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Abstract

For finite graphs F and G, |et No(¢) denote the number of

occurrences of Fin G , i.e., thenunber of subgraphs of G which
are isomorphic to F . |f ¥ and & are fanilies of graphs, it is
natural to ask them whether or not the quantities NF(G) v FeF , are

linearly independent when Gis restricted to & . For exanple, if

F = {Kl,Kg} (where K denotes the conplete graph on n vertices)
and & is the famly of all (finite) trees then of course N (7) .y

K K

for all Tek . Slightly less trivially, if ?={Sn:n=l,2,3,...}

(Where Sn denotes the star on n edges) and % again is the fanmly

of all trees then

Zl(-l)wrl Ny (T) =1 for all Tes .
n- n

It will be proved that such a linear dependence can never occur if

% is finite, no FeF has an isolated point and & contains all trees.

This result has inportant applications in recent work of L. Iovdsz and

one of the authors [2].
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GJ 3647%% and by the Office of Naval Research contract N Obh-ho2.
Reproduction in whole or in part is permtted for any purpose of the
United States Governnent.
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INTRODUCTION

It is a trivial observation (in fact, alnost a
definition) that in any finite tree T, ine number of
vertices of T always exceeds the nunber of edges of T by
exactly 3. In [1], it was asked to what extent this can
happen for graphs in general.  That is, given a finite
famly F of graphs G when can there be a fixed |inear

. dependence between the number of occurrences of the G ¢ JF
as subgraphs of a tree T which is valid for all finite* trees

T In this paper, we answer this question. |n particular,
this can never happen if none of the G ¢ J have isolated points;

A graphs considered in this paper will be finite. For
Lerminology See [3].



SCME NCTATION

For a graph G we let V(G and E(g) denote the
sets of vertices and edges of G respectively, |f His a
labelleg graph (i.e., with distinguishable vertices) and G
is an unlabelled graph, we define N, (H) to be the number of
occurrences of Gin H i.e, the nunber of ways a subset
of |E(c)| edges can be selected from E(H together with i
vertices fromV(H if G has i isolated vertices, so that the
resulting subgrapn of His isomorphic to G course, the
product of{NGmn and the order of the autonorphismgroup of
Gis just E,(H), the nunber of ways of enbedding G into H
(considering G as labelleq graph). For example, jf g ang

H are as shown in Fig. 1 then N.(H) = 28 and B, (H) = 112.

AT e

o, g, 1 : :
Note that if the isolated point is renoved from

¢ to formag’ then NG,(H) = 14 = % NG<H)' O course, in
general, if Gis formed froma graph ¢’ having no isolated

points by adjoining i isolated points then

(1) NG(H) - (iV(H),i‘lV(G;)lvNG’(H)



THE MAIN RESULT

The primary result of this paper can be stated
as follows. |
Theorem Let J be a finite fanily of forests,* each having
no isolated points, and suppose there exist real nunbers

Ap, F e d, and A0 such that the equation

Fed
is valid for all trees T.  Then hy = 0 for all Fed.
Remark.  Since any subgrapn Of a tree is a forest then

there is no loss of generality in assumng F iS a family of

forests.
Proof: W may assume without loss of generality that
anong all famlies for which an equation of the form (2)

I's possible, 3 has the least nunber of elements. p. pasic
I dea of the proof will be to construct a very large tree
wx for which one of the quantities ng(wx) is nuch larger
than all the others,” thereby forcing its coefficient a, to

be 0. However, this contradicts the mnimlity of |JF|.
If Tis atree with a distinguished vertex v, we

let 7(k) denote the tree formed from T by adjoining k disjoint

paths of length k to v. (See Fig. 2).

: 1.e., acyclic graphs,



o

T 7—(3)
Fig. 2
Simlarly, if Fis a forest with conponents T
| | 17w Ty
havi ng distingnisheq Vertices Vis SV respectively,

then F(¥) denotes the forest with conponents Tik) p(K)
2 ¢ n .

Ve now define a (possibly enpty) forest W= w(3)
wth conponents W and distingui shed vertices wev(u,),
1<i <t, as follows:

(i) some F e J occurs as a subgraph Of W (k) for some k

(ii) [E(w)| s nininal ampng all Wsatisfying (i).
Note that by (ii) no paths |eave w. in .
Define 37 to be the set (reF:rCw(%) for some lk). ’

Next, we choose s to be a large fixed integer,

depending only on J, to be determned |ater. For (I arge)

integers n, define n .,



R |

Wz are finally reaay to derine the troe wr S )
1. wx will have a subset of os+t-1 vertices, called
special vertices, denoted by X =
p— y {Xl"")xs}, Y = {yljo--,ys_l}
and {wy,...,uw.].
2. For 1 <k <s, xk has nk parpg of length 1 attached to
it.
3. For 1< k < s-1, yk has Moy s paths of length |
attached to it for 1 <j < s.
L. For 1<k < t, wk has nS(S+k~l)+j paths of length |
attached to it for 1 < | <s.
5. Aso attached 10 w. s a copy of VK with wk being the
di stingui shed vertex of w,_.
6. The special vertices are joined sequentially by

paths of length s, i.€., potyeen adjacent vertices in

t he sequence
q (Xl:-..,XS,Y3v ""yS-l’wl’ "'.’wt)
are placed paths of length s.

This conpletes the construction of wx, N Fig 3 we
illustrate the structure of W.



Fig. 3

By hypothesis, we have

ZAFNF(W*(YI)) = Ay
Fed

for all n. However, since by the definition of 3, no
Fe J -3J occurs as a subgraph of W(k) ¢, any k, then
it is not diff'sey1t to see that NL(W*(n)) = 0 for these F
provi ded we have chosen s and n sufficiently |arge. rence.

b4

we have

(3) Z AFNF(W%(D)) — AO
FeJ’

for all sufficiently large n, ¢ s inmportant to note that
by the minimality assunptions we have nmade, anyembedding Of

any F e 3’ into w* nust use all the edges of all the Wi’1<i<t

in w, again, provided s ang N are sneesi~<- -

3



Fact. For any distinct F, F’ ¢ JF, either

3

-3
NG (W*)/Ng, (We) > n®

or

N, (W*)/Np (W) > n°

for n sufficiently Iarge.

For suppose the Fact hol ds. Since we must have

|F] > 1, then there is sone elenment F* ¢ 3 such that

5‘53
Ny (W5) /N (W) > 0
for all F ¢ J’-(F*}. By (3) we have
- N (Wx) A
(%) Aoy + A F - 0
! FEBT’}—J{F*] F<NF*(W*T> N (1)

But as n -, all terns in (4) tend to zero except

Apx Which is nonzero 'by hypothesis.  This contradiction

woul d then prove the theorem

Proof of Fact: |Let F and ¥’ be two distinct elements of 3.

~Partition the conponents of F into three classes: F
set of stars, i.e

1’ the
., trees with at nost one vertex of degree > 2;

F,, the non-stars which are star-like, i.e.. trees with

at nost one vertex of degree »3; and Fy» the non-star-like trees

i.e., those having at least two vertices of degree > 3.



-8 -
Define F. . - '
1 By arlld Fy in an anal ogous way for F’. As ue
have noted earlier, F, must consist of ¢ trees T,

where Tk is formed fromV\ﬁ by adjoining a (nonenpty!) set

’

of paths to wk (with a. similar remark applying to F.).

V€ need one more concept.  n \eoi aitachnent

o of Fto W is forned as foll ows :
: A vertex Uy is selected

from each conponent c,
s i of F. These U, are mapped by an
injection o into the set of special vertices of W wth

the restrictions that:

x, f i
or some j if C e F

J 1
wlu. ) = ..
(uy) yJior sonme | if C, e Fy,
w, f i1
j for sonme | if C. e F3‘

A weak attachment 5 of 1 (o W is said to be proper if
can be extended to an enbedding of 7 into wx, Ve | et
e
la| denote the nunber of ways o can be extended to an
empedding of F into w+. Note that in a proper weak attachment
a of Fto wx, :
U; nust be a vertex of ¢, ot rovimal degr ee

i f C. e P, UPF .
i 1 o+ Define the sequence t(qa) =
(T11T25 GOQ’TS(S-F[))

as follows:

number of paths of length 1 |eaving U for

a(ui)=xk,l<kis

s

nunber of paths of length j [|eaving u for o(u
- | ] = yg
where kK = gsyj5 for 1< j <s,1 <4< s-|
nunber of paths i i
P of length j leaving v, . . alu) _ w

2
where k = g +(m-1)g4j for 1 < i )

S -
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It is then clear that
s(s+t) -
lal < Ky ] n, *
k=1
where K,,K., ..., will denote constants depending on s and not

on n. The sequences t(¢) can be linearly ordered as follows.
For t(a) = (Tl;TE,...,TS(S+t)) and
T(a’) = (Ti’Té""’Té(s+t))’ we define
T(a’) > 7(a) if either:

S(Sft) s(s+t)

(1) 2; T > E: Tk 3 or
k=1

k=1
s(s+t) s(s+t)

(i) Z T, = Z v, and t(a’) is |exicographically
k=1 k=1

greater than r(a), i.e., for some m t = v, for 1< k < mand
Té > T
F :

Ve let «f ):(T{F),...,Té?g%)) denote a nmaxi nal sequence t(q)
in this ordering as o ranges over all proper weak attachments
of Fto w*. The proof of the Fact will depend on the following
assertion.

: | -s3
daim [f «(F) > <(F) t hen NF,(W*)/NF(W*) > n® for n
sufficiently Iarge,

: |
Proof of daim  Suppose (F) > o)y s easily seen that

(6) 5(s+t), "k s(s+t 14
o ST 5 R

; K=1
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On the other hand, jt is not hard to show that

~ s (s+t (F)
(7) Np(W*) < K %I )nTK
2 Wy Tk

To see this, w consider F as 3 1apeiileq forest and we show

t hat

for a suitable constant K3 = K3(s).

Fi r st - -1 es |
, the non-star-like trees in F3 can only be

enbedded into the w, parts of w and, gjpce the total nhumber

of proper weak attachments of Py to W is '"bounded by a

function of S, then the enbeddi ng of the non-star-l1ike trees
of J’ contributes S(gst) T
F a. factor of at nost nkk wher e

k=52+1

T = ; T / . . .
(8) ( 52+1""’Ts(s+t)) s a (maxinmal) sequence derived
from sone proper weak attachment g of F, to W

Next, consider an enbedding of a star-like tree

TeF, which is not a star. Suppose T is formed by
adj oining nk paths of length k’ 1<K<S. tothe "center"
vertex u.  Although it may be possible to enbed T into W

by mepping u onto some x, ¢ X (e.g_, when at most two of the
m., K > 2, are nonzero), when this is done we nust use

edges in one of the paths of length s connecting x.
I tO adjacens

spec ial vertices of' we and
pec tal W, SO, there are at nost
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S

-1o) m

Ko ny k= such enbeddi ngs,  However, this factor is

2
negligible conpared to the corresponding factor of

S
Kg nsg which we obtain if we embed T by mapping u onto
sone y, e Y since

2

nn;/;T—l S K7 nm(l+s_S }/gm(l+s'1)-1

> K8 nl/Q
provided s has been chosen sufficiently |arge for 3 and
nis sufficiently large.

Finally, we consider a star S ¢ F,, say, consisting
of mpaths of length 1 adjoined to a vertex u. If >3
then in any enbedding of F into wx, u nust be mapped onto
some vertex in XU Y since these are the only avail able
vertices of degree >3. -

g ¢ 2 kbmeyen. s|ncg nk/nk+1 — o as
N -« then the domnant contribution will certainly come
from the enbeddi ngs which map u onto some x, ¢ x (in fact
the smaller the index i, the better). ¢ m¢ 2 then there
are many ways of' enbedding S into W, for exanple, so that
u does not map onto a special vertex of ux, Again, however
the domnant term clearly comes from those embeddings

which take u onto sone special vertex x _ y
5 :

Thus, all exceﬁt a negligible fraction of the

cmboddings Oof ' into wx arc extensions Of proper weak
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attachments o of F to wx,
weak attachments of F to wx

Note that I f o and g’
are proper

and t(q’) > 7(a) then by definition,

ei t her
s(s+t) s(s+t)
T . .
Lo Tk Z Tk
k=l k=l
of s(s+t) s(s+t)

T = Z T, and for some m < s(s+t),
k=1 k=1

T/ =
k =tk for 1. ¢mck, and o

In the first case,

s(s+t) s
t -
n Ky §f+ ) 7 (1407F)
k=1 S 9 gy "
=S(s+t) ., os(s+t)_, -x

- T/
= Kgon =1 Tk, Pkel TS

l+ZS(S+t)T
> K.n =1 k
9
Lo s(s+t)
S
> Kyon I
k=1

cond case
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s(s+t)
I SETIPLIC
k=1 > K9 n k n =1
2S<S+t) m-1
- k=1 T 2N ST S
( Kg n kKo Tk=1"%
s(s+t
S
» Tk S -m
/. > (ﬁn+l)s. — g g M
k:m
and  S(s+t) s(s+t)
k N -
;E;rks < Tms m " 2: 81/2.8"k
- kK=m+1

S ﬂnsﬂn4~28—m"l/2

Hence, in eitne, case,
S(s+t) _, [5(s+t) .

(8) [ nk k

s Mopg™m-1/2

But since there are at nost x
12 = K (
attachments of F to w* then by (5%(@%

T(F> we have

S<S+t) TéF)

(9) EF<W*) <4K13 kji nk

>

>

K

K

11

11 °

S) proper weak
and the definition of

n

S

—282

3

1/s5
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Hence, from (7) and (9), we have

Npr (W¥)/Np (W) > N, (W¥)/E (W)

S(°+t 3

for n sufficiently large and the daimis proved.

“From the preceding discussion it is not difficult
to see that if «(F) = o(F') then F and 7/ are isomorphic
which contradicts the hypothesis that they are distinct

elenents of 3. Therefore we nust have +(F) , -(F") .4
so the Fact always holds, provided s is sufficiently large.
This conmpletes the proof of the theorem
CONCLUDI NG REMARKS

As we have seen in Eq. (1), when F has isolated

points then NF(T) can be witten as

(9) Np(T) = P(n)Ng, (T)

where P(n) is a polynomal (depending on F) inn =|v(T)| and
F’ has no isolated points. popever, such an expression, valid

for all trees 7, can always be witten in the form
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—

(10) P(n)N, (T) = } AN (T)
‘FGS‘—F,—}(d)

where J;,(d) consists of all those forests which can be
formed by adjoining exactly a4 = dcg P(n) additional edges

to F. This follows by the observation that

(11) (“‘1"§<F’>')NF, (T) = ) N (F)g(T)
FeJp, (d)

since the-left-hand side of (11) can be interpreted as

counting the nunber of ways of selecting a copy of F’in

T together with 4 additional edges of T. por exanple, if

F’is the forest shown in Fig. 4(a) then

(12) (n-M)Ng, (T) = 2NF1(T) +4NF2(T) + 2N, (T) + 3NF4(T)
3

wher e th;e F, are given in Fig. 4(b).

fi fzz f ﬁg&z

~

F, -,

3 y

@) (4)

Fig. 4
W remark that if 3 js allowed to be infinite
then nontrivial linear dependences anmong the uy(t), F ¢ 3,

can exist. For exanple, if S, denotes the star with k edges,
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then rqy F = amw..xufmb coe ) we have
[e9]

(13) (-1 oy _
=) k

P hg. .
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