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Abstract

A survey of algorithns for solving the eigenproblemfor a class of
matrices of nearly tridiagonal formis given. These matrices arise
from ei genval ue problemfor differential equations where the solution
I's subject to periodic boundary conditions. Al gorithnms both for
conputing sel ected eigenval ues and ei genvectors and for solving

the conplete eigenvalue problem are discussed.
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1. I ntroduction

Ei genval ue problens of the form

g;(p(X)g§)+ a(x)y + Aar(x)y = 0, p(x) > 0, (1.1)
with periodic coefficients
p(xta) = p(x), q(x+a) = q(x), r(x+a) = r(x),

and where y(x) is subject to periodic boundary conditions, arise in
many practical application (see e.g. [10] ). Using a second order
di fference approximation to (1.1), we are led to a matrix eigenval ue

probl em (see Evans [1])
Ax = xx, (1.2)

where A is a real, symetric matrix of nearly tridiagonal form

a,] b‘l bn
by &, by,
A= ", ! (1.3)
b, ‘b
o ° n-1,
\ bn bn—'l ey ,,/

In this paper we will give a survey of algorithns for solving a
linear system of equations AX = ¢, for computing Sel ected eigen-
val ues and ei genvectors of A and for solving the conplete eigen-

problem (1.2). The al gorithns can in general also be applied when
Ais a Hermtian matrix of the sane structure as Ain (1.3). Sone

of the nethods presented are believed to be new.

W remark that differential equations in two space dinmensions with
periodi ¢ boundary conditions give rise to simlar eigenvalue prob-

|l ens, where the matrix A now is nearly bloak-tridiagonal, i.e. a.,
and b, in (1.3) are replaced by square natrices A, and B, (see [3]).
Many of the methods proposed will be relevant also to this nore

general probl em



2. Basic transformations

VW first remark that we can always assunme in the follow ng that
b, #0, k=12...,n (2.1)

Gherwise if b =0, then, by a cyclic pernutation of rows and
colums these two el enents can be brought to positions (1,n) and
(n,1), and the matrix degenerates into a tridiagonal matrix.

The matrix (1.3) has no useful bandstructure at all. W note that
the graph associated with Ais a polygon:

Fromthis graph it is quite easy to see, Martin[4], that the
m ni mum bandw dth whi ch can be obtained by pernuting rows and
colums of A is realized by ordering the nodes (n even)

n n
u—--—-‘..
20 1t

(For n odd, the last three nodes are (n-1)/2, (n+3)/2, (n+1)/2.)
The pernuted matrix then has the form (after renunmbering the el enents)

1,n, 2, n-l, 3, n-2,...,%2,

&y by by 0 \
b1 a2 0 b3
P R |
A = PAP” = by T | (2.2)
n-| 1
b

0 "_ 0 -1 n //
bn-| bn &

i.e. Xis symetric and five-diagonal, with two inner di agonal s al nost
zero. Rutishauser [5] has shown that A can be transformed further
into tridiagonal form wusing orthogonal simlarity transformations.
This can be acconplished with approximately n%/4 plane rotations
whi ch corresponds to ~ én? nultiplications (see WIkinson [T]
pp. 567-8). Unfortunately it is not possible to take advantage of
the zeroes within the band of A since these will rapidly fill up
during the initial transformations.



Anot her useful observation is that A can be witten as a rank
one pertubation of a symmetric tridiagonal nmatrix

_ T _
A—T+cruu,0—irbn. (2.3)
where
31:bn bT /1 \
b1 a2‘ b2 ‘ 0
T = b2. o s u = { : % (2.4)
1 o ] bn-l 0 /
\ bn-I an--l-bn | 1
Y

(wte that .the first and |ast diagonal elenments have been nodified. )
This splitting of A enables us to use sonme of the ™ thods gi ven by

Gol ub [2].

Using perturbation theory the eigenval ues of A can be related to
those of T in (2.4). If we denote these eigenval ues A and

4, k =1,2...,n in decreasing order, then they satisfy the
relations (WIkinson [7] p. 98)

M T & = 2om, (2.5)
wher e

m
Cxm 2T, g =1 (2.6)

Thus the eigenval ues A separate t he 4 at least in the weak
sense, and if o < 0 then

dy 2 Ay 24, 20, e 2 d 2
Now from (2.1) it follows that the eigenval ues & are si mpl e,
and thus, the eigenval ues A have at most nultiplicity 2. Aso

if an eigenval ue A has multiplicity 2, then d is also an eigen-
value of T. This differs fromthe tridiagonal case where if

has nultiplicity 2 at |east one b, = 0.

k



W remark that a sinple exanple of a matrix A with eigenval ues of
nultiplicity 2 is the matrix A= A(a,b) where

a, = a, b.1 =Db, I =1,2,....,n.
This matrix is a special case of a circulant and has the eigenval ues

g

Al the eigenvalues of this matrix has multiplicity 2 except the
ei genval ue (a+2b) (and if n is even (a-2b)).

a + 2b cos(2mk/n), kK = 0,1,...,n-1.

The special unsymmetric matrix

a1 b1 cn \i
- ¢, &, b2 0 ,
A= 5 v bici > 0, (2.6)

c . .

0 © P
‘bn %-1%
A
can often be reduced by a diagonal simlarity to a synmetric matrix.
If we take

A=DAD ', D= aagq,),

then Ais symetric if

(cik/dlm)bk = (4, /4 e, k = 1,2,...,n.

where we have put 4 . .. Miltiplying these relations together
we find

n n
b _ MNe
k=1 T get®

If this relation is satisfied then 4 are determ ned by

4= 1 q,, = 2o /e )2 k=1, 0. (2.7)
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3. Linear system of equations

Ve first conpare sone different nethods for solving AX = ¢ when

A is positive-definite.

3a) Gaussian elimnation

Wien A is positive definite Gaussian elimnation can be performed

Wi thout pivoting. Hence symmetry is preserved with consequent savings
in storage and operations. To avoid square roots we wite the result-
ing factorization A = 1o’ wher e

/ 1 \
'y, 1 \
| ' |
l | D= dlag(ai).
\ A

’ {
\61 6o 8, 1

The elenents in L and D are conputed by the recursion formulas

o =
1= 80 Yeog = Dy gy o = 8 = Yoy,

kK =2,....,n~1

By =Py B = Y 1B s k= 2,..0,0-2 (3.1)
Byl = bn-1 Y-pfp-p-
ozrg1)c1 =a, § _, = Bk—1/°‘k.—1’ &:f)"' O‘I{'lk-” - 6k-1sk—1’
a = aén), k = 2,...,n.

Thus, the conplete deconposition requires 3n nultiplications and
“2n divisions. To solve the systemAx = ¢, we then have to solve the
two triangular systens

Ly = e, Ty = D'y,

whi ch requires another 5n nmultiplicative operations. This algorithm
uses a total of 10n operations and n extra storage |ocations.

Gaussi an elinination can also be applied to the reordered. matrix (2.2).
It is easy to verify that this requires the same number of operations
and anmount of storage as the al gorithm above.



3b) Odd~even reduction

Assune first that nis even
, and rearrange the rows and columg

of A=A through a permutation matrix

[ a
SRR
k4 b
. :_3b1;
SRR
T al b . n=2
P_A P Y
M | y———=2 n by
1 a1
b
2 b3 a
y b, 3
L.
L
n—2bn—1

‘a !
We now elininate all even variablés fromall odd Mn‘oered equations

by Gaussian elimnation

———ilie (Note tha-t P T . . . . .
. AP .
If we introduce the notats 144P; also is positive-definite).

on ¢ = - — ey
€15 x = X, and

s Pec = 1

[y P = b .

B1 E1 1719 . 1% (3.2)
. . . X

then we get for X, after this elimnation step’the reduced $/stem

of order n/?2

A2x2 = c2

wher e (3.3)

A, =E . Bp T
) 28T, - -
t1h 1=t 1 02 = e - B1D71d1 . (3 4)
en we ge y1 by backsubstitution |

—— -
y1_D4d’-D1T

1 B

Ir x2 iS knOWn,



W note that this elimnation step can be perfornmed w thout using extra

storage, since we can |et
-1 1
}31D1 , A2, D1 d1, c2
overwite

B, D eand E,, 4, e,

12 1
Taking symetry into account, this first step requires =~ 5an/2 opera-

tions for conputing B1D'1 and A, and a further 2n operations for

-1 L
D1 d,c2 and y1.
The inmportant thing to note is that A, IS again a symetric tri-
diagonal matrix, with elenents added in the |ower |eft and upper
right hand corners. Thus, if nis a power of two, then we can use
t he same deconposition repeatedly. Then we will obtain x in

n(9/2 + 9/4 +9/8+ . . ...) ~0n
operations.

The odd-even nethod can in fact be applied without restriction on
n, since if nis odd, then we get after the first reordering

‘\
(3.2 "b1 b2
n-1 n~2 °n-1
T 2 a -
P1A1P1 b1 . 1 n
2 °3 &3
%0 o .
b b “a
n-1 n
L n J
and obviously the reduced matrix A, will be of the sanme formalso

in this case. Perhaps the main advantage with the odd-even reduction
Is that it does not require extra storage. The operation count is
also slightly lower than for CGaussian elimnation, but this mght

be upset by the need for More organisational iNstructions. It shoul d
be pointed out that if g =2 and bk =b for all k there is a con-
siderable sinplification in the algorithm



3¢) Rank-one_mpdification

By (2.3) and the Sherman-Mrrison formula the solution to Ax = ¢
can be witten as a linear conbination of the solution to two
tridiagonal systems of equations,

1 1 T -

X =T 'c - 8T 'u, 8 = ou 1c/(1+cuTT—1u). (3.6)

Since T is symetric we have

w7 le) = (e,
and therefore we can also wite (3.6) as

T-X =C - Bu, B =ve/(1+ver), (3.7)
where we solve for v from

Tv = gu. (3.8)

(Note that in (3.7) the right hand side of the system of equations
is modified only in the first and last conponent).
Fromthe relations (2.5) and (26)it follows that if ¢ < 0, then

Amin(T) Z-Xmin(A)’

Wien T is positive definite the two systens of equations in (3.7)
and (3.8) can be solved wi thout pivoting, and we can conpute ¢ with
a total of 9n nultiplications. As in Gaussian elimnation we need
one extra tenporary storage vector.

An inportant case when the algorithns given above are not directly
applicable is in inverse iteration for conputing eigenvectors of A

Then we want typically, to solve, the system of equations

(A - )\I)xk+1 = xk s

where A approxi mates an eigenvalue of A Here the matrix (A - Al) is
not in general positive-definite, and in Gaussian elinination pivoting
must be used to preserve stability. Symmetry will then be destroyed,
and therefore the algorithnms given below for this case also apply when

A is unsynmmetric.



3d) Gaussisn elimination with pivoting

This al gorithm has been described in detail by Evans [1]. Here we prefer
a slightly different approach. In [8 3, contribution I/6, it has been
described how partial pivoting can be perforned so that we get as a by-
product the leading principal mnors of A This can be an advantage if
sel ected eigenvalues of A are to be determned, and involves no nore
arithmetic than the nore usual algorithm The first (n-1) elimnation
steps will then require 3n nultiplications, and the |ast between 3n and
bn multiplications (depending on the number of interchanges). The for-
ward- and backsubstitution part will take between 5n and én, giving a
total of less than 1in nultiplications.

W note that Gaussian elinination with pivoting can also be applied to
the five-diagonal matrix in (2.2). If we don't try to keep track of the
zeroes within the band, then a standard procedure for general band-
matrices (I/6 in [8]) can be used. This will however require 17n multi-
plications for the solution, and also more indexing operations

The fornulas (3.7) and (3.8) apply also in this case, but we nust now
use pivoting when solving for v and x. This will increase the operation
count to 12n nultiplications. W point out, that this nethod cannot now
be expected always to work. Irrespective of the sign of ¢, T can now be
much worse conditioned than A. W return to this question when discussing
inverse iteration in section 5.
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4. The conpl ete ei genval ue probl em

W now consider algorithms for conputing the conplete set of eigen-

val ues and possibly also the corresponding eigenvectors. W first

note that unfortunately-the QR-al gorithm cannot efficiently be applied
directly to A If we determ ne an orthogonal transfornation QT such

t hat QTA = R is upper triangular, then R has the form

»

i
i
~

X x (n

TR
Moo
b
VRV
- 4/

4

It is easily seen that A'= RQ = rar™ ! 1s a full matrix.

One approach is to reduce A by pernutations and plane rotations to
tridiagonal formas desribed in section 2. Then the efficient Qr-

al gorithm (see [8] contribution II/3 and II/4) can be applied. The
amount of work in the reduction (6n2 multiplications) is less than
that required by the &-algorithm which is ~ 1202 if only eigen-

val ues are conputed and »~ 43 if also eigenvectors are needed.

4b) Rank-onegnodification

If we assune that the eigenvalue problemfor the tridiagonal matrix

. Tin (2.3) has been solved, then

T=A~ouuT=QDQT,D=diag(di) (4. 1)
and thus
Q%A Q= D+ ovv', V = Qlu. (h.2)

W now have to solve the eigenproblemfor a diagonal matrix modified
by a matrix of rank one, This problem has been discussed in [2]. W
have for X # d;, I = 1,2,...5n

det (D + ovvt = Al) = det (D = AT)(1 + ov (D - A1) Ty)



11.
Thus, the characteristic polynomal is
() = Mg~ ) + o2 M
p_(x) =1(d.- 1) + o=v2 1(4. - 1) L,
n i=1 1 i=11 j:‘] J . ( 3)
J#i
if A# 4, I =1,2,...,n, and
) n
pn(dk) =0 vkagaj = 4) k=1,2,...,n (4.4)
Since fromthe assunption (2.1) it follows that the eigenval ues d
of T are distinct, (4.4) inplies that a is an eigenvalue of Aif
and only if Vi = 0. The corresponding ei genvector of Ais then
e T Ao T 9o
i.e. it equals the eigenvector of T. In practical conmputation if we
find that Ve T € then with A = a and X, = Qe, We have
- - T
[ax, = ax |1, = [[(D + ovv Je, — de |], = VBloe].
Thus, when ¢ is of the same order of nagnitude as the uncertainties
in the elements of A we can accept a and qk as an ei genvector-
ei genval ue pair of A
The renaining eigenval ues of A can be conmputed by finding the roots
of the equation
n
i=1

The equation (4.5) can easily be solved, since we have precise bounds
on each of the roots (from(2.5) and (2.6)). It is also easy to conpute
derivatives of wWh), so e.g. Newton's nethod nmay be used. Wen an eigen-

val ue A of Ais known, we have for the corresponding eigenvector the
explicite expression
= -1
0 =Q (D - AI) v (4.6)
The ei genval ues d. of T can be efficiently conputed by the QR rmethod.
Note that when all the eigenvectors of A are not wanted, then it is

not necessary to conpute the whole matrix Q but only the vector

v = QTu.
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The two met hods described in this section requires about the same

amount of work. However, an exampie Where the last nethod is ad-
vant ageous to use has been given in [10]. There the matrix T is

real symmetric, but A has conplex elenents

. .
A=T+ gu* u = (1,0,.. .. ,O,Ew).

b



-

5. Conputing selected eigenvalues and eigenvectors

If only a few eigenval ues and eigenvectors are required, then unless
nis very small transformation to tridiagonal formor solution of the
conpl ete eigenproblem for T becomes to expensive. W consider here
algorithns for conputing sel ected eigenval ues based on the Sturm
property of the sequence of leading nminors p, (A, pa(x),...,;“;n(x)

of (A- Al). The corresponding eigenvectors can then be obtained by

inverse iteration.
Fol | owi Ng Evans [1] we define pi()\) and ri()\) as pr| nci pa| sub~
det erm nants
p; () = det (T[1,i1), r;(3) = det (T[n-i,n-1]) (5.1)
where T = T(A) is the tridiagonal matrix

a,-A b

1 1 0
T=| P18
, o bg—]
\ 0 bn-l an_)\ //
Expanding the determinant p (1) = det (A-Al) by the last colum we get
= - 2 ) - n-1 . v
B, (A) =P (X)) = B2 (a) + 2(-1) b b "D (5.2)

Then, the nunber of disagreements in sign between consecutive nunbers

in the sequence Poer+ 3Py 4(A),p (1) is equal to the nunber of eigen-
val ues smaller than A, To avoid difficulties with underflow and over-

flow one usually instead conputes the ratios of succesive nunbers in

\t,\zi Zetsequence. It we divide (5.2) by p_,(\)then since » _ (1) = r___(3)
2,(0) = q,00) = /s, (1) + B % (5. 3)
wher e
4; (A) = p,(W)/p; (1), s4(n) = rg(M)/r; (0,
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.n—1 n-1
1(A)i=1rr (}—b":) i21(—bi/qi_(x)) :

_ -1
tn = Pu-

To conpute (5.3) we use the recursions

9 = a;mh, Q.= a;-A —b§_1/qi_1 ,» i=2,...,n,

= - = -_ ~H2 3 =
S; T8, 47A, s =& o) bn—i/si—1’ i=2,...,n-1, (5.4)
ty =0, b=t bi—1/qi—1’ 1=2,...,n.

As in contribution II/5 in [8] we nerely replace a zero g (1) or

s. .(x) by a suitable small positive quantity. The nunber of negative

i1
el ements in the sequence q;(A),...,q _ (1), q (1) i's now equal to the

number of eigenvalues smaller than A. The conputation of this sequence
using (5.3)and (5.4) takes 2n divisions and 2n nultiplications if

b2 are conputed once and for all. This is nore than for the tridiagonal
case but much less than for the simlar algorithmby Evans [1].

The fornulas (5.1) and (5.3) are not always suitable when det (A-Xl)

has a double zero »*, Then A* is also a sinple zero of s,_,(1) and
qn_1()\) and we will get cancellation of high order in (5.3). W now
derive an algorithm which although not unconditionally stable, performs

wel | also for double roots.

If we apply Gaussian elinination without pivoting to the matrix (A I),
then before the (i-1) :st step we have the reduced matrix

%1 Pi-q ti—1\}
b. ,
i-1 (a;=0) b, ’
0 . :
- bn_1
t.
il On-1 %4

Here for i=1,2,...,n-1, CI-11 t, and c; are determined by the recursion
formul as (5.4) and

=g - = - 2
Cy =gty ¢y =g . ti-1/qi—1' (5.5)
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‘5.
After (n-2) elimnation steps, we end up with the 2x2 matrix
,/qn-1 bn-1+sn—1‘
! (5.6)
kbn-1+sn—1 °n- 1
1
and thus
q,(3) = () = (b _,+ s _,()%/q_,(0) . (5.7)

Here, in case A* is a double zero, all elenents in the matrix (5.6)
al so equals zero for X=X* | and thus no cancellation occurs in (5.7)
Unfortunately (5.5) is not a stable way of conputing Coop

When qi_1(i) is small, then lci(A)|>>Ici1(A)l and severe can-
cellation which causes instability will take place in the later

2 ) .
steps. However, unless 13—1/(3; x) al so {s smal |, we have l°i+1l << pll
and we can avoid the cancellation by taking a double step

= - t2 -
Ci+1 ci-—’] ti"T(ai A)/(qi . qi—1) (5.8)
whenever lqi()\)l >> lai_-kl. Simlarly if q_n_g()\) is close to zero
we have to nmodify (5.7). By conmbining the last two steps we get

LG T T Bala g+ 2t By by /(e g ), (5.9)
W th cn defined by (5.8). As before we can replace the zero
q;_1(1) by a small positive quantity e[bi_“ , Where e is the rela-
tive precision of the arithmetic which is used. The operation count
for this algorithmis the sane as for th? first one, but the over-

“head is slightly larger.

Recursion fornulas simlar to these above can al so be devel oped for
the five-diagonal form (2.2). However, the formulas corresponding to
(5.3) and (5.4) become more conplicated, and they retain the sanme
short com ngs.

Nei t her of the algorithmgiven above is wthout objections. To conpute
the ratios of successive mnors of (A-Al) inconmpletely satisfactory
way, It seens that we have to use the elimnation algorithmnentioned
under 3d. This algorithmrequires however 7an nultiplicative operations
and thus is not quite as efficient as the other two. If g1~ --
vectors are needed +w%-- -
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algorithm can be used in the inverse iterations for the eigenvectors.

An alternative to the methods described so far, is reordering to five-
di agonal form and using the &R-algorithm for band symretric matrices
(seel8] , contribution II/7). Note that this procedure is reconmended
only for conputing selected eigenvalues and not for solving the conplete

ei genpr obl em

W finally discuss nethods based on the rank one nodification (2.3)
of A W have

det (A - AI) = det(T ~ XI) @et(I + o(T - A7) lu?) =
det (T - AI)(1 + ouT(T - u)'1u).

Here, we cannot as in section 4 exclude the case when X is an eigen-
value of both A and T. Thus we cannot divide out det(T - XlI) and the
characteristic equation beconmes

A

p (1) = det(T - AD)(1 + ou'v(2)) = p_(2) w(d) . (5.10)
where v(x) i s the selution to the tridiagonal system
(T - AI)v(A) = u . (5.11)

To solve (5.11) for v(h) and compute w(A) requires 8n operations,

and since pn(A)is the determnant of a tridiagonal matrix it can be
conputed from the usual recursion formula in 2n operations. Note that
since

W (A) = oviy ,

Newton's nmethod can be applied with little extra work

V& now turn to the conputation of selected eigenvectors, assum ng

that accurate approximations for the corresponding ei genval ues have
been conputed by one of the algorithns outlined above. This is usually
best done by inverse iteration

(A - AI)z = 0,1,...(5.12)

IR SR SR S A P
The choi ce of X, here requires some care. A very conplete discussion
of this choice and the other properties of this process has been given
by Wilkinson[9] . To solve (5.12) we can use one of the nethods for



indefinite systems given in section 3. Gaussian elimnation with pivo-
ting i S straighforward to use, and is recomended when the eigenval ues
have been found by the &R-algorithmor the Sturm sequence mnethods.

When the eigenval ues have been found by solving (5.10), then the rank
one nodification technique can be used also in the inverse iterations,
Using (3.6)the solution to (5.12) can be witten

Zog1 = Yppq ~ BV, B = cuT&r+1/w(l) ;
where v = v(1) is defined by (5.11) and LY

(T =My, = %, (5.13)
Since w(i) may be close to zero, we get a nore appropriate scaling
by instead considering the vector

Ppe1 = Yee1 T BV Vo
Now, assume that A is a very good approxination to an eigenval ue of
A, which is not an eigenvalue of T. Then, it follows that P.(x) #0
and W(A) ~ 0, and that v(X) will be a good approximtion to the corre-
spondi ng eigenvector. Thus, the eigenvector is obtained already from
(5.11) when solving for the eigenvalue, and no inverse iteration has
to be done.

w(A) (5.13)

In the case when A is an eigenvalue of both A and T, then we have seen
in section 3 that also the correspondi ng eigenvectors must coincide.
Then we nust have uTq =0, where q is this eigenvector, and A/q will

-be an eigenvalue/eigenvector pair of the matrix (T + own ) for ar bitrary
values of o. It follows that in this case w(x) will renain bounded,

but in general not equal to zero. W can obtain the eigenvector by
applying inverse iteration to T, i.e. conpute the sequence of vectors

= (T - AI)-1xr, X

r+1
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6. Concl usi ons

V¢ have surveyed nethods for solving the eigenvalue problem for nearly
tridiagonal matrices of the form(1.3), which arise from periodic
boundary probl ens. Al though nmany of the standard nethods can be nade
to work efficiently, it is surprising how much trouble the extra two
non-zero elements generates. Two exanples of this are that this matrix
structure is not invariant under miterations, and that it requires
much nmore work to generate the Sturm sequence than in the tridiagona
case. One should also point out that the sinple backward anal ysis of
rounding errors in the tridiagonal case does not generally carry over
to matrices' of the form (1.3)
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