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Numerical Experiments With The Spectral Test-

Abstract

FoliouwingMarsagliaand Dieter, the spectral test for linear
congruential random number generators is developed from the grid or
lattice point model rather than the Fourier transform model, Severa |
modificat ions to the published algorithms were tried, One of these
ref inenients, which uses results from lesser dimensions to compute
higher dimensicnat ones, was found to decrease the computation time
substantial ly. A change in the definition of the spectral test is
proposed in the section entitled “A Question of Independence”.

Background
The values of the LCRNG (Linear Congruentiat Random Number Generator)

X = ax +¢c mod m
i+1 i

when plotted on the x axis, | ie on a one dimensional grid. That is,
the difference between any pair of them is a multiple of some integer 3:

x -x =1L J

for some integer L. & is 1 for a maximum period RNG, but is

at least 2 if ¢ = 0 andmis a power of 2, Depending upon the number
theory underlying the choice of a, ¢, and m, it is possible that
not al | of the m/d grid points between 0 and m-1uill be generated,

If instead we plot consecutive pairs of values

(x, x ), 0y X ), oo, Iy x ), ...
12 23 i i+l

as {x, y) coordinates, we will get a two dimensional grid. This means
that the (vector) difference between any pair of points is the sum o F
integer multiples of tuwo constant vectors, called basis vectors, which
.define the grid. To find these basis vectors, we have

X =ax+c - Km
i+l [

for some i n tegers K and M, and so

{x, X ) - (x, x) =(3d a L 3-(MK)m

j j+1 i i+

= L afl,a - (M-K) (B, m)
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a sum of integermultiples of the basis vectors

d (1, a and (8, m)

Simi larly, if consecutive triplets are plotted in 3 space, we wi 1l
find a three dimensional grid with basis

) .
dl, a a ), B, m 8), and (8,8, ml

This pattern extends to n dimensions. We will call such agrid
basis F and denote its vectors by f,ls<j<n,

We can regard an n dimensional grid as an x dimensional grid of
n - x dimensional grids and say that x of the n basis vectors
"connect" identical copies of the n - x dimensional subgrid
generated by the remaining n - x basis Vectors. This even
works uhen x = n, if ue define a zero dimensional grid to be

a point. (Try rereading this with n=2 or 3 and x =1 or 2,)

Note that the only way that these vectors, and thus the grid’'s
structure, depend on the "increment" ¢ is in the value of d, the
smal lest difference between RNG outputs. Ifc is chosen so that
dis greater than 1, weuill only generate every dthsubgrid on
the one dimensionalygr id generated by

2 3
{1, a a , a ,...)

The only other effect of varying c is to shift the entire grid
and t o change t h e orde n which the grid points are generated.

There are infinitely many bases for a given grid, for

if cl and c are tiwohasis vectors in an n dimensional grid, then
we can rep | ace d by d- ¢ and sti | | reach the same points,
since e can a luaysreur i te

Kd + L ¢ as K{d-c)t (K+L) ¢

We could repeat this process ¢ times to replace d by d -gc¢, and
we could also involve other pairs of vectors, In the particular
case of the basis

2
d(l, a a ), B, m B, and (8,8, m

wecould reduce the poters of a modulom by subtracting appropriate
multiples of the latter two vectors from the first.

Now suppo se, for examp l e, that we are examining the three dimensional

griclof some LCRNG. Ituil | | ie entirely within the cubical region
0 < x <m,0 sy <m, B<z<mn

since al | of the RNG values are modulom.
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W e could imagine as a physical model a clear plastic cube containing
m/d dots (in one to one correspondence with the one dimensional
gridl. Asue rotate the cube in various ways, we uii | see the dots
arranged in var i ous planargr ids, corresponding to various Choices of

bases.

If we can orient this cube so that al | of the points fal | in a few
widelyseparated planes, we should be dissatisfied with the RNG that
put them there, since the gaps hetueen these planes represent large
regions of impossible triplets of consecutive outputs, Concomitantly,
these few planes would be undesirably crowded with the points that
should be occupying the intervening gaps. Thus, the widest
separation betueenn-1 dimensional subgrids is a measure of the
uniformity of the RNG, when its outputs are grouped n at a time,

The determination of this distance is the spectral test in n dimensions.

If the grid were a regular cubic one, there wouldbea basis of three
mutual ly perpendicular vectors of equal length. Since the whole grid
would contain m/d points, there would be about

173
{m/3)

points along each one dimensional subgrid, making the basis vectors about

1/3 2/3

o m

in length. Unfortunately the {unreduced) basis vectors defined by the
LCRNG are anything but short and regular. In fact, they are so long

2
that they al | protrude from the cube of interest! (Assuming a > m as
Knuthetal reconmend.,)

In order- to resol ve such a grid into more widely separated, more
dense | ypopu l at edsubgrids, we must find shorter and more nearly
perpendicular basis vectors. HWe can do this with an algorithm
analogous to Euclid’'s GCD--bhy replacing a given basis vector with
the "remainder" resulting from subtracting some other basis vector
from it as many times as 1i | | minimize the remainder’'s length, By
analogy with ordinary division, this number of possible subtractions
can be called the “guo tient" ¢, and can be computed directly instead
of by tedious iteration:

c. cl
cl = round ( - )
d.d

where cl is the divisor, ¢ is the dividend, and ¢ - q d is the
remainder. cl is the component of the dividend par-al lel to the
divisor, divided by the length of the divisor, then final ly rounded
to the nearest integer.

This wi | | leave the remainder with the least possible component parallel
to the divisor, subject to the quotient being an integer to preserve
the grid,
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Trad ition suggests that once ad visor is chosen,
it should be remaindered with al of the other basi s vectors,

Eventual fy this process, callitthe F process, wi | 1 get stuck when
al | quotients of pairs are zero. It would be nice if, after all this
work, we could be sure that the resulting basis contained the vector
I inking the most nidely separated subgrids. Unfortunately, example 8
wi I 1 shouwuthis hope to be vain. We have, however, two more weapons.
The neater of them is another collection of n vectors, computed from
the basis, and called the dua! basis. We wil denote it byEand its
elements by e . They have the following magic property:

This means that the jth dual basis vector is perpendicular to the
n-1 dimensionalsubgrid copies connected by the jth vector of the
original basis, -andconveniently, the length of the dual vector is
just the reciprocal of the perpendicular separation between these
cop i es. Thus, to perform the spectral test, we need merely find the
shortest vector in the dual grid, (Technically, there are many dual
grids corresponding to shifting al | of the points by any constant,
but the vectors betueenthem, and hence the dual basi s, remain the

same. )}

First ue find the dual basis from its definition, by forming an n by
n matrix, f, whose rous are the original basis vectors. Then we
invert and transpose it to form the dual matrix e. Repeating this on
e gives f again, ver i fying the dual i ty. Since subtracting the ith
vector from the jth in one basis corresponds to adding the jth to the
i th in the other basis, wewi | | sti | | have a basis if we run the F
process on the dual basis instead of on the original one. Call this
the E process. The recipe for the spectral test now might read:
Compute the dual basis from the original grid basis, run the E
process unti | al | the dual vectors are of minimal length, and return
the reciprocal of the shortest. Unfortunately, there is no way to
guarantee that the vectors are minimal when the E process gets stuck
(example 2, n = 4).

As Knuth has observed (3.3.4, ex. 22, 23}, a good strategy is to
maintain both bases, andsuitch from E to F when E gets stuck, simply
by interchanging the two matrices with respect to the remaindering
operat ion. Then, if F gets anywhere, return to the E process. hen
F getsstuck, the algorithmquits, even though F”’s dying attempts may
have unstuck E. Sad to say, after all of this there is still a slim
chance that the shortest vector left in the dual basis is not the
shortest expressible as a sum of integer multiples of dual vectors
(al though the author has never seen this except in cases where the
matrices uere first transformed by an experimental process which was
neither E no F. Remember to see example 8.) Thus we resort to the
ul ti mate weapon: exhaustive search.



Fortunately, Coveyou &nd MacPherson have shoun that i f an integer

combination of the vectors e,l<j< n, is to be of minimal

length, the coefficient of e cannot exceed

c =lle 1 ¢ |1
i min j
i nmagnitude, uhere e is the shortest e and f sthe jth vector

min i j

of the dual basis (in this case the dual of the dual, i.e, the

current basis for the LCRNG grid). Thus if e is the square
matrix With basis vectors as rows, we must minimize the length

of the vector z e over allnonzero vectors of integers z with
fz | < c|.
J }
We can om it those z uhich are merely the negatives of ones already

tr i ed, for atotalsearch of

(2 c+1)@2c+1)...12c +1)-1

cases. Fortunately, only one ¢ hasever been as large as 2 in

the author's experience with the combined E and F strategy, (We have
been Us1ng stuck to mean n consecut ive fai lures to reduce the searc
vo | ume, rather than n - 1, hence n, consecutive divisors with all

quotients 8.}

The process described above can be refined in several ways.



Ref inement 0

Scale up E, the dual basis, by a factor of m to avoid fractional
elements. In fact, most derivations of the spectral test regard
this integral dual basis as an automatic consequence of scaling
the grid basis clown by a factor of m to fit in the unit cube.

Ref i nenient 1

One step of the E process, using e as divisor, can affect (shorten)
j

only those e for which g is =#8. Inthe F basis, only
i i

f can change, very occasionally growing longer (example 1)}, (thus
j

increasing ¢ and thus the search length), Simi larly, one step of

the F process uill only affect certain f , and only one e
i i

A clever algorithm could save itself many square roots by
minding this.

For typical spectral tests (with n >2), the E process produces
much more rap i cl | y convergent ¢ thanthe F process, even though

the E process wi | | occasionally lengthen an f . A good algorithm
j

might retract any step which increased the exhaustive search volume,
or perhaps save up and return to the best bases if the last Ffew
steps lengthen the exhaustive search just before getting stuck.

| t appears, houever, that at least for LCRNG grids, search volumes
hardly ever grou significantly. Thus, a version of the program was_
modified to run each process unti | all of the quotients In 1ts matrix
were 0, and only then compute the c vector. This seemed to gain
‘about 20% over Dieter’s strategy of defining a process to be stuck
after n consecutive failures to beat the previous smallest search

vo | unie .



Refinement 2

d must aluays divide m, and thus the entire grid basis, Therefore
the entire grid may, in effect, be scaled down by d if we take m
t 0 mean modulus/d, instead of just the modulus,

Thus, the basis matrices are initialized:

f, the grid matrix e, m times the dual matrix

n-I

N

| : |
| |
|8 m B8 ... 0 | |-a 1 8 ... 8]
| | | [
\ | I 2 |
| 8@ m a |-a 8 1 ... B8]
! . l |
\ | n-1 |
|8 B B8 ... m | -a 0 0 ... 1|

where, for efficiency, the powers of a are taken mod m.
Ref i nement 3
Of ten, the spectral test is desired for several consecutive n, in

which case there is the opportunity to use the considerably reduced
bases left over from the calculation in dimension n-1 to initialize

the bases in dimension n. In fact, this technique is so successful
that it is usual ly best to proceed incrementally from dimension 2,
even i f only one c{n)i s desired, (Omitting the irrelevant

exhaust i ve searches.} The crossover point is between n=3 and n-4,
with a speedup factor of 2.5 typical for n=8,

The construction of the n dimensional bases from the

previous ones is: adjoin to the right of f a new column which

is (a mod m) times its leftmost column, then adjoin the row

f =]1000 ... m|
n

to the bot tom, say, of f, For e, adjoin to the bottom the row

n-l
| -a 0O 0 ... B mod m

then to the right adjoin the column of all 8s and a 1.




A strange fact, illustrated by example 2, is that in order to
profit from this incremental stratagem, one must interchange
the processes so that F is used in preference to E. jtisalso
important to use the new vector, f as the first'divisor.

n

ALl this is because n -1 very large numbers have been introduced
into the last column of f, and remaindering them by the n th
vector reduces them modmuhi le any other operation on f or e
just sort of spreads these big numbers around, Note that this
incremental approach is not equivalent to starting with an n by n
matrix and reducing just the first vector pair, then the TFfirst
three, etc., since the F process would be stymied with only 8s to
use against the higher powers of a, while the E process would be
erroneously discouraged by rapidly growing ¢ from those huge

]

number s accumulating in the rightmost columns of f.

After several hundred experiments, the author has only once seen

this incremental method fai | to find the minimal vector before the
exhaustive search, Thiswas also the only time a final c exceeded 1.
{(Examp 1 e 8.) j

Refinement 4

In the tuo dimensional case, the E and F processes are equivalent,
since the e and f matr ices can be interchanged by negat ing a row
and co | umn of each, and then swapping rows. These operations,

if performed simultaneously on each matrix, preserve duality and
cannot change anything about the shortest vector algorithms except
possibly the order in which divisors are investigated, But in two
dimensions there is only one possible first divisor, after which
the divisors must al ternate anyway,

Thus, when n = 2, 1t 1Is unnecessary to switch processes, or even
maintain the dual matrix and c , at least until the exhaustive search,

Even further simplification results from the observation that the
two dimensional spectral test on a and m will emulate Bradley’s
refinement of Algorithm X (Knuth,4.5.2) for the gcd of a and m,
-except that itwi | | stop about half way through.
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Relation to the Serial Test

Both the spectral and serial tests investigate the uniformity

of a vthole period of n-tuples in an n dimensional cube, But

the serial test merely measures the density of points in subcubes,
while the spectral test, using the grid informatian, cffectively
tranforms these subcubes into a worst case orientation, so that,
up to size

at | east ha | f wou | ¢ be empty and ha | f wou | d be proportionately too
ful 1. It seems paradoxical then, that the spectral test on

23 12 35

2 + 2 + 5 mod 2 could have the poor figure of merit .815 in
tuo cli mens i ons and the very good figure 2.78 in three, since a
generator flunking a low dimensional serial test should surely flunk
a hi gher one. (See figure of merit definition in Explanation of
Example Printouts section.1 The explanation is that, as n increases
the number of points in the cube remains m/d, and thus the distances’

betcreen the nearest points grow, roughly as

I/n 1 - I
d m

Thus, if we are to compare serial tests in several different dimensions,
we must increase the size of the subcuhes in such a way as to preserve
their total number, else the point density counts will become unreliably
small.

Nou suppose we have an LCRNG whose n dimensiona | maxi mum subgr id
separation is not much greater than for n - 1 dimensions.
{Occasionally they can even be equal; see examp | es 2 and 3, n = 4
thru 8.1 Suppose further that tie are serially testing this RNG in

n - 1 dimensions with a subcube edge length only slightly smaller than
the grid separation, and that the subgrids are roughly parallel to
the faces of the subcubes. Then many subcubes will fit or nearly fit
betiueen subgyr i ds, causing severe density fluctuations, But when we
jump to n dimensions, the increase in subcube size will mean that
stubcubesui | | no longer fit betueen the subgrids, thus drastically
improving the serial test result.
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A Question of Independence

One subtle difference between current formulations of the serial
and spectral tests is that the serial test is performed on
disjoint coordinate tuples, e g

(x , x ), x, x1}), ...
12 34

while the spectral test is performed on overlapping ones, eg

(< , x ), O, x), ...
12 23

The former sequence is clearly preferable, since it is unbiased.

To modify the spectral test to use disjoint tuples, we
need merely determine the d of the one dimensional grid
resul ting from using only every nth RNG value.

For i ns tance, in a ful | period LCRNG, d= 1, but if the modulus

is even, say a large power of 2, thevalues will bealternately
odd and even. Then the spectral test in two dimensions should

use 3 = 2, or equivalently, m/2 instead of m. Example 7 is a
case where, in four dimensions, the maximal separation of subgrids
is quadrupled by this modification, thus drastically reducing
Knuth's figure of merit (next section) from 4.47 to .873, If

we use the actual modulus instead of m/d in the ¢{n} Fformula,

this figure reduces to .818. In practice, the user could destroy

th i s “resonance” in the last two bits of his RNG simply by discarding

every fifth value, assuming that his concern over cl4) arose from

using quadruples of values. A different way to look at it is that

Knuth’s figure of merit may be too sensitive for large values, and

that log modulus/e , the number of independent bits, would be
min

better. Unfortunately, thiswould have to be multiplied by n for
compar i son between di f ferent dimensions.

10
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Explanation of Example Printouts

The examples below indicate how the spectral test behaves in several
interesting cases selected from the author's experiments. Each
exampl e is specified by a coded sequence of letters and numbers; the
output, which was generated by slight variants of the MACSYMA
programs in the appendix, can be understood as follows:

Procedure specfa, m, n, nn) performs the spectral test on the LCRNG
with multiplier a, modulus m, in dimensions n through nn,

In the leftmost column, an F indicates that the grid basis is used in
the fol lowing transformation: an E indicates that the dual basis is
used. The vector indicated by the second column is chosen as divisor,

and al | of the other vectors in that basis are “remaindered” by it,
as described ear lier, If all quotients are 8, no line is printed for
that cl i v i sor and another d i v i sor i s tr i ed. The vector printed out
next consists of the ¢ , indicating the size of the exhaustive search

J

i f no further reductions were possible. The integer following is
the squared length of the shortest vector currently in the dual
basis. Finally, TRUE indicates a new low exhaustive search volume,

FALSE means no such luck. n consecutive divisor vectors without
a TRUE means that the process is stuck. When both are stuck, the

2
exhaustive search is performed, after which e , the square of the
min

truly minimal dual vector length is printed (abbreviate this quantity
d}. On the next | ine are a, the multiplier: m, the modulus; n,
the dimension; and finally, Knuth’'s figure of merit

n n/2

min/2) !

Whenboth processes are stuck,’ the exhaustive search rarely improves
_upon the current shortest vector,
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Example 8

Here a part icularly successful E process reduces c (the search
vector) to one case: but for lack of a special check, it finds one
more useless E step and an equally useless F step. pNote that when d
(4th column) fails to shrink, the only ¢ vector entry (3rd column)
uhich can change is the one indicated by the 2nd column,
corresponding to the divisor vector,

(CB) spec (2654435789,2132,4,4) 8

E 4 13967335, 5959262, 5959262, 15852981 35512803584646 TRUE
E 1 (851839, 5359262, 5959262, 15852981 35512803584646 TRUE
2116721, 120956, 816496, 2172061 666665718102 TRUE

3 (12611, 13868, 32866, 234681 7782610788 TRUE

4 {81, 84, 19, 153 325152 TRUE

115,84, 19, 151 328152 TRUE

21(5,7,19, 151 3251.52 TRUE

31(5,7 1,151 328152 TRUE

4 (1,1,0, 01 1358 TRUE

1108, 1, 0, 01 13558 TRUE

218,10 01 13558 FALSE (Next three divisors =0+ stuck try, F)

TMMMMMmMmIMmmMmm

13558

2654435789 4294367296 4 0.211203495
TIRE= 40024 MSEC.

(48 sec. Well, nobody said MACSYMA was designed for number crunching)

12

31[8,1,0 01 13558 FALSE (Its no use, butF finds one nonzera quotient)
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Example 0, continued

Same problem using (slower) F process, which gets stuck after one step
and is rescued byE. Again, some time is wasted in the end trying

to reduce search to less than one case. Note that several elements

of the = (search) vector can shrink in one step, even though

d doesn’t change.

{CBB) SPEC (2654435789,2432,4,4)8

F 11437552842, 541687612, 534854214, 5427929341 4319644583488883964 TRUE

E 2 [3967335, 1585298, 4849577, 49215581 35512803584646 TRUE

F 2 [839886, 1585238, 4849577, 43215581 35512803584646 TRUE
1 [6330886, 588582, 4587021, 49215581 35512803584646 TRUE
2 1839086, 588582, 1502064, 39288751 35512803584646 TRUE
LBI8RAARG EOSE82 1502064, 38423081 35512803584646 TRUE

1 {833P%6, 588582, 938813, 33452561 35512803584646 TRUE
2 [517959, 363326, 534841, 20199701 13532031745394 TRUE
JLV\TAA2 363326, 534041, 15822951 13532031745394 TRUE

10417302, 363326, 517959, 5555671 13532031745394 TRUE
3 [93262, 81199, 115757, 944011 675882938706 TRUE

4148729, 73941, 115757, 944011 675882938706 TRUE

1048720, 65388, 115757, 932621 675882938706 TRUE

2 148326, 65537, 114965, 454433 666665718102 TRUE

4 [44078,64352, 74139, 454431 666665718102 TRUE

1 ({31884, 45381, 43130, 3204K] 331544488820 TRUE

2 (383, 443, 350, 3131 31640830 TRUE

3 {3083, 421, 358,195 31640830 TRUE

4 1133, 421, 313, 1353 31640830 TRUE

1 {133, 418, 193, 1401 31640830 TRUE

3133, 394, 193, 5§51 31640830 TRUE

4127, 394, 55, 551 31640830 TRUE

3 [18, 35, 6, Bl 479910 TRUE

4 (19, 34, 6, 61 473910 TRUE

1119, 13, 6, 61 479910 TRUE

3 (18, 12, 6, 61 479310 TRUE

4 (18, 8, 6, Bl 479910 TRUE

21{39, 8 6, 61 479910 TRUE

319, 7, 6,61473918 TRUE

4 [1, 0, 1, 1113558 TRUE

1 El, 0, 1, 11 13558 FALSE

21(8,7,8, 11 13558 TRUE

3 [9, B, 0, 13 13558 FALSE

1[0, 0, 0, 13 13558  FALSE

21{@, 0, 0, 11 13558 FALSE

3[9,0 0 1) 13558 FALSE

408, 0, 0, 11 13558  FALSE

13558

2654435789 42945167296 4 B.2112834395

TIME= 128120 MSEC.

I'I'II'I'I'I'I'I'I“”'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I‘H'I'I‘H'I'I'I'I'H'I'I'I'I'H'H‘H'I'I'I'I'H'H'I'I'I'I'I'I'I'I'I'I

13



Examplel

An example uhere the E process gets gyyck with the search volume at
3307 cases, rescued by F, but onty down to 314 cases, The first step
achieving d = 1509 is remarkable for several reasons. 1583 uit|turn
out to be the shortest squared length,_ feadingtoaspectacut ar c (8)

of 8.27. Weirder is the fact that it managed to simultaneously reduce
d and increase the search volume.

(Courtesy of David Hoag!lin, Harvard Statistics Dept.)

(C1) spec(253634132,2131-1,6,6)8
E 6 1104749768, 170403637, 170403637, 170403637, 170403637, 88878182]

E 5 25224117, 23037399502827771 TRUE
41033803, 41833383, 41833883 20465004 212095401 1683772988642814
E [10188858 1657 R
E3[612718 996757, 16574916, 9462745, 8266495 85672371 274727840407065 TRUE
E 2 {“3'%/478 1503086, 318236, 569053 497115, 515209] 993514549513 TRUE
E 11014487, 28347, 21818928, 191048, 1979981 146738794278 TRUE
E 6 [7824,15389, 412&«5&636031 373421 5219487568 TRUE
E 5 1148, 289, 222714143, 19458, 128521 1522250787 TRUE
E 4 [148, 28329, 42229155, 2843324 TRUE
E 3 {148, 289, 207, 110, 385322431 TRUE
E 2 {76, 116, 186,10, 155545824 TRUE
E 1118, 31, 583, 73, 1243953 TRUE
E 6 I[6, 19, 15,121, 331910250 TRUE
13, 61 3882 TRUE
E 5 {6, 19, 17, 3, 3, 61 3882 TRUE
E 4 (6, 19, 17, 9, 3, 61 3882 FALSE
E 314, 12, 1, 5, 2, 4) 1593 TRUE
E 2 1[4,1, 1, 5 2, 41 1593 TRUE
E 1 Cl, 1, 1, 5 2, 41 1593 TRUE
E 6 (1, 1, 1, 5 2, 11 1593 TRUE
E 5 [1, 1, 1, 5 3, 11 1509 FALSE
E 4 (1, 1, 1, 3, 3,11 1509 TRUE
E 2 {1, 2, 1, 3, 3, 11 1509 FALSE
E 6 (1, 2, 1, 3, 3,11 1509 FALSE
F 3 (1, 1, 1, 1, 1, 13 1583 TRUE
E 211, 1, 1, 1, 1, 11 1509 FALSE
F 2101, 1, 1, 1, 1, 111599 FALSE
F 111, 1, 1, 1, 1, 11 1509 FALSE
F 6 {1, 1, 1, 1, 1, 111589 FALSE
F5 (1,1, 1, 1, 1, 11 1509 FALSE

1509
253634132 2147483647 6 X.2686827

TIME= 339425 MSEC. (Long exhaust i ve search, )

1k



Example 1, continued

Same problem, same process, pyt it somehow avoids getting stuck by
cycling forwards through matrix of divisosg

These qualities of large test value,

E®aI1084743768,SPEC (253634132, 2431 -1,6,5) §

1
777170483637, 170403637,

E 2
E 3 [leB382, 373K14p,, 977125, 97
E4(1287609,2082225 2421579, 321579, 1662171
EGI55490, 152%)02 72252 242151,
E 6 [2790, 38278,569963,3197, 33076, 57509] 12379232699 TRUE
E 1(63,54, 1669,35191965, 7691 31315685
E 2 163118, 583, 66, BHA76 TRUE
E 3 (63, 18,18, 66p, 35476 TRUE
E 4 (63, 228,56, 6633256 TRUE
E 5 (24, 722, 128, 66, 35476 TRUE
E 6 [24 74, 3, 3L 5083 TRUE
E 1 (3, 4,4, 3, 51 5P83TRUE
E 2 13, 2,51, 115,1859 TRUE
E 3 I3, 52, "1, 13, 1859 FALSE
E 4 13, 2,51, 113,1859 TRUE
E 5 I3, 51, 1, BL 1859 TRUE
1, 2, 11 1853 FALSE
E11(2, 5 3 1, 2, 11 1859 FALSE
E 212, 1, 2, 1, 1, 11 1593 TRUE
E 3 [2, 1, 2,1, 1, 13 1533 FALSE
E & [11), 2,31, 1, 2 1593 FALSE
1, 1, 11 1593 TRUE
E 3501112,11, 1, 1,1,11 1533 TRUE
E 2 I1, 11, 1, 1 1593 FALSE

1, 1, 11 1589 FALSE
F1{l, 1, 1, 1, 1, 11 1509 FALSE
1509
253634332 2147483647 © 8.268G827
TIME= 314353 MSEC.
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170403637

ad of backward
many approach sequences, ag

large final search are all associated with highly isotropic grids.

170403637,

TRUE

] 1 (4872 298373995028
Maxﬂe,se7m25,377125,977125 SBEEG]954773265689T RUE
7125, 505056] 954773265683 TRUE

103413054855

1251621 58637107354 TRUE

27771 TRUE



Example 2

Somewhat unfortunate effects of using E process in incremental mode
(on someuhat unfortunate multipl ier distributed by, IRM),

Here, ve nre using the leftover matrices, as in Refinement 3,,

but, contrary to suggest ion, w e are still using E instead of,F .

Note the large search vectors created -in the transition to.nresw=tn,
About three times as many steps are required for n =6 in incremental

E mode than are required for doing n =6 directly (not showpn),
Had E got ten stuck earl ier, F probably would have helped immensely.

For ti =2, the equivalence of the E and F processes will mean that
the F processuwil | rarely, if ever, find a nonzerpo quotient after
the E process gets stuck.

(c2) spec(B5533,2131,2,5)8
E 2 CI, 01 2147221544 TRUE
E1101,01 2147221544 FALSE
2147221544

65533 2147483643 2 3.1412093

1 12, 278837,46338) 2147221544 TRUE
2 (8,0, 101 118 TRUE
3 18,08,1111& TRUE
{9, 0, 11 118 FALSE
{8, 0, 11 118 FALSE

N

010 W

1

5533 2147483648 3 2.58824806E-6

11{21, 879, 1465655, 101 118 TRUE
{21,0, 1465655, 101 118 TRUE

{21, 0, 5, 103 118 TRUE

{21, 0, 5 101 118 FALSE

,9,5, 103 116 TRUE

8, 0, 5 2] 116 TRUE

g, 5 2 116 FALSE

., 1, 23 116 TRUE

g, 0 1, 11 116 TRUE

308,01, 11 116 FALSE

4 (8, 0, 1, 11 116 FALSE

1108, 0, 1, 13 116 FALSE

218, 0, 1, 11 116 FALSE

116

65533 2147483648 4 3.89211674E-5

E
E
E
E
E
1
6
E
E
E
E
E
E
E
E
E
E
E
F
F

16



r—

2 1473, 23196, %‘SSOS@ 7842552 103116

E

E 3 [473, 1o TRUEJE
E 41473, 10, 3854352 s , 116 TRUE
E 1 (18, 10, 3854952, 192732 116rTRUE
E 2 (8, 0, 133’?5‘2'%52103 116 RUE

E 3 [l8, 0, 19 0101 116 TRUE

E 1 [0, 0, 47%@ 001 116 TRUE

3 9,8, 1?6%@, 101 116 TRUE

4 18, 0. 11648421801 116 TRUE
28603, 101 116 TRUE

E 3108, 0 14053, 2gpp3 103 116 TRUE
E 4 18,0 14859, 7030 101 116 TRUE
E 3 (8, 0, 3450, 7030, 101 116 TRUE
E 408, 0 3450, 1730 101 116 TRUE
E 318, 0 844 1730 103 116 TRUE
E 4 10,0 844, 417 18] 116 TRUE
E 3 (8, 0, 208, 417 103 116 TRUE
E 48,0, 208 105 101 1p TRUE
E 318, 0 47, 105 ;01 116 TRUE
E
E
E
E
E
E
E
E
E

mmm

4 18, 0, 47, 18 18] 116 TRUE

5[0, 0, 47, 18, 18111C FALSE
i [[99' % j- 18, 103 116 TRUE
A 1 T[

5 [8, 0, 4 2 11 11161$R§EJE

1108, 0 4 2 116.PALSE
3008, 0 1, 2, 11 um’éuﬁ
0.1 1 1} 496 TRUE

1. 11 116 FALSE

B 118 8,11 11 |15 FaLSE

E 218,01, 1, 11 4y FaLSE

) 1, 11 115 FALSE

E 4 00,0,1, 1, 13 4116 FALSE

1, 13 116 FALSE

1, 11 116 FALSE

Fre1 [0, 0 1,
F37°108, 0o.1.] 11 116 FALGF

(8, o 1,1, 13 116 FALSE
116

65532 7147483648 & 3.562332E-4

TTIME=266A209 MSEC.
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Example 2, cont inued

E Works best non-i ncremen ta | 1'y. For this particular multiplier of
65533, the cl of 116, which is such a disaster for n = 3, persists
/ apparently through n =3, f oruhichit gets g veryrespectabl e c(9) of
3.00. (The autharlackeid thepatience for the 1833 case final search,)
For n = 10, d=Bb4, " Thi~doesnotmean thati t isagood idea to gobble
G-tuples from thiSqenerator andthendiscard a few in some pat tern.
To analyret he effecteof t hi s performthe spectral test on the grid
basicuhoce first vector skips the powers of a corresponding to the
cliscardedvalues., Moreprecisely, i f you propose to discard the 3rd
and 7th value out of ever-y eight, delete the 3rd and 7th rows and
columns from the eight dimensional basis matrices, course, if you
are just discarding every other value, you could just run the regular

2
test ona instead of 3.

(CB2) <pec(65533,2131,8,8)8

E871d10647,5 5 8353355385533, 65533, 65533, 65533, 18787) 42945740898 TRUE
E 610647, 65533, 6553H365533, 65533, 65533, 23328, 18787] 42394574899 TRUE
E 5 (18647, 65533, 65533, 65533, 21402, 23328, 18787) 4294574898 TRUE
E 4 4, 27, 65538, 65536, 25964, 21482, 23328, 187071 4294574090 TRUE
10, 8, 9, 71 746 TRUE
E 3 14, 27, 5 6, 10, 8, 9, 71 746 TRUE
E 2 [1,8, 2, 2, 4, 3, 3, 33 116 TRUE
E 108,08, 2, 2 4, 3 3 31 116 TRUE
E 8 [B, 0, 2, 2, 4, 3, 3, 23 116 TRUE
E 7 (8,0, 2, 2, 4, 3 3, 21 116 FALSE
E6 18, 8, 2, 2, 4, 2, 3, 21 116 FALSE
EGS (8, A, 2, 2,1, % 2,21 116 TRUE
E4 08, B, 2, 1,1, 3, 2, 21 116 TRUE
E3 8. 8. 1. 1.1 % 2, 21 116 TRUE
E2 10 9, 1, 1, 13,21116 FALSE
{ E 8 [8,08,1, 1, 1, 3, 3, 1] 116 TRUE
, E 7 (8,0, 1, 1, 1, 3,1, 11 116 TRUE
E 6 [8, 0, 1, 1, 1, 1, 1, 11 116 TRUE
E 5100, 0 1, 1, 1, 1,1, 13 116 FALSE
} E 800,08, 1, 1, 1, 1, 1, 13 116 FALSE
E 710,01, 1, 1, 1,1, 11 116 FALSE
E 60,8, 1, 1, 1, 1, 1, 11 116 FALSE
Fs518, 00 1, 1, 1, 1, 1, 11 116 FALSE
- Fal0,8,1,1,1, 1, 1, 11 116 FALSE
F3(0, o 1, 1, 1, 1, 1, 11 116 FALSE
F2 ,1,11 116 FALSE

1, 1
0,0, 1, 1. 1, 1
F108, oo 1, 1, 1, 1, 1, 11 116 FALSE
1, 1,1, 11 116 FALSE
116
65533 2147483648 8 0.34220817

TIME= 484930 MSEC,
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Example 3

The F process in
transitions to next n,

(C3) spec (65533,2131,2,8)8

E zlffl,éy 2147221544 TRUE
, 2147221544

2147221544 FALSE

65532 2147483643 2 3. 1412093

F3100,0, 103 118 TRUE
F1(8,0 41 118 TRUE
2{8, 0, 11 118 TRUE
]

F
Flie, 0, 11 118 FALSE
F

0.5, 18] 115 TRUE

1 {9- 2. 1, 11 116 TRUE
£ 3 1o 6, 1 1) 116 FaLsE
Yo ol 116 FALSE

E 3108, 9, 1, 1] 116 pa'se

5533 2147483648 4 3.8921 1674E-5

6
F518,8, 4 4, 101 116 TRUE
F 1 [8,0,1, 1, 21 116 TRUE
F 2100, o0 1, 1, 21116 FALGE
F 3 08,0 1, 1 11 116 TRUE
Fala, a1, 1, 11 1161  ALSE
F 1 (8,8, 1, 1, 11 116 FALSE
F 218, 0 1, 1, 11 116 FALSE
E 4 [0,0, 1, 1, 11116 FALSE
E 58, 0, 1, 1, 11 116 FALSE
E 318,01, 1, 11 116 FALSE

F6 (8 o ‘ 181 11
! ' 6 TRUE
1 [B‘ 0 ’ 4] 116 TRUC
., 11 116 TRUE

5
2
1
1
1

, 1
1
v 1
, 1
, 1
, 1

65533 2147483648 ¢ 3. 75614646E-3

(6 is shorter than 4 or G5! 155 secsso far)

19
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F118]8.08, &, 3,
F2ile, 8,1, 1,
Fa3le, o 1, 1,
Fa4lo,0, 1 1,
Flle, o 1, 1,

1,
E ale,ov, 1, 1
116 1,

65533 2147483648

F igle,000, 3 5,
F 219, 8, 1, 1,
3 o, 8, 1,

1

Mmoo
)
s
=

L,
l'
1,
1
1,
1,
lo
1
1

P MmmmmTmn
(o))
S
Cooco

65533 2147483648

, 3, la)lle
1, 1, 11 116
1, 11 116
1, 11 116

1, 111le
, 1,11 116
, 1, 13 116
, 3, 11 116

1
1
1
1
1
1

7 B.8360487356

8 0.34220817

(Approximate time: 700 sec.)

TRUE
TRUE
FALSE
FALSE
FALSE

FALSE
FALSE

1, 3,3, l@ne TRUE
1, i, 21 116 TRUE
1, 1, 1, 21 116 FALSE
1, 1, 1, 11 []16TRUE
1, 1, 1, 11 116 FALSE
1, 1,1, 11 116 FALSE
1, 1,1, 1116 FALSE
1, 1,1, 11116 FALSE
1, 1, 1, 11 116 FALSE
1, 1, 11 1116 FALSE
1, 1,1, 1116 FALSE
1, 1, 11 1le FALSE
1, 1, 1, 36 FALSE

20



Exampie 4

A particu | arlygoodmultiplicator from an extensive search

by F. Janssena, Note helpful E on n = 4,

{(C4) spec (1698G13,21432,2,5)8

F 11[318,1521656553647776 TR U E

F 2 CI,13)4934260282 TRUE
F11(01,114934360252 TRUE
4334360252

16908613 4294967296 2 3.68923246

1 (2,3, &1 7352462 TRUE
2 {1, 2, 01 2162558 TRUE
3 (8, 1, 01 2162558 TRIE
1 (8, 1, B) Z1R2558 FALSE
2 (8, 1, BIZ1B2558 FALSE
2162558

MTATM T

1698613 4294367296 3 3.1015612

F 4 1333,173,19, 8051 649962
1 {329, 158, 19, 1351 531758

F

F 2[4 58, 6, 81 84994 TRUE
F3 (2, ?, 6, 11 84572 TRUE
Fa (l, 1, 2, 13 8572 TRUE
F1 01, 1, 1, 11 84572 TRUE
E 2 (8, 1, 1, 11 62910 TRUE
€2®R100, 1, 1, 11 62318 FALSE

1638613 4294367296 4 4.547254

31012382, 343, 792723) £6848]1 208 TRUE
105811, 139, 1848] 148955560 TRUE
2 I6.36, 2.81K7354586 TRUE

3 (3, 5, 18172287546 TRUE

TRUE
TRUE

F S (79, 26, 83, 39, 183] 33490 TRUE

F 1l [65,22, 3, 32,131 77994 TRUE
F2 02, 72, 3, 10 , 2172994 TRUE
F 201, 5 2,3, 11 15110 TRUE
F4 (1, 1,1, 2, 11 &2 TRUE
FS 0L, &I, 1, 2, 11 8824 FALSE
F 101, 1,1, 1, RI6275 TRUE
F2 (8, 1, 8, 9, 014124 TRUE
F3 I, 1, 9, B, 01 4224FALSE
F4 (8, 1, B, B, 034224 FALSE
F & I8, 1, 8, 9, 01 4224 EALSE
E 3.08, 1, B, 8, 8] 4224 FALSE
E4-00, 1, @, 8, 8]4224 FALSE
E 218, 1, 8, 8, 034224 EALSE
4224

1690613 4234967296 5 1.421178

TIME= 121136 MSEC.
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Example &

Incremental F mode on an old s tandby.

(CS) cper(S115,0135,2,8)8
F 1 [24567628, 1484535) 48269765823184842 TRUE
F 2 334427, 625430) 11498836629925584 TRUE
F 1 (16576, 8211 28209371184018 TRUE
F 2 (25, 144) 868180541344 TRUE
F 117, 21 78377933345 TRUE
F 2108, 11 22072865098 TRUE
1 (e, 11 22078865098 FALSE
2878865038
B517578125 34359738268 2 2.8187232

26863, 41197, 99637) 990707
L2957, 2362, 1819) 13700705 TRUE
(1142, 2362, '562) 137073339 TR
(15, S1, 1471 180594474 TRUE

(15, 5,91 180694474 TAUE

(2, 2,'3] 14523925 TRUE

(1, 2. 3] 14523926 TRUE

(1, 1. 8) 18274746 TAUE

(1, 1. 8] 18274748 FALSE

(L, 1. @) 18274745 FALSE

18274745

30517578125 34353738368 2 4. 0150921

m'n'”'ﬂﬂ‘ﬂ'lﬂ'ﬂﬁ'ﬁ wmMrnm
W WN = WN =W

4 (14, 52, 487, 1179) 1298614 TRUE
1 04, 6, 12, 311 1398614 TRUE
(l, 3, 4, 15) 333682 TRUE

J

(1,2, 3, 11 163714 TRUE

MTM 1 n N

2

3 ’

4 00, 1, 3, 11 169714 TRUC

1 (o, 8, 2, 11 169714 TRUE

208, B, 1, 1] 169714 TRUE

4 18, B, 1, 1] 167058 FALSE

208, 0,1, 1] 167558 FALGE
167558

305176781 25 34353738365 4 4.0322757

F-b (114, 22, 34 138,287122664 TRUE
1104, 22, 34, 33, 271 $2664 TRUE
E 211, 85, 7, 8, 31 42752 TRUE
F4 1,0, 2, 0, 13 5344 TRUE
F5 1,0, 2, 0,115844 paLSE
F1 ip, 1, 0, 13 5344 TRUE
F2-.19, 0, 1, 0, 13 5844 EpLSE
F4 19,0, 1, 0, 03 5844 TRruE
F1l (g, 1, 0, 01 5844 EaLSE
5844 8, 1. 0, 03 5844 palSE
S

17678126 34353736268 5 0.33996696
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e

F 6 (25, 13, 28, 22, 28, 761 G244 TRUE
F 1l oI25, 11, 5, &, %, 11 0844 TRUE

F 2oz, il, 5, 3, 6, 1) 6544 TRIE

F a0, 2,0 4, 1, 1, 11 38090 TRUL

Fa 11, 1, 2, 1,1, 11 2898 TRUC

FS (@, 1, 2 1,1, 11 TRUL

F e 1o, 1, 20 1,1, 11 2598 FALGE

F1 e, 1, 2, 1,8, 1N TRUL

F 210, t, 8, 1, 8, 0 2 TRUE

F 308, 1,68, 1, 8, 8] 2592 FALSE

FS @, 1, 8,1, 8, 01 2692 FALGE

E 4 18, 1, B, 1, 8, Bl 2592 FALSE
2592

3BS175738125 3435973383605 6 2.6191889

F 7 04, 2, 7, 11, 1, 8, 291 286 TRUE
Fl I, 2,1, 2,0, 8, 2] 583 TRUE

F 2 L, 2,1, 8, 8, 8, 1) 593 TRUE
F3 01, 1,1, 8B, 8, B, 1) 588 TRUE

F &4 (1,1, 1,8, 08, 8, 11 503 FALSE

F S5 11,1, 8, 0 8, 0, |] 588 TRUE

F e (1, 1, 8, B, 8, B, 1) 583 FALSE

F 7 0, 1, 8,8, 0, B, 1) 05 FALGE
F2 0, 1, 8, 670, 0, 1] S8 FALGE

F 310, 1, 8, a, B, 8, A 5P TRUE

F 4 (1, 1, 0, 0,8, 8, 8] L8 FALGF

F S 0, 1, 8, 8, 0, B, 8) S5 [ALGE

F e 11, a, a, 0,8, 8, 3 P8 The

F 7 00, 8,8, 08,8, 08, 8) 585 FALOE
Foa (L, B, 8, 08, 8, 0, 0] 38 ALSE

F S I, a8, 8, a8, 9, A4, @8] A8 FALSE

E 7 11, B, 8, 8, 8, B, B] ©A3 FALSE

E - fL, 8, 8, 8, 8, 8, ) SPS FALSE
508

3BSL7578125 343537283608 7 8.4B0TORLS
F& (2, 9,108, 2, 7, 7, 1, 221 B3 TRUE
F L o2, 2,3, 1, 2, 2,1, 6] 595 TRUE
F2oE, D, 1,0, 2,1, 1, 11 888 TRUE
F 303, o, 0,0, 201, 1, 1) 5B8 FALSE
F4 12, 201, 1,1, 1, 1, 11 508 TRUE
FS 01, 2,0, 1, 1,1, 1, 11 SB35 TRUE
Fe i, 1, 1,1, 1,1, 1) S92 TRUE
F7 0L, 8,1, 1, 1, 1, 1, 11 588 FALSE
F &8 I, A, 1, 1,1, 1, 1, 11 478 FALSE
Folot, 8, 1,1, 1, 1, 1., 11 478 FALSE
F-2 0, a0, 1,1, 1, 1, 11 472 FALSE
F-4 (1, 8, 1, 1, 1, 1, 1, 1] 478 FALSE
F &5 01, a, 1,1, 1,1, 1, 1) 475 FALSE
Fo i, o, 1, 1,1, 1.1, 1) 478 FALSE
E 7 0e, 0,0, 1, 1,0, 1, 1) 414 TRUE
F 3 g, i, 1, 4,1, 1, 1, 1) 414 FALSE
Fo e, n, 1, 1, 1, 1, 1., 1] 414 FALSE
E3 108, 0, 1, 1, 1,1, 1, 1) 414 FALSE
E 7 (8, o, 1, 1, L, 1, 1. 1} 414 FALSE

414
38517578125 343537365368 & 3.4798827
TIME= 745703 MSEC.
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Example @

A variation of the brogram uhich doesn't bather to compute search
volume vector except yhen E or F process gets stuck, where stuck

is defined to be all quotients 8, rather than n consecutive failures
to If ahoa neu lau cearch volume, From this data it appears that
BEE3Z s the varet muttiplier in a had neighborhood.

{CB) for a:68833-16 ctep & thry 65533+16 do spec(a,2131,2,5)8
F oo, 8] peey7ozzes TRUE

E [l, 8] 2135773368 FALGE

2135727208

65517 214764836468 0 312426837

HAVE RUIN (IUT OF L T ST SPACE.  pg vou WANT MORE®
T?EE ALL; NDHL OK; A LEVEL-NO. OR THE NAME OF ASPACE.
list;

A 8383 NMSEC.,

(MACSYMA-BREAK)

<dynamal foc: not {dynamal foc)

TRUE

+-exit:

EXITED FROM THE BREAK (Ahh, interactive languages)
F g, 0, 11 121766 IRUE

E (0, 0, 1) 131706 FALOE

131765

B5S17 DIAT483648 2 0. 002091 74

F I8, 1, 8, 8) 24622 TRUC

E [, 1, 0, 8] 3427 FALSE
34622

GEOL7 DLAZASER4E 4 2, 75450945

FoIL, 1, 8, 8, 8) 2166 TRUE
E (L, 1, @, 8, 8 3185 FALSE
3186

B5517 C147483648 § 1,31 796923

F O, B8] 2143555288 TRUE

E (1, ﬁ} JLAE555880 FALSE
714 .{5(7 e »U

65525 147483048 2 2, 1358467

F I8, 8, 11 15126 TRUE

E 18, &, 11 15126 FALSE

15126

655G D147483048 3 3, 628R475E-73

F{d, o, 1, 11 15170 TRUE

E [0, 8, 1, 11 18100 FALSF
15106

b55<5 JLG7AER045 43,5007

Foie, 0, 1, 8, a1 2790 TRUC
E 18, 8, 1, 8, 81 2776 FALSE
2796

65526 147483045 § 1.01303817
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F {1, 0: 2147221544 TRUE
E [1, 8] 2147221544 FALSF

2147221544
65533 2147483648 2 3.1412093

F (8, g, 11 118 TRUE

£.48> 0, 11 118 FALSE

65533 2147483648 3 2.5B824BP6E-6

F [0, 0, 1 11 116
, 1 TRUE
E (8, 0, 1, 1] 116 FALSE

116
65533 2147483648 4 3.09211674E-5

Eléa' 0, 1, 1, 13 116 TRUE
1, 11 116 EALSE

65533 2147483648 5 3.552332E-4

F [1, 01 2146697320 TRUE
£ [1, 03 2146697320 FALSE

2146697320
65541 2147483648 2 3.1404424

F {3' 0, 11 726 TRUE
E 18, 0, 11 726 FaLSE

726
B5541 2147483648 3 3.81568716E-5

F {g' 8, 1, 11 726 TRUE
528 » 0, 1, 1) 726 FALSE
65541 2147483648 4 1.2111924E-3

F {8, 0, 1, 1. 13
, 1, 1, 726 TRUE
g2d0, @, | 1, 11 726 EALSE

65541 2147483648 S5 0.034810489

F [1, 03 2141984744 TRUE
E CI, 03 2141984744 FALSE

2141984744
65549 2147483648 2 3.13354826

E Eg, g. ff 29238 TRUE
g, g, 292
50238 9238 FALSE
65549 2147483648 3 9.75169825€-3

F 8, 0, 1, 1129238 TRUE
E3288 0, 1, 13 20238 FALSE

65549 2147483648 4 196442376

El;é' 1, 1, 1, 01 5132 TRUE
1, 01 5132 EFALSE

BIBEO 2288483648 5 4 5047172
C.
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Example 7

(Program modified as in Example B)., Another good Janssens number but
look uhat happens if we use m/4 instead of m for n = 4 in 2nd sg}

oas to consider only independent tuples. Tgkin every 4th omt
quadrupiecdthelengthofthegridvectorwhich was alread conﬁecting
the most widely separated subgrids--the worst pOSSIble outcome. In

the dozen or so other cases tried, the degradation uas much less severe.

(C7) spec(1664525,2132,2,4)8
F [1, 13 4938916874 TRUE
E (1, 11 4938916874 FALSE

4338916874
1664525 4294967296 2 3.61261544

F El, 0, 01 2322494 TRUE
E {1, 0, 01 2322434 FALSE

2322494
1664525 4234367236 3 3.4519195

F (8, 1, 1,01 63712 TRUE
E[8, 1, 1,03 63712 FALSE
63712

1664525 4234967236 4 4.6639335
TIME= 52365 MSEC.

(CB7) spec (1664525,2130,2,4)
F {1, 03 310518218 TRUE 31
E Cl, 01 310518218 FALSE  (Th s data really app!ies to mod 2 )

310518218
1664525 1073741824 2 0.90852543

F {8, 1, B8] 412832 TRUE 39
E [, 1, 01 412832 FALSE {Th s data really applies to mod 2 .)

412832
1664525 1073741824 3 1.0347817

F (8, 0, 0, 113382 TRUE 32
ggé{g. 0, 0, 13 3982 FALSE (This data really applies to mod 2 ,)
1664525 1073741824 4 0.072873961

. TIME= 44372 MSEC.

(C37) 3982x16;

TIME= 6 MSEC.
(D37) 63712
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Example 8

Some pathology of incremental F mode, For a = 663608301, n = 7, E
tried tobeat d = 390 and tripled the exhaustive search instead,

On the next case, a = 663608303, n = 7, E manages to win. Later,

when a = 663608933, n = 7, we have a serious failure of E to find

the smal lest d. Instead, for the first time in the author’s experience,
a 2 appears in the final search vector, and the (very) exhaustive
search actual |y finds a smaller d. In the final case, a = 663608941,
{a multiplicator constructed by Dieter to have a good two dimensional
serial test), n = 7, we have another minor misstep ofE. Note unlucky
7. Actual ly, these problems are just hard to find for small n. The
underlying cause of this pathology is that, were it not for the
inefficiency, we would be better off hunting a smalldusingEfirst,
then trying to reduce the search with F.ltis an empirical fact that
Fincreases d far more rarely (if at all) than E increases the search
vo lume. When the author tried to run Eand F alternately until both
were stuck, they fell into a period 2 oscillation modifying one

vector in the case a = 663608333, n = 6, In an effort to see what
would happen anyway on the case n = 7, the author manually intervened
to stop the n = 6 loop. Somewhat unfortunately, due to the additional
reduction of the n = 6 bases, this "ping-pong" variation was never
confronted with the matrix which led E to create the

{1, 1, 1, 2, 1, 1, 13, but instead F came right up with five 18 and
two Os and d = 442.

(C8) FOR A:663608901 STEP 8 DO SPEC(A,2132,2,7);
F [8, 13 3397158986 TRUE
E (@, 1] 3397158986 FALSE

3397158986
663608901 4234367236 2 2.4848827

F [1, 0, 01 1490074 TRUE

E EI, 0, 03 1490074 FALSE
1490074

663608901 4294967296 3 1.77334624

F [@, 0, 1, 01 13408 TRUE

£ [@8, 0, 1, 01 13408 FALSE

13408

663608901 4294967296 4 0.20655603

F {8, 1, 0, 0, 03 1078 TRUE
E (8, 1, 0, 0, 03 1078 FALSE

1078
663608901 4294967296 5 0.046761183

Fi@, 1, 1, 0, 0, 01 1078 TRUE
E T8, 1. 1, 0, 0, 01 1078 FALSE

1078
663608901 4294967296 6 1.50728331

FCI, O, 1, 0, 0, O, 01 330 TRUE
E (1,1, 1, 0, 0, O, 01 390 FALSE
390

663608901 4234967296 7 1.28868447
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r—-

F (8, 11 626928730 TRUE

E [8, 11 626928730 FALSE
626928730

663608909 4294967296 2 0.45857269

F (1, O, 03 465630 TRUE
E {1, O, 01 465630 FALSE

465630
663608909 4294967236 3 00303877604

F [1, 1, 1, 03 53172 TRUE

E El, 1, 1, 01 53172 FALSE
53172

663608909 4234967296 4 3.2484476

F (8, 8, 8, 1, 11 6314 TRUE

E [8, O, 0, 1, 11 6314 FALSE
6314

663608909 4294967296 5 3.8823978

E (1, 0, 1, 1, 0, 03 1406 TRUE
1406 1, 0, 01 1406 FALSE

663608909 4294967296 6 3.34421745
E 01, 1, 1, a, 1, 1, 11 996 TRUE
F [, 1, 1, 8, 1, 0, 11 534 TRUE
E 01, 1, 1, @ 0, 11 534 FALSE
_— 1, 8, 11 534 FALSE

b34
663608909 4294967296 7 3.8709251

’ ’

F (1, 03 3236682938 TRUE
E Cl, 8] 3236682938 FALSE

3236682938
663608933 4294967236 2 2.367501

F (8, 0, 13 311352 TRUE

E [@8, 0, 13 311352 FALSE

311352

663608933 4294967296 3 0.16943623

F I8, 1, 0, @) 13562 TRUE

E (8, 1, 0, 01 13562 FALSE

13562

663608933 4294367296 4 0.21132812

F [I, 1, 1, 1, 01 7298 TRUE
E (1, 1, 1, 1, 03 7298 FALSE

7298
663608933 4294967296 5 5.5763277
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E (1,0, 0, 0, 0, 1] 958 TRUE
958 0, 0, 11 958 FALSE

663608333 4294367296 6 1.0578767

Fcl, 1, 1, 1, 1, 13
BAZI, 1, 1,2, 111, 11 746 FRUBE

663608933 4294967296 7 1.99709308
F [1, 03 1606825210 TRUE

E Cl, 03 1606825210 FALSE

1606325210
663608941 4294967296 2 1.17532684

F [1, O, 01 477530 TRUE

E [1, O, 01 477530 FALSE

477530

663608941 4294367236 3 (.321832295

FCl, 0, 0, 01 45014 TRUE
85014 O, 0, 03 45814 FALSE

663608941 4294967296 4 2.3281182

F {8, 0, 0, 0, 11 2582 TRUE
p582, 0, 0, 0, 1] 2582 FALSE

663608341 4294367296 5 0.41517307

E (1, 0, 1, 0, 0, 01 788 TRUE
788 0, 0, 01 788 FALSE

663608341 4234367236 6 0.58873131

E (8, 0, 0, 0, 0, 1, B) 338 TRUE
338 0, 1, 11 338 FALSE

663608941 4234367236 7 0.78096013
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Program Listing

time: translate'modedeciare([value(better) value(tr)},boolean,
Ea, ap,modulus,n, i, j,k,qq,d,mm,nn,pl, lntegerls
radprodexpand: T a | se$

spec (a,modutus,n,nn):=(dimm: (axmodulus)?(2xn), scalarmatrixp: false,

frmoduluske: ident (n- 1), ap:l,

for k thru n-ldofelk,1]:-f{1,k): ap,apsratdisrep(rat(axap))),

ell,1 | :modu I us,

for n:n thru nn do block (mm: mmk (axmodulus) 42,

e: transpose (addrow(transpose (addrou(e,ematrix(1,isn-1,-ap,1,1))),
ematrix(l,n,1,1,n)}),

f:addrou(transpose (addrou(f: transpose(f) apxfll11)),

ematrix(l,n,modulus,1,n)),

scatarmatrixp:ap: ratmsrep(rat(a*ap)).

cireversel(z:ireverse(q:ematrix(1,n,8,1,1) (11)),

t, if tr("f,’e) or tr(’e,’f) then go(t) else ktn,

u, if (z[k):zikl+1)>c(k]) then golu}, ‘

v, If (k:k+l)>n then dimin{d,{bitz.e).transpose(b))eise

(zIk]:-clk], gotv)),
w, IFf (k:k-1)>8 then golu) else

print(a,modutusyn,ev((print (d)x¥%pi)t(n/2) /modulus/gamma(n/2+1), numer))))$

tr(ff,eel:=for j do (i:l+4remainder{i,n),

gg: (g: (vfrev(ff)) [il).b: transposel(g),

for k thru n do alkl:entier{vflk].n/gg+l/2),
glil:8, if g¥#z and better{) then {(mm:p,return(true))

. else if j=n then return(false))$

better (}:=([]l,ee::substinpart((q.ve) (11+velil,ve:eviee),i),
ffeovf- transpose(q) g,
for k thru n do d:minfd,elk]. transposelelkl)),

p:1, for k thru n do (c[k].|sqrt(ent|er(d*f[k] transpose (f [k1}/modulust?)),

p: (2xc[kT+1)%p),
print(ff, i,c,d, is{p<mm)})$

Notes

Thi s was done over the ARPANET on the MIT MACSYMA System, to
which 1 am indebted both for the language and the machine time,

The first three lines are optional. They turn on the timer and
make type declarations for efficiency.

2
d and mm are best e and search volume so far.

min
scalarma tr i xp: unfortunately, MACSYMA can regard a1 by 1 matrix
asascalar, but not vice versa.

f: the grid basis matrix, e: the dual, ap: consecutive powers of
a mod m. modulus is a special variable such thatratdisrep(rat(x})
is the residue of least magnitude mod modulus.

transpose (addrow {(transpose(addrow...: MACSYMA |lacks an addco lumn.
reverse is a fast way to copy a | ist of Os. amma (n/2+1)¢
pedantry for (n/2)!. %pi: «. substinpart{e,r,i):replaces ith
row of e with r, evaluating r first,
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The Modified Program

time: translate:modedeclare([value(better),value(tr)],boolean,
{a,ap,modulus,n, i, j,k,gg,d,mm,nn,pl, integer) §
radprodexpand: T a | se$

spec (a, modulus,n,nn):= (d: mm: (axmodulus)?® (2%n), scalarmatrixpr false,

fimoculusxe: ident(n-1), ap:1,
for k thru n-I dolelk,11:-f [1,k):ap, ap:ratdisrep(rat(axap)}),

ell,1]:modulus,

for n:n thru nn do block (mm:mmx (axmodulus) 12,

e: transpose (addrou(transpose (addrou(e,ematrix(l,itn~1,-ap,1,1)}),

ematrix(l,n,1,1,n))},

f: addrow ( transpose {addrow ( f: transpose {f),ap*{11}},
ematrix(l,n,modulus,1,n)),

scalarmatrixp:ap:ratdisrep(rat(akxap)),

cireverse(z:reverse(q:ematrix(l,n,8,1,1) (111},

t, tr(’f,'e), if tr(’e,’ f} then go(t) else k:n,

u, If (zlkl:1zlkl+l)>cilk] then go(u),
v, if (k:k+1)>n then d:minld, (biz.e).transpose(b)) else (zlk):-clk],golv)),

W, if (k:tk-1)>8 then golu) else
print(a.modulus.n,ev((print(d)*%pi)‘r(n/2)/modu!us/gamma(n/2+11.numer))))t

tr(ff,ee):=(for j° thru n do {i:l+remainder{i,n),

gg: (g: {vf:ev(ff)) [il).b:transposelyg),

for k thru n do glkl:entier(vflkl.b/gg+1/2),

qlil:B,if g#z then (j:1, ee:: substinpart((qg.ve) [(11+velil,vesev(ee),il,
ffrivf-transposelq).gl),

i T better () then (mm:p, true) ) §

better (J:=(for k thru n do d:min(d,elk].transposelelkl}},

p:1, for k thru n do (clkl:isgrt(entier (dxf(k].transpose(flk]}/modulust2)),
p: (2xclkl+l}xp),

print(ff,c,d, is{p<mm)))$

Note

Since both of these versions use the F process incrementally, it is
usual |y best to start with n =2, To convert either version to the
E process, just change the line beginning

_tr{ff,ee):= ... to read tr lee, ff} ...
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