular, if A s dissipative or both A, and

2

A5 are dissipative and the root condition Ki;f(;:M holds for z = +1,
3 AX

. then the conbined nethod is stable.

Pr oof :

To conplete the proof we only need to remark that the roots
of the characteristic equation for a dissipative approximation [7]
satisfy [kl<1 for |z]>1 and z # + 1.

The paper of Gustafsson et al.[7] presents several stable
boundary approxi mations which can be used for 4 angd A3

Theorem 2.4 shows that dissipative nmodifications of the |eap-

L 2

frog method could be used with the 6(a) + k%) centered approximation

treated in Theorems 2.1 and 2.2 to yield stable nmethod with M> 3

and odd.
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e

So far our discussion has always assumed that we use the sane

time step, k > 0, for both the interior and boundary approximations.
The stability restriction on AC places a restriction on M since
Ap < A, amd A, is an increasing function of M For the @(hlc* + %)

and @(hi + K°) met hods this usually does not cause any real problem

It is natural to choose hc and k so that the truncation errors

arising fromthe spacial and tenporal discretizations are of roughly

the same size. This leads us to the condition

h
h™ =k or hgzk.

It is reasonable to choose M so that
- 2
hf ~ hC or h” = h

so that the spacial truncation error is of roughly the same size for the

interior and boundary approximations. This |eads us to

or

Ap = k/hfwl

which indicates that the usual stability restrictions for explicit
methods will not create a problem  This also agrees with the condition
we obtain if we ask that the spacial and tenporal truncation errors be
of the same size in the boundary approximtion, i.e.,

2 2

,hf’f‘v’k

The conputational results in Section 3 bear this out.
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If a situation arises where the previous estimates are not

valid due to the behavior of the solution a smaller time step can be
used on the refined grid by interpolating in time on the vy et
where intermedi ate val ues are needed after first conputing the new

values on the v, net. This is always possible with an explicit

method.  The previous analysis does not hold in this case but we have
performed several conputations in this manner yhich indicate the
success of this procedure. Sone calculations of this type are presented

in Section 3.

3. Conputational Results

Qur first set of conputations are approximtions to (1.1), (1.2)
and (1.3) with ¢ =1, a=0, b =1, f(x) =sin krx and
g(t) = £(-t) which has the solution u(x,t) = £(x-t). This could be
stated as a periodic boundary problem but we treat it as an initial

boundary-val ue problem mis is useful since it allows direct com

_parisons with periodic conputations as done in [11]. It was sonewhat
more convenient to discuss our theoretical results with ¢ < 0 but
we have chosen to use ¢ = 1> 0 here so that the conputations will
be immediately conparable with those of [11]. The theoretical results
are, of course, unchanged and the difference approximtions are just
the reflections of those already introduced.

Ve define the error in the vth grid point to be ev(t)

= ulx,t) - v, (t) and conpute error norms over the v, (t) grid.
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W use the previously defined fg(hc) normand the ¢ norm defined

as e

VIIZ = maxfevl.

(=]

In Table 3.1 we give the results of the method anal ogous to
that defined by equations (2.1)-(2.3)., W include results obtained
using smaller time steps on the refined grid and use | - k_c/kf to
denote this ratio in the table. W append the letters q or Zto
the nunmbers in the L-colum to indicate whether quadratic or |inear
interpolation was used. \\ have used A, = 1/ with N = 20 for
these calculations. W have used the solution at t = k for w

in  (2.1d)Me Use the notation a - b to represent 4 x 107° in
our tables. Recall that these methods are not stable according to
the Definition 3.3 of [7]for M> 1.

In Table 3.2 we report the results of the same computation
using Lax-\Wendroff in the refined regions, i.e., the reflections of
equations (2.1), (2.2a'), (2.2b"), (2.3a') and (2.3b').

These results can be conpared with those given in [11]. W\
include sone results obtained in that paper using uncentered @th)
approxi mations in the nei ghborhood of the boundaries for purposes of
conparison, The problemand all other paraneters are the sane as

those used here. These results are in Table 3. 3.

It is clear that we only need M= 3 and L = 1 in this
case to achieve the sane accuracy. |nterpolation in time is not
necessary to obtain this accuracy. |f greater accuracyis required

interpolation may becone necessary.
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TABIE 3.1

M L vl ) ne\,u,z2 |revu,z;o mlle W'fz el ,
t = 0.5 t = 1.0
1 1 6. 54- | 1. 14-1 2.23-1 5. 71-1 1.85-i 4. 16-
2 1 7.02-1  1.76-2  3.63-2 6.99-1  2.69-2  L.97-2
3 1 7.04-1 6. 16-3 1.19-2 7.00-1 9.28-3 1.78-2
b 7.07-1 3.02-3  5.55-3 7.07-1 4,38-3  9.26-3
L 2,9 7.06-1  5.99-3 1.14-2 7.05-1 9.48-3 1.95-2
L 2,4 7.06- 5.99-3 1.1h-2 7.05-1 9.48-3 1.95-2
> 2,9  7.061 4,13-3 8.00-3 7.04-| 5. 98-3 1.20-2
5 2,4 T.06-1  k.he-3  8.59-3 7.04-1  6.18-3 1.38-2
t =2.0 t = 4.0
1 1 5. 35-1 2.21-1 4, 07- 5. 37-1 2.03-1 3. 76-
2 1 T.02-1 2.39-2 5.81-2 6.94-1 7.45-2 1.60-1
3 1 6. 98- 9.67-3 1.76-2 6.99-1  9.63-3 1.75-2
4 1 7.07-1 4,43-3 9.65-3 7.07-1 4,76-3 9.99-3
2,q 1.06-1 8. 85-3 2.20-2 7.06- | 8.95-3 2.21-2
2,4 T7.06-1 8.85-3 2.20-2 7.06- | 8.95-3 2.21-2
2,9 7.03-1 5.51-3 1.05-2 7.03-1 5.54-3 1.05-2
2,4 T.o04-1  4.83-3 9.74-3 7.04-1 4.90-3 1.01-2

.
o1l o s
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TABIE 3.2

'
(&2 BEN'S & BN S

P N legl,, eyt
t = 0.5 t = 1.0
1 1 6.52-1 9.97-2 1.97-1 5. 75-1 1. 60-| 3.4y
2 1 6.96-1 1. 66-2 3.32-2 6.8h-1 2.52-2 3. 86-2
3 1 7.04-1 5.97-3 1.09-2 7.00-| 9.02-3 1.39-2
4 1 7.07-1 3.02-3 5553 7.07-1 4.38-3  0.26-3
4 2,9 7.04-1 5.51-3 9.64-3 7.01-1 8.44-3 1.39-2
4 2,0 71.04-1 5.56-3 9.27-3 7.01-1 8.32-3 1.43-2
5 2,q 7.05-1 4,11-3 6.32-3 7.04-1 6.21-3 1.17-2
5 2,2 7.05-1 4.18-3 6.67-3 7.04-1 6.14-3 1.21-2
I = 2.0 t =4.0
1 1 5. 48-| 1.88-T 3. 32-1 5.52-| 1.77-1 3. 14-
2 1 6.83-1 2.69-2 3.98-2 6.83-1  2.70-2 h.05-2
3 1 6.99-1 9.41-3 1.52-p 6.99-1 9.h2-3 1.53-p
4 1 7.07-1 4, 43-3 9.66-3 7.07-1 4.73-3 9.91-3
2,q 71.01- 8.78-3 1.49-2 7.01-1 8.79-3  1.50-2
2,2 7.01-1 8.20-4 1.45-2 7.01-r 8.23-3 1.48-2
2,q 1.03. 6.33-3  l.16-2 7.03-1 6.34-3  1.17-2
2,7 1.04-1 5.76-3 1.13-2 7.04-1 5.79-3 1.15-2
TABIE 3.3
”’v”/zz ”ev“zg |évlnzm “"“22 Hev”fg “%”zm
t = 0.5 t = 1.0
7.12-1 9.69-3 2.34-p 7.08-1 1.34p 2.51-2
 op s t =2.0 t 4.0
T 1302 2.0hep 6.96-1  1.25-2  2.28-2
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