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Abstract

The following problem arises in connection with certain multi-

dimensional stock cutting problems:

How many-non-overlapping  open unit squares may be packed into

a large square of side Q! ?

a*

Of course, if a is a positive integer, it is trivial to see that

unit squares can be successfully packed. However, if a is not &111.
integer, the problem becomes much more complicated.

feels that for a = N + & ,
Intuitively, one

pack N2
say, (where N is an integer), one should

unit squares in the obvious way and surrender the uncovered

border area (which is about @O ) as unusable waste. After all, how

could it help to place the unit squares at all sorts of various skew

angles?

a In this note, we show how it helps. In particular, we prove that
we can always keep the amount of uncovered area down to at most propor-

tional to w-a , which for large Q is much less than the linear
waste produced by the "natural" packing above.

This research was supported in part by National Science Foundation
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Reproduction in whole or in part is permitted for any purpose of the
United States Government.
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If two non-overlapping squares are inscribed in a

unit square,then the sum of their circumferences is at most

4, the circumference of the unit square. As far as we know,-,

this was first published by P. Erdgs and aappeared as a problem

in a mathematical paper for high school students in Hungary.

A. Beck and M. N. Bleicher [l] proved that if a closed convex

curve @ has the property that for every two inscribed

non-overlapping similar curves @1 and @2' the sum of the

circumferences of @1 and @2 is not greater than the circumferance

of @, then @ is either a regular polygon or a curve of constant

a width.

It is c1ea.r that one can inscribe k2 squares into

-a unit square so that the sum of their circumferences is 4k.

P. Erdos conjectured 40 years ago that if we inscribe k2 + 1

squares into a unit square, the total circumference remains at

most 4k. For k = 1, this is true as we have j,ust stated.

D. J. Newman [2] proved the conjecture for k = 2 'but the general

case is still unsettled.



Denote by f'(a) the maximal sum of circumferences of

a non-overlapping squares packed into a unit squa.re. The

conjecture we cannot prove is just f(k2+l) = &k. In this

note we show f(1) > 4k for -2 = k2 + o(k), (in fact, for

a = k2 + [&?'=I using just equal squares). We do not know

as f(4) increases from &k to 4k + 4 how large the jumps are

and where they occur.

Instead of maximizing the circumference sum of

packings of a unit square by ar'bitrary squares, we shall

work with the closely related problem of maximizing the area

sum of pac_kings of an arbitrary square by unit squares.

For each positive real a, define

w(a) = a2 - sup 16J1
P

where Q ranges over all packings of unit squares into a given

squa.re S(a) of side ~1 and /p] denotes the number of unit squares

in 9.

Theorem.
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Proof: We sketch a construction which will prove (1). As

usual, the notation f(x) = n(g(x)) will denote the existence

of two positive constants c and c' such that cg(x) < f(x) < c'g(x)

for all sufficiently large x.

We begin by packing S(a> with N2 unit squares

which form a subsquare S(N) in the lower left-hand corner of

S(a) as shown in Fig. 1, where N = [o-a8'11] and ~1 is large.

The remaining uncovered area can be decomposed into two

rectangles, each having width p = a-N and lengths > N.-
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Fig. 1

with y

Next, we pack a rectangle R(@, ^J) of sides f3 a,nd 7

= n(a), @ = *(a8'11)  as follows . Let n = @I. Place
adjacent parallel rectangles R(l,n+l), each formed from n + 1

unit squares, tilted at the appropriate angle 8 SO that all

R(l,n+l) *s touch both the top and bottom edges of R(B, 7).

Furthermore , place these so that D = n(a2'11) (see Fig

= *(,4'11).
.

Note that D' 2).

Fig. 2



An easy calculation shows that 8 = n(a -4'11) and so, each

of the small shaded right triangles on the border of R has

area O(a m4'11). The total area of the triangles is therefore

o(J+ . -.

There are,in addition,two right trapezoids T with

base @ and vertical sides D and D' which have not been covered

up to this point. We next describe how to pack T.

Let m = [a4/11 1. Starting from the right-hand side of

T, partition T into as many right trapezoids Tl,T2,...,Tr

as possible, where the base of each Tk is m (see Fig. 3).

Fig. 3

Thus, r = n(a 4'11) and X'has area O@ll). If the vertical

sides of Tk are 7j, and T]k+l, let hk = [T)k-a2'11]. Pack the

bottom subrectangle R(m,hk) of Tk with mhk unit squares in

the natural waOy (as shown in Fig. 4) and let TL denote the

remaining uncovered subtrapezoid of Tk.
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Fig. 4

Now, for sk = [ri,] - hk, pack Tk with rectangles

R(l,sk-bl) as shown in Fig. 4. Here, each R(l,skfl)  touches

both the top and bottom edges of Tk as well as the adjacent

R(l,sk+l)'s. As before, the uncovered border right triangles

on Tk have total area m n(a -ml) = *(,3/11 ). The total area

of the triangular regions between adjacent R(l,sk+l)'s  is also

just *(a3'11) since the sum of the angles at the top vertices

is n(a -l'll). Finally, the uncovered triangle X* has area

o(,3/11) . Since r <= *(&Q ) then the total uncovered area

in T is just r ~(a3/11) + *((-pp = *(J+.-__ _ .- _ . _-__. -__- --- --~__
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Hence the total uncovered area of S(a) is just

~(a~"~)  and the theorem is proved. m1

The previously mentioned assertion that 2
*. f(k +ck7'11) > 4k

follows immediately. It is rather annoying that we do not

at present have any nontrivial lower estimate for W(a). Indeed
we cannot even rule out the possibility that W(a) = O(1).

Perhaps the correct bound is O(a l/2 ).

In the same spirit the following questions can be

asked. Let @ be closed convex curve of circumference 1. Inscribe

k non-overlapping curves 2n @ which are all similar to @.

Denote by f(@,k)  the maximum of the sum of the circumferences

of these curves. If @ is a parallelogram or a triangle then

clearly f(@,j2) = 1. All that is needed is that @ can be

covered with a2 copies of @. We do not know for which figures

other cases of exact coverings are possible for other va,lues

of k although for every k, there are @Is which have an exact

covering into k parts, e.g., a rectangle. The following

questions can be posed: For which @ is the growth of f(@,k)
e

the slowest? Could this @ be a circle? Which @ permit exact

coverings? Which @ permit exact coverings with congruent curves

similar  to @? For such @, let 1 < nl < n2 < . . . be the integers

for which such an exa#ct covering is possible. What can be

said about these sequences? For example, can nk = o(k2)?
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