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ABSTRACT

The use of lower order approximations in the neighborhood of

boundaries coupled with higher order interior approximations is

examined for the mixed initial boundary-value problem for hyperbolic

partial differential equations. Uniform error can be maintained using

smaller grid intervals with the lower order approximations near the

boundaries. Stability results are presented for approximations to the

initial boundary-value problem for the model equation
ut + cu = 0

X

which are fourth order in space and second order in time in the interior

-and second order in both space and time near the boundaries. These

results are generalized to a class of methods of this type for hyperbolic

systems . Computational results are presented and comparisons are made

with‘other methods.
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1. Introduction. It has been established that fourth order methods are

much more efficient than those of first and second order for hyperbolic

partial differential equations [5,9,11]. When such methods are used for

the initial boundary-value problem, awkward situations arise in the

neighborhood of the boundaries since the interior approximations cannot

be used there in a straightforward manner. It is attractive to consider

matching lower order approximations in the neighborhood of the boundaries

to higher order interior approximations. However, it has been established

by Gustafsson [6] that more than one order of accuracy cannot be dropped

near the boundaries without sacrificing the rate of convergence over the h

entire region. Computational examples [6,111 illustrate this fact. Con-

sequently, a denser net must be used with the lower order approximationt
L

i

!

if the overall accuracy is to be maintained.

There are many applications where this approach is quite natural

for other reasons. For example, oceanographic problems often have

boundaries and associated boundary layer phenomena which are quite

complex compared to the solution in the interior. A very fine grid may

- be necessary to adequately represent these boundaries and lower order

approximations may be appropriate in the boundary layer since the boundary

influence is often of a forced rather than a transient nature (see [5,9]

for details of the error as a function of time for approximations of

different orders of accuracy).

In Section 2 we begin by examining methods for the model problem
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(1.1) Ut + cu = 0,
X

c<O,a<x<b,t>O;- - -

(1.2) U(X,O) = f(x), a 5 x -c b;-

(1.3) u(b,t) = g(t), t 2 0;

with compatibility condition f(b) = g(o). We first consider a centered

difference approximation to (l.S)-(1,3) which is fourth order in space

and second order in time in the interior coupled with the second

order leap-frog method near the boundaries. This method is found to be

unstable unless the same grid interval is used with both the leap-frog

and more accurate interior approximations.-= Consequently, this method

has limited usefulness. We also consider using the Lax-Wendroff approxi-

mation near the boundaries. This combined method is found to be stable.

We conclude Section 2 with general results for methods of this type for

hyperbolic systems.

In Section 3 we present numerical results obtained using the

methods presented in Section 2 and compare these results with those

obtained in [ll] where uncentered approximations of third order were used

in the neighborhood of the boundaries.
4

We will use the theory of Gustafsson, Kkreiss and SundstrGm [7]

and assume that the reader is familiar with the results of that paper.

The stability results presented.here for constant coefficients can be

extended to the variable coefficient case in the same manner as those

of [71*
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2. The Methods and Stability Results

We begin by examining an approximation to (l.l), (1.2) and (1.3).

We can take a = 0 and b = 1 .,

l/N and hf =

without loss of generality.

hc =

Let k>O,

he/M where N and M are natural numbers Let.

Ac = k/h
C

and A
f-

- k/hf.

for v=O,l

Define grid functions v,,(t)

J**vN; Gt)

= v(vh&

= I(l/hf,t) for v

r,(t) = r(l-hc+Vhf,t) for

= 0,1,...,2M  and

v = O,l,...

Figure 1.

,M where t = O,k,2k,..., see

For 2 5 V 5 N-2 we approximate (1.1) by the @(he + k2)4

approximation

-- Figure 1

&la) v
v (t + k, = v (t-k) _ c2k

V

where
a Dob$ >v (t> = (2nhJ1

V
Cv

.+n
(t> - v

v-nw

"N-1 YY
x=1

☺ l

by the @(h: + k2)
On the interval CO,2h ]

c! we approximate .(1 1

approximation

(2.2a) iv(t + k) = R (t - k)
V - c2kDo(hf)lv(t)  for ~=1,2,...,2M-1,

and at x = 0 by the @(hf + k

(2.2b) a,@ + k) = Ro(t - k

) apprOximati0n

- "'f l 'l@) - O*5(Ro(t-k) + ao(t + k))] *

3



On the interval [1 - he, 11 we approximate (1.1) by the similar
. .

k2) and Q(hf + k2) formulae

rv(t f k) = rv (t-k) - c2kDo(hf

(2.3b > ro(t + k) = rg(t - k) - c2~ f [r,(t

> rv(t) for v = 1,2,... , M-l

Corresponding to the initial condition (1.2)

c (2Jb) v,(o)-= f(vhc) for v = O,l,...,N

- Oe5(ro(t 1- k) + r
0 (t - k))].

we use

L

I

,

(2.2c) yo) = f(vhf) for v = 0,1,...,2M*
>

and

1. (2.3~) ~(0) = f(l - h + vh
C f

) for
Y = O,l,...,M ,

,

L

Corresponding to the boundary condition (L3) we use

c

(2.2d)- xl( )t = g(t) for t = 0 k 2kJ > ,... .

We then link the grid functions .Iv(t),v (t) and
V

r w
V

L v,(t>
(2Jc) ,/

= ‘Mb),

\ , v,(t) z “2@>

v&1 (t)= r,(t), and

f v,(t> = “Met)

for t = O,k, 2k,... .
4
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We complete the specification by giving

f y,(k) = w(vhc)  J” V = O,l,...,N

(2.ld) V = 0,1,...,2M

[r,,(k) = w(l-h +Vhf)
c TV = O,l,e.e,M

where w is a sufficiently accurate approximation to the solution

u(x,t> at t = k.

It is clear that the equations (2.11, (2.2) and (2.3) determine

a unique approxi&ation which is consistent with the problem (l.l),

(1.2) and (1.3).

The one-sided formulae (2.2b) and (2.3b) are due to A. Sundstrijm

and it has been shown in Elvius and Sundstrgm [4] that they yield stable

approximations for the related initial boundary-value problems when used

with the formulae (2.2a) and (2.3a), It is well-known that (2 la) is
l

a stable approximation for the related Cauchy problem [5,9].

Note that the approximations (2.2b) and (2.3b) are only

.@(hf+k2) accurate. However, it follows from the results of Gustafsson

[61 that overall convergence behavior is not adversely affected.

Assumption. We assume that Ac and Af satisfy stability

criteria which guarantee that our interior approximations are stable

for the related Cauchy problems.

(2.la), (2.2a) and (2.3a) are stable for the related Cauchy

problems if [ciAf < 1 and- 1 cjhc 5 6/497& = 0.7287 . . . .

5



We now investigate the stability of the method defined by (2.1), (2.2)

and (2.3). We use the stability Definition 3.3 of Gustafsson et al. [ 7 1.

In [ 7 I, it is established (Theorem 5.4) that the stability of two related

quarter-plane problems is equivalent to stability for the two-boundary

problem in the sense of Definition 3.3. These two problems are simply

obtained by removing one or the other of the boundaries and extending the

domain to + 00 , as is appropriate. We will refer to these as the right

and left quarter-plane problems.

It is immediate that the associated left quarter-plane problem,

- ~0 < x < 1, t > 0 , (we extend v over the negative integers in (2.la))

is stable by Definition 3.3 of [ 7 1. This follows from the fact that (2.la)

is stable for the related Cauchy problem and that (2.3a) and (2.3b) are stable

on the interval [l - hc, l] and provide a vN ,(t) which is bounded on every

finite t-interval in terms of the data g(t) . It is the independence of

the calculation of the r
V

from the vv that makes this trivial.

The situation is more complicated for the associated right quarter-

- plane problem, 0 < x < 06 , t > 0 . First we must examine the stability of

the approximation for the Cauchy problem given by (2.la) with v extended

over all natural numbers and (2.2a) with v extended over the negative

integers. This is the problem of matching schemes investigated by

Ciment [ 3 ] for dissipative approximations. This can also be analyzed

in terms of the theory of [ 7 ] since we can think of folding the x-axis

at zero and investigating the initial boundary-value problem for a

vector (", ,iMV > l.

The new net structure is shown in Figure 2.

6



vO 5 v2 0..

X=0

(VVZMvP  l1s an approximation to the solution of the differential

equation

(I-! = (-; I)(:) Y o<_xcm, t>o-
X

with boundary condition

w(w) = u(O,t)  l

This technique has been used in [l], /2] and 133 where more detailed

descriptions of this process can be found. Under this transformation

the conditions v,(t) = R
*&L Vlw = PM(t)

-become
and v,(t) = a,(t)

(24')

v*(t) = T2M(t)

. VIW = TM(t)

v,(t) = To(t)

and (2.2a) becomes

(2.2a’) Tv(t+k) = TV(t-k) + c 2kD (h ) 7 (t)
Of v

V = 2M-1, 2M-2, l *.
, 0, -1, -2, l . l

7



It is shown in [7] that stability according to their Definition 3.3 is

equivalent to the fact that a determinantal equation (equation (10.3)

of [71) not vanish for complex z such that IzI > 1. This determinantal

equation can be derived formally by seeking the general solutions of

(2.la) and (2.2a') of the form v,(t) = &t/k v t/kand TV(t) = c z

which belong to R2 kc) and 12(hf) for t 2 0 and all complex z

such that I Iz > 1, i.e.,

and

hf F l?,(t)12  < ~0 .
V=2M

When this general solution is substituted into the boundary conditions

(2&'), a homogeneous system of linear equations for the arbitrary

constants in the general solution is obtained. Let C be the matrix of

this system. 'Ihe determinant condition (10.3) of [7J is det C f 0

for z > 1.I I - This is the requirement that there exist no non-trivial

solutions of the assumed form for IzI 2 1 which satisfy the boundary

conditions. Our determinantal condition is equivalent to

(2.4a)

1

K2

2
K2

f 0 if KlfK2



and to

(2.&b) det if
K1 2'“K

Kl and K
2 are the roots of the characteristic equation

K
4

- 8K3 - 6(z2 - 1) K2 ~ 8K _ 1 _ o
chz

corresponding to_.(2.la)  such that 1 K
i <_l’ I1 is the root of the

characteristic equation

I ( 2 . 6 )

L

.

corresponding to (2.2a') such that ISI <, I* The fact that K

and ( are uniquely defined as the continuous functions of z
1' K2

satisfying these criteria is established in [7], It is also shown in

L71 that
- IK I < 1, i = 1 2 and /(+I < 1 fori f lzl>l sothe

conditions (2.4a) and (2.4b) are satisfied for I Iz > 1 since these
determinants only vanish if K~ = IeM or

K2 =
-M

i: l

complete our at?alysis we must examine the roots

In order to

and ( of (2.6) for z = eie.
Kl' K2 o f  (2&

To do this we need the following lemma.

9



.
Lemma 2.1. Let z = el' and K,(e) and ~~(6) be the roots of (2.5)

which satisfy IK.(
J

< 1, j = 1, 2, when IzI > 1, If we number properly

then 1~~1 < 1 and IK2) 5 1 for all 8. Let c<O. Define
3

to be the smallest positive value of c! such that

12 sin 8p(e) = ch = - &i= - 1646.
C

. . . ,

then 0 < e15 T/2. Set 8
2
=7?--81, then &32) = p(@& Define

02 < Q3 < T, by B(G'$ = -16, Define B4, T < S4 < 3~/2 by
@3’

Y

p(e4) = 16. Let e
5 be the smallest value of 8 such that

--_
p(e) = dm = 16.46 . . . , then 3~/2 < 8

5
< 2~

l Let
6&- = 2T - 85, then (!3(e6) = p(e5)' The 8

j
so defined satisfy

0 < el <, e2 < e3 < r < e4 < e5 5 86 < 2%
81 = e2 and 8

5 = e6 if and

only if lchcl = 12/d-. The following properties of ~~(8) hold:

i

L

K2 = -1 for 8 = 0

ReK2<0, IK,I =1 f o r 0 < 0 5 O1

e I IK2
<l for e1 < 8 c e2 if el < 8

2

ReK2<0, IK,I =I f o r e2 5 8 < 0
3

- K2 =i

ReK2>0,  /K,I =L

for 8 8=
3

for e3 < 8 < T

K2 =l for 8 = T

ReK2>0,  l~~I=l for T < 8 < 84

10
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L

L

K2 = -i

ReK2<0, IK,I =l

I IK2 <1

ReK2<0, 1~~1 =1

for 8 = 8
4

for O4 < e I5 3._

for e5 < e < @6 if 8-c 8
5 6

for e6 5 8 < 22n

If c y 0 then K2(d = 1 and the above properties hold if we replace

8 by 8’ = 8-n.

Proof: The properties of the--_ 8
j

follow easily from the assumption that

(2.la) is stable for the related Cauchy problem, i.e.,

hcl < 12/v/36 + 96 & , and the properties of cos 0. It was shown

in Lemma 2.1 of [ll] that IK,I < 1 and 1~~1 < 1 if p2C8) IT 36 + 96&

and that one of the K
3

satisfied I IK
j

= 1 and the other I IK < 1

for each value of 8 such that p2(8) 5 36 + 96 &. From our
j

definition of the 8j, p2b) F 36 + 96fi

e5 < 8 < e6 if e5 f 8
for e1 < e < e2

if el f e2 and for

6; and p2(0) <, 36 + 96 6 otherwise. For

8 f 0, + 8,-e
2 16 the number of roots of (2.5) with positive real part,

p, and the nuMber with negative real part, q, are given by

P = v(l, -8, 64 - p2, Q~, 82(82 - 256))

and

q = Vh, 8, 64 - p2, -8p2, 82(82 - 256))

11



where V(aly . . . , an) denotes the number  of changes of sign in the

real sequence
al, a2, l , an tCh33rem  (40,l) of [lOI). We

calculate: . .

p=3 and q=l for 0 < 1~1 < 8,

p=3 and q = 1 for 8 < 1~1 < 16,

P =2 and q=2 forl6< I@(  .

Examining the roots of (2.5) at z = 1 and at z = 1 + 6, 6 > 0,

we find that K; = 0.127, .,. , ~~ = -1 and p = 3, q = 1 at 8 = 0.

By continuity, since p = 3, q = 1 for 0 < 1~1 < 8 and since K=+i-

are roots of (2.5) if and only if 8 = r 16; we can conclude that K
2

remains in the left half-plane for the e-neighborhood of 0 such that

0 5 IpI < 8. Since 2 i are not roots of (2.5) for B = + 8 and-

I IK2 = 1, we can conclude that K2 remains in the left half-plane for

the larger @-neighborhood of 0 such that 0 < 1~1 < 16. Examination-
ie

oftherootsof(2.5)at z = e 1 i@
and z = (1 + Gj>e ' shows

- K2k$) = (-0.2247...)  + i(O.974&...). Similarly, at z = e
ie

6 we find

K2(e6) = (-0.2247...)  + i(-0.974-k...).  SO , again by continuity, ~~(0)

must remain in the left half-plane for Id > 16 since p =2, q=2 for
ie

all such 8. Examination of the roots of (2.5) at z = e 3 yields
ie

K (0 > = i and at z = e 4
2 3 we find K,(@,) = -i so it is

K2
that

moves into the right half-plane as we enlarge the B-neighborhood of 0

beyond 8
3 and 84' We can conclude that IKJ < 1 and that Re ~~ < o

for 0 < 8 < 8- 3 and 84 < 8 L27f and ReK2>0 for e3<e<e4.

12



This concludes the proof for c < 0. The proof for c > 0 proceeds

similarly.

L

4

i

It follows from Lemma (6.2) of [7] and the formulae immediately

preceding it that: (1) 1~1 = 1 and sign(Re 5) = -sign(c Re z> when

z = eie
and 8 satisfies (sin e] < 1~~~1, (2) 1~1 < 1 when

lsin el > IA~cJ, and (3) c = -1 when z = -1 and 1 = 1 when z = 1.

We now return to the examination of the determinant condition.

We saw that it was satisfied for lzl > 1 and now consider z = eie Iy

It follows easily from Lemma 2.1 and the preceding paragraph that

Kl f !-M since --_ I 1K < 1 and -M1 k I > 1.- IVow we only have the

condition K2 f rM remaining to examine. We consider three cases.

Case I, M = 1. If M = 1, then hc = hf and

I Iy < 1 if and only if I@(@>] = 12 r < 12.sin 8
f - I If -

If /sin e/chfl 5 1 then Lemma 2.1 implies that sign(Re  ~~ > = - sign(Re c-l)

since Re 5 = Re c-l and IpI < l.2. If /sin O/CA I 5 1 then
a
ICI < 1 so ](-'I > 1 and 1 K~I < 1. We can conc.kde that- K

2
f C-1

and that the combined method is stable for the Cauchy problem if

M = 1.

Case II, M even. If M is even then [M = K
2

at 8 = ?'r since c = -1 and

K2 -1 at e=r. The determinant condition is violated and the combined

method unstable for the Cauchy problem for any even M.

13
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Case III, M>, 3 and odd. Consider 8 on the interval Q2 < 8 < 8
- -3'

where Q
2 and 8

3 are defined as in Lemma 2.1. K2(e) is a continuous

function of 0 and IK, 1 = 1 on this interval. From Lemma 2.1 we have

arg(K2b2)) = 1.797... and arg(K2 (oj)) = r/2 so arg(K2(02)) ' arg(rc (O- > >.
2 5

It is easily seen [7] that

5 = i sin e/chf + sign(cos e>(l - sin2@/c2hgY2  l

When e2<0<e
- -3 then =ICI 1 and Im ( = sin Q/chf satisfies

1.372... =
M

I
i

4= - -= _ l-333...
3M M l

it and c -M are also continuous functions on this interval.

arg(S) = sin-' (sin e/cAf) and arg(cwM) = -M arg(c> SO

= -M sin-h- m)/l2M] and =

-M sin-1 (- f M). We consider values of sin-1 (el on [0,27~~. It

is clear that arg(c-"(e2)) < arg(c-"(e3)) and easily seen that

ark k2 (e2 > > > arg((-"(e2)) for all MB 3.- Thus, we have two

continuous functions, K (e> and c-M(@), whose ranges coincide for
2

some interval [e2,eo1 where  e2 < e. 5 e3 so they must take on the

same value for some 8 E [@2,@ol and the deteMninant condition is

14



violated there. By a similar argument we can see that there is another

value of 8 between e4 and 63
5

where the determinant condition is

violated. Therefore, the combined-method is unstable for the Cauchy

problem for all odd M>_ 3.

The stability of the right quarter-plane problem now follows

easily for M = 1 since (2.2b) is stable with (2.2a). This results

from the fact that we can represent the vV in terms of 5 and the

determinantal condition to be verified is just that for (2.2a) with

(2.2b) which has already been verified [4]. We have

L

i

Theorem 2.1. The approximation (2.1)-(2.3)  is stable for M = 1 and

unstable for all M > 2.-

1

Before commenting on this result we will first present a modified

version of this method.

i
L

L

It is of interest to consider handling the right boundary with

the rV mesh extending from x=1-2hc to x = 1 (over two hc

intevals as we have done with the left boundary). This is natural to

consider for vector equations where there are both inflow and outflow

quantities on both boundaries, and for equations with coefficients

which are functions of t so that the artificial internal boundary

at :x = 1 - h
c

may be at times an inflow and at times an outflow

boundary. We can accomplish  this by redefining the grid function

rV(t) for V = 0, 1, . . . , 2M as r (t> =
V dl - 2hc + vhf, t> and

using the equations

,

15



(2.le)

instead of those involving the r,, of (2.lc)

Let us consider the stability of this method. The associated

right quarter-plane problem is the same as before and therefore stable

if and only if M = 1. We now consider the associated left quarter-
--_

plane problem. Since (2.3a> is stable with (2.3b) as previously remarked

we need only consider the stability of (2.la) coupled with (2.3a) by

the conditions (2.le) for the related Cauehy problem. If we fold the

x-axis at x = 1 and renumber the v
V

and r
V

we again obtain the

conditions (2.4) which we have already examined. We have

Theorem 2.2. The approximation (2.l)-(2.3)  with the rV approximation

extended over [l - 2h ,l]
c and the r,(t) equations of (2.1~) replaced

by those of (2.le) is stable for M = 1 and unstable for all M 2 2.

. The methods found to be unstable in Theorems 2.1 and 2.2 have

only violated the determinant condition for values of z which lie

on the unit circle, i.e ., they satisfy the Godunov-Ryabenkii condition

['?I. It is easily seen that the roots ~~ (z) and c(z) are simple

roots of the characteristic equations for those z which violate the

determinant condition. Such instabilities have been discussed by

16



Ceiss [83. Approximations of this type for problems on bounded x-intervals

have solutions which grow like St, cx > 0. Further, the extension

of any estimates obtainable for problems with

to problems with variable coefficients is, in

Computational experiments with M > 1

(1.1)~(1.3) have indicated that these methods

constant coefficients

general, impossible.

for the model problem

can be used successfully

for limited times to approximate smooth solutions. However, experiments

with the equation
Ut - ux - "Y

= 0, 0 5 x <, 1, 0 5 y 5 1, have shown

L disastrous growth when M is even while behaving reasonably for

I
I

limited times with M odd.--_

Theorems 2.1 and 2.2 are disappointing. If we couple leap-frog

4with the centered @(hc + k2) interior approximation we obviously

. have no opportunity to refine the mesh to achieve uniform accuracy.

Computational results with M = 1 are given in Section 3. They

illustrate the fact that we really need M > 1 to achieve overall

4@(h, f k2) accuracy when compared with results obtained in [ll].

However , there are situations where these techniques with M = 1 can

be usef'ux.  If the boundary data is rather inaccurate then nothing could

be gained by a refinement, M > 1. If this is the case and the boundary

is sufficiently removed from an interior portion of the domain where

the approximation is desired, then these techniques with M = 1 can

be useful. Of course, the area of integration must be so large that

the boundary errors will not propagate into the region of interest

during the duration of the computation.

We next consider replacing the approximations (2.2) and (2.3)

by the dissipative Lax-Wendroff -method. We replace (2.2a) by

17



(2.7a) 'vet + k, = ",(t) - kcD*(hf) 1 (t) + 1 2 2
V $j- k c D+D$t)

. .
for V=1-,2,... ,2M-1

where D+D-f,,(t) = (R ,+1(t)

(2.2b) by

- 2+) + RV l(t))h-2
f' We replace

(2.'i'b)

where

m,(t + k) = a,(t) - kcD+L&

--_
D+-$+d = $(t) - a,(t))h-1 .

f

Sj-milarly,  we replace (2.3a) by

(2.8a) rv(t + k) = rv(t) - kcDo(hf) r,(t) + $ k2c2D D r (t)+ - v

L

for V = 1, 2, . . . , M-l

and (2.3b) by

- (2.8b) rJt + k) = r&J - kcD+r$)

The :approximations (2.7a)

@(h2, + k2)

and (2.8a) have local truncation error

and the boundary approximations (2Jb) and (2.8b) have

local truncation error Q(hf + k).

(2.8) h

The approximations (2.7) and

ave been shown to be stable for the related quarter-plane

problems in ['?'I and the convergence results of Gustafsson [6] apply

18
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in this case as before to tell us that the overall convergence will

not be adversely affected if the method is stable. When we apply the

same techniques to this method we igain obtain the determinantal

conditions (2.4). In this case ( is the root of

(2*9)

such that ICI Fl for lzl>l.- It was shown in ['i'] that this condition

uniquely defines (', that ICI < 1 if Iz(>l and c>O,and-

(c(<l if ~z~>_l,zfl and c<O. If c < 0 and z = 1 then
--_

!: = 1. Therefore , the determinantal conditions (2.4) are satisfied

for all M since (KJ < 1, i = 1, 2, and /c-Ml > 1
l If we consider

the refinement over two intervals on the right hand end of the interval

stability is again equivalent to the conditions (2.4) which we have

already verified. We have established

Theorem 2.3. The method given by (2.1), (2.7) and (2.8 > with the matching

conditions (2.1~) is stable for all M. The analogous method resulting
s
from the extension of rv over [l - 2hc, 11 and the replacement of

the rv equations of (2lc)by those of (2,le) is also stable for

all; M.

We present restits for this method in Section 3.

It is now easy to see how these results generalize to systems

of equations and that the form of the results is independent of the

approximations used to a great extent.
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Consider the strictly hyperbolic system

ut = Aux, a<x<b,- -7 t>o

where u E RS and A is a constant s X s matrix of the form

A = 7 A1 < 0, AII > 0 .

To simplify matters we assume that A has already been transfomed

to diagonal form-.

Let us prescribe initial conditions

i
1

u(x,o) = f(x)

-7-r
I

%u +
II
% w a t  x = b

and boundary conditions

U1 =SUrr+gr(t)a a at x = a

' -4 S
a and S

b are
, , T.lQ assume

%I \ + , . *. . 1
' L * .



with their boundary approximations, are stable for the related quarter-

plane and Cauchy problems and that A2 is stable for the related

Cauchy problem for the given hc and A, defined as before.

In this situation it is more natural to consider the second

method of linking the net functions together. That is, we link the

grid functions at both ends of the interval requiring equality at some

number of points on the v,(t) grid. Under the assumption that the

methods A1 and A
3 are stable for the related quarter-plane problems

we need only look at the stability of the related Cauchy problems for

the combined 4% - A
2 and A - A

2 3
methods and we can do this

separately. We only consider one case--the other is similar. If we

look at the related folded problem for Al - A2 for a < x < 00-

it is an approximation for the modified equation

with

u”=

and boundary conditions

-A
I 1 u”

X ’ a<_x=c-,t>o-

(2 -11 -111 "IV
JU >u > u )

2 = ;I11
f

;IV = E;II
a t  x=a.

We then write out the appropr+te modified approximation using method

A2 for the vector (u"I, u"I$ and A1 for the vector (,"I11 "IV
,u L

21



The characteristic equations K&z! and K (K,z) related fo the
2 "

approximations A
1 and A2, respectively, are polynomials in K

and f, say, with coefficients which are polynomials in z. Since

Al and A
2

are stable for the Cauchy problem the roots of
5 and

52 split into two groups as before, M and M , with the

property that 1~) < 1
'jKi 2,Ki

and- Irr Ii 51 for jz/ > 1 if-

and KiE M

5. cMIK1

%
, and ICI >, 1 and /Ii/ 2 1 for lzl 2 1 if

'1

5. ' 52 7 FL
and Ki E M

w-y
This is shown in [71 and simply follows

from stability for the related Cauchy problems, Let Ml K contain

ml roots and g.
F2

contain m
'1

2
roots.

Then the ml + m
2

conditions

. (2.10) v,(t) = lMv(t) , v = 0, 1, .*. ,im1+In2-1)

for the original problem uniquely determine the solutions in 12. We obtain

the determinental condition det C f 0 as before. In this case C

is equivalent to a block Vandermonde or block confluent Vandermonde

matrix.
s

In fact, if D is the matrix we would obtain using the

approximations
Al and A2 for u E R1 and D = cd..) then we can

1J
represent C as

c = kLjIs)

and det C = 0 if and only if Ki = cWM
j

for Ki E M
-2

and cj E: Ml K l

Thus we see that analogs of Theorems 2.1, 2.2 and 2.3 hold in these '1

more general circumstances. In particular, the matching theorem of

22



Ciment [3] holds if only one of the stable matched schemes is dissipative.

Details on the derivation of the form of C are given in [3]. We
-.

summarize in

Theorem 2.4. The method given by the combination of A
1' A2J

and A
3

through conditions of the form (2.10) is stable if cBM f K

lzl>l wherethe
3

i for

- ('
3

s are roots of the characteristic equations

corresponding to the boundary methods A
1 and A

3
such that

Ifj/ 5 1 and the Kirs are the roots of the characteristic equation

corresponding to the interior approximation A2 such that I IKi <I,-
for I I-z >l. In particular, if A2 is dissipative or both A

1
and

A3 are dissipative and the root condition Ki f cmM
3

holds for z = +1,

. then the combined method is stable.

Proof:

To complete the proof we only need to remark that the roots

of the characteristic equation for a dissipative approximation [7]

d satisfy IKI < 1 for jzl>l and z#+l.-

The paper of Gustafsson & al. [7] presents several stable

boundary approximations which can be used for Al and A
3’

Theorem 2.4 shows that dissipative modifications of the leap-

frog method could be used with the @(hz + k2) centered approximation

treated in Theorems 2.1 and 2.2 to yield stable method with M > 3
-

and odd.

I
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So far our discussion has always assumed that we use the same

time step, k > 0, for both the interior and boundary approximations.

The stability restriction on A
C

places a restriction on M since

hf < AC arsd AC is an increasing function of M.

and @(h2, + k2,

For the B(hz + k2)

methods this usually does not cause any real problem.

It is natural to choose hc and k so that the truncation errors

arising from the spatial and temporal discretizations are of roughly

the same size. This leads us to the condition

-- h4 w k2
C

or h2 M k.
C

It is reasonable to choose M so that

h2 z h4f c Or h2 x
C hf

so that the spatial truncation error is of roughly the same size for the

interior and boundary approximations. This leads us to

L

which indicates that the usual stability restrictions for explicit

methods will not create a problem. This also agrees with the condition

we obtain if we ask that the spatial and temporal truncation errors be

of the same size in the boundary approximation, i.e.,

2 2/hf=k .

The computational results in Section 3 bear this out.
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If a situation arises where the previous estimates are not

valid due to the behavior of the solution a smaller time step can be

used on the refined grid by interpolating in time on the vv net

where intermediate values are needed after first computing the new

values on the vv net. This is always possible with an explicit

method. The previous analysis does not hold in this case but we have

performed several computations in this manner

success of this procedure. Some calculations

in Section 3.

3. Computational Results

which indicate the

of this type are presented

Our first set of computations are approximations to (Ll), (1.2)

and (1,3) with c = 1, a = 0, b = 1, f(x) = sin 4~'x and

g (t > = f(-t) which has the solution u(x,t) = P(x-t). This could be

stated as a periodic boundary problem but we treat it as an initial

boundary-value problem. This is useful since it allows direct com-

a parisons with periodic computations as done in [ll]. It was somewhat

more convenient to discuss our theoretical results with c < 0 but

we have chosen to use c = l> 0 here so that the computations will

be immediately comparable with those of [ll]. The theoretical results

are, of course, unchanged and the difference approximations are just

the reflections of those already introduced.

We define the error in the Vth grid point to be e&t)

= u(x,,,t)  - v,(t) and compute error norms over the v,,(t) grid.
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We use the previously defined P2(hc) norm and the R norm defined
CD

as II IIev lm = maxlevI.
-.

In Table 3.1we give the results of the method analogous to

that defined by equations (2.l)-(2.3). We include results obtained

using smaller time steps on the refined grid and use L = kc/kf to

denote this ratio in the table. We append the letters q or R to

the numbers in the L-column to indicate whether quadratic or linear

interpolation was used. We have used AC = l/4 with N = 20 for

these calculations. We have used the solution at t = k for w

in (2.ld). =.We use the notation a - b to represent a X 10-b in

our tables. Recall that these methods are not stable according to

the Definition 3.3 of [7] for M > 1.

In Table 3.2 we report the results of the same computation

using Lax-Wendroff in the refined regions, i.e., the reflections of

equations (2.1), (2.2a1), (2.2b*), (2.3a') and (2.3bT).

These results can be compared with those given in [ll]. We

include some results obtained in that paper using uncentered @(hz)
-

approximations in the neighborhood of the boundaries for purposes of

comparison, The problem and all other parameters are the same as

those used here. These results are in Table 3.3.

It is clear that we only need M = 3 and L = 1 in this

case to achieve the same accuracy. Interpolation in time is not

necessary to obtain this accuracy. If greater accuracy is required

interpolation may become necessary.
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TABLl3 3.1

M L II IIYJ R II II II II II II
2 ev R 2 ev 1.. vv I2 II IIev e II II

2 ev Lco co

!
1

2

3
4

I 4
e

4L
5
5L

t = 0.5 t = 1.0

1 6.54-l 1.14-l 2.23-1 5.71-l 1.85-i 4.16-l
1 7.02-l 1.76-2 3.63-2 6.99-l 2.69-2 4.97-2
1 7.04-l 6.16-3 1.19-2 7.00-l 9.28-3 1.78-2
1 7.07-l 3.02-3 5*55-3 7.07-l 4.38-3 9.26-3

29q 7.06-l 5.99-3 1.14-2 7.05-l 9.48-3 1.95-2
291 7.06-l 5.99-3 1.14-2 7.05-l 9.48-3 1.95-2
2,21 7.06~1 4.13-3 8.00-3 7.04-l 5.98-3 1.20-2

2d 7.06-l 4.42-3 8.59-3 7.04-l 6.18-3 1.38-2

t = 2.0

1 5.35-l 2.21-l 4.07-l 5.37-l 2.03-l 3.76-l
1 7.o2-1 2.39-2 5.81-2 6.94-1 7.45-2 1.60-l
1 6.98-l 9.67-3 1.76-2 6.99-l 9.63-3 1.75-2
1 7.07-l 4.43-3 9.65-3 7.07-l 4.76-3 9.99-3

2sl 7.06-l 8.85-3 2.20-2

&I 7.06-1 8.85-3 2.20-2

2.4 7.03-l 5.51-3 1.05-2

2d 7.o4-1 4.83-3 9.74-3

7.06-l 8.95-3 2.21-2

7.06-l 8.95-3 2.21-2

7.03-l 5.54-3 1.05-2
7.04-l 4.90-3 1.01-2

t = 4.0
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TAN-a 3.2

M L II IIvv R II II
2 eV L II II

2 ev L II IIvv R II II63 2 ev R II II
2 ev R

. . co

1

2

3
4

4
4

5
5

I

L 1

1
. 2

3
4

.
4
4

b
5

-5

t = 0.5

1 6.52-l

1 6.96-l

1 7.04-l

1 7.07-l

9. %X? 1.97-l
1.66-2 3.32-2
5.97-3 1.09-2
3.02-3 5.55-3

ul 7.04-l 5.51-3
221 7.04-l 5.56-3
2a 7.05-l 4.11-3
W 7.05~! 4.18-3

9.64-3
9.27-3

6.32-3

6.67-3

t = &Lo
1 5.48-l

1 6.83-1

1 6.99-l

1 7.07-l

2d 7.01-l

2,R 7.01-l

WI 7.03-l.

291 7.04-l

1.88-T 3.32-l
2.69-2 3e 98-2

9.41-3 1.52-2

4.43-3 9.66-3

8.78-3 1.49-2
8.20-4 1.45-2

6.33-3 l-16-2
5.76-3 1.13-2

5.75-l
6.84-1

7.00-l
7.07-l

t = 1.0
1.60-l

2.52-2

9.02-3
4.38-3

7.01-l 8.44-3
7.01-l 8.32-3
7.04-l 6.21-3
7*04-l 6.14-3

3*44-l
3.86-2

1.39-2
9.26-3

1.39-2
1.43-z

1.17-2
1.21-2

t=4.0
5.52-l 1.77-l
6.83-l 2.70-2

6.99-l 9.42-5;

7.07-l 4.73-3

3.14-l
4.05-2

1.53-2

9.91-3

7.01-l 8.79-3 1.50-2

7.01-r 8.23-3 1.48-2
7.03-l 6.34-3 1.17-2

7.04-l 5.79-3 1.15-2

TABT;E 3.3

II IIvv R2 IIyI II
j2

II II%I II IIa2 vv R II
2 lie, I2 IIyJ II 1

t = 0.5
cu

7.12-l
t

9.69-3
= 1.0

2.34-2 7.08-l 1.34-2 2.51-2

t=2*0 '
6.96-1 t 4.0=

1.30-2 2.04-2 6.96-l 1.25-2 2.28-2
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