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Abstract

For finite graphs F and G ) let N*(G) denote the number of

i

I

4

c

occurrences  o f  F in G , i.e.,-- thenumber of subgraphs of G which

are isomorphic to F . If 3 and & are families of graphs, it is

natural to ask them whether or not the quantities NF(G) , Fe3 , are

linearly independent when G is restricted to ,& . For example, if

3 = [K1,K2) (where Kn denotes the complete graph on n vertices)

and ,& is the family of all (finite) trees then of course N
Kl(T) -N%(T) = IL

for all T& . Slightly less trivially, if 9 = [S,: n=l,2,3, *..I

( hw ere S
n denotes the star on n edges) and ,.& again is the family

of all trees then

2 (01)~~ NS (T) =l for all T& .
n-l n

It will be proved that such a linear dependence can never occur if

3 is finite, no Fe3 has an isolated point and & contains all trees.

This result has important applications in recent work of L. Lov&z and

one of the authors [2].
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STRODUCTION

It is a trivial observation (in fact, almost a

definition) that in any finite tree T, the number of

vertice,c, of T always exceeds the number of edges of T by

exactly 3. In [l], it was asked to what extent this can

happen for graphs in general. That is, given a finite

family 3; of graphs G, when can there be a fixed linear

+ dependence between the number of occurrences of the G E: 3'

as subgraphs of a tree T which is valid for all finite* trees

T. In this paper, we answer this question. In particular,

this can never happen if none of the G e 3 have isolated points;

All graphs considered in this paper will be finite.
~~irminology see 131. For
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SGX? ??OTATION

For a graph G, PJ~ 1~ V(G) and E ) denote the

.

.

I
t

e

sets of vertices and edges of G, respectLvely, If H is a

labelled graph (i.e., with distinguishable vertices) and G

is an unlabelled graph, we define NG(H) to be the number of

occurrences of G in H, i.e ., the number of ways a subset

of /E(G)\ edges can be selected from E(H) together with i

vertices from V(H) if G has i isolated vertices, so that the

resulting subgraph of H is isomorphic to G.
-=

Of course, the

,product  of NG(H) and the order of the automorphism group of

G is just EG(H), the number of ways of embedding G into H

(considering G as labelled graph). For example, if G and

H are as shown in Fig. 1 then NG(H) = 28 and EG(H) = 112.

.

Note that if the isolated point is removed from

'G to form G' then NG,(H) = 14 = $ NG(R). Of course, in

general, if G is formed from a graph G' having no isolated

points by adjoining i isolated points then

(1) NG(H) =
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THE MAIN RESULT

The primary result of this paper can be stated. .
as follows.

Theorem. Let 5 be a finite family of forests,* each having

no isolated points, and suppose there exist real numbers

AF' F e 3, and A0 such that the equation

is valid f-or all trees T. Then AF = 0 for all F e 5.

Remark. Since any subgraph of a tree is a forest then

there is no loss of generality in assuming 5 is a family of

forests.

Proof: We may assume without loss of generality that

among all families for which an equation of the form (2)

is possiple, 3 has the least number of elements. The basic
idea of the proof will be to construct a very large tree

W* for which one of the quantities NF(W*) is much larger

than all the others,'

Ibe 0.

thereby forcing its coefficient AF to

However, this contradicts the minimality of 131.

let T(k)

If T is a tree with a distinguished vertex v, we

d enote the tree formed from T by adjoining k disjoint

paths of length k to v. (See Fig. 2). .

* i,e ., acyclic graphs,
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Fig. 2

Similarly, if F is a forest with components Tl,...,T
n

having distingllished  vertices vl, . . .) Vn, respectively,
then F (k) W9**.9

denotes the forest with components Tl
TI-i"'.

We now define a (possibly empty) forest W = W(z)

with components Wi and distinguished vertices wieV(Wi),

1 2 i 5 t, as follows:

(i) Sode F c 3 occurs as a subgraph  of W (k) for some k.

d (ii) [E(W)/ is minimal among all W satisfying (i).

L

Note that by (ii) no paths leave wi in wi'
Define 3' to be the set [Fc&KW(~) for some k).

Next, we choose s to be a large fixed integer,

depending only on 3, to be determined later.
For (large)

integers n, define n
k by

nk = [nl+s-k 1, 1 ( k 5 s(s+t).
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are finally ready to defin: the trL>2 Wk - W" (11 ) .
W* will have a subset of 2s+t-1 vertices, called

special vertices, denoted by X =
c xl9 . . .$ XslJ y = IYy.*,Y

s-l 1
and [w,,...,w&

For 1 5 k 5 S, xk has nk paths of length 1 attached to

it.

For 15 k 5 s-l, yk has nks+j paths of length j

attached to it for 12 j 5 s.

For 1 5 k ( t, wk has ns(s+k-l)+j paths of length j
attached to it for 1 5 j < s.

Also attached to wk is a copy of Wk with wk being the

distinguished vertex of Wk.

The special vertices are joined sequentially by

paths of length s, i.e., between adjacent vertices in

the sequence (xl,...,xs,y
3' l l �☺YS-l�WI☺ . . .)

Wt

are placed paths of length s.
I

This completes the construction of W*, In Fig. 3
- illustrate the structure of W*.

we
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I

Fig. 3
By hypothesis, we have

i c
F&T

AFNF(W*(n>)  = A0

m for all r-2, However,

FE 3-3;

since by the definition of 3;', no

occurs as a subgraph of W (k)

1i.t is not diff'
for any k, then

xult to see that lIJF(W*(n))  = 0 for these F

provided we have chosen s and n sufficiently large.
9

Hence,
we have

(3) b)) = A0

for all sufficiently large n" It is important to note that

bY the minimality  assumptions we have made, any  embedding  of

any F E 3' into W* must use all the edges of all the Wi, 1 < i < t

in TAP , again,
-

provided s al;(l n are s~~fft--'-. I-
- J
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Fact. For any distinct F, F' e z', either

-S 3
N,(W-%)/N,,(W*)  > nsII’

NF' (w* >/NF

for n sufficiently large.

(W*) > nsmsd

i

L

or

For suppose the Fact holds. Since we must have
13') > 1, then there is some element F* E 3' such that

--
-S 3

NFs(W*)/NF(W”)  > ns

for all F e St-[F*].  By (3) we have

But as n +a, all terms in (4) tend to zero except

AF* which is nonzero 'by hypothesis. This contradiction

would then prove the theorem.

Proof of Fact: Let F and F' be two distinct elements of 3'.

' Partition the components of F into three classes: F1, the
set of stars, i.e., trees with at most one vertex of degree > 2;

F2J the non-stars which are star-like, i.e., trees with
at most one vertex of degree 2 3; and F

3’ the non-star-like trees,

i.e., those having at least two vertices of degree > 3.
-
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Define F'1, FL and F; in an analogous way for F'.
As we

have noted earlier, F3 must consist of t trees Tl,-. . . .,
where Tk is formed from W Tt

k by adjoining a (nonempty!) set
of paths to wk (with a. similar remark applying to F;).

We need one more concept.
A weak attachment

a of F to W* is formed as follows.
A vertex 9 is selected

from each component Ci of F. These ui are ma,pped by an
injection ~1 into the set of special vertices of W* with

the restrictions that:
--

I xj for some j if Ci e F1'
I = Yj f’Or some j if Ci e F2,

wJ ror some j if Ci e F
3’

A weak attachment a of F to W* is said to be proper if a

can be extended to an embedding of F into W*,
We let

/cl/ denote the number of ways a can be extended to an

embedding of F into W*.
m

Note that in a proper weak attachment
a of F to W*, ui must be a vertex of Ci of maximal degree
if Ci E FlbF*. Define the sequence ?;(a) =

las follows:
(++T~,...,~

s(s+t) )

number of paths of length 1 leaving
u

a(Ui) = xk' ' < k ( S
i for

I_ J

Zk =

number of paths of length j leaving ui for a(u

i ) = YQ
where k = Js+j for 15 j < s, 1 < j < s-l

- 3
*

number of paths of length j leaving ui
for "("i) = wm

where k = s'-+-(m-l)p+-j  for 1 ( -;L, i /- -
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It is then clear that
s(s+t)

Ial < Kg -.fl
k=l

where KO,Kl, . . ., will denote constants depending on s and not

on n. The sequences z(c) can be linearly ordered as follows.

For -t(a) = (y+...,~s(s+t)) and

qa’) = (a;,z;,...,z’s(s+t) ’> we define

T(a') > -c(a) if either:

k=l k=l

s(s+t) s(s+t)

(ii) 1 "EL = 1 ~~ and ~(a') is lexicographically

k=l k=l

greater than ~(a), i.e., for sore m, TL = ~~ for 1 5 k < m and

T; > Trn*

We let z (F) = z( P)
1 ,...,T PIs(s+t) ) denote a maximal sequence z(a)

in this ordering as ~1 ranges over all proper weak attachments

of F to W*. The proof of the Fact will depend on the following

assertion.
I

Claim: If T (F 1 >z (F)
3

then NF' (W*)/NF(W*) > nSdS for n
sufficiently large,

Proof of Claim: I
Suppose T (F > w>z . It is easily seen that
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On the other hand, it is not hard to show that

. .

NF(WX) < K2 L'
c s+t) qp
hk=l nk l

To see this, WC consider F as a labelled  forest and WC show

that

EF(W*) < K3

k=l

.
for a suitable constant K-- 3 = K3(s).

First, the non-star-like trees in F
3 can only be

embedded into the Vi parts of W* and, since the total number
of proper weak attachments of F3 to W* is 'bounded by a

function of s, then the embedding of the non-starTlike  t+ees

of 3' contributes a. factor of at most K4
s sst) T;z

h where
2 nk

T'(p) = ;(T'* I k=s t-1

s t-1'
. . ., %(s+t) ) is a (maximal) sequence derived

e from some proper weak attachment B of F,
to w*.

Next, consider an embedding of a star-like tree

'T E F2 which is not a star. Suppose T 1s formed by
adjoining mk paths of length k

Y 1 < k < s , to the "center"
vertex u. Although it may be possible to embed T into W*

by mapping u onto some xi E: X (e.g
'9 when at most two of the

mkJ k 2 2, are nonzero), when this is done we must use

cdg~s in one of the paths of length s connecting x
i to adjacen;

:‘p-c La1 vertices of' W*, and so J there arp at most
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S

-.I. + mk
iK5 nl k== such embeddings,-. However, this factor is

negligible compared to the corresponding factor of

S

mk
KG n";' which we obtain if we em'bed T by mapping u onto

S

some yi c Y since

mn
S

> K7 n"

--
> K8 nL

(

/:

2
I+s-~ ) nm

/
(1 +s

-1

2

provided R has been chosen sufficiently large

-1

for 3 and
n is sufficiently large.

Finally, we consider a star S E Fl, say, consisting

of m paths of length 1 adjoined to a vertex u.
If m 2 3

then in any embedding of F into W*, u must be mapped onto

some vertex in XL, Y since these are the only available

s vertices of degree 2 3. However, since n /nk .k+l -+O" as
n --+m then the dominant contribution will certainly come

from the embeddings which map u onto some xi E: X (in fact
9

, the smaller the index i, the better). If m ( 2 then there

are many ways of' embedding S into W*, for example, so that

u does not map onto a special vertex of N*. Again, however,
the dominant term clearly comes from those embeddings

which take u onto some special vertex x1
, i ~ '.

Thus, all except a negligible fraction of the

cwn1,2tiding:; of I? into W*- arc ext-Jnsion;;  of proper weak



- 12 -

attachments CY, of F to W*.

weak attachments of F to W*
Note that if a and a'

are proper

either
and ~(a') > ~(a) then by definition,

or s(s+t)

T
L

7-i =

k=l
Tk and for some m < s(s+t),

k=l l

--

“i = Tk for 1 < m < k, and 2'
m > zm'

In the first case,

s(s+t)
n “Ii s(s+t)

nk
T’ (l+s-k)

k=l > Kg fl n k
k=l

$+1-t)
= K en k=l TL

9
zs (s+t+k

.n k=l

1+Cs(s+t)
> Kgn k=l Tk

> K10"lj2s
S(s+

ITi
k=l

t)



But

II k
k=l

s (stt)
y‘ z’s -k

L
k

k=m

and s(s+t)

r -r s -k
Lt.- k
k=m

p+ft)
= Kg n k=l Tk

zm-l -k
. n k=lTks

l n
z;_(;+t)?,s-k

k

2 (z,+lyrn = Tms-m + s-m

s(s+t)
5 Tms-m+  Y’

L S l/2.s-k

k=m+l

5 Trns-m + 2s -m-m .

Hence J iyeither  case,

s(s+t)
s

(8) 'k
k=l nk > Kll ns

-T.2s  -m-l/2

> Kll ns
-2s2

USS
3

> Kll n
But since there are at most K

12 = K12 (s) proper weak
attachments of F to W* then by (5),  (8), and the definition of

-r 07 we have

(9)
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Hence, from (7) and (9), we have

.
> nl,ss3

for n sufficiently large and the Claim is proved.
--.
From the preceding discussion it is not difficult

to see that if T (J-9 I
= z (F > then F and F' are isomorphic

which contradicts the hypothesis that they are distinct

elements of 3'. Therefore , we must have T cF) f .cF') and

so the Fact always holds, provided s is sufficiently large.

This completes the proof of the theorem.

CONCLUDING REMARKS
I
As we have seen in Eq. (1

points then NF(T) can be written as

(9 'FcT) = Pb)NFf CT)

J when F has isolated

where P(n) is a polynomial (depending on F) in n = IV(T)/

F' has no isolated points.
and

However,

for all trees T,

such an expression, valid

can always be written in the form .



(10 > ‘bjNF’ AFNF(T)
where zF,(d) consists of all those forests which can be

formed by adjoining exactly d = dcg P(n) additional edges

to F'. This follows by the observation that

(11) jn-l-/E(F’)l\NF,  (T) = yd LJ NF' (F)NF(T)
FEsJjII  (d)

since the-left-hand side of (11) can be interpreted as

counting the number of ways of selecting a copy of F' in

T together with d additional edges of T. For example, if

F' is the forest shown in Fig. 4(a) then
.

(12) (n-4)NF,(T) = 2N
L F1

a

L

where

1
6 8

the Fi are given
; in Fig. 4(b).

%
b PI0

(T) + 4r\r
F2

CT) + 2NF
3

(T) + 3NF4(T)

: @>

c

Fig. 4

We remark that jf 3 is allowed to be infinite

then nontrivial linear dependences  among the NF(T), F e 3,

can exist. For example, if Sk denotes the star with k edges,



i



REFERENCES

[l] M. Edelberg, M. R. Garey, and R. I,.  GY~IEI~~~,  On thedistance matrix of a tree (to appear).

[L3] Distance matrices of trees, R
(to appear). . I-Jo Craham and L Lo&zI .

[37 F. Harary, Graph Theory > Addison-Wesley , New York (1969).


