
. .

DESCRIBING AUTOMATA
ASSOCIATEDWITHTHEI

INTERMS OF-LANGUAGES
R PERIPHERAL DEVICES

.

Reino Kurki-Suonio

STAN-CS-75-493

MAY 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Describing Automata in Terms of Languages

Associated with Their Peripheral Devices

bY

Reino Kurki-Suonio

--

Computer Science Department

Stanford University

and

University of Tampere, Finland

Abstract

A unified approach is presented to deal with automata having

different kinds of peripheral devices. This approach is applied

to pushdown automata and Turing machines, leading to elementary

proofs of several well-known theorems concerning transductions,

relationship between pushdown automata and context-free languages,

a
as well as homomorphic characterization and undecidability questions.

In general, this approach leads to homomorphic characterization of

language families generated by a single language by finite transduction.

This research was supported in part by National Science Foundation grant
($I 36473~ and by the Academy of Finland. Reproduction in whole or in
part is pmmitted for any purpose of the United States Government.

1

1. Introduction

L

L

Mathematical formulations of various classes of automata do not

usually allow uniform treatment of different kinds of automata. One

reason is in irrelevant differences of conventions. For instance,

input may come from an input source, or it may constitute the initial

contents of some storage device. Also, the formalisms which are used

may be difficult to manage in a general situation. Functional notations,

for instance, become quite clumsy to use when several storage devices

are introduced.

The purpose of this paper is to present an approach, suggested by

Floyd [l], where several kinds of automata are treated in a uniform way.

In Sections 6 and 7 this approach will be applied to pushdown automata

and Turing machines. The proofs of the theorems obtained are quite

elementary, when compared to those usually given [2,8,9], and they have

the advantage of being directly based on a simple and intuitively clear

picture of the situations in question. In fact, most of the theorems

are directly obvious from the basic definitions we shall make.

The general idea is to consider an automaton as a finite, non-

deterministic transition system, where each transition is associated

with a sequence of actions on peripheral devices, like inputs, outputs,

tapes, stacks, and queues. Action sequences which are possible on an

automaton are restricted by its transition system on one hand, and by

the properties of the peripheral devices on the other hand. Each such

- restriction can be given in terms of a language over actions, and the

total behavior of the automaton can then be described as the intersection

of these languages.

The behavior of Turing machines has previously been described in

terms of languages by Hartmanis [6]. However, he considers sequences of

instantaneous descriptions instead of action sequences. The present

approach is both simpler and more general. Ginsburg and Greibach have

used it in [3] to exhibit an "intuitively obvious" language as a generator

for one-way stack languages. Although it seems obvious that the general

applicability of the approach has been known for some time, it is not known

to the author that systematical use had been made of it.

i

L

i

L

Comparing the approach to that of (one-way nDndeterministic) balloon

automata [7] and abstract families of acceptors [4], there is the similarity

that admissible behavior of memory devices is described Vocally", i.e.,

without reference to other aspects of the automata. However, our approach

does not make explicit use of any information storage aspects of memory

devices. Instead, each device is characterized purely in terms of a

language of admissible action sequences. Letting these "peripheral

languages" determine a class of automata, it will be shown in Section 8,

that the families of languages associated with such classes are exactly

those families which are generated by a single language by finite

transduction. With a suitable restriction on "peripheral languages", full

principal AFL [3] are obtained.

2. Elementary Properties of Automata and Languages

The purpose of this section is to state explicitly those concepts

and properties of automata theory and formal languages on which our

treatment of pushdown automata and Turing machines is based.

The basic concepts of finite automata, Turing machines, and the

families of regular, context-free, context-sensitive, and recursively

enumerable languages are assumed to be known. As for relationships

between automata and languages, we assume that the relationships between

(nondeterministic) finite automata and regular languges, and between
4 'Turing machines and recursively enumerable languages, are known. For

questions of undecidability, one has to know the undecidability of the

halting problem for Turing machines.

. As for Boolean closure properties of families of languages, we shall

make use of the facts that

- the family of regular languages is closed under intersection,

- the family of context-free languages is closed under intersection

with regular languages,

- the family of context-sensitive languages is closed under intersection.

In addition, we shall need properties concerning insertion of

auxiliary letters into words,' and projection homomorphisms deleting some

letters from words.

3

c,

,
b

Definition 1. Given two disjoint alphabets C and Cl , the projection

of a word x e(CUZl)* into z* is the word xx EC* obtained of x

by deleting from it all occurrences of letters not belonging to
C .

For a language L over CIJC
1 we define correspondingly,

=z = (x, 1 XEL) .

Definition 2. Given a language L over

cnc,=@ , the language

C and an auxiliary alphabet Zl ,

c
L1

--
= cx IxE(CUCl)*, XCEL)

is called insertion of Cl into L .

Obviously, projection is the opposite of insertion in the sense

that, for any language

CflZ, = fi , we have

L over C and for an auxiliary alphabet X1 ,

(L5)c = L l

i
L

L

For insertion we can also readily establish the following identities:

=1 =2 c c
CL > = (L 2) I- = LXlUZ2

‘5 3
Ll uL2 = (LpLJ

=1
>

=1 =1
Ll nL2 = (LlnL2J

3
.,

(clJzl)*-L =1 = (c"-L) =1)

where L ,
Ll ' and L

2 are languages over G , and C1' c2 are two

auxiliary alphabets, disjoint from C l

4

It is also easy to prove the following closure properties of

language families under projection and insertion:

Theorem 1. The families of regular, context-free and context-sensitive

languages are closed under insertion of an auxiliary alphabet.

Theorem 2. The families of regular and context-free languages are

closed under projection.

3. Basic Definitions

ii

By an automaton we understand a finite transition system associated

with one or more devices for input, output, and storage of symbols. Each

device is assumed in the following to have a finite set of primitive

actions associated with it. For an input device, for instance, an

input operation together with the letter obtained from the input source

would constitute a primitive action. The transition system can be viewed

as a finite digraph where edges are labelled with finite sequences of

primitive actions. Vertices and edges of the graph are called states and

a state transitions, respectively. Two subsets of states are distinguished

as initial and final states.

As an example, let us consider a simple automaton with one input

and one counter. Assuming a two-letter input alphabet {a,b] , the

primitive input actions could be denoted as (input a} , {input b) ,

and (input A) , where the first two correspond to successful input

operations, while the third indicates that no letter was obtained since

the source was found empty. For the counter we have a one-letter

alphabet {l} together with primitive actions (push 1) , (pop 1) ,

5

L

and (pop A) denoting incrementation, decrementation, and the situation

that the counter is found empty.

The transition system of theautomaton is given in Figure 1. It

can be immediately verified that a state transition sequence leading

from the initial state to the final state is associated with exactly

those input sequences where the number of a's equals the number of b 's.

Although this example presents deterministic behavior, we shall make no

general restrictions on the action sequences associated with state

two transitions from the same

> , the other with

ndeterministic behavior. Some

transitions might even be labelled with impossible action sequences,

like (input A)(input a) .

transitions. For instance, we might have

state, one labelled with (input a)(push 1

(inlxlt aHPoP 1) 9 which would indicate no]

(input a)(push l},
(input b > (POP 1)

Initial state

Final state

Figure1

6

i

In general, the behavior of an automaton is determined as follows:

1. Initially the automaton is required to be in one of the initial

states. There may also be further requirements concerning the-.

initial status of the various peripheral devices.

2. Operation of the automaton can terminate successfully whenever the

current state is a final state, if all requirements (if any)

concerning the final status of peripheral devices are satisfied.

3. If the operation is not terminated, one transition from the current

state is selected, an attempt is made to perform the primitive

actions associated with it (in the order indicated by the sequence),

and, if this succeeds, the state is changed accordingly.

Nondeterminism is involved in the selection of the initial state,

the selection of transitions, and in the decision on termination.
c

Operation of the automaton terminates unsuccessfully, if the actions

associated with the selected state transition cannot be performed. We

are only interested in operations which do not terminate unsuccessfully.

L

An input device always has some input alphabet C
input . A word

*
XECm input is accepted by an automaton (acceptor), if the automaton

can be operated (with successful termination) so that the word read in

by the input actions is x . Similarly, an output device has an output
.
alphabet C

output ' and a word yeZ*
output is generated by the automaton

(genera-t;or), if it can be operated (with successful termination) so that

the output word given by output actions is y . The language accepted

(generated) by an automaton is the set of words accepted (generated) by it.

A word x EZ*
input

is transduced by an automaton (transducer) into

y ECSC
output ' if the automaton can simultaneously accept x and generate y .

7

L

Notice that transduction is here defined only for words accepted by the

automaton. A language Ll is transduced into L, , if L
2 is the setL

of words into which words of Ll -.are transduced.

Two automata are equivalent as acceptors (generators) if they accept

(generate) the same language. Two automata are equivalent as transducers

if the transductions performed by them are the same. Notice that

equivalence as transducers implies equivalence as acceptors and generators,

but not conversely. By equivalence without further specification we shall

understand equivalence in those respects applicable to the automata in

question.

For each device there are certain restrictions determining which

sequences of primitive actions on that device are admissible. The main

purpose of these restrictions is to guarantee that the symbols fetched

from a storage device correspond to those stored in it, and that; no input

is obtained from an input source already found empty. In addition, there

may be restrictions on the initial and final status of the devices. For

instance, storage devices may initially be assumed empty. Notice that

input and output are considered "one-way" devices, not storage units which

would allow re-examination or replacement of letters already treated once.

More formally, let A, be the set of primitive actions on device i .
L

It-is assumed that primitive actions can be renamed, if necessary,

avoiding conflicts. Therefore, it is always assumed that Ai for

different devices are disjoint. For each i we have a language

Bi c A;

consisting of all admissible action sequences on device i . Let

for

A

denote the union of Ai for aiz automaton. The finite transition system

of the automaton then determines a regular language

8

such that
Tx eBfts iff a is associated with some sequence of state

transitions leading from an initial state to a final state (irrespective

of whether or not ,x makes sense for the peripheral devices). This

leads to the following definition of an action sequence CNAX being

admissible:

L

L

f
i.

Definition 3. A word USA* is called an admissible action sequence

for an automaton, iff

c-w: E B
f-t&S

, and

(>ii (x EB.Ai 1 for all devices i .

Introducing the notation

jp zz
A-Ai

i 03 >i Y

i.e., letting BF denote the language obtained of Bi by inserting

actions on all other devices to it, we can express admissible action

sequences as the language

a

P-1 B = Bftsrl n B? .
i

1

It is pointed out that this definition implies each peripheral

device being defined solely by the ways in which it can be locally

manipulated. A device is completely characterized by the language B
i

associated with it. Additional restrictions are required, if one wishes

to introduce interdependencies between devices, like those in linear

bounded automata or time/tape complexity classes of Turing machines.

In accordance with common terminology, automata having (in addition

to a single input and/or output) no peripheral devices, one pushdown

9

stack, one queue, or one tape, will be called finite automata, pushdown

automata, Post machines, and Turing machines, respectively. Notice that

input is considered an independent device in this definition of-.

(nondeterministic) Post machines and Turing machines. Strictly speaking,

these peripherals are not devices but classes of devices, as the language

Bi of a pushdown stack, queue, or tape, depends on the alphabet used

on the device.

4. Languages Associated with Peripheral Devices

c

Languages Bi associated with some common peripheral devices

will be investigated in this section. As it is known that the same

family of languages -- that of recursively enumerable languages -- is

accepted (generated) by Post machines, by Turing machines, and by

automata with two pushdown stacks, there is some redundancy in discussing

pushdown stacks , queues and tapes separately. However, it is interesting

to see how these different kinds of devices lend themselves to this

treatment.
-

4.1 Input Actions

. Given an input alphabet C
input ' there is a primitive input action

(input a) for each aeCinpUt . The meaning of such a primitive action

is to take the next letter from the input source and to find it to be

letter a . In addition, there may be an action (input A) , which means

that the input source is found empty by an attempted input operation.

Obviously, no further input operations can find input letters, if the

source has already been found empty.

10

The set of all primitive input actions is therefore either

or

A
input = CCinWt a> 1 a E xinput) j

-.

A!input = A.
input U ((input A}) .

Correspondingly, the set of admissible sequences of input actions is

either

Binput
= A*

input '

or

B!input
zz A*inputCinPut A}* ’

--
In each case this is a regular language.

For notational simplicity, we shall in the following make no

distinction between a language over C
input and the corresponding

language over A
input l This means that the language accepted by an

automaton can be denoted as

where B is the language of all admissible action sequences from (1).

- More precisely, this notation involves that projection and change of

alphabet can be combined in a single notation for projection. Two

automata with the same A
input ' and with admissible action sequences

B and B' , are then equivalent as acceptors iff BA
input =BA l

It is easy to see that
input

(input A) is, in fact, a superfluous action

in the following sense:

Theorem 3. For any automaton with input actions A'
input there is an

equivalent automaton with the' same peripherals and with input actions

restricted to A
input l

11

Proof. Let X be an automaton with state set S and with actions A

containing an input action (input A) . Another automaton Y , equivalent

to X and with actions A-((input A}} , can now be constructed as follows.

As states of Y take S x (O,l} ,. and let (s,k) be an initial (final)

state of Y iff s is an initial (final) state of X and k = 0

(k = 0'1) . The state transitions of Y will be determined so that

(cdfor any transition s +t of X , syt ES ' aeA* , Y will have the

following transitions:

if a
A!

z E , then (s,k) 2 (t,k) ,
input

k=O,l;

else, if= ~c(input A)l = E y then (~'0) (fl, (t,O) ;

'else, if ~4
A! EB!
Input Input ' then (s,k) k4 ' k=O,l.

On the basis of this construction, it is straightforward to verify,

that for any admissible action sequence y of X there is an admissible

action sequence y' of Y' satisfying

Y’ = 'A-[(input A)] '

- and conversely. Therefore X and Y are equivalent. c3

On account of Theorem 3, it is no essential restriction that we shall

-always restrict input actions to A
input in the following.

)+.2 Output Actions

Given an output alphabet C
output , the set of primitive output

actions is

A
output = C(output a> 1 a E Coutput 3 ,

12

where (output a> denotes the action of outputting an individual letter

ad
output l The set of admissible output action sequences is simply

B = A* . .
output output l

As in connection with input, we shall make no notational distinction

/
L

between a language over C
output and the corresponding language over

Houtput a> I a "Coutput3 l This means that the language generated by

an automaton can be denoted as

(3)

Two automata with the same A
output ' and with admissible action

sequences B and B' , are then equivalent as generators, iff

BA = B;I .
output output

When considering transduction of a language L , the output

language is correspondingly

(L@n B)A .
output

Two automata with the same A
input ' Aoutput ' and with admissible

action sequences B and Bf , are equivalent as transducers, iff for

each aeB (W EB*) there exists a' G-B'
(a E B) such that

a-
A.

= a'
A and

aA
= a'

input input A
.

output output

Because of Theorem 3, there is complete symmetry between input

and output actions. Given an automaton accepting (generating) a

language L , this same language L is generated (accepted) by the

automaton obtained of the original by interchanging input and output.

Therefore, for a class of automata which is closed under interchanging

13

L

input and output, the families of languages accepted and generated by

these automata are the same. Such a family will be referred to as the

family of languages associated with that class of automata.
-. s

4.3 Pushdown Actions

Given a pushdown stack with stack alphabet C
stack ' there are

primitive actions (push a) and (pop a) for each a EC
stack l The

meanings of these actions are pushing a single letter a on top of the

stack, and popping one letter from the stack and finding it a letter a .

In addition, there may be an action (pop A} , which means that the

--.
stack is found empty by an attempted pop operation. The set of all

primitive pushdown actions, A
stack ' is therefore either

((push a> 1 a 62 stack) ' (bp a> \ a "&,a&]

((push a) 1 a EC
stack] � ((�OP a) I a E �stack3 U {(POP A)]

l

The characteristic property of a stack is that all letters pushed

into it can be popped out of it in the reverse order. A grammar for

Bstack , the set of all admissible pushdown action sequences, can be

directly based on this property. In order to get Bstack as simple as

possible, we shall require further that a stack is empty both initially

and finally.f1 If A
stack does not contain (pop A) , B

stack is then

the Dyck language generated by the grammar

’ Re1axing this reqUi&nent i s discussed in Section 6.

14

S + &

+ (push a) s (pop a) for all aezstack

-+ss .

If (pop A) is allowed, the grammar has to take care that

(POP A> can appear only when the stack is empty:

s --+ (POP A)

+ ss

4 (push a) T (pop a)--_ for all a eCStaCk

-(TT .

In each case B
stack is a context-free langua.ge over A

stack '

4.4 Queue Actions

Given a queue with an alphabet C
queue , there are pr5mitive actions

(write a) and (read a) for each a&Z
queue

. The meanings of these

actions are writing a letter a to one end of the queue, and reading

(and erasing) a letter from the other end and finding it to be letter a .

In addition, there may be an action (read A) which means that the queue

. is found empty by an attempted read operation. The set A
queue of all

primitive queue actions is therefore either

((m-i-k a) 1 sCqUeue) U ((r e a d a) I ad
queue }

L or

{(write a> 1 aexqueue} U ((read a> 1 aeCqUeUe] U {(read A)) .

The characteristic property of a queue is that all letters written

into it can be read from it in the same order. A grammar for B
queue '

the set of all admissible queue action sequences, can be directly based

on this property. We shall make the further requirement that a queue

is empty both initially and finally. If Aqueue does not contain

(read A> f we get the following grammar:

T-, (write a)(read a) for all a EC
queue

--+ TT

(read a)(write b) -+ (write b)(read a) for all a,b eZ
queue .

Notice that the context-free productions generate all action

sequences where each write action is immediately followed by the

corresponding read action, and the context-sensitive production takes

care of arbitrary "delaying" of read actions.

If (read A) is allowed, we only have to add the production

T -+ (read A)

to the grammar. Hence, we find that B
queue is in each case a

context-sensitive language over A
queue '

4.5 Tape Actions

A tape allows actions for reading and writing, and for moving the

tape in either direction. It is customary to include one read, one write,

and one move operation in one primitive action, in this order. In the

following we shall adopt the convention of writing first, then moving the

16

tape and reading. Given tape alphabet C
tape , the set of primitive

tape actions is then

A = ((write a, left, read b) I a,b eCtape) U

({write a, right, read b) 1 a,b eZtape] .

c

L

Ii

The meaning of these actions is that letter a is written on tape,

tape head is moved by one square to the left or to the right, and the

letter in this square is read and found to be letter b .

The characteristic property of a tape can be stated as follows:

when some letter has been written in a square, the same letter will

be read when-this square is reached for the next time. Let us consider

only one half of this property by requiring that a letter written by

an action moving to the right will be read when the same square is

reached next time (by an action moving to the left). Requiring further

that all letters written (moving to the right) are later read (moving

to the left) and denoting the set of action sequences

we get the following grammar for Ll :

sl + xl (stands for a sequence which either is

with an action moving to the right)

so obtained by Ll ,

empty or starts

-+Y1 (stands for an action moving to the left)

-+ Vl

x1 4 E

3 (write a, right, read b) Xl (write c, left, read a)

for all a,b,c EC
tape

Yl -+ (write a, left, read b), for all a,b CS
tape '

17

If only the second half of the characteristic property of a tape is

taken, we get a similar language L2 with grammar:

s2 -+ x2 -.

-,Y2

--) s2s2

L

i

--) {write a , left, read b) X2 (write c t right :, read a)

for all a,b,c EC
tape

--+ x2x2

Y2 + (wr&te a , right, read b) for all a,b eG
tape '

Imposing no restrictions on the initial and final contents of a tape,

we can then express B
tape , the set of all admissible tape action

sequences, as

Btape = init n init ,

where init denotes all initial parts of words in L :

init = Cx 1 Xy EL for some y] .

For a context-free L , init is also context-free, as will be

seen in Theorem 5- Therefore, B
tape is a context-sensitive language

which can be expressed as an intersection of two context-free languages

over A
tape l

Btape can also be characterized as the complement of a context-free

language L over A
tape ' A context-free grammar for L is obtained easily

from the observation that at least one letter has to be read differently

from what was written in thesquare. This leads to the following grammar

18

(together with the above productions for Xl , Yl , X2 , and Y2):

S --+ {write a , right, read b) Xl (write c, left, read d)

--3 (write a, left, read b) X2 (write c , right, read d)

for all a,b,c,deC
tape ' abd

+ TST

T-+E

-+Y1

-+Y2 l

50 Serial Combination of Automata

It is often useful to consider an automaton as a serial combination

of several automata, so that the output of one automaton is used as

input to the next one. More formally, let T and U be two automata

with disjoint sets of primitive actions
AT =AIUA

output '

Au. = A2UA.Input ' where the same alphabet is associated with A
input

and A
output ' and A1 and A

2 stand for the primitive actions of

the other devices in T and U . An action sequence

Y E (AlUA2)*

3.s defined to be admissible for the serial combination of T and U

iff there are action sequences G! and ,3 , admissible for T and U ,

satisfying

c = PA .
output input

Concerning such serial combination of automata, we have:

Theorem 4. For any serial combination of (a finite number of) automata

there is a single automaton, equivalent to this serial combination,

having the same peripheral devices as the original automata, omitting

the intermediate output/input devices.

L

P r o o f l Let T and U be two automata as described above. Without

affecting generality, we can assume that each state transition of T

oJ> is associated with at most one output (input) action. A third

automaton V , with the sme peripheral devices as T and U (except
--

the intermediate output and input), and equivalent to the serial

combination of T and U can now be constructed as follows.

Let the state sets of T and U be ST and
% . The set

'T "U will then be taken as the state set of V , and (t,u) will

be an initial (final) state of V iff t and u are initial (final)

states of T and U .

as follows:

- - for each transition

take (t,u) 2

- for each transition

take (t,u) $

The state transitions of V will be determined

a
t 3-t' of T , where aeAT,

(t',u) for all u ES
u ;

Bu -+ut of U , where ,5 EA*
2'

hut > for all t EST ;

- for each pair of transitions

at -+-tt of T,

Bu --$ u' of u,

20

where a
A = ABoutput

6 (when actions
input

(input a) and

(output a) are equated), take

aA 'A
. .

(tyu) �-+2 (-t�,U�) l

The claimed equivalence can be easily verified as follows. Firstly,

consider an arbitrary action sequence y admissible for the serial

combination of T and U . Then there exist Q! and p , admissible

for T and U , satisfying (5), and associated with some state

transition sequences

(6)

--
(> (>

too + . . . -i to
i

0 4

l

4 to +... 4t(>
.

(>IP
P P Y

.
(>0 (J)

u� 4 l * l 4 u.

0
3

(7) l

.
(10 (J)

-+ u
p 4""ul?

P
Y

d

where t ()0 (
\ (1i .

0 and u"' (J)
0 are initial states, t p

P
and u p

P
are final

states, p , *lo, l l l ,l'p y j,y-yjp 2 0 , and output (input) actions are

associated with exactly those transitions where the subscript of the

state is changed. According to the construction of V , (6) and (7)

can be "merged" into a transition sequence from an initial state to a

final state of V :

21

(t(O) , u(O)) 4 (t
(i,) (j,>

0 0
. . . -b

0 YU0) --)

(8)

4 (t(O) , JO)) 3 . . . --) (t
(ipI (J,)

P P P
YU > .

P

The action sequence yr associated with (8) is a merge of a

Therefore,
Al

and pA .
2

=a =
Al 'Al '

y;i2 = PA2 = YA ’
2

which means that yr is admissible and contains the siwle (external) input

and/or output as y .

Conversely, any action sequence y , admissible on V , corresponds

to a state transition sequence of the form (8). According to the

construction of V , this determines sequences (6) and (7) for T

and U, with action sequences a and @ satisfying (5). Therefore,

y is also admissible for the serial combination of T and U . 0

* We shall need this theorem only for the special case that one of

the automata is a finite automaton. For this special case we have:

Corollary 1. For any class of automata determined by their peripheral

devices (in addition to a single input and/or output), the family of

languages associated with the class is closed under finite transduction.

Finite transduction is in itself a very powerful operation. As

its special cases we have, for instance, projection, insertion,

intersection with regular languages, and quotients by regular languages

22

defined as

left quotient of L by R = R\L = (x I yxeL for some yeR) ,

right quotient of L by R = L/R = (x I xy~L for some yeR] .

Notice also that init = L/Z* .

In particular, we have for finite automata:

Corollary 2. Finite transduction of a regular language is regular.

Knowing that the family of regular languages is closed under

insertion, intersection, and projection, one could also see this of (4)'

which for finite transducers assumes the form
--

(9) CL% Bfis)A l

o u t p u t

6. Context-free Languages and Pushdown Automata

Knowing that the family of context-free languages is closed under

insertion, intersection with regular languages, and projection, (9)

gives :

Theorem 5. Finite transduction of a context-free language is context-free.

As a special application of this result we notice that Bstack of
e

Section 4.3 will remain context-free even if the initial and final stack

contents are only required to belong to some regular languages over

cstack l In particular, one could allow the final contents to be any

element of Crtack .

23

For a pushdown transducer, (4) takes the form

(10) (L%B@ nB
stack >fts A

.
output

If L is regular, then all operations in (10) preserve the context-free

property of Bstack , and we have:

Theorem 6. Pushdown transduction of a regular language is context-free.

Next, we shall show that the family of languages associated with

pushdown automata is the family of context-free languages:

Theorem 7. The family of languages associated with pushdown automata

is the family of context-free languages.

Proof. For a pushdown automaton, B of (1) is context-free. Therefore

the language accepted (2) or generated (3) is also context-free. For

the second part of the theorem the following simple construction is

sufficient:

initial state

(pop a)(output a> for all a&

(POP A)(p~=h ⌧k> . l l (push ⌧l>

.

for each production A -+ Xl...X
k l

Here C
stack consists of all terminal (a and non-terminal symbols of

the context-free grammar. The operation of the automaton corresponds to

following a leftmost derivation sequence of a word. Initially, S is

pushed into the stack, and each time there is a nonterminal on top of

the stack it is replaced 'by the right-hand side of a production for it

24

(in reverse order). When a terminal symbol is encountered in the

stack, it is removed for output. An admissible sequence of actions ends

up with an empty stack, which corresponds to having completed a

derivation sequence. Q
-.

L

Notice that the action (pop A) was not needed in the above

construction. So this action does not add anybhing to the recognition

or generative power of pushdown automata.

As the proof of the first part of Theorem 7 was only based on the

context-free property of Bstack , it remains valid even if the initial

and final requirements for stack contents are relaxed to arbitrary regular
--

languages over Estack . Corresponding changes are also easy to make in

the construction for the second part of the theorem, so that any given

regular languages could be used as initial and final stack contents.

(In particular, the final contents could be allowed to be any member

of c*
stack l >

As Es-tack can always be encoded in terms of a fixed alphabet

containing at least two letters, Theorem 7 shows that any context-free

language over C can be represented in terms of a fixed context-free
e

language and a regular language:

Theorem 8. Given an alphabet E , there is a fixed context-free language

LO
over EUEt (where El is an auxiliary alphabet) such that any

context-free language L over E can be expressed as

L = (Lo"R)E I

where R is some regular language over E UC’ .

25

c

Proof. Consider generating arbitrary context-free languages L by

pushdown automata with a fixed stack alphabet. Select B'
stack as L0 '

and take Bfis as R ' a _.

Since only two letters are required in Estack , four letters

(corresponding to push and pop operations for the two stack letters)

are sufficient in Et .

Using the construction above to generate an arbitrary context-free

language L , one could also proceed as follows. Encode only nonterminals

as stack letters by using two auxiliary stack letters, and delete all

Output actions. Then we havef1--

L = (LOnR)[(pop a)] l

This shows that Lo in Theorem 8 can be chosen as a Dyck language over

a h-letter alphabet, and that ICI + 4 letters are then sufficient in C' .

As intersection with a regular language, decoding of alphabet,

and projection (together with a possible change of alphabet) can all be

performed by finite transducers, Theorem 4 gives us:

e Theorem 9. Every context-free language is a finite transduction of a

fixed Dyck language over a four-letter alphabet.

' Instead of letters in E ,' L here has corresponding letters in

C(P0P a> I aeG3 l

26

7* Turing Machines and Undecidable Questions on Languages

The same reasoning as was used in the previous section can be

applied also to other classes of automata.
*. As any recursively enumerable

language can be generated by a Turing machine, we get the following

theorem: '

Theorem 10. Given an alphabet E , there are two fixed context-free

languages Ll and L
2 over CUE* (where Et is an auxiliary alphabet)

such that any recursively enumerable language L over E can be

expressed as

L =-- (Lo n ~~ n R)~

where R is some regular language over EUE' .

Proof. Consider generating arbitrary recursively enumerable languages

L by Turing machines with a fixed tape alphabet. Select init(

and init(L2)@ of Section 4.5 as Ll and L2 , and take BTts as R. 0
h

Since only two letters are required to encode any actions of A

two letters are sufficient in Z, .
tape '

As intersection with a context-free language can be implemented by

pushdown transduction, and intersection with a regular language and

projection (with a possible change of alphabet) can be performed by

finite transducers, Theorem 4 gives us:

Theorem ll. Every recursively enumerable language is a pushdown

transduction of a fixed context-free language.

Considering an automaton with two pushdown stacks, instead of a

tape, one notices that the fixed context-free language in Theorem 11

can be chosen as a Dyck language.

27

According to our definitions, B of (1) is empty iff the operation

of the automaton cannot terminate successfully. Our approach then ties

several questions about formal languages directly to the halting

problems of automata. For instance, as B for a Turing machine is

always an intersection of two context-free languages (which can be

effectively constructed from a description of the Turing machine), the

emptiness problem for intersection of con-text-free languages must be

undecidable. Undecidability questions will not be treated in more

detail here, as the proofs by Hartmanis [6] are directly applicable

to our approach as well.

8. Relation to Abstract Families of Languages

The approach pursued above can be generalized by thinking of an

arbitrary language Bi as being associated with some abstract peripheral

device. On account of (1) it is sufficient to consider automata with

only one peripheral device (in addition to a single input and/or output).

In fact, any two devices with languages Bl c AT , B2 c A; , where
a

A,nA, =@ Y can be replaced by a single device with the language
“L L

(B1)

A2
n (B,)

Al
lL

Let us now rewrite (2 > and (3) as

(11) IJ = (LE n R&

where L
0

is the "peripheral language" and R is the regular

language R C (CUcI?)% associated with the state transition system.

The "peripheral alphabeV C
P

is arbitrary, yet disjoint from C ,

which is the input (output) alphabet. Notice that an arbitrary alphabet E

28

can be dealt with by renaming its elements and letting the projection

notation in (11) denote the combination of projection and reversal of

this renaming. . .

It is natural to associate a class of automata with each frperipheral

language" Lo . Let us call such classes fap-classes (for finite action-

peripherals):

Definition 4. The set of automata with the same peripheral language Lo

is called the fap-class generated by Lo .

Definition 5. -- A family of languages associated with a fap-class

(generated by Lo) is called a fap-family (generated by Lo).

Obviously, a fap-family consists of the languages (11) for arbitrary R .

In particular, it contains its generator Lo , which is accepted by the

following automaton:

Q
GJmJt a>a 7 for all a EC

P

/ \

initial state"
\
'final state

Corollary 1 to Theorem 4 says that fap-families are closed under

finite transduction.
. On the other hand, all operations involved in (11)

are special cases of finite transduction. Therefore, we can conclude:

Theorem 12. A family of languages is a fap-family iff it is generated

by a single language by finite transduction.

29

i

i

L

Let Ll and L2 be two arbitrary languages. Without affecting

generality we can assume that their alphabets have been made disjoint

by renaming. The fap-family generated by LlUL2 does then contain

both Ll and L2 . Intuitively, two devices are then combined into

one so that any of the component devices, but only one of them, can be

used. On the other hand, it is straightforward to verify that each

fap-family is closed under union. Therefore, this fap-family is the

family generated by Ll and L2 by finite transduction, and Theorem 12

gets the stronger form:

Theorem 12b. -- A family of languages is a fall-family iff it is generated

by a finite set of languages by finite transduction.

It can be easily verified that fap-families need not be closed

under concatenation. Intuitively this is associated with the fact that

it may be impossible to reset a peripheral device from a final status

to an initial status. The intuitive notion of resetting peripheral

devices by action sequences RL c 2; can be formulated as follows:
0

e - For each action sequence x ELo there is a resetting sequence

re
3,

0
such that xry E Lo

for all yeLo .

- If an admissible action sequence z eLo contains a resetting

sequence re
RL , i.e., z = xry for some x,yeEz , then the

0

status of the device is an admissible final (initial) status after

the actions in x (xr) , i.e., x,y EL
0 l

If ReplaceR c
9

denotes a transduction which transduces any word xry =

where reR , into xcy , then the result of these intuitive considerations

can be stated in terms of the following definition:

30

Definition 6. A language L is called resettabletby RI) ift

Replace
%>cm

= LCL)

-.

where c is a symbol not contained in L .

L

As an example, the languages B
stack and B

queue of Section 4

are reset-table by R
stack = {(POP A>] J Rqueue = [(read A)] . If the

requirements for the final contents were totally removed, no finite

resetting languages would suffice, and we would get

R'stack = (pop a 1 a ' Cs,ack)*(pop A> >

--

R'
queue = (read a 1 a tZqueue)*(read A) .

For fap-classes with resettable devices we can now show:

Theorem 13. A fap-family of languages is closed under concatenation

and plusY (+) iff it lis associated with a fap-class where peripheral

devices are resettable by regular languages.

Proof. If there are more than one peripheral device, then the

s concatenation of their resetting languages would be a resetting language

for the single device obtained of them. It is therefore sufficient to

consider only the case of one device.

Let us start with the 'if'-part. Let T and U be two automata of

the fap-class generated by a language Lo reset-table by a regular

language R . Being regular, R is associated with a finite transition

lJ
Plus is defined as L' = LL*

J . In fact, we could have star (*) in

this theorem equally well, but the later analogue for restricted

fap-families is valid only for plus (') .

31

system where edges are labelled by elements of Xp . A third

automaton V of the same fap-class can now be constructed as follows.

Connect the final states of T by E-transitions to the initial states

of the transition system for R , and connect the final state of this

L

c

system again by s-transitions to the initial states of U . Initial

states of T (final states of U) are taken as initial (final) states

of v . The language associated with V is now the concatenation of

the languages associated with T and U .

In fact, let x and y be some admissible action sequences for

'JJ and U . In particular, xc ,y
c

c Lo . On account of the definition

-- P P
of R , there is now a resetting sequence reR satisfying

xc ryz eLo . As x,y, and r are associated with admissible
P P

transition sequences in T , U , and the transition system for R ,

there is an admissible transition sequence in V, associated with the

action sequence z = xry . Since zc =x2 ry
c

EL
0 ' and z = (xy)

P P P
r: 22"

V accepts each concatenation of words accepted by T and U .

Conversely, let z be an admissible action sequence of V . Because

- of the construction of V, z must have the form z = xry , rcR , where

X and. Y are associated with some admissible transition sequences of

T and U . The admissibility of z also means that z
. c oeAs

EL
P

zc
=x ry , we have on account of the definition

P
c c
P P

xz 'yc "Lo
P P

of R . This shows that x and y are, indeed, admissible for T

and U l Hence,
zc

= xzyz is a concatenation of words accepted by

T and u.

For plus operation, an automaton W can be constructed of a given,

automaton T as follows. Connect the final states of 'I' bY

32

L

IL

e-transitions to the initial states of the transition system for R ,

and connect the final states of this system by E-transitions to the

initial states of T . As initial and final states take those of T .

The correctness of this construction can be proved similarly to the

above proof for concatenation. For brevity, details are omitted here.

For the 'only if'-part it suffices to notice that any device can

be made resettable by adding a new primitive action for this purpose.

This means that the generator Lo can be replaced by another generator

LA = Lo uLo(cLo,+ , where c is a new symbol outside the original

c
P

and C .
-=
This language obviously has a resetting language (c] ,

and, if the fap-family generated by Lo is closed under concatenation

and plus, then LA generates the same fap-family. q

Theorem 4 showed that characterizing peripheral devices locally

leads to language families closed under arbitrary finite transductions.

A simple and common way of introducing non-local restrictions is the

following: let us associate an integer k > 0 with each automaton,-

and let us accept an action sequence cx E: Lo nR as admissible iff

e x / z+
P'

and xl (“UZp)*$l (cuzp)* . In other words, a non-empty

action sequence is required to contain at least one action for input

(-if accepting) or output (if generating or transducing), and it cannot

contain more than k consecutive actions of other kinds.

More formally, let Rk , k > 0- , be defined as the complement of

% = z; u (ru~p)*g+l (xucp)* .

A k-restricted automaton with peripheral language Lo and transition

system language R is then associated with the lanmage

L = (LEnRknR)z .

33

i

As R,nR can always be associated with a transition sysf,em, w;--

can also use (11) with the additional assumptic?n -&a-t; the XWJM:~T&YZ

system is k-restricted, i.e., RcRk.. .

An automaton will be called restricted, if it is k-restricted for

some k >0 . let us consider restricted automata with- As an example,

an arbitrary finite number of pushdown stacks, queues and tapes.

Obviously, Lo of (11) for any such automaton is context-sensitive.

It can be shown [8] that a projection, not erasing more than k consecutive

characters for some k 2 0 , preserves the context-sensitive property

of a language. Therefore, we notice that languages associated with

these automata are context-sensitive. Similarly, we can see of (4)

that these automata transduce context-sensitive languages into

context-sensitive languages.

Analogously to Definitions 4 and 5 we now define:

Definition 7. The set of restricted automata with the same peripheral

language is called a restricted fap-class. A family of languages

associated with a restricted fap-class is called a restricted faD-familv.

It can now be

proof of Theorem 4

+ U are restricted.

L ”

easily verified that the construction used in the

produces a restricted automaton V , if both T and

Also, for restricted automata, all operations

involved in (11) are special cases of restricted finite transductions.

Therefore, an analogue of Theorem l2b holds for restricted fap-families *

and restricted finite transduction.

Similarly, an analogue of Theorem 13 is obtained for restricted

fap-families associated with automata with peripherals resettable by,

34

‘, .
h1 -i

finite languages. (Some care must be exercised in the constructions

in the proof, in order to deal properly with languages containing E .)

Abstract families of languages ,-. or AFL, can be characterized [4] as

those families which are closed under union, concatenation, plus (") ,

and restricted finite transduction. An AFL is a full. AFL if it is

closed under an arbitrary finite transduction, and it is a principal AFL

if it is generated by a single language by the operations listed above.

In terms of these notions we can now conclude the discussion with

the following theorem, already obvious from what has been proved:

Theorem 14. --A family of languages is a (restricted) fap-family

associated with automata with peripherals resettable by regular (finite)

languages, iff it iS a full (not necessarily f't&l) principal AFL.

Y* Conclusions

The approach presented is based on an inherently nondeterministic

conceflion of automata. An interesting way to introduce determinism

would be to take an auxiliary input for controlling nondeterminism.

s Another limitation was dealing with only one-way input. Obviously,

two-way input could, in principle, be handled similarly to other devices.

H-owever, much of the elegance of this approach seems to be lost with

the complications in the language involved. For instance, it is not

obvious from this language that each two-way finite automaton accepts

a regular language.

As a unified approach to automata, this approach has the advantage

that one does not need to be concerned with information representation

in the infinite storage. Also, very clear intuition is provided for

35

principal AFL, and their homomorphic characterization theorem.

Obviously, more general classes of automata than fap-classes are

needed for non-principal AFL. -.

In conclusion, it is felt that the approach presented deserves

attention in courses and textbooks on automata and formal languages,

and it is hoped that this paper cm serve in making it more widely

known.

i

L

36

References

I:11

El

[31

PI

[51

WI

[?I

WI

- [93

Floyd, Robert W., Private communication.

Ginsburg, Seymour, The Mathematical Theory of Context-free Languages.

McGraw-Hill, 1966.

Ginsburg, Seymour and Sheila Greibach, 'Principal AFL," J. Cornput.

System Sci. 4, 1970, 308-338.

Ginsburg, Seymour, Sheila Greibach, and John Hopcroft, "Studies in

Abstract Families of Languages," Memoirs of the Amer. Math. Sot.,

87, 1969.

Ginsburg, Seymour, and Gene F. Rose, 'Preservation of Languages by

Transducers," Information and Control 9, 1966, 153-176.
See also: "A Note on Preservation of Languages by Transducers,"

Information and Control l2, 1968, 549-552.

Hartmanis, J., "Context-free Languages and Turing Machine Computations,f'

Proceedings of Symposia in Applied Mathematics 19, American

Mathematical Society, 1967.

Hopcroft, J. E. and J. D. Ullman, "An Approach to a Unified Theory

of Automata,fr Bell System Tech. J. 46, 1967, 1793-1829.

Hopcroft, John E., and J. D. Ullman, Formal Languages and Their

Relation to Automata. Addison-Wesley, 1969.

Salomaa, Arto, Formal Languages. Academic Press, 1973.

c

37

