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Abstract

In 1969 it was shown by P. Erd% that if 0 < al < a2 < . . . <

is a sequence of integers for which the products
TV--

< x

a a
ij are all distinct

then the max%num possible value of k satisfies

n(x)+C2 x3'4/(l% Xj312 < max k < n(x)+ c1
x3/'/(log x)3/2

where s(x) denotes the number of primes not exceeding x and c
1

and c
2 are absolute constants.

In this paper we will be concerned with similar results of the

following type.

are sequences of

Suppose 0 < a1 < ..* < ak <x J 0 < bl < .** <be <x

integers. Let g(n) denote the number of representations

- of n in the form 8.b
cl

. Then we prove:

(i) If g(n) ,<l for all n then for some constant c3 ,

2c x
ka < 3
log l

(ii) For every c there is an f(c) so that if g(n) L c for all n

then for some constant c4 ,

kP < & (log log x)f(c) .
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United States Government.



On Multiplicative Representations of Integers

P. Erdb's and E. Szemergdi

Let a1 < . . . < ak Lx be a sequence of integers for which the

products a.a
U

are all distinct. P. Erd& proved that [l]

dx) +c2 x3'4/(10g X)3/2 < max k < R(X)+ c
1

x?/4/(log x)3/2 .

Perhaps there is an absolute constant c so that

(1) maxk x-- = n(x) + c 3/4/(log x)Ji2 + 0

but we can not prove (1). (c,clJ.  l . denote absolute constants not

necessarily the same.)

P. Erdb's [2] also proved that if al < .?. < ak ,< x is such that

the number of solutions of a a = t is less than 2'+1 then
ij

(2)

L

max k = (l+ o(1)

In fact (2) holds if the number of solutions is < 2p'1+l .

Let �1 < �2 < l l *

and denote by g(n) the number of solutions of

-n = a.a. l

iJ
(2) easily implies that if g(n) > 0 for all n then

ii31 SUP g(n) = ~0 .
n =CO

It is curious to remark that the additive analogues

of this result present great difficulties. An old problem of P. Erdbs

and P. Tur&n states: Denote by f(n) the number of solutions of

n
= ai+a' 'J

Then if f(n) > 0 then lim sup f(n) = * . The proof
n =a0
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or disproof of this conjecture seems to present surprising difficulties

and P. Erd6s offered 300 dollars for a proof or disproof.

Raikov proved that if a1 < a2 < . . . is such that g(n) > 0 for

all n then

112
lim sup A(x) - > 0
X

X=cD

where A(x) = c 1 . P. Erdb's asked:
ai <x

Is there a sequence a1 < a2 < . . .

for which g(n) > 0 and A(x) < cx/log x for infinitely many x ?
--

Wirsing [y] answered this question affirmatively. In fact he showed that

g(n) > 0 for all n > no implies A(x) > x j-& (l+ e) for some

e > 0 and that this result is best possible; that is, for every e > 0

there is a sequence a1 < a2 < . . . satisfying g(n) > 0 for all n > n
0

and A(x) <& (l+ e) for infinitely many x .

Let 1 ,< a1 < . . . < a1 < x , 1 ,< bl < . . . < b1 < x . Assume that

there are at least cx distinct integers not exceeding x of the form

a.ba 13
. Then max(A(x),B(x)) > x1/2'd and if the number of distinct

a.b 's
li is x+0(x) then max(A(x),B(x)) > x1-e for every e>O l

We do not discuss the proofs here which are not difficult.

It might be worth while to investigate the question that if g(n) > 0 and

A(x) < cx
log x holds for infinitely many x, is it then true that

A(x) > cx for infinitely many x , or if this would not be true, how

fast must A(x) increase for a suitable infinite sequence
Xjdm*
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One more question in this direction: Let aI < l .* <
5% S"

be a sequence of integers for which the products
k
n 5

i=l ai '.,

&.1 = 0 or 1 are all distinct. P. Erd& [3] proved

max k = n(x) + Yi(xl/2 ) + 0

In fact, perhaps the following more precise statement can be made:

Let 15 ul < . . . < uk be a sequence of integers for which all the

k
sums c E.U. )

i=l 3 l
e.
1
= 0 or 1 are all distinct. Put minuk=%.

Erdijs and Po'sa observed that

IL

1
c

(3)
k=l

and there could be equality in (3). A very old problem of P. Erdb's asks:

Is it true that
%>2

k-c
for every k where c is an absolute

constant? P. Erdgs offers 300 dollars for a proof or disproof of this

conjecture.
-

Let 15 al < . . . < ak <x ; l_< bl < .*- < b <x be two sequences
a-

of integers. Assume that all the products a.b
ij' lli_<k;

:l 5 j 5 1 are distinct. P. Erdb's conjectured and Szemerhdi [7] proved

that then

2
PO kl < 5

log x .

First of all we give a simpler proof of (4), which nevertheless

uses many of the ideas of the original proof. We conjecture that in

fact
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(5) X2

kf L Cl+ o(l))  log l

It is easy to see that (5) if true is best possible. To see this, let

the a 'she the primes in -
( 1
$x and the b's are the integers not

exceeding x all whose prime factors are <If.
-t l

Clearly the products

a.b
Ci

are all distinct and the prime number theorem implies

X2k:;I 2 (l+o(l)j dog if t=t
X

3 43 but t/xc -+ 0 for every E>O.

In fact by choosing t = log x (1+0(l)) we maximize k& and we then

get sequences a1 < . . . <
?k , bl < l . . <b! with the products a.b

13
all distinct- and

kl >

It would be of interest to see if (6) can be improved. Conceiva;bly

it is best possible, but we have no evidence for it.

I&his paper we prove the following theorem. To every c there

is an f(c) so that if 11 a1 < . . . <
?k Lx 9 l<bl < l . . <bL <x

are such that g(n) < c for all n then
e

2

(7) k1 < & (log log x)f(c) .

(7) is best possible apart from the value of f(c) . The proof is

not entirely trivial and we only outline it. Let r >l be given. The

sequence B consists of all the squaretiee integers b satisfying

$<b<x, and v(b) 5 r (v(b) is the number of prime factors of b ).

The sequence A consists of all the integers a <x which do not have

two divisors dl < d2 < 2dl , VCdl> I r Y vcd$ L r '
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It is not difficult to show that

A(x) > clx > 4B(x) > c2x(log log x) /log x

and the number of solutions of a b
i j

= n is less than c
r where c

r
depends only on r . We do not discuss the details.

We further outline the proof of the following two'theorems:

1. Assume A(x) > clx ) B(x) > c2x . Then

(8) max g(n) > (log x) c3
l

n<x
2

Again apart from the value of c3 this is best possible. (To see this,

let the a 9 and b 9 have 5 log log n prime factors.) Finally

assume AUB is the set of all integers and A(x) > cx , B(x) > cx l

Here

(9) ma is(n) > (lot2 4
c~loglogx

n<x
2

and apart from the value of c4 this is best possible. To see this,

a let the a 9 have 5 log log n prime factors and the b's have

> log log n prime factors. Perhaps (9) holds for every c4 < 1-e .

The above example shows that it can not hold for c4 > l+e .

Now we are ready to prove (4). In other words we prove the

following.

Theorem 1. Let 15 a1 < . . . < ak <X , 1 L bl < . . . <bt <x be

two sequences of integers. Assume that the products a b
ij

are all

distinct. Then for some absolute constant c

2
kL < --%-

log x .
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Denote by A resp. B the sequences {al,*..,ak) and {b1���b☺  l

A(y) wiU. denote the number of terms of A not exceeding y . A prime

p is associated with A if there are at least k
-. 100 p log p multiples

of p in A, similarly p is associated with B if there are at least

1- -
100 p log p multiples of p in B . Let pl < p2 < .-= be the primes

which are not associated with A -- omit all the a 9 which are multiples

of any of the p%. Thus we obtain the new sequence Al having k
1

terms. Repeat the same process and also apply it to B with the primes

not associated with

--

we obtain a sequence

v = (vl < . . . < Vh ‘5
2

B . Since G 1 1
p 100 p log p < 2 ' eventually

u = (u, < . . . < 511
Y VcB, hl>k a n d2

3 VCB, h2 >; with the property that if

pl”i then p is associated with U and if plvj then p is

associated with V . To prove our theorem it clearly suffices to show

(10) Y2 < c1x2/log x .

Let now t with 2
t
<xl/2 be the greatest integer for which there

are more than 2t/2 p 9 in (2t,2t+1) which are associated with both

u and V. Denote these primes by pl'o.p,ps  l

0-Q

P-2)

2
t

< p1 < l ** < p, < 2t+1 ' s > 2t/2 .

Consider the set of all pairs of integers

{
3
Pi '

“j t

'i 1.

l<i_<s
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where u
j

f 0 (mod pi) 3 v., 5 0 (mod p )
3 i

. Since p
i

with both U and V there are by (11) at least

ch h
(13) 1 2 CA h

lo4(t+l)2 22t+2 ' &fz

pairs (12).

Now observe that the pairs (12) are unique. If

U.

Jl
U.

a = -
P.

J2 and

V V

B
ji j;

5
=p.

J2
=p.

5
=p.

J2

then u.v=
Jl J; = ujA.

= app. p.
"1 l2

which contradicts

Now we estimate the number of pairs (12) from above.

2t+l
<Pl< l ** <x the primes associated with both U

the maximality  of t there are at most 2l/2 primes p
I 1+1(2 '2 ) for every I >t . Thus trivially

1
pi

< 8 .

is associated

our assumptions.

Denote by

and V l B y

in the interval

Denote by ql < ..- the primes in (2t+1,x) not associated with

U and by rl < .-. the primes in ( 2t+1,x
1 not associated with V .

I -Clearly the integers (12) satisfy

I *
(15) 9,x

'i 7 ' and 2 if O(mod q) , k
i pi

z O(mod r)

for all the primes q and r defined above. By Brun's method we

immediately obtain from (15) that the number of integers of the form

3 is less than I

pi



i

I

i

1
1

(16) c1 2t
q-f 1-f

( >i

and the number of integers of the form “jt

p i
is less than

(17) c2 2t
-Q l-'

( >

.
i

Thus, from (16) and (17) we obtain that the number of pairs (12)

is less than

(18) c1c2 f+-$-J(l-$) l

--
From (14) and the theorem of Mertens we obtain

cL+c + =c
'i

Lc.L.
i 15 'i

> log log x - log t - c

where in cl the summation is extended over all the primes in (gt+l
�4 l

aorn (18) and (19) we obtain that the number of pairs (12) is less than

(20)

or

c3
x2t

22t log x

From (13)' (20) and the uniqueness of the pairs (12) we thus obtain

%A2 c x2t

t2 < 2: log x

x2 t3
5 h2 < c /

2t 2 log x

which proves (10) and cbmpletes the proof of Theorem 1.
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Observe that if no t exists for which there are many primes in

(2t'2t+1) associated with both U and V , the proof gives

2
u(x)v(x) < cx /lag -.x .

If there is a large t then in fact U(X)V(X) = o .

X2Now let us try to obtain A(x)B(x) < (l+ o(l)) log . One can

formulate this as an extremal problem in number theory. Assume

15 al < l *. < ak <x , l,< bl < . . . <bQ <x are such that the

products a.b
13

are all distinct. What is the maximum of k1 and which

sequences realize this maximum? Perhaps the sequence defined in the

introduction comes close but we have no evidence. One could try first

of all to prove that the extremal sequence has the following structure:

Split the primes into two classes qi and r. l The A's are the
3

integers composed of the q's and the B's are the integers composed

of the r's . We have not been able to show this -- the method which we

use in proving Theorem 1 shows that we can assume that the extremal

sequence has the following structure: The primes are split into three

e classes cs Ii ' Erj3 3 Is,3 '+ < C and all the q's are associated
1

with A , all the r's with B and the s's can be associated with both.

If we would succeed in eliminating the primes s then to prove

X2
em4 < (1+0(Q) log we would need the following theorem on

sieves which we can not prove but which perhaps can be attacked by the

experts: Let ql <q2 < . . . ' rl < r2 < . . . be two disjoint sequences of

primes. al < a2 < . . . , bl < b2 < . . . are the integers composed of

the q's and r's respectively. Is it true that

9



( 1)2
Af⌧)☺w  t Cl+ o(l))  &

l

As shown in the introductiqn,  equality is possible in (21)' but

perhaps the only way to achieve equality in (21) is to have

min 4 23 9.t q ’ y-t 1r-J q tend to 0 as x 403 .
0

Thec,yea 2*_9__- Let A(x) > clx , B(x) > c,x . Then for some n <x ,
-

L

g(n) > (log x>a .

Theorem 2 is an immediate consequence of an

The number o-f products of the form a b
Q ij is '

fewer than - xC

0% xf
distinct integers of the

I <x. This implies Theorem 2.
i

1
L

L

old theorem of Erdas [4].

c2 x2
1 but there are

form k!, k=x,

Ir; would be interesting to determine the best possible value of a,

1
aslog is easy to prove, and at present it is not clear to us how

much this can be improved.

Theorem 3. Let A(x) > cx ,
e

B(x) > cx and assume that every m < x

is either in A or B . Then for some n <x and x >xo(e) ,

- (22)

Denote by I the interval

E) log log x

and let pl < . . . <p, be-the primes in I
l Put

10



k =
c 3

I 1 = 5 i;"- = (;- ~)lOglOgx+O(l) .
i=l i

Denote by D the sequence- dl < d2 < . . . of integers not exceeding

x which have at least k distinct prime factors in I . It is easy to

see that

(23) D(x) > x
2 log x lk-l/(k-l)!

The proof of (23) follows the method of Hardy and RamanuJan [6]

and will be suppressed.

Without loss of generality we can assume that at least

of the d's are in A (since A UB contains all the integers not

exceeding x ).

It follows from Tur&Ps method [8] that all but o(x) integers

not exceeding x have 1+ o(1) distinct prime factors in I . Thus

since B(x) > cx we can assume that at least 5 of the b 9 have at

least t distinct prime factors in I where t = [(l-&)a] . Consider

now all the integers

(24) a.b. ,
iJ

aieDnA , v(bj) zt .

By (24) the number of these products is greater than

(25)
X2

(1% xl2
ak-'/(k-l)! .

It is not difficult to see that almost all of these products are squarefree

and these then have at least k+1 prime factors in 1 . It is easy to

see that the number of integers not exceeding x which have at least

k+L distinct prime factors in I is less than

ll
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From (25) and (26) we obtain that there is an n for which the

number of solutions of n = a.b
13

is at least

rk"/(k-l)!

which proves (21).

1Perhaps (21) holds with LE instead of E - s . To make the proof

work, I would have to be the interval

> ‘, ,(“g x)1-T)  , k = [(l g0 x)l-=q ]
l

But then we could not prove (23), but we hope to return to this question.

Finally we prove

Theorem 4. To every c there is an f(c > so that if

l,< al < . . . < ak <x , l<bl < . . . <b
I
5 x are such that g(n) < c

then (7) holds.

For simplicity we only prove this for c 4 .= Assume that

_ (27) k! > * (log log xja

where cx is sufficiently large. We are going to prove that (27)

implies that there are integers (0) (1)

(0)
p2

(1)

z ) y and four primes pl , p
1 '

' P2
so that for all choices of E

i =0 or 1, i=l,2,

2
(28)

( >
Y inl PiEi eA 9

=



L

i

i
c

1
1

(28) clearly implies that g(zypo)  pi’) p,$‘)  pi” )
2 4,

hence to prove Theorem 4 it suffices to prove (28). In view of the

fact that we do not try to get best possible values of CX the proof

of this will in some respect be simpler than the proof of Theorem 1.

We say that the prime p belongs to A if there are at least

k

p(log log P)2
multiples of it in A . This is a slight modification

of the definition in Theorem 1 (which as the attentive reader will

later see is really needed here) but since c 1

p(log log P)2
converges

this makes no difference.-v

Let tl be the smallest integer satisfying

oot3 4" <2 < x1i2 (where c is sufficiently large)

t-l
for which there are more than 21

t1hs tl> 2
primes which belong to

both A and B . If no such interval exist then Brun's sieve gives

as in the proof of Theorem 1 that

2
kl < cx log log x

log x

which implies that in this case our theorem holds.

Let now

t

PlJP2Y-'Ps ) s >
2l

tpt3 tl> 2

t
be the primes in 2l ,2

t,+1
which belong to both A and B .

Denote by A
pi

respectively B
pi

the set of integers

13



, {z} 3 {:} 9 aj "O(modPi) 9 bj, 2 O(mod pi) .

Let now t2i( > be the smallest integer satisfying

(b3 x)” <
ti( >
22 <

X l/2
( >pi

.
t1( >

for which there are more than 22 .. ( >

(

( >

>

t(2i)(log $.))2 primes 'ji i n

ti ti+l( >
e2 d2 which belong to both A

'i
and B

pi
l If such a

--.
( >

t21 does not exist then every prime q in (log x>", $
112

i >

belongs to at most one of the sequences A , B
Pi Pi

(we neglected a

set of primes the sum of whose reciprocals goes to 0 as x +g~ and

which may belong to both A and B ). But then as in the proof of

Theorem 1 we obtain by Brun's method

(30) lAp 1 lBp 1 < cx',$og log x .
i i

'i
log x

Thus from (30) and the definition of A , B
Pi Pi

we have

k' = 1~1 1~1 I ~~~~~. 1~~
i

1 p: (log Pi log log pi)4 < cx2(~~g~g x)5

which again proves Theorem 4.
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The number of possible choices for t2i( > is at most log x and so
there are at least

t
2l

tl(log tl)2 log x

primes pi in 2tl 92
tl+l

> which have the same t2 '

Let Pi I lLi_<s , be the primes (28) and ql, l 9qs the set

t
of primes in 22 ,2

t2+1

l To every pi

there are at least

t
22

t2(@3  t212

( >Pji 's (which are q 's) so that there are at least

i

I
I
L

ck
> ck

Pi Pj@) (log log pi)2 (log log p(i))2
3

2tl+t2
(w3 t1J2 (1% t212

> LA

2tl+t2
(log tl)2 (log t2)2 log x

(since k >A )
log x

L

integers u < x

ppo
so that up.p ' eA( >

ij
1 J

. Therefore by a simple

computation there is an integer U to which there are at least
.

products p.p i( >
U

for which Up.p i CA( 1
1 j

. Henceforth we only consider
.

these pairs p.p 1( >
13

which belong to U . To each of these pairs there

1s



1
I.
i

are at least

cx

log x 2tl+t2 (log tl)? (log t2)2

-integers v < so that vp.pw
13

EB l Thus again by a simple

averaging process there is a V so that there are at least

,Y2

(log xl5

--.

pairs p-q for which Upq E A , Vpq E B .

Now we use the following simple lemma, on graphs. Let G be a

bipartite graph of Ll white and L2 black vertices and more than

L1/"
1 L2

edges (Ll < L2) . Then the graph contains a rectangle. Since

t
2 IL > (log x)lOO ,

t
2 2 > (log x)lOO the lemma applies and the rectangle

a gives the configuratjlon  which we require.

For c = Zk the proof is similar. We have to apply our procedure

k -Umes and have to use the theorem on k-tuples in [5]*
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