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Abstract

In 1969 it was shown by P. Erdés that if 0 <al <a2<. . . < < x
TV- -
is a sequence of integers for which the products 3.a are all distinct
]

then the maximum possible value of k satisfies
3/4
“(X)+62 X / / (log X)5/2 < max K < m(x)+ Clx5/h/(log x)5/2

where x(x) denotes the number of prines not exceeding x and ¢y

and 02 are absolute constants.

In this paper we will be concerned with sinmlar results of the

following type. Suppose 0 < ag <...<a <x ,0 < bl < ... <b£ <x

are sequences of integers. Let g(n) denote the nunber of representations

of nin the form aibj . Then we prove:

(1) If g(n) <1 for all n then for some constant e
k< m

(ii) For every ¢ there is an f(c) so that if g(n) <c for all n

then for sone constant ¢y

2
¢y X

(log 1og x)f(e)

This research was supported in part by National Science Foundation ¢rant
GJ 36473x and by the O fice of Naval Research contract NR Obkh-Loz
Reproduction in whole or in part is permtted for any purpose of the
United States Government.



r-

—

On Multiplicative Representations of Integers

P. Erdds and E. Szemerédi

Let a) <. . . <a_ <x be a sequence of integers for which the

products a.a, are all distinct. . Erdos proved that [1]

n(x)+ e, XB/L/(lOg x)j/z < max K < gm(x) + cy xi/u/(log x)5/2

Perhaps there is an absolute constant ¢ so that

(1) max k = 5/4 1 3/2 o Xi/h
ax n(x) +c x/7/(log x) + m

but we can not prove (1). (c,c denote absolute constants not

REE
necessarily the sane.)

P. Erdss [2] al so proved that if 8 < .. < a, < X i's such that
L

t he nunber of solutions of ai? =t is |less than 2°+1 then

_ (log 1 £-1
(2) mx k = (1+ o(1) n“f%!o%og)n

In fact (2) holds if the nunmber of solutions is 2!'14-1 |

Let a; <a, < and denote by g(n) the nunber of solutions of
R u agee (2) easily inplies that if g(n) >0 for all n then
lim sup &(n) = = . |t is curious to remark that the additive anal ogues
N =c

of this result present great difficulties. An old problem of P. Erdss

and P. Turdn states: Denote by f(n) the number of solutions of

n = ai+a.ﬁ - Then if f(n) > 0 then 1im sup f(n) = » . The proof

N=o



or disproof of this conjecture seems to present surprising difficulties

and P. Erdés offered 300 dollars for a proof or disproof.

Rai kov proved that if a; <a, <. I's such that g(n) > 0 for

all n then

1/

.-L.?C.
[imsup A(X) -(%)——— >0
X =0

where A(X) = 2 1 . P.ErdSs asked: s there a sequence a; <a, <.

for which g(n) > 0 and A(X) < ecx/log x for infinitely many x ?

Wrsing (9] answered this question affirmatively. In fact he showed that
. . X
g(n) >0 for all n>mn, inplies A(x) > x Tog % (L+ ¢) for sone

e >0 and that this result is best possible; that is, for every ¢ >0

there is a sequence a; <a, <. . . satisfying g(n) >0 for all n > ng
X . L
and A(x) <—l-o-—g—§(l+€)for infinitely many x .
Let 1 <ap <. . . <a <x, 1< <. .. <b, <x . Assume that
there are at least cx distinct integers not exceeding x of the form

}/2+a and if the nunber of distinct

1-¢

aibj . Then max(A(x),B(x)) > x
ai“hi 's is x+o(x) then max(A(x),B(x)) > x for every ¢ >0 .
W do not discuss the proofs here which are not difficult.

It mght be worth while to investigate the question that if g(n) > 0 and

A(x) < Iochx holds for infinitely many x, is it then true that

A(x) > cx for infinitely many x , or if this would not be true, how

fast nust A(x) increase for a suitable infinite sequence IR



One nore question in this direction: Let 8 <. 7 <a <=

k
be a sequence of integers for which the products T a:i ,
. i=1

eg =0 or 1 are all distinct. P. Erdss [3] proved

max K = n(x) + x(xl/z) + 0( Xl/2 )

log x

In fact, perhaps the follow ng nore precise statenment can be nmade:

Let 1<u <. .. < 7w be a sequence of integers for which all the
z

sums g.u e, = 0 or 1 are all distinct. = .
2% i 2 1 Put minuk o

Erdds and Pdsa observed that

(3) max k > § zt(xl/ak)

k=1

and there could be equality in (3). A very old problemof P. Erdss asks:
Is it true that Otk>2k'c for every k where c is an absolute

constant? P. Erdds offers 300 dollars for a proof or disproof of this

conj ecture.

let 1<a, <. . . <& <x; 1<b <... <bz—<—x be two sequences

of integers. Assume that all the products a.ibj s 1<i<k;

‘1 <j <tare distinct. P. ErdSs conjectured and Szemerédi [7] proved

that then

(%) ki < =

First of all we give a sinpler proof of (L), which neverthel ess
uses many of the ideas of the original proof. e conjecture that in

fact



2
X

(5) kt < (1+ o(1)) log x

It is easy to see that (5) if true is best possible. To see this, let
the a 'sbe the prines in (%,k) and the b's are the integers not
exceeding x all whose prine factors are_<[.E Cearly the products

aibj are all distinct and the prinme nunber theorem inplies

2
k2 > (1+0(1)) 10};,{ if t=t, - =but t/x* -0 for every ¢>o0 .

In fact by choosing t = log X (L1+0(1)) we maximze k¢ and we then
< .

get sequences a, <. . . &, , by <. . <b, with the products a'ibj

all distinct- and

2 2
(6) kg > — _ X loglogx X2 log log x
log x 2 o) .
(log x) (log x)

It would be of interest to see if (6)can be inproved. Conceivably
it is best possible, but we have no evidence for it.

In this paper we prove the following theorem To every c there
is an f(c) so that if 1<a; <. .. <ak5x R l_<_bl<.. . <b, <x
are such that g(n) < c for all n then

2

C,X
(7) kf < lo]é ” (log log x)f(c)

(7)is best possible apart fromthe value of f(c) . The proof is
not entirely trivial and we only outline it. Let r >1 be given. The
sequence B consists of all the squarefree integers b satisfying
-}é(-<b <x, and v(b) < r (v(b) is the nunber of prine factors of b ).
The sequence A consists of all the integers a <x which do not have

two divisors d; <d, <24, , v(d) <r, v(d,) < r .



[t is not difficult to show that

A(x) > e;x , B(X) > cyx(log log x)/1og x

| and the nunber of solutions of aibJ =n is less than ¢ where c
r r
depends only on r . W do not discuss the details.

VW further outline the proof of the follow ng two'theorens:

1. Assunme A(x) > eix , B(x) > X . Then

C
(8) max g(n) > (log x) °

n<x

Again apart fromthe val ue of ¢s this is best possible. (To see this,

L let the a 's and b 's have < log log n prine factors.) Finally
: assume AUB is the set of all integers and A(x) > ¢X , B(x) > cx.
. Her e
¢ log logx
(9) max g(n) > (log x) "
n<x

and apart fromthe val ue of ¢, this is best possible. Tg see this,
let the a 's have < log log n prine factors and the b's have
> log log n prinme factors. Perhaps (9) holds for every ¢, < l-e.
The above exanple shows that it can not hold for ¢, > e .

Now we are ready to prove (4). In other words we prove the

fol | ow ng.

Theorem 1.  Let l<ea, <. . o <a<x, Igp<. .. <b, <x be

two sequences of integers. Assume that the products ah are all
)

distinct. Then for some absolute constant ¢




Denote by A resp. B the sequences {al,...,ak} and {bl""’bz} .
A(y) will denote the nunber of terms of A not exceedingy . A prime

p is associated with Aif there are at |east k .
. 100 p Tog p mul tiples

of p in A sinmilarly pis associated with B if there are at |east
Y | . . _

100 pTogp Multiples of pinB. Let pj <p, <...be the prines
which are not associated with A .. onit all the a 's which are multiples

of any of the p's. Thus we obtain the new sequence A, having ky
terms. Repeat the sanme process and also apply it to B with the prines

not associated with B. Since Elwp < % . eventually

we obtain a sequence u:{ul<"'<u7\.1} » VCB, N >1§§§_ nd
V:{V:L<"'<v>\.}’ VcB, >»2 >é with the property that if

2
plui then p is associated with U and if p|vJ. then p is

associated with V.. To prove our theoremit clearly suffices to show

2]
(10) AN, < clx“/log X
Let now t with ?! <xl/2 be the greatest integer for which there

t 2t+1

are more than 2%/2 p'sin (27, ) which are associated with both

U and VvV . Denote these prines by Pys - e 5Py

(1) 2 <p < o<op <2, o502

Consi der the set of all pairs of jntegers

u, v,,
(12) ﬁl, J , l<i<s

IA
IN



r—=

wher e uJ. = 0 (mod Pi) 5 V.,

= 0 (nod pi) . Since p. is associated

with both Uand Vv there are by (11) at |east

(13 crM N . cr A
loh(t+l)2 52t+2 £2 23t72

pairs (12).

Now observe that the pairs (12) are unique. If

u u \Y V
J J Jl st
1 Jd
a = o= = p_% and g = P._l - -2
N . .
1 do 1 J2

then u, v, = - - -
33 ujzvji app. P, whi ch contradicts our

assunpti ons.
"1 12 v
Now we estimate the nunber of pairs (12) from above. pagte by
t+1

2 <P <.*™ <x the primes associated with both U gn3 v .By
the maximality of t there are at nost »#/2 primes p in the interval
Lo L+l .

(2°,27°7) for every g >t . Thus trivially

(1k) 2 L <3
1 pi

. . t+1
Denote by q; < ... the primes in (2" 7,x) not associated with

. . t+1
Uand by r; <...the primes in ( 2"7,xy not associated with V .

-Clearly the integers (12) satisfy

s 4 x5 x ] Vi
19 g <% > 3 < ad g # Amd q) . L = qmd 1)
X ,

1

for all the prinmes q and r defined above. By Brun's method we

i medi ately obtain from (15) that the nunber of integers of the form
u.
<

is less than
Py
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s

x 1
(16) ¢, % TT(l - a;

and the nunmber of integers of the form

17 e, Z=ml1-1L1
s 3o(4)

Thus, from (16) and (17) we obtain that the number of pairs (12)

is less than

2
(18) c, ¢ X nf1-L ml1-2 .
1% 2% N N

From (14) and the theorem of Mertens we obtain

1 1
(-19) Za—i+2¥=21

where in 231 the summation is extended over all the primes in ;t+1 x)
2 .

From (18) and (19) we obtain that the number of pairs (12) is less than

5 22t log x

From (13), (20) and the uniqueness of the pairs (12) we thus obtain

C)\.l >\.2 -5) X %t

<—-_
2 25t;2 22t | 0g x

or

NN < e
1 2 7
2% 1og %

whi ch proves (10) and completes the proof of Theorem 1.

is less than

Lol lod

-E—P}— >log log x -logt -c
i
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(oserve that if no t exists for which there are many primes in

(2t,2t+l) associated with both U and V , the proof gives

U(x)V(x) < ex %I ag -x

2
. 1 = X
If there is a large t then in fact U(x)v(x) = o(logx)

Now |l et us try to obtain A(x)B(x) < (1+ o(l)) f:gx . One can
fornmulate this as an extremal problem in nunber theory. Assume
I<a) <% <& <x, 1<bh <. .. <b, <xare such that the
product s a.ib:j are all distinct. Wat is the maxi mum of k2 and which
sequences realize this maxi nun? Perhaps the sequence defined in the
introduction comes close but we have no evidence. (ne could try first
of all to prove that the extremal sequence has the fol lowing structure:
Split the prinmes into two cl asses a; an('JI] r..The A's are the
integers conposed of the q's and the B's are the integers conposed
of the r's . W have not been able to show this -- the method which we

use in proving Theorem 1 shows that we can assune that the extrenal
sequence has the followi ng structure: The prines are split into three

cl asses {qi}. {rj} s [St} Esi < Cand all the q's are associ ated
)

with A, all the r's with B and the s's can be associ ated with both.

If we would succeed in elimnating the prines s then to prove

2
A(x)B(x) < (1+0(1)) Tog we would need the following theorem on

sieves which we can not prove but which perhaps can be attacked by the

experts: Let 4 <4 <. .., rp<r, <L be two disjoint sequences of

prines. 8 <& <.. ., b <by<. .. arethe integers conposed of

the g's and r's respectively. Is it true that



X

(21) A)B(x) < (1+ o(1)) 5%

As shown in the introduction, €quality is possible in (21), but

perhaps the only way to achieve equality in (21) is to have

/
min\Z s e
a4y Tory tend to 0 as X —= o .

~

Theorem 2. et A(X) > ey, B(X) > e X Then for some n <x
a - (4
g(n) > (log %)~ .

Theorem 2 is an i nmmedi ate consequence of an
g ol d theorem of Erads [4].

The nunber of products of the form
P aibj is > C§ x° but there are

fewer than —_=

distinct integers of the _
(log x) form k¢, k =x,

a

£ <x . This inplies Theorem 2.

Iz would be interesting to determne the best possible value of a,

< Tog 2 i's easy to prove, and at present it is not clear to us how

nmuch this can be inproved.

Theorem 3. et A(x) > cx , B(x) > ex and assunme that every m< X

I's either in Aor B. Then for some n <x and x >x ()

1
-(22) g(n) > (log x)(E " ¢)log Log x

Denote by | the interval
(c(log X)‘n (log x)l/e)
, c

and let p, <. . . <p_ be-the prines in i
1 5 P

10
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_ |1 1/2 Sl 1
k‘[é'(logx)/ -J P 2123153: (g-ﬂ)loglogx+o(l)
Denote by D the sequence- dl < dy <. .. of integers not exceeding
X which have at least k distinct prime factors inl . It is easy to
see that
X k-1 ]
(23)  p(x)  >gyery /(1)

The proof of (23) follows the nethod of Hardy and Ramanujan [6]
and will be suppressed.

Wthout |oss of generality we can assune that at |east % D(x)
of the d's are in A (since A UB contains all the integers not
exceeding x ).

It follows from Turdn's nethod [8] that all but o(x) integers

not exceeding x have 2+ o(2) distinct prime factors in | . Thus
since B(x) > cx we can assune that at |east %§ of the b 's have at

least t distinct prine factors in | where t = [(1-€)2] . Consider

now all the integers

(24) b, . a;jedna, v(by) >t

By (24) the nunber of these products is greater than

2
X lk-l/

(25)
(1log x)2

(k-1)!

It is not difficult to see that alnmost all of these products are squarefree
and these then have at least k+f prime factors in 1 . |t is easy to
see that the nunber of integers not exceeding x which have at |east

k¢ distinct prine factors in |l is less than



r

r— r

(27) ke >

s k-1
(26) x( z p (er2-1)¥ = ™71/ (e go1)

From (25) and ( we obtain that there is an n for which the

number of solutions of n = a.b s at |east
14

k+l -1 \-1 ) 1
X k-1 (1 -¢€) loglogx
— s 7/ (x-1)} s £ S L
(log x)2 Z ktg-1)¢ ot (1og x)

which proves (21).

Perhaps (21) holds with 1-e instead of §-¢. 15 rake the proof

wor K, | would have to be the interval
(om0 1 l—n)
<C< %8 x) 7, o(log X) » ko= [(log x)T™M

But then we could not prove (23), but we hope to return to this question.

Finally we prove

Theorem &. To every c there is an f(c) so that if

ey <o <y <x, lSbl<---<b£5xaresuchthat g(n) <c
then (7) holds.

For sinplicity we only prove this for  _4 . Assume that

log - (log log x)

where a is sufficiently large. W are going to prove that (27)

inplies that there are integers ; ,y and four primes &), p(2)
(0) (1) ' L

p2 Py so that for all choices of e =0 or 1, i=12,

@) oy T et ea, ﬁ(”

i=1

5
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(28) clearly inplies that g(zyp§_o)p§_l)péo)Pél))

> b,

hence to prove Theoremk it suffices to prove (28). |, view of the
fact that we do not try to get best possible values of @ the proof
of this will in sone respect be sinpler than the proof of Theorem 1.

We say that the prine p belongs to Aif there are at |east

multiples of it in A This is a slight nodification
p(log | og P)
of the definition in Theorem1l (which as the attentive reader will
later see is really needed here) but since X 1 conver ges
p(log | og P)

this makes no di fference.

Let t. be the snallest integer satisfying

1
c 2 1/2 , o
(log x)” <2~ < x (where ¢ is sufficiently large)
tl
for which there are nore than 2—2 orines which belong to
tl(log tl)
both A and B . |f no such interval exist then Brun's sieve gives

as in the proof of Theorem 1 that

cleog | og X

kt <
log x

which inplies that in this case our theorem hol ds.

Let now
etl
(29) Pl)PQ:'--:P s S >

8 2
tl(log tl)

. _ (T‘l tfl)
be the primes in \ 2 - 2 whi ch belong to both A and B .

Denote by A
P.

respectively BP the set of integers
1

i

13



a, b.,
{5‘;}’} 3 {—P%} » aj = 0(mod Pi) ’ bj' = (O nod pi)

Let now téi) be the smallest integer satisfying
t(a)

1l/2
(log x)c (Pi ) /

2 e (1)

+00) (10g NON prames Py " n

for which there are nore than

tél) t(l)+l
2 ,2 whi ch belong to both A and B .If such a
1 l

‘ ” 1/2
tél) does not exist then every prine q in ((log x)c, _’E_)/
Py

belongs to at nost one of the sequences A B (we neglected a
Pi Pi

set of prines the sum of whose reciprocals goes t0 g as x -« and

whi ch may belong to both A and B ). But then as in the proof of

Theorem 1 we obtain by Brun's method

[»)
cx” log log x

(30) la_ | |8 | <
p R 5, "10g x

Thus from (30) and the definition of AP_ , BP' we have
i i

¢ % (log log x)°

_ 2 : L
= |a| |B] < IAPiI IBpi | 2 (1og Pi log log »;)" < Tog x

whi ch again proves Theorem 4.

14
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The nunber of possible choices for téi)

is at nost |og x

there are at |east
t
o 1
2
tl(log tl) | og X
. . tl tl+1
primes p; In { 27,2 whi ch have the sanme t,.
Let Pi , 1<i<s, bethe prines (28)and 9 0 Wl the set
i mes | ( b te“)
of primes in \ 2%,z To every Dp; there are at |east
t
_ 28
t_(log t,.)°
2 2
Pgi) 's (which are q 's) so that there are at |east
' ck ; ck
5 Y5 >
B Pj(lj (log I og :pi)2 (log Iog 1{,{1)—)E T+t > -
J 2 (log 'bl) (logtg)
> et — (si k )
+ si nce > =
21 2(Iog tl)2 (1 og t2)2 log x 10g X

. X 3
Integers u z;;;zy so that 11pi;é:0 eA . Therefore by a sinple
f K]

conputation there is an integer U to which there are at |east

t
2

(log x)3

1%

1 ,
product s ;&;é ) for which Uz, é Vea  tenceforth ve only consi der

i (1) -
these pairs IEEB which belong to U. ¢ each of these pairs there

15

and so



are at | east

CX

(1og tl)e' (Iog t2)2

t
log x 2

1%

. X
-Integers v < m so that vpip§i) €eB .Thus again by a sinple
173

averaging process there is a V so that there are at |east

t
2

(log x)5

1%

pairs p-q for which Upg ¢ A, Vpgq « B .
Now we use the following sinple lemma on graphs. |et G pe a

bi partite graph of Ll white and L2 bl ack vertices and nore than

1/2
L L
edges (Ll < L,) . Then the graph contains a rectangle. Since
ty 100 ts 100 .
2 7> (log x)77, 2%>(log x) the | emm applies and the rectangle

gives the configuration Whi ch we require.

For ¢ = of the proof is simlar. W have to apply our procedure

k times and have to use the theoremon k-tuples in [5].

16
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