DESCRIBING AUTOMATA INTERMS OF-LANGUAGES
ASSOCIATED WITH THEIR PERIPHERAL DEVICES

by

Reino Kurki-Suonio

STAN-CS-75-493
MAY 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Describing Automata in Ternms of Languages

Associ ated with Their Peripheral Devices

by

Rei no Kurki - Suoni o

Conput er Sci ence Depart nent
Stanford University

and

~ University of Tanpere, Finland

Abstract

A unified approach is presented to deal with automata having
different kinds of peripheral devices. This approach is applied
to pushdown automata and Turing machines, leading to elenentary
proofs of several well-known theorens concerning transductions,
relationship between pushdown automata and context-free |anguages,
as well as hononorphic characterization and undecidability questions.
In general, this approach |eads to honmonorphic characterization of
| anguage famlies generated by a single language by finite transduction.

This research was supported in part by National Science Foundation grant
GJ 26473x and by the Acadeny of Finland. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

1. [ntroduction

Mat hematical fornulations of various classes of automata do not
usual Iy allow uniformtreatnment of different kinds of automata. (ne
reason is in irrelevant differences of conventions. For instance
input may come from an input source, orit may constitute the initia
contents of some storage device. Also, the formalisms which are used
may be difficult to manage in a general situation. Functional notations
for instance, beconme quite clunmsy to use when several storage devices
are introduced.

The purpose of this paper is to present an approach, suggested by
Floyd [1], where several kinds of automata are treated in a uniform way.
In Sections 6 and 7 this approach will be applied to pushdown automata
and Turing machines. The proofs of the theorens obtained are quite
el ementary, when conpared to those usually given [2,8,9], and they have
t he advantage of being directly based on a sinple and intuitively clear
picture of the situations in question. In fact, most of the theorens
are directly obvious from the basic definitions we shall make.

The general idea is to consider an automaton as a finite, non-
determnistic transition system where each transition is associated
with a sequence of actions on peripheral devices, like inputs, outputs
tapes, stacks, and queues. Action sequences which are possible on an
automaton are restricted by its transition systemon one hand, and by
the properties of the peripheral devices on the other hand. Each such
restriction can be given in terns of a |anguage over actions, and the
total behavior of the automaton can then be described as the intersection
of these |anguages.

The behavior of Turing machines has previously been described in
terns of |anguages by Hartmanis [6]. However, he considers sequences of
instantaneous descriptions instead of action sequences. The present
approach is both sinpler and more general. G nsburg and G eibach have
used it in [3] to exhibit an "intuitively obvious" |anguage as a generator
for one-way stack |anguages. Although it seens obvious that the genera
applicability of the approach has been known for some time, it is not known
to the author that systematical use had been nade of it.

Comparing the approach to that of (one-way nondeterministic) bal | oon
automata [7] and abstract famlies of acceptors [4], there is the simlarity
that adm ssi bl e behavior of menory devices is described Vocally", i.e.,
without reference to other aspects of the automata. However, our approach
does not make explicit use of any information storage aspects of menory
devices. Instead, each device is characterized purely in terns of a
| anguage of adm ssible action sequences. Letting these "periphera
| anguages" determine a class of automata, it will be shown in Section 8,
that the famlies of |anguages associated with such classes are exactly
those famlies which are generated by a single |anguage by finite
transduction. Wth a suitable restriction on "peripheral |anguages", full
principal AFL [3] are obtained.

2. El enentary Properties of Automata and Languages

The purpose of this section is to state explicitly those concepts
and properties of automata theory and formal |anguages on which our
treatment of pushdown automata and Turing machines is based

The basic concepts of finite automata, Turing nachines, and the
famlies of regular, context-free, context-sensitive, and recursively
enunmerabl e |anguages are assuned to be known. As for relationships
between automata and |anguages, we assune that the rel ationships between
(nondetermnistic) finite automata and regular |anguges, and between
"Turing machines and recursively enunerable |anguages, are known. For
questions of undecidability, one has to know the undecidability of the
hal ting problem for Turing machines.

As for Boolean closure properties of famlies of |anguages, we shal
make use of the facts that

- the famly of regular |anguages is closed under intersection,
- the famly of context-free languages is closed under intersection

with regular |anguages,
- the famly of context-sensitive |anguages is closed under intersection

In addition, we shall need properties concerning insertion of
auxiliary letters into words," and projection hononorphisms del eting sone
letters from words.

Definition 1. Gven two disjoint al phabets = and Z . the projection

* * . *
of aword x (Zuz))" into z is the word x. ¢Z' obtained of x

by deleting fromit all occurrences of letters not belonging to

For a language L over Uz, we define correspondingly,

L. = {Xz | xeL}

N Definition 2. Gven a language L over 3 and an auxiliary al phabet Z
ZNz; = ¢ , the |anguage
Zl *
| L = {x |xe(2UZl) s XZGL}
[
is called insertion of =, jpto L .
Qovi ously, projection is the opposite of insertion in the sense
that, for any language | over £ and for an auxiliary al phabet £
Znz, = ¢ , we have
Z
1, =
‘ (L)z - L
|
L
For insertion we can also readily establish the followng identities:
. Y Z, L &g zluzg
(L) = (L) = L 5
PN Z z
1 1 1
PN Z N
1 1 1
i L7NL" = (LlﬂLQ) ,
Z Z
(Zuz) -1 7 = (2 -1 ,

where L , L, , and L2 are |languages over z, and g

Z, are tw
auxiliary al phabets, disjoint from=x.

It is also easy to prove the followi ng closure properties of

| anguage fanmilies under projection and insertion:

Theorem 1. The famlies of regular, context-free and context-sensitive

| anguages are closed under insertion of an auxiliary alphabet.

Theorem 2. The famlies of regular and context-free |anguages are

cl osed under projection.

5. Basi ¢ Definitions

By an automaton we understand a finite transition system associ ated

with one or nore devices for input, output, and storage of symbols. Each

device is assumed in the following to have a finite set of primtive

actions associated with it. For an input device, for instance, an
i nput operation together with the letter obtained fromthe input source
would constitute a prinitive action. The transition systemcan be viewed

as a finite digraph where edges are labelled With finite sequences of

primtive actions. \Vertices and edges of the graph are called states and

state transitions, respectively. Two subsets of states are distingui shed

as initial and final states.

As an exanple, let us consider a sinple automaton with one input
and one counter. Assuning a two-letter input al phabet {a,b}, the
primtive input actions could be denoted as (input a} , {input b) ,
and (input A) , where the first two correspond to successful input
operations, while the third indicates that no letter was obtained since
the source was found enpty. For the counter we have a one-letter

al phabet {1} together with prinmtive actions (push 1), (pop 1) ,

and (pop A) denoting increnentation, decrenentation, and the situation

that the counter is found enpty.

The transition system of the automaton iS given in Figure 1. It
can be imediately verified that a state transition sequence |eading
fromthe initial state to the final state is associated with exactly
those input sequences where the nunber of a's equals the number of b 's.
Al though this exanple presents determnistic behavior, we shall make no
general restrictions on the action sequences associated with state
transitions. For instance, we might have two transitions fromthe same
state, one labelled With (input a)(push 1y | the other with
{(input a){pop 1) , which woul d indicate Nohdeterministic behavior. sone

transitions mght even be labelled Wi th inpossible action sequences,

l'i ke (input A){input a)

(input a){push 1), (input b h 1
(input b) (pop 1) <inpgf agéggg l>>,
{input b

Initial state
(input a)(pop A)

(input A)(pop A)

Final state 8

Fi gurel

"al phabet =

In general, the behavior of an automaton is determned as follows:

1 Initially the automaton is required to be in one of the initia
states. There may also be further requirenents concerning the
initial status of the various peripheral devices.

2. Qperation of the automaton can termnate successfully whenever the
current state is a final state, if all requirements (if any)
concerning the final status of peripheral devices are satisfied.

3. If the operation is not termnated, one transition fromthe current
state is selected, an attenpt is made to performthe primtive

actions associated with it (in the order indicated by the sequence),

and, if this succeeds, the state is changed accordingly.

Nondetermnismis involved in the selection of the initial state
the selection of transitions, and in the decision on ternination.
Operation of the automaton term nates unsuccessfully, if the actions
associated with the selected state transition cannot be perforned. W
are only interested in operations which do not term nate unsuccessfully.

An input device always has some input al phabet Zinput A word

*
Is accepted by an automaton (acceptor), if the automaton

I nput
can be operated (wth successful termnation) so that the word read in

Xel

by the input actions is x . Sinilarly, an output device has an output
*
out put out put

(generator), if it can be operated (with successful termnation) so that

, and a word yex is generated by the autonaton

the output word given by output actions is vy . The | anguage accept ed

(generated) by an automaton is the set of words accepted (generated) by it.

*
A word X Ezrnput Is transduced by an automaton (transducer) into

*
y GZOUtput , if the automaton can simultaneously accept x and generate y .

Notice that transduction is here defined only for words accepted by the

automaton. A | anguage L, is transduced into L,L, i f L, is the set
of words into which words of L, -are transduced.

Two automata are equival ent as acceptors (generators) if they accept
(generate) the sane |anguage. Two automata are equivalent as transducers
if the transductions perforned by them are the same. Notice that
equi val ence as transducers inplies equivalence as acceptors and generators,
but not conversely. By equival ence without further specification we shall
under st and equi val ence in those respects applicable to the automata in
questi on.

ror each device there are certain restrictions determning which
sequences of primtive actions on that device are admssible. he main
purpose of these restrictions is to guarantee that the synbols fetched
froma storage device correspond to those stored in it, and that no input
is obtained from an input source already found enpty. |n addition, there
may be restrictions on the initial and final status of the devices. For
instance, storage devices may initially be assumed enpty. Notice that
input and output are considered "one-way" devices, not storage units which
woul d al I ow re-exam nation or replacenent of letters already treated once.

Mre formally, |et A,L be the set of primtive actions on device i
It-is assumed that primtive actions can be renaned, if necessary, for
avoiding conflicts. Therefore, it is always assunmed that Ay for
different devices are disjoint. For each i we have a |anguage

B. ¢ A,
1 1

consisting of all admssible action sequences on device i . Let A
denote the union of Ay for an automaton. The finite transition system

of the automaton then determnes a regular |anguage

such that « 3: iff o is associated with some sequence of state

transitions leading froman initial state to a final state (irrespective

of whether or not . nmkes sense for the peripheral devices). This

leads to the following definition of an action sequence " bei ng

adm ssi bl e:

Definition 5. A word weaA is called an adnissible action sequence

for an automaton, iff

(i) o e Bfts , and

i (i i
(ii) uAi eB, for all devices i

Introducing the notation

i.e., letting ﬁf denote the |anguage obtained of B, by inserting

actions on all other devices to it, we can express adm ssible action

sequences as the |anguage

_ @
(1) B o= Bp NN3B.
|

It is pointed out that this definition inplies each periphera
devi ce being defined solely by the ways in which it can be locally
mani pul ated. A device is conpletely characterized by the |anguage Bi
associated with it. Additional restrictions are required, if one wishes
to introduce interdependencies between devices, |ike those in |inear
bounded automata or tinme/tape conplexity classes of Turing machines.

In accordance with common terminology, automata having (in addition

to a single input and/or output) no peripheral devices, one pushdown

stack, one queue, or one tape, will be called finite automata, pushdown

automata, Post nachines, and Turing nachines, respectively. Notice that

input is considered an independent device in this definition of
(nondeterninistic) Post machines and Turing machines. strictly speaking

these peripherals are not devices but classes of devices, as the |anguage
B, of a pushdown stack, queue, or tape, depends on the al phabet used

on the device.

L. Languages Associated with Peripheral Devices

Languages B, associated with some common peripheral devices
will be investigated in this section. As it is known that the same
famly of languages -- that of recursively enunerable |anguages -- is
accepted (generated) by Post nmachines, by Turing machines, and by
automata with two pushdown stacks, there is some redundancy in discussing
pushdown stacks, queues and tapes separately. However, it is interesting

to see how these different kinds of devices |end thenselves to this

treat ment.

4.1 Input Actions

Gven an input al phabet = . there is a prinmitive input action

i nput
(input a) for each a'ezinput . The neaning of such a primtive action

is to take the next letter fromthe input source and to find it to be
letter a . In addition, there may be an action (input A) , which neans
that the input source is found enpty by an attenpted input operation.
Qoviously, no further input operations can find input letters, if the

source has already been found enpty.

10

The set of all primtive input actions is therefore either

= {(input a) | a ¢ %,

Ai nput 1nput} ’

or

A A

U {(input p)} .

l.
I nput I nput

Correspondi ngly, the set of adm ssible sequences of input actions is

ei t her
*
Binput = Ainput ?
or
Bl = A (input A)
i nput input PP

In each case this is a regular |anguage.

For notational sinplicity, we shall in the follow ng make no

di stinction between a | anguage over g and the correspondi ng

I nput

| anguage over Ainput This neans that the | anguage accepted by an

autonaton can be denoted as

(2) B,
input

where B is the |anguage of all adm ssible action sequences from (1).
Mre precisely, this notation involves that projection and change of
al phabet can be conbined in a single notation for projection. Two
automata with the sane A pput » @nd with adnissible action sequences

B and B' , are then equivalent as acceptors iff g - B!
Ainput Ainput

It is easy to see that (input A) is, in fact, a superfluous action

in the follow ng sense

Theorem 3. For any automaton with input actions p. , there is an
i npu

equi val ent automaton with the' same peripherals and with input actions

restricted to A.
I nput

11

r

.always restrict input actions to A.

Pr oof . Let X be an automaton with state set S and with actions A

containing an input action (input A) . Another automaton Y , equival ent

to X and with actions A-((input A)} can now be constructed as foll ows.

As states of Y take S x {0,1} ,h and let (s,k) be an initial (final)
state of Y iff s is an initial (final) state of X and k = 0

(k = 0,1) . The state transitions of Y will be deternined so that
for any transition s*st of X, s tes, aea® . Ywill have the

following transitions:

H 0
i f Ay = ¢ , then (s,k) > (t,k) , k =0,1 ;
input

. . @ .
else, if A Cinput)} T C then (s,0) = (t,0) ;

| . “a-{(input 7))
el S€, 1 f (XA!input € Binput) t hen (S) k) ———-——-P-——) (t) l)

On the basis of this construction, jt js straightforward to verify,
that for any adm ssible action sequence y of X there is an adnissible

action sequence 7' of Y satisfying

7N = Yac{nput A)) ?

and conversely. Therefore X and Y are equivalent.
On account of Theorem3, it is no essenti al

restriction that we shall

i nput in the follow ng.

k.2 Qutput Actions

G ven an output al phabet Co
P P Zoutput @ the set of primitive output

actions is

Aout out = {{output a) | a « Eoutput

b

12

) k:O)l-

where (output a) denotes the action of outputting an individual letter

a'ezoutput The set of adm ssible output action sequences is sinply
*
BOUtpUt = %out put

As in connection with input, we shall make no notational distinction

between a | anguage over g and the correspondi ng | anguage over

out put

{(output a> | a €Z This nmeans that the | anguage generated by

output}'
an automaton can be denoted as

(3) B,

output
TWO &aatomata with the same AOutput , and with adm ssible action
sequences B and B' , are then equivalent as generators, jff
BA = B!

output “output

Wien consi dering transduction of a language L , the output

| anguage is correspondingly

(k) (1% B)
A
out put

Two automata with the same A.
input ’ “out put

action sequences B and B' , are equivalent as transducers, iff for

A , and with admssible
each aeB (o' eB') there exists a' ¢B' (a€B) such that

(04 =

A aA. and « = QA

I nput I nput Aoutput out put

Because of Theorem 3, there is conplete synmetry between input
and output actions. Gven an automaton accepting (generating) a
l'anguage L , this sane language L is generated (accepted) by the
automaton obtained of the original by interchanging input and output.

Therefore, for a class of automata which is closed under interchanging

13

input and output, the famlies of |anguages accepted and generated by

these automata are the same. Such a family will be referred to as the

fam |y of l|anguages associated with that class of automata.

4.3 Pushdown Actions

Gven a pushdown stack with stack al phabet there are

Zstack ’
primtive actions (push a) and (pop a) for each a ECiack . The
meani ngs of these actions are pushing a single letter a on top of the
stack, and popping one letter fromthe stack and finding it a letter a .
In addition, there may be an action (pop A) , which means that the
stack is found enpty by an attenpted pop operation. The set of all

primtive pushdown actions, A is therefore either

stack ’

{(push a) | a €Zstack} U {(pop a) | a €Zq‘sta,ck}

or

{(ush &) | a e2gy 0 JUpop @) a2 31U {(pop A)}

The characteristic property of a stack is that all letters pushed
into it can be popped out of it in the reverse order. A granmar for

B the set of all adm ssible pushdown action sequences, can be

stack

directly based on this property. |n order to get B as sinple as

stack
possible, we shall require further that a stack is enpty both initially

andfinally.y If A K does not contain (pop A), B is then

st ac st ack

t he pyck | anguage generated by the grammar

1/ . . .
Relaxing this requirément i s discussed in Section 6.

14

B |

S = ¢
- (push a) S (pop @) for all BED Lok

- S8

If (pop Ay is allowed, the grammar has to take care that

(pop A) can appear only when the stack is enpty:

S - (pop A)
- T
- SS
T = €

—~ (push @) T (pop a) for all a ez
stack

- TT

In each case B is a context-free language over A

st aCk st ack ¢

4.4 Queue Actions

Gven a queue with an al phabet un there are primitive actions

eue ’

(wite a) and (read a) for each a'ezqueue . The nmeanings of these

actions are witing a letter a to one end of the queue, and reading

(and erasing) a letter fromthe other end and finding it to be letter a .

In addition, there may be an action (read A) which neans that the queue

is found enpty by an attenpted read operation. The set A of all
queue
primtive queue actions is therefore either

{(writea)|aex }U ((read a)laez

queue queue}

or

{(write > |a,ezqueue} U ((read a> |a,ezqueue}LJ{(read A}

15

|

The characteristic property of a queue is that all letters witten

into it can be read fromit in the sane order. A grammar for B
queue ’

the set of all adm ssible queue action sequences, can be directly based

on this property. W shall nake the further requirenent that a queue

' ty both initiall d finally. i
IS enpty both rtnitrally and finally. |f Ahueue does not contain

(read A) , we get the followi ng gramar:

S - ¢
- T

(wite a){read a) for all a eZ

3
1

queue
- TT

(read a){write b) - (write b){read a) for all a,b EZqueue .

Notice that the context-free productions generate all action
sequences where each wite action is inmediately followed by the
corresponding read action, and the context-sensitive production takes
care of arbitrary "delaying" of read actions.

If (read A) is allowed, we only have to add the production

T - (read p)
to the grammar. Hence, we find that Bqueue is in each case a
context-sensitive |anguage over A .
queue

4.5 Tape Actions

A tape allows actions for reading and witing, and for moving the
tape in either direction. It is customary to include one read, one wite
and one rmove operation in one primtive action, in this order. In the

foll owing we shall adopt the convention of witing first, then moving the

16

tape and reading. Gven tape al phabet Ztape , the set of primtive

tape actions is then
A = ((wite a, left, read b)| a,b eZ%ape}U

({wite a, right, read b) | ab eztape}

The meaning of these actions is that letter a is witten on tape,
tape head is nmoved by one square to the left or to the right, and the
letter in this square is read and found to be letter b .

The characteristic property of a tape can be stated as foll ows:
when sone letter has been witten in a square, the same letter wll
be read when-this square is reached for the next time. Let us consider
only one half of this property by requiring that a letter witten by
an action nmoving to the right will be read when the same square is
reached next time (by an action noving to the left). Requiring further
that all letters witten (noving to the right) are later read (noving
to the left) and denoting the set of action sequences so obtained by Ly
we get the follow ng grammar for Ly
8, = X (stands for a sequence which either is enpty or starts

with an action noving to the right)

- ¥ (stands for an action noving to the left)

- 5.8

171
X, ~ ¢
- (wite a, right, read b) X, (wite c, left, read a)
for all a,b,c ECtape
RRSES] :
Y, - (wite a, left, read b) for all a,b ¢Z
1 ! t ape

L7

‘wf«wﬁql

If only the second half of the characteristic property of a tape is

taken, we get a simlar language L, yjth grammar:

S2 ~*X2

- 8282

X, - €

l

{wite a, left, read b) X, (wite ¢, right , read a)

2

for all a,b,c EC
t ape

= XX,

Y, - (write @, right, read b) for all a,b el
t ape

| nposing no restrictions on the initial and final contents of a tape

we can then express Btape , the set of all admissible tape action

sequences, as

B

init(Lq) N init(Lg) :

tape
where init(1) denotes all initial parts of words in L :
init(L) ={x | xyelL for some y }

For a context-free L , init(r) is also context-free, as wll be

seen in Theorem 5. Therefore, Btape is a context-sensitive |anguage

whi ch can be expressed as an intersection of two context-free |anguages

over A

tape .
Btape can al so be characterized as the conmplenent of a context-free
| anguage L over A . A context-free granmar for L is obtained easily

t ape
fromthe observation that at |east one letter has to be read differently

fromwhat was written in thesquare. This |eads to the foll owing grammar

18

(together with the above productions for X, Y%, %, and Yz)’

S-{wite a, right, read b) Xl(vvrite c, left, read d)

- (wite a, left, read b) X, (wite ¢ right, read d)

5 (
for all a,b,c,de}_}tape, a #£d

- TST

5. Serial Conbination of Automata

It is often useful to consider an automaton as a serial conbination

of several automata, so that the output of one autonmaton is used as
input to the next one. Nore formally, let T and U be two automata
with disjoint sets of primtive actions -
] P Ap A UBout put ’
Ay = A UA, , Where the same al phabet is associated with A
2 7 Tinput | nput

and A » and A; and A, stand for the primitive actions of

out put
the other devices in T and U. An action sequence

*
Y€ (AlUA2)
is defined to be adm ssible for the serial conbination of T and U

iff there are action sequences ¢ and g, admissible for T and U,

satisfying
Y

(5) 6A2 " 7,
OCAoutput - SAinput

19

Concerning such serial conbination of automata, we have:

Theorem 4. For any serial conbination of (a finite nunber of) autonata
there is a single automaton, equivalent to this serial conbination,
havi ng the sane peripheral devices as the original automata, omitting

the internmediate output/input devices.

Let T and U be two automata as described above. Wt hout
affecting generality, we can assunme that each state transition of T
(U) is associated with at nost one output (input) action. A third
automaton V , with the same peripheral devices as T and U (except
the internediate output and input), and equivalent to the serial
conbination of T and U can now be constructed as fol | ows.

Let the state sets of T and U be s, and §; - The set

Sp xSy wll then be taken as the state set of V., and (4 y) will

be an initial (final) state of v iff t and u are initial (final)
states of T and U. The state transitions of V will be determ ned

as follows:

- for each transition t & ¢ of T, where O!eA?E,

take (t,u) 4 (t',u) for all wu ESu ;

- for each transition y 2 yr of U, where BgAZI

take (t,w) B (tyut) for all t €85

- for each pair of transitions
a

t >t' of T,

u By of wu,

20

where « B
Aoutput - Ai nput

€ (when actions (jnput a) and

(output a) are equated), take
al.l,lﬁé?
(t,u) - (t',u")

The cl ai med equival ence can be easily verified as follows. Firstly,
consider an arbitrary action sequence »y admissible for the serial
conbination of T and U = Then there exist « and g , adnissible
for T and U, satisfying (5), and associated with some state

transition sequences

téo)—». .
(6)
i t§C) = e, = tF()l‘p) R
u(o) - (Jo)
0] = Uy
(7)
cu0 oL

0
States, P, i,..0 Ay o dgreeesd, 20, and output (input) actions are

\ |
wher e téo) and u(o’ are initial states, ép) and ujp) are final
P

associated with exactly those transitions where the subscript of the

state is changed. According to the construction of V, (6) and (7)

can be "merged” into a transition sequence froman initial state to a

final state of v :

21

r—

) ‘

(i) ()
O
(té),gr(\o))—b...—»(too,uoo)—'
(8)
(0) (o) (1) (3)
— 't — o
(5 5 W) (6, % 5w)
The action sequence y' associated with (8) is a nerge of N and By
1
Therefore,
Y= % =Y
Al Al Al ?
7y =B =7
Ay Ay Ay 7

which neans that »* is adnissible and contains the same (external) input
and/or output as y .

Conversely, any action sequence y , adnissible on V , corresponds
to a state transition sequence of the form(8). According to the
construction of V , this determ nes sequences (6) and (7) for T
and U, wth action sequences « and g satisfying (5). Therefore,

y is also admssible for the serial conbination of T and U. O

W shall need this theoremonly for the special case that one of

the automata is a finite automaton. For this special case we have:

Corollary 1. For any class of automata determ ned by their peripheral

devices (in addition to a single input and/or output), the famly of

| anguages associated with the class is closed under finite transduction.

Finite transduction is in itself a very powerful operation. As
its special cases we have, for instance, projection, jnsertion,

intersection with regul ar |anguages, and quotients by regular |anguages

22

r

defined as

left quotient of L by R = R\L = (x | yxeL for some yeRr} ,

right quotient of L by R=L/R=(x |xyeL for sone yer} .

Notiece al so that init(L) = L/Z*

In particular, we have for finite automata:
Corollary 2. Finite transduction of a regular language is regular.

Knowi ng that the famly of regular |anguages is closed under

insertion, intersection, and projection, one could also see this of (W,

which for fi ni"te transducers assunes the form

®
(9) (L¥NBa)y

oooooo

6. Context-free Languages and Pushdown Automata

Knowi ng that the famly of context-free |languages is closed under
insertion, intersection with regular |anguages, and projection, (9)
gives :

Theorem5. Finite transduction of a context-free language is context-free.

As a special application of this result we notice that Botook of
Section 4.2 will remain context-free even if the initial and final stack
contents are only required to belong to some regul ar | anguages over

Zst ack In particular, one could allowthe final contents to be any

| t of &
el enen 0 stack

23

For a pushdown transducer, (4) takes the form

@ D
(10) (=N Bstack Bf‘ts)A

out put

If L is regular, then all operations in (10) preserve the context-free

property of Btack ' and we have:

Theorem 6. Pushdown transduction of a regular |anguage is context-free.

Next, we shall show that the famly of |anguages associated with

pushdown automata is the famly of context-free |anguages:

Theorem 7. The fanmily of |anguages associated with pushdown automata

is the famly of context-free |anguages.

Froof. For a pushdown automaton, B of (1) is context-free. Therefore

the |anguage accepted (2) or generated (3) is also context-free. For

the second part of the theoremthe follow ng sinple construction is
sufficient:

initi a,L'L state final state

!
C:)— (push 8))\J)O (pop a)(output a) for all aeZ
(pop A)(push X,) . . . (push X;)

for each production A - Xl...Xk

Here Z consists of all termnal (z) and non-termnal synbols of

stack
the context-free gramar. The operation of the automaton corresponds to
following a leftnost derivation sequence of a word. Initially, g g
pushed into the stack, and each tine there is a nontermnal on top of

the stack it is replaced 'by the right-hand side of a production for it

2k

s

(in reverse order). Wien a terninal synbol is encountered in the

stack, it is removed for output. An admissible sequence of actions ends

up with an enpty stack, which corresponds to having conpleted a

derivation sequence. O

Notice that the action (pop A) was not needed in the above
construction. So this action does not add anything to the recognition
or generative power of pushdown automata

As the proof of the first part of Theorem 7 was only based on the
context-free property of Bstack , It remains valid even if the initial
and final requirenents for stack contents are relaxed to arbitrary regular

| anguages over & Correspondi ng changes are also easy to make in

stack °
the construction for the second part of the theorem so that any given

regul ar | anguages could be used as initial and final stack contents

(I'n particular, the final contents could be allowed to be any nenber

*

of Zstack)

AS Eq_tack Can al ways be encoded in terns of a fixed al phabet
containing at least two letters, Theorem 7 shows that any context-free
| anguage over £ can be represented in ternms of a fixed context-free

| anguage and a regul ar |anguage

Theorem 8. G ven an alphabet E | there is a fixed context-free |anguage
L, over Zyz (where Z* is an auxiliary alphabet) such that any
context-free language L over E can be expressed as

L = (LOHR)Z s

where R is sone regul ar | anguage over E uz'.

25

Proof . Consider generating arbitrary context-free |anguages L by

pushdown automata with a fixed stack al phabet. Sel ect Bft ac

K as LO’

and take Bfts as R . O

Since only two letters are required in Zstack , four letters
(corresponding to push and pop operations for the two stack letters)
are sufficient in gr .

Using the construction above to generate an arbitrary context-free
l'anguage L , one could also proceed as follows. Encode only nonterninals

as stack letters by using two auxiliary stack letters, and delete all

Qutput actions. Then we haVey

L= 0B (pep)]

Thi s shows that L in Theorem 8 can be chosen as a Dyck | anguage over

a k-letter al phabet, and that |z| + L4 letters are then sufficient in 2'.
As intersection with a regular |anguage, decoding of alphabet,

and projection (together with a possible change of al phabet) can all be

performed by finite transducers, Theoreml gives us:

Theorem 9. Every context-free language is a finite transduction of a

fixed Dyck | anguage over a four-letter al phabet.

1 . . .
= Instead of letters in E ;- L here has corresponding letters in
{(pop a> | aez}.

26

7. Turing Machines and Undeci dabl e Questions on Languages

The same reasoning as was used in the previous section can be
applied also to other classes of automata. As any recursively enunerable

| anguage can be generated by a Turing nmachine, we get the follow ng

t heorem

Theorem 10. Gven an al phabet E , there are two fixed context-free

| anguages Ly and L2 over ZUZ' (where Z' is an auxiliary alphabet)

such that any recursively enunerable |anguage L over E can be
expressed as
L = (Llﬂ L,N R)‘2

where R is sone regular |anguage over Zyz' .

Proof . Consi der generating arbitrary recursively enunerabl e | anguages

L by Turing machines with a fixed tape al phabet. Select init@ﬁ)c

. ® -
and init(L,)” of Section 4.5 as L, and L, . and take Bare @8 R -

Since only two letters are required to encode any actions of
A\ ape
two letters are sufficient in zr.
As intersection with a context-free |anguage can be inplenented by
pushdown transduction, and intersection with a regular |anguage and
projection (wth a possible change of al phabet) can be perforned by

finite transducers, Theorem gives us:

Theorem 11. Every recursively enunerable | anguage is a pushdown

transduction of a fixed context-free |anguage.

Considering an automaton with two pushdown stacks, instead of a
tape, one notices that the fixed context-free | anguage in Theorem 11
can be chosen as a Dyck | anguage.

27

b

0

According to our definitions, B of (1) is enpty iff the operation

of the automaton cannot termnate successfully. oy approach then ties
several questions about formal |anguages directly to the halting

probl ems of automata. For instance, as B for a Turing machine is
always an intersection of two context-free |anguages (which can be
effectively constructed froma description of the Turing machine), the
enptiness problem for intersection of con-text-free |anguages nust be
undeci dabl e. Undecidability questions will not be treated in nore
detail here, as the proofs by Hartmanis [6] are directly applicable

to our approach as well.

8. Relation to Abstract Famlies of Languages

The approach pursued above can be generalized by thinking of an
arbitrary |anguage B, as bei ng associated with some abstract peripheral
device. On account of (1) it is sufficient to consider automata with
only one peripheral device (in addition to a single input and/or output).
In fact, any two devices with languages B, ¢ A; ' B, C A, where

Ay NA, = ¢ , can be replaced by a single device with the | anguage
A A

2 1
() “n () .
Let us now rewite (2) and (3) as
_ 2
(11) L=(L’ N R)}3

wher e LO is the "peripheral |anguage" L, < ol , and Ris the regul ar
)
| anguage R < (ZUZP) associated with the state transition system

The "peripheral alphabet" L, is arbitrary, yet disjoint fromz,

which is the input (output) alphabet. Notice that an arbitrary al phabet =

28

can be dealt with by renanming its elenments and letting the projection

notation in (11) denote the combination of projection and reversal of

this renamng.

It is natural to associate a class of automata with each "peripheral
| anguage" L - Let us call such classes fap-classes (for finite action

peripheral s):

Definition 4 The set of automata with the same peripheral |anguage L

is called the fap-class generated by L.

Definition 5. A famly of |anguages associated with a fap-class

(generated by Lo) is called a fap-fanmly (generated by L).

Cbviously, a fap-famly consists of the |anguages (11) for arbitrary R.

In particular, it contains its generator L which is accepted by the

foll owi ng autonaton:

Q (input a)a , for all a ECp

VAR
\

initial state" "final state

Corollary 1 to Theoremk says that fap-famlies are closed under
finite transduction. On the other hand, all operations involved in (11)

are special cases of finite transduction. Therefore, we can concl ude:

Theorem 12. A fanmily of languages is a fap-famly iff it is generated

by a single language by finite transduction.

29

Let L

and L, be two arbitrary |anguages. Wthout affecting

1
generality we can assune that their al phabets have been nade disjoint

by renaming. The fap-fanily generated by L UL, does then contain

both 1, and 1, Intuitively, two devices are then conbined into

1 2
one so that any of the conponent devices, but only one of them can be
used. On the other hand, it is straightforward to verify that each
fap-famly is closed under union. Therefore, this fap-fanily is the
famly generated by L, and L, by finite transduction, and Theorem 12

gets the stronger form

Theorem 12b. -- A fanmily of languages is a fap-family iff it is generated

by a finite set of languages by finite transduction.

It can be easily verified that fap-famlies need not be cl osed
under concatenation. Intuitively this is associated with the fact that
it may be inpossible to reset a peripheral device froma final status

- to an initial status. The intuitive notion of resetting peripheral
. . *
devices by action sequences R < Zp can be fornulated as follows:
o]
. - For each action sequence x eLo there is a resetting sequence
reRLO such that xry ¢ L for all yeL, -
- If an adm ssible action sequence z el contains a resetting

sequence reR. i.e., =z = xry for sone x,yeZ;, then the
o]

status of the device is an admssible final (initial) status after

the actions in x (xr) , i.e., x,yEL
| f Repla.ceR . Udenotes a transduction which transduces any word xry .
2
where reR , into xcy , then the result of these intuitive considerations

can be stated in terms of the follow ng definition:

30

Definition 6. A language L is called resettable vy g , 0 f
—_——e— I’

Repl ace (L) = LeL ,
sC

Ry,

where ¢ is a synbol not contained in L .

As an exanpl e, the |anguages Bst ack and Bqueue of Section 4

are reset-table by R = {(pop M)}, Riueue = [(re€ad A} . Ifthe

requirements for the final contents were totally renoved, no finite

resetting |anguages would suffice, and we would get

*
stack = @opalac Lotack! (Pop A,

*
uneue (read a | a €2 nene) (Fead A

For fap-classes with resettable devices we can now show

Theorem 13. A fap-fanily of languages is closed under concatenation

+

and pl us—l-/ () iff it is associated with a fap-class where peripheral

devices are resettable by regular |anguages.

Proof . If there are nore than one peripheral device, then the
concatenation of their resetting | anguages woul d be a resetting |anguage
for the single device obtained of them |t s therefore sufficient to
consi der only the case of one device.

Let us start with the 'if'-part. Let T and U be two automata of
the fap-class generated by a |anguage L reset-table by a regul ar

language R . Being regular, R is associated with a finite transition

1/ _ _ + * .
Plus is defined as L. =LL . |n fact, we could have star (*) in

this theoremequally well, but the later analogue for restricted
fap-famlies is valid only for plus (+) :

31

system where edges are labelled by el ements of 2; . Athird

automaton V of the same fap-class can now be constructed as foll ows.
Connect the final states of T by E-transitions to the initial states
of the transition systemfor R, and connect the final state of this
system again by s-transitions to the initial states of U. |nitial
states of T (final states of U are taken as initial (final) states
of v . The language associated with V is now the concatenation of
the | anguages associated with T and U .

In fact, let x and y be sone admissible action sequences for

T and U . In particular, x On account of the definition

RSN ‘Lo
P P

of R, there is now a resetting sequence reR satisfying

Xy TYn €L . As x, y, and r are associated with adnissible
D D

transition sequences in T, U, and the transition systemfor R,

there is an adnmissible transition sequence in v, associated with the

action sequence z = xry . Since z% = xzp ryzpeL0 , and Iy = (xy)z ’

V accepts each concatenation of words accepted by T and U .

Conversely, let z be an admissible action sequence of V . Because
of the construction of v, z nust have the formz = xry , rer, where
x and Y are associated with sone adnmissible transition sequences of

T and U . The adnmissibility of z also neans that Z}: EL . As
O
‘ D
Zg SXg Yo o, We have X; s¥s €L, On account of the definition
Y P P P P
of R. This shows that x and y are, indeed, adnissible for T

and U . Hence, Z5 = XY is a concatenation of words accepted by

T and U .

For plus operation, an automaton Wcan be constructed of a given

automaton T as follows. Connect the final states of T vy

22

. m«.‘.‘_ﬂ,—-«;:-?}‘

e-transitions to the initial states of the transition systemfor g,

and connect the final states of this systemby E-transitions to the
initial states of T . As initial and final states take those of T .
The correctness of this construction can be proved simlarly to the
above proof for concatenation. For brevity, details are onitted here.
For the 'only if*-part it suffices to notice that any device can
be made resettable by adding a new primtive action for this purpose.
This means that the generator L can be replaced by another generator
L' =L ULO(cLO)+ , where ¢ is a new synbol outside the original
zp and £ . This language obviously has a resetting |anguage {c} ,

and, if the fap-famly generated by L is closed under concatenation

and plus, then L' generates the sane fap-famly. U

Theorem L showed that characterizing peripheral devices locally
| eads to | anguage fam lies closed under arbitrary finite transductions.
A sinple and common way of introducing non-local restrictions is the
following: let us associate an integer k > 0 with each automaton
and let us accept an action sequence x ¢ ﬁi NR as adnmissible iff
xfzg,amdxﬁ(zuﬁﬁ*%?l(ZU%Q*. In other words, a non-enpty
action sequence is required to contain at |east one action for input
(if accepting) or output (if generating or transducing), and it cannot

contain nore than k consecutive actions of other kinds

Mre formally, Tet R , k>0, be defined as the conpl enent of
+ * ket *
=2 U (& UL
R D (Uz:p) zp (Up)

A k-restricted automaton with peripheral [|anguage L and transition

system language R is then associated with the language

B X
L = (LOfWRk(WR)Z

As R, NR can always be associated with a transition system, we
can also use (11) with the additional assumption that the transition
systemis k-restricted, i.e., Rc R, -

An automaton will be called restricted, if it is k-restricted for
some k >0 . As an exanple, let us consider restricted automata with
an arbitrary finite nunber of pushdown stacks, queues and tapes.

Qbvi ousl y, L, of (11) for any such automaton is context-sensitive.

It can be shown [8] that a projection, not erasing nore than k consecutive
characters for some k > 0, preserves the context-sensitive property

of a language. Therefore, we notice that |anguages associated wth

these autonata are context-sensitive. Simlarly, we can see of (4)

that these automata transduce context-sensitive |anguages into
context-sensitive |anguages.

Anal ogously to Definitions & and 5 we now defi ne:

Definition 7. The set of restricted automata with the same peripheral

| anguage is called a restricted fap-class. A famly of |anguages

associated with a restricted fap-class is called a restricted fap-family.

It can now be easily verified that the construction used in the

proof of Theoremly produces a restricted automaton V , if both T and

~Uare restricted. Aso, for restricted automata, all operations

involved in (11) are special cases of restricted finite transductions.
Therefore, an anal ogue of Theorem 12b holds for restricted fap-famlies

and restricted finite transduction.
Simlarly, an anal ogue of Theorem 13 is obtained for restricted

fap-fam|lies associated with automata with peripherals resettable by

3k

finite languages. (Some care nust be exercised in the constructions

inthe proof, in order to deal properly with |anguages containing «.)

Abstract families of languages, or AFL, can be characterized [4] as

L . . . +
those famlies which are closed under union, concatenation, plus (),

and restricted finite transduction. An AFL is a full. AFLif it is

closed under an arbitrary finite transduction, and it is a principal AFL

if it is generated by a single |anguage by the operations |isted above.

In terns of these notions we can now conclude the discussion with

the follow ng theorem already obvious from what has been proved:

Theorem 4. A family of languages is a (restricted) fap-fanily

associated with automata with peripherals resettable by regular (finite)

languages, iff it is a full (not necessarily full) principal AFL.

9. Concl usions

The approach presented is based on an inherently nondetermnistic
conception Of automata. An interesting way to introduce deterninism
woul d be to take an auxiliary input for controlling nondeterm nism

Another limtation was dealing with only one-way input. Qoviously,
two-way input could, in principle, be handled simlarly to other devices.
However, much of the elegance of this approach seems to be lost with
the conplications in the |anguage involved. For instance, jt js not
obvious fromthis | anguage that each two-way finite autonaton accepts
a regul ar |anguage.

As a unified approach to automata, this approach has the advantage

that one does not need to be concerned with information representation

in the infinite storage. Aso, very clear intuition is provided for

55

principal AFL, and their hononorphic characterization theorem

Qovi ously, nore general classes of automata than fap-classes are

needed for non-principal AFL.
In conclusion, it is felt that the approach presented deserves

attention in courses and textbooks on automata and formal |anguages,

and it is hoped that this paper can serve in making it nore wdely

known.

36

[1]
(2]

(3]

(7]

(8]

Ref er ences

Fl oyd, Robert W, Private conmunication.

G nsburg, Seynour, The Mathematical Theory of Context-free Languages.
MGawH ||, 1966.

G nsburg, Seymour and Sheila Geibach, 'Principal AFL," J. Comput.
System Sei. k, 1970, 308-338.

G nsburg, Seymour, Sheila Geibach, and John Hopcroft, "Studies in
Abstract Famlies of Languages," Memoirs of the Amer. Math. soc.,

87, 1969.

G nsburg, Seynour, and Gene F. Rose, 'Preservation of Languages by
Transducers,” Information and Control 9, 1966, 153-176.

See also: "A Note on Preservation of Languages by Transducers,"

I nformati on and Control 12, 1968, 549-552.

Hartmanis, J., "Context-free Languages and Turing Machine Computations, ™
Proceedi ngs of Synposia in Applied Mthenmatics 19, Anerican
Mat hematical Society, 1967.

Hoperoft, J. E. and J. D. Ullman, "An Approach to a Unified Theory
of Automata," Bell System Tech. J. 46, 1967, 1793-1829.

Hopcroft, John E., and J. D. Ullman, Formal Languages and Their
Relation to Automata. Addi son-Wesl ey, 1969.

Sal omaa, Arto, Fornal Languages. Acadenmic Press, 1973.

37

