
TOWARDS BETTER STRUCTURED DEFINITIONS OF
PROGRAMMING LANGUAGES

R. Kurki-Suonio

STAN-CS-75-500
SEPTEMBER1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Towards Better Structured Definitions of Programming Languages

Reino Kurki-Suonio

Abstract

The use of abstract syntax and a behavioral model is discussed from

the view-point of structuring the complexity in definitions of programming

languages. A formalism for abstract syntax is presented which reflects

the possibility of having one defining occurrence and an arbitrary number

of applied occurrences of objects. Attributes can be associated with

such a syntax for restricting the set of objects generated, and for

defining character string representations and semantic interpretations

for the objects. A system of co-operating automata, described by another

abstract syntax, is proposed as a behavioral model for semantic

definition.

This research was supported in part by National Science Foundation
grant DCR72-03752AQ2, IBM Corporation, and by the Academy of Finland.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1

w

1.

of a

Introduction.

In a behavioral definition of a programming language, the meaning

program is defined in terms of its dynamic execution or interpretation.

In other words, a behavioral definition gives an abstraction of the

run-time behavior of programs, not only of the input-output mappings

performed by them. To be useful, the abstractions introduced by the

definition should provide appropriate mental tools for intuitive

understanding of program behavior. Such models and tools are needed

both when implementing and when teaching progrsmming languages.

Rather than defining directly the meaning of a program given as a

character string, it is useful to introduce an intermediate level of

abstract progrsms. The meaning of an abstract program can be defined

by postulating a machine to execute abstract programs, or by giving an

interpreting automaton for them, or by providing an abstract compiler

which translates abstract programs into some kinds of automata. The

third alternative introduces to the definition another level which will

be called a behavioral model. This leads to the following levels of

definition:

- string representations,

- abstract programs,

- behavioral model.

L

!
tL

I

i

L
L

The monumental definitions of PL/I [25] and Algol 68 ['24] can both

be characterized as behavioral definitions. In the former, abstract PL/I

programs are essentially syntax trees of string programs, with some of

the complexities of string representations removed, and an interpreter

is provided to determine their meanings. In the latter, careful language

design and a powerful syntax formalism make it convenient to use syntax

trees themselves as abstract programs, and a machine, or "elaboration"

mechanism, is given for their execution. In addition, [@+I has an

additional "surface level" in which actual representations are provided

for the "abstract" character set used at the other levels.

t

i

Levels of language description are intended to provide a natural

classification of language properties according to their "deepness".

It is assumed in the following that abstract programs are free from
-

features not essential to their structure and meaning. Those properties

.

No language definition seems to have made full use of such structuri

of language concepts by levels of language description. For instance,

abstract PL/I programs indicate such surface properties as the number of

redundant parentheses and the particular choices for identifiers. Tn

Algol 68 Report, on the other hand, the powerfil syntax formalism allows

extensive use of syntactic definition. For this reason there has not

been need for clear separation between surface properties and deep

properties. It appears to the author that the lack of such separat?on

is a greater difficulty for an uninitiated reader of [24] than the

formalism of w-grammars. The possibility of including the most funda-

mental concepts in a behavioral model has not been utilized in any (Jf'

these two definitions, as abstract programs are interpreted or executed

directly.

As mentioned above, a behavioral model should reflect some of the

most fundamental concepts in programming. If the mode.1 is based on

"typical" properties of present computers, as the implicit models in the

definitions of Fortran and Cobol, it does not give any mental tools for

understanding programming and programming languages. Even when higher-

level models are used in a definition, they might be restricted by the

current technology. For.instance, a stack-oriented behavioral model

might be suitable for a language not requiring more general techniques

for storage allocation, but its use would be limited to a restricted

class of languages. Although no universally applicable behavioral model

is to .be expected, it appears that useful models could be given for

families of languages based on the same conceptual backgrounds. An

important aspect of a behavioral model is the way it models para-LleJ

processes. The emerging understandin{: o f' how t,cJ rnanay<e such pr:,c(:::::r:::

should prOVide apprOpri.ate ways of inc(Jr’J)c,r;~t-ir~;~ i.,k~c am in {,(I ij. rfl~i~j (:.J .

The thesis of this paper is that the three levels of language

dcf'inition described above correspond in a natural way to the abstractions

that a language designer has in mind. Submitting such a vision of the

language to the reader would be very helpful in language definitions and

textbooks. The techniques proposed fcJr this purpose are based on a

generalization of abstract syntax [17,18] with attributes associated with

the nonterminals [ll]. A simple example will be used throughout to

illustrate the techniques. A system of automata, communicating with each

other, is outlined as a behavioral model.

It is understood that the separation of language properties according

to "deepness" is subject to similar non-ob,jective criteria as language

design. In part, this is due to programming languages being man-made,

not something given to us like the physical world. In particular, any

suggestion for language universals can be contradicted by designing

another language specifically for this purpose. The behavioral model

outlined below will be directed towards block structured languages. Tt

is included mainly to illustrate the general ideas of the paper. FOX-

practical purposes it should probably be extended with further capabilities

reflecting some other fundamental concepts in programming.

The ideas developed in this paper have been induced and influenced

by a number of other papers, some of which are mentioned in the biblio-

graphy* To pick out the most important ones after Algol 60 [20], I would

like to acknowledge Landin's work on h-calculus models [13,14], Strachey's

efforts to single out fundamental concepts of programming lanwzges

[22,23], the definitions of PL/I [25] and Algol 68 [24], Johnston's

contour model [lO], the class concept of Simula 67 [5] and its effect

on the development of programming-concepts [l,2,8,9,19], as well as

Knuth's idea of synthesized and inherited attributes [ll].

.

2. Formalism for Abstract Syntax.

Abstract syntax deals with objects having certain kinds of structural

relationships. More precisely, an object may have other objects as its

immediate components. The transitive closure of this relation will be

called the component relation. The set consisting of' an object x and

all its components will be denoted by c(x) .

Generalizing the concept of an abstract syntax [lC,], we shall a.Llow

an object to be an immediate component of several ob,jects. Also, it will

be possible for an object to be i.ts own component, ail-though we shall

introduce quite severe restrictions in these respects. Only finite

structures will be considered, i.e., it will be assumed that c(x) is

finite for each object x .

Abstract syntax expresses structural relationships in terms of

structural productions resembling ordinary context-free productions

for formal languages. Each nonterminal of an abstract syntax represents

a class of objects, and these classes are assumed to be disjoint for

different nonterminals. For each non-terminal there are productions

indicating the different ways in which objects of this class may- have

other objects as their immediate components. The productions for one

class are also assumed to be disjoint in the sense that no ob,ject will

consist of immediate components according to more than one production.

As an example, the production

e:Expr -+ SUM(el:Expr, e2:Expr)

indicates that an object of the class Expr may have two immediate

components, both belonging to this same class. The label SUM is used.

to identify the production, and labels e , el , e2 are introduced i,o

identify objects in the context of this production. Obviously, triple

labelling -- nonterminal names , production names, and ob,ject names in

productions -- could be avoided in our notations. It is felt, however,

that this redundancy is a convenience when using the formalism.

In order to cope with situations when an object is an immediate

component of more than one object, we distinguish between two cases of

i.mmediate component relation, called primary and secondary immediate

- compoient relations. flurthermore, we require that every object is a

IJrimary immediate component of at most one object, and that the transitive

closure of the primary immediate component relation, called primary

component relation, is non-reflexive. This means that objects are

connected by a tree structure, with additional connections indicat-ini;

secondary components. The set consisting of an object x and all. its

primary components will be denoted by p(x) .

In the productions a secondary component will be indicated by

enclosing a non-terminal in parentheses. For example, the production

s:St --) ASS((v:Var), e:Expr)

indicates that an object of class St may consist of a secondary

component of class Var together with a primary component of class Expr l

Corresponding to whether a component is primary or secondary, it is

called a defining or applied occurrence of that ob,ject. C!orresp0ndinrl;.Ly,

occurrences of nonterminals in the right-hand sides of productions will

aLso be called defining or applied.

Corresponding to terminal symbols in a context-free grmmar, an

abstract syntax has terminal sets which are disjoint from the sets

determined by the nonterminals. For instance, if N denotes the set

of nonnegative integers, the production

e:Expr -+ CONST((n:N))

indicates that an object of class Expr may have an arbitrary nonnegative

integer as its only component. Such terminals are given as applied

occurrences to emphasize that they have no defining occurrence in the

syntax.

Another way to terminate a structure is provided by productions

indicating explicitly that an object of a non-terminal class is atomic

with regard to the component relation. This is illustrated by the:

production

-

v:Var + ATOM{) l

To summarize, an abstract syntax consists of a finite family of

terminal sets, a finite set of' non-terminals, and a finite set of

productions, where each production indicates one possibility for objects

of a nonterminal class to consist of primary and secondary components of

;;:i/en nonterminal classes and/or te-rminal sets. These possibilities zrc

assumed to be disjoint in the sense that each object has components as

indicated by exactly one production. (However, several productions for

the same nonterminalmay be similar, except for production identifications.)

One of the nonterminals is designated as the starting non-terminal, and

an object x is generated by the abstract syntax, iff

- x belongs to the class of the starting nonterminal,

- the primary component relation imposes a tree structure on XI(Z) ,

- elements of c(x)-p(x) are elements of terminal sets.

Our previous examples of structural productions involved a fixed

number of components. For notational-convenience we introduce l,he

n&ation

lab: Object*

t:, denote a sequence of an arbitrary finite number of components of the

same class. For a sequence of n components, the individual members

tLre identified by indexing the label used: lab[l], lab[n) . When

used without indexing, tile label will identify the whole set. The ind(:.<

set {l,...,n] of a label will be denoted by t&b) .

Rr an example, let us consider the following abstract syntax, wkttre

N denotes the set of nonnegative integers:

p:Prog + PROG(b:Block)

b:Block --$ BLO(:K(v:Var",s:St*)

s:st + COMP(b:Block)

-+ ASS((v:Var),e:I;:xprj '

e:F;xpr -+ CONST((n:N))

--t VAR((v:Ydr))

--) SlTM (el : l+npr , e% : T?qr /

--t PROl>(el:I?xpr, e%:lXpr~

-+ NEC(el:E:xpr)

v:Var -+ ATOM{) .

Intuitively this abstract syntax is meant to generate block structured

programs with assignment statements involving simple arithmetic expressions

- over integers and integer variables. However, no scope rules for variables

have been incorporated at this stage.

Any object generated by an abstract syntax can be represented a;: ;:

directed graph with suitable labelling in an obvious way. For instance,

one of the objects generated by the above syntax could be represented its

the graph of Figure 1. Each node in the graph corresponds to one ob,jcct.

An object is marked by its nonterminal class or by a notation f'or an

element of a terminal set. Continuous lines indicate defining occurrcnccs,

and dotted lines indicate applied occurrences. The productions involved

are indicated by production labels under nonterminal names. Ob,j ect

identification (in the context of productions applied) is given b;y

attaching appropriate labels to both nodes and edges.

Synthesized and inherited attributes [ll] can be associated wit11

this kind of abstract syntax in the same way as with conventional

context-free grammars. However, no attribute definitions should be

associated with applied occurrences of nonterminals. For instance,

we can associate an attribute 0 with the above syntax as f‘ollows:

p:Prog -+ PRO(:(b:IUock)

b :Kl.ock + I3IX!CK(v: \iarX, s:Stx)

s:st -+ COMP(b:lUockj

-+ ASS((v:Var),e:l~:xpr)

e : IGxpr + CONST((n:N))

---) VAH((v:Var))

--3 STJM(el:Expr,e2:Expr)

-+ PROD(el:F:xpr,e;!:Expr)

---) NEG(el:Kxprj

v: 'Var ---) ATOM{)

c7r, := ‘;;,

For all nonterminals (except Var) the attribute q is set -valued md

synthesized. Association with different objects in the context of a

production is indicated by appropriate subscripting of 0 . The

intuitive meaning of 0 is the set of those variables which have been

used but not properly declared in the structural unit in question. TlLC?

p: prog
PROG

b
I

b:Bhck

I

i

i

L
L
L
L
L
I

ASS

V
/
--l

e

I e:Expr

I CONST
\

\
v
\
\
\
\
\

s:St
COMP

b
I

b:Block
BLOCK

'2

SC11

s:st

el C?:l

A
e:Expr

-- --vJm
e:Eqr
CONSTV

- Yn
wLI

- -

/. Associating Strine Representations with Abstrac-L Progs~~ms.

The attribute technique is also useful for associating concrete

character strjng representations with objects generated by an abstract

s;yntax. Since one object may, in genera:L, have many different represen-

tations, we shall use nondeterministic attributes. In other words, an

attribute definition may provide <a set of possible values, preceded by

I

i

the monadic selection operator o . By this notation we understand that

any element of the set can be taken as the value of the attribute j.n

(Iuest.i.33. When an attribute value is determined by a, c:ondit-i.onCL

::xprescion, nondeterminism may also appear in the form that rnorc: t,har~

L one or none of the conditions hold. If none of the conditions ho7(1,

Ule attribute value is undefined, and some other choices for attribute

L
L

ljalues must be changed to get out of this dead end. Vertical bars (1)

will be used to separate alternatives in conditional expressions, and

each co d't'n 1 Ion will be separated from the corresponding expressjon b-y

a colon (:).

L

As an example, let us assign a string-valued attribute 7 and an

integer-valued attribute 63 to the previous abstract syntax, as given

in JQure 2. The following clarifications should be added to the

notations used:

and for the empty string< if i&('l) 1 I- 0 .

. Symbols L and D stand for the sets of letters :tnd d-i;:if,::,

corresponding+

l@

3-- . d
i =. 5

L

I
i

L

- Attributes can also be associated with element=; of terminal sets.

In this example, attribute 7 is defined for objects ncN > and

its definition involves making use of arithmetic operations

defined in N .

For any x~Pro,g , the possible values of TX are now defined as

the possible string representations of x . Nondeterminism in attribute

dt:finitions allows for arbitrary redundancy in parenthesizing, and for

a-rbifrary variable names . The definition of TBlocir guarantees that

tile sasIle name cannot be used for two dif'i'erent variables in the same hlo~h.

-kt this particular case j-k can be easily verified that TX has

values for all objects >- I I?rot'; . In ~encral, this would not nc:ed to

bcl t h e c a s e , because of the "dead ends" involved in attribute del'ini~,ions.

. (ale possible value of TX for that particular x given in tl'igure L is

begin new a;- -

a +- 1;

begin new b;

b I- a+1

end

end

L

i

11 . Behavioral Models.

AC mentioned previollsly? Qrie would wish a hehavi.CJral mvdrCl I,(,

reflect fundamental concepts of a language which would be c~mrnon f'or a

larger group of languages. Typically, such deep properties would be

related to concepts li.ke block structure, data types, and sequentrial

and pamllel act ions .

.L2

Models based on h-calculus [13,1&l and the more visual contour
I
model [lo] mainly reflect block structuring, and it would be very

difficult to understand block structured languages without these or

similar mental models. However, data types and parallelism seem to

require different kinds of models.

The main problems with data structures are associated with sharing

through explicit or implicit pointers, and with control over access and

updating. Sharing can be expressed in terms of relations which can be

visualized as directed graphs, as e.g. in [4,5,12].

As an example, let us consider some properties of data structures

in Algol 68. For simplicity, routines will be omitted from the discussion.

The relations used in the behavioral model are the following: a "name"

"refers to" a value, and a "structured" or "multiple" object has

components together with selectors. Superficial knowledge of these

relations and analogy with other languages with similar structures

might lead to the incorrect visualization given in h'igure 3. Different

data objects are grouped there into "plain values" V , non-structured

names N , and into "structured" and "multiple" objects S . Arrows

starting from N indicate the relation "to refer to" for non-structured

. names, and those starting from S indicate component relations. All

"refer to" chains and component chains are assumed to be finite.

Objects in V are assumed to exist independently of any program;

objects in N and S are "created" during program execution. The

relation "refer to" is changed by assignments; assignment to an element

of s is understood as simultaneous assignment to all of its components.

This visualization is shown insufficient by the existence of

structured objects to which no assignment can be made, even if the

components can be updated individually. This leads to the modif'icati<Jn

given in Figure 4. Non-updatable structured objects are grouped into S'

elements of S are restricted to have no components in V or G' ;

elements of N are restricted not to refer to any object in S' ; each

element x of s is postulated to refer to an object x' ES' such that

the components of x' are the values referred to by the components of x

Objects x and y in Figure 4 are otherwise similar, but y can be

updated only by individual assignments to its components.

13

A

”

1’:X;tmpl.K oI' this kind ::how Lhct u:;rti'~~Incs:; ~1' ~i;rapftc as visual
.

?Lj ds in understanding data structures, e::pecial.ly when dealing with

::overal languages where similar structures are understood differently.

Such a model is suitable for expressing properties of sharing, but it

is insufficient for indicating aspects of protection on data access and

updating, except for very limited special cases. Also, it tends to

treat data objects as passive objects, and this causes difficulties in

dealing with routines or procedures as data.

c

One way to overcome the problems mentioned above is to treat data

objects as active objects, as suggested by the class concept in Simula 67

[',I. This leads to the view that each data object is some kind of an

automaton, which is initialized when created, and which is thereafter

able to communicate with other automata by responding to certain requests.

Access to the "value" of an object or to its rrcomponents'f, and any

updating, would only be possible through such requests sent to the data

object in question. Operations defined for data types could also be

evoked by such requests only. This kind of a behavioral model also

provides a natural framework for parallelism, as all data objects would

f be envisaged as automata "?living" simultaneously. Notice that such a

i . model deviates in several respects from Simula 67, where only

quasiparallelism is allowed, unrestricted external access to "attributes"

of' data objects is permitted, and primitive data items are not treated

as independent active ob,jects.

1.
\ Primitive values like integers, reals, Booleans, etc., can now bc

considered as primitive automata, existing independently of any program.

L In other words, no such automata can be created or initialized by a

program. The only way such automata can communicate with other

1

automata is to respond to certain requests. Parameters associated with

such requests, and the responses, are always automata themselves. For

r

i

instance, if the automaton for an integer i is asked for its negation,

the rk.sponse gives the automaton for -i . Similarly, if an aut,omaton

if-then-elcc:for a-truth value is sent a request corresponding to

-operation, together with two automata a,s parameter:;, it return:: orif:

of the parameters as the response.

.

VTt.r'j ;tb.l C'S ibT'C now 1~1touj~;I~l, 0 I' :I.S ;~ui,orni~ti~, wt13 fete c:an t,c: 'If: r*ct;'.i,c:cJ" t)y

;I. pn q I;r;wrl . In o-t,h"r* wor'l::, i~,rnon~'; 1,110 ot),j':':t:: “fti::i::t,ir1jf;” 011I,:;icJf. :I.

~)l’O~‘,J’~l.JTl, there are " schemc~ " wl1ic:11 c'an t)fb usc(j I,0 r:rf:atc: "ric~w" :I.I~~,o~:~.~~~I..

1Jsing such a scheme results in the creation and. initialization 01 T1.r~

automaton, which can thereafter respond l,o certain requests. Ibr

instance, there are primitive schemes for integer variables. Af1,r;r

initialization, an automaton created by such a scheme is capable of

responding to requests about its "value", and to update this value.

Structured objects and arrays have somewhat more complicated schemes,

which must also be primitives in the behavioral model.

A block structured program can now be viewed as a hierarchical

:7tructure of schemes of automata, such that each new automaton has

certain schemes available for the creation of further automata. Program

execution is then modelled as the creation of a system of automata

commun?cating with each other and creating new automata. All the "reaL"

work 03 the program is done by the primitive automata existing

-independently of the program.

Parallel operati:n of a system of automata is (:*nl,rolled by al.lowin:~

each automaton to process only one request at one time. JQrther requests

are thought of as waiting for their turns. Since a response is expected

for each request, the requestin,n automaton has to wait for the request

to be processed. Parallel processes can be created by allowing the

initialization of an automaton to proceed simultaneously with continuing

the process which evoked this initialization.

Comparing with the definition of Algol 68, it is pointed out that

its behavioral definition is essentially based on monoprogramming, as

"collateral elaboration" is defined by "merging" the sequences of

primitive actions corresponding to the constituents. When the

constituents involve updating the same data obljects, that model doe::

not determine what happens, a~ the primitive a&ions are not spe'*il'i':cj.

In the model proposed here, t~~1.L operations on t,fle s;irtIc) data .it,c:rrr :I. lwh~;~.,/ ::

exclu:-e each other in time. Since intet;'rrs, [‘<J-r j.r)sta,ncc;, ?JY’c! ‘:‘Jr)::i’j’,r’!‘~j

as individual automata, we get the curious restriction of paral..L~l-i::rr ,

however, that two operations involving the same numbers r:ann;t JJC

performed simultaneously. This situation could be avoided by lettin?:

.

different occurrences of the same number correspond to distinct but,

similar automata.

This kind of a model for programs is compatible with many of the

current views of operating systems and data bases, and with the principles

of structured programming. In fact, similar extensions of the ideas in

Simula 67 have been applied to control parallelism in the programming

of operating systems [l,%, 91, and in the design of languages for

structured programming [6,15].

An operating system can be characterized as a collection of

processes communicating with each other. Although these processes are

usually executed on a single processor, this view becomes especially

Ic

i

clear when thinking of each process as having a processor of its own.

Such a view has advantages even when used only as a mental model to

understand a conventional operating system, since it seems easier to

introduce restrictions on parallelism into an inherently parallel model,

than to introduce suitable quasiparallelism into a basically sequential

model. However, it also appears to be quite feasible to construct

multiprocessors where different kinds of operating system duties have

been distributed to different processors. In particular, it seems

promising to use dedicated processors for data bases. In such ~1, case

p:~ralleli.sm cJf the model would correspond to real parallolisrn in the

L
L
I

I

I

operating system. Note, however, that aspect:: of protection in opc~*atin~~

systems would need further elaboration of the model.

In addition to parallelism, this model reflects the principle of

information hiding ['21] in a natural way. Besides being an important

design principle, information hiding is needed to describe data

independence in programs using data bases. In this case it is not only

a property of the model that direct access and updating of passive data

items is prevented. On the contrary, it is then an essential feature

of the system to be modelled, that all external access must take place

through explicit requests. For instance, a program cannot rrknow'f

whether a piece ofdata, which is accessible to it, is actually stored

in the memory, or whether it is computed each time it is requested.

Similar independence of data representation is an essential feature in

"structured programming", and. several efforts are beiny; made towards
-

i fIc:(~ r’11’1 r’tLt 3 r-11’: ::udJ 3 11 f:‘x irli,o p-~~~~';wrnrr~in!~ Ilan~';ua.~;c:; [0,7,15] . IWxn the~

v-i C!h! [I(J:i ni, 0 I’ ~‘c,rm~, 1. ci~~~c?“~~~~icrrl i b fj.Qct:; not; mattw whef,her this
:i.ntlcq~cnd.cnce of rq0--e::eniai,i5n is a run l,ime feature, as it typj tally

is in data base systems, or whether program compilation is allowed to

optimize object programs by making use of actual representations, as

it should be done in programming language implementation.

I-
,) * Abstract Syntax for a Behavioral Model.

The discussion in the previous section can be made more precise by

describing a system of automata as a structured ob,ject. Then we have

an abstract syntax both for the language to be defined and for the

objects in terms of which we wish to define its semantics.

A system of automata is a dynamic object which is modified during;

its operation. New automata can be added to the system during execution,

and they can be in different stages of execution at different points of

tifre. Initially, the system consists of only one automaton, which is in

its initial stage of execution. This initial system is given as the

semantic attribute of a program.

As terminal sets of an abstract syntax for the behavioral model we

have the set of primitive automata P , the set of primitive schemes

l'or automata S , and the set of operation identifications of au.tomatn I .

Let us now consider objects with the following structure:

s :System 3

tl,:Aui,omaton ---)

s:Scheme 3

op:Opcration --+

f:Formal 3

e:Expression --)

4

4

3

SYST(a:Aui,omaton*,(p:P*-))

A~OM(sub:Sche*r!e",e:~xpression*,~p:Operation~~)

SCHEME(f: Formalx, sub:Schcme*, e:l~:;cl,re::~i~~n',o~~:cipr,r;~.l.i~~nY)

OPER(s:Scheme,(id:T))

F'cRMAL()

PPJ-M((p:P))

AUT((a:Automaton))

FORM((f:Formal))

NEW((s:Scheme),par:Expreasion*)

NEWPR((s:S),par:Expression*)

OP(target:Expression,(id:I),par:E;:pression*:i

~---‘T’~,--&-..A 2 i .- ;;.rF . I-~-- -lJ~~>;;-a-,,--? ;,>!~~~~-,~ \-I :‘,z-s n;, s ? \ #. . . \ . 1 c“..>.T > ’ ,‘l’I \:,‘:‘i‘;::: i\‘y!;:.

which are "evaluateY during initinlisat i2.711, i‘i‘ cQt>r:::, i,\r!.s:, :rri,i ,' :'

Schemes for the construction of further Automata. A Scheme is z~j,milar*

to an Automaton, except for having Formals for parameterization. An

Operation is simply a Scheme together with identification id ~1 . An

Expression can be an automaton, a FoMnal, a scheme together with

parameters, or a request for an operation of a target automaton. We

shall require that every Formal appearing as a secondary component is

a primary component of an enclosing Scheme. Also, the identifications

of Operations within one automaton and scheme are required to be distinct.

(Except for primitive automata and schemes, these requirements could

easily be expressed in terms of attributes associated with the syntax.)

The behavior of a System can now be defined as follows. Initially

a System consists of exactly one Automaton and of no primitive

automata pep . Its behavior is defined as the sequential evaluation

of Expressions e[i] of this automaton.

The evaluation of an Expression gives an automaton as a result, and

is defined as follows:

L If the Expression is an AUT (or a PRIM), the result is the

L

i

i

1

L

Automaton a (or the primitive automaton p).

No Expression of the form FORM will ever be evaluated, since

such an Expression cannot appear as an 4 il of an Automaton.

If the Expression is a NEW (or NEWER), a new Automaton (or

new primitive automaton) is created using the scheme s and

parameters padi , and the initialization of this new automaton

will be started. This new automaton is attached to the current

System as another component a[i] (or p[i]), and it will

itself be the value given by the evaluation of the Expression.

If the Expression is an OP, the target and all park1 are

at first evaluated in sequence. Then the id-operation of the

target is evoked using parameters par[i] . The value given by

the OP-Expression will be the value obtained as a response from

this operation.

i

An operation of an automaton is evoked as i’t’oll~ws:

Each automaton is assumed to have a mechanism delaying

operations so that no operation is started while the automaton

is being initialized, or when another operation is being performed.

For primitive automata, operations will not be specified further.

Evoking an Operation on a non-pr;imitive Automaton means

creation of a new Automaton using the Scheme of that Operation and

the parameters par[i] given in OP. The value given by the

Operation is the value given by the evaluation of the last

Expression of this new Automaton.

In order to define how new automata are created, we need some

notations for constructing structural objects of their components.

In general, given a production

c:Class -+ PROD(cl:Classl, l ..,cn:Classn

L- and some objects xl~Cla~~1,...,xn~Classn, the

c = PROD(cl:xl,..., cn:xn)

will denote an object c f Class with components

expression

1,xn ttccordin~;

Lo the production PROD. (Although not indicated above, all component:;

xi need not be primary.) As each ob,ject can be a primary component of

at mcst one object, it is required that for each ci with a defining

occurrence in PROD, the corresponding xi is not a primary component

of any other object.

In addition to constructing objects of components, we need a

notation for "copying" objects and "replacing" some of their secondary

components by others. More precisely, given objects x, a, b , another

object y is obtained of x by replacing applied occurrences of a

in x by b , denoted as y = xi , iff there is a one-one mapping

f:p(x) --$ P(Y) with the following properties: (9 f(x) = Y ;

(ii) for each z cp(x) , objects z and f(z) belong to the same

nonterminal class; (iii) for each z cp(x) , if z consists of

components zl,...,zn , then f(z) consists of components ul,...,un

such that

- if zi=a is a secondary component, then ui = b ;

- else, if zi is a secondary component and zi/ p(x) , then

ui = zi ;

- else, ui = f(zi) ;

- the production for f(z) is the same as that for z , or, in

case z has a as a secondary component, a production uniquely

determined by the object classes of ui .

In other words , primary component relations and secondary component

relations "within" x are copied into corresponding relations "within" y ;

secondary components outside p(x) will be taken directly as corresponding

components in the "cop~'~. Notice that the last condition above prevents

the use of the notation xba if ambiguities would arise from productions

with similar right-hand sides. When applied occurrences of more than

one object are replaced, ordered sets of the same size can be used

instead of a and b .

With these notation, the creation of a new automaton can be defined

as follows:

When a new automaton is created, it is attached as another

component a[i] or p[i] to the current System, and its

initialization is started. For a non-primitive automaton

initialization means sequential evaluation of its e-Expressions.

If lfl f: IP=q , the creation of a new automaton is not

defined.

For primitive schemes the creation of a primitive automaton

will not be further specified.

Given a non-primitive scheme s Scheme with the structure

s = SCHEME(f:Formal*,sub:Schane*,e:Expression*,op:Operati.on~-~ ,

together with parameters padi , such that \fl : Ipar\ , the

new Automaton will be

a = AUTOM(sub:suby, e:eyr, op:opF') .

In other words, a is obtained of the sub-, e-, and op-components

of s by replacing each (applied) occurrence of fbl in them by

the corresponding par[i] .

21

Having defined a behavioral model, we can use it for the semantic

definition of our example language of Section 2. 'This can be done by

a:isociating suitable attributes with the abstract syntax, a:: f;ivcn in

I?if:ure 5. The primitive automata in the model are those correspontlinjl;

1~~ integers, cfenoted as p
n' and those which can bc created by the

primitive scheme new . The former are assumed to have operations with

identifications plus , times , and neg , and the latter are assumed

to have operations value , and assign .

Most of the nonterminals have only one semantic attribute Bp (for

semantics). In addition, the nonterminal Block has an attribute R

(for request), and St has an attribute & . Notice that blocks are

interpreted as schemes with one operation, with identification execute .

As an example, Figure 6 gives the value of the semantic attribute

52x for the object x of Figure 1. For clarity, all terminal objects

are repeated in Figure 6 for each occurrence.

i

i

i

22

(

(anpn:pr)

‘
(

(*f’:J))~o&~a%E~)dO

=:

(("d:d)):fl~d
=
:

af'

((ag"S:md
‘

(
U

f
i
:
p

r
)

’

((n
$
:J))~

0
~

:~
~

%
8
!$

)&
)

=

:
‘$

%
.

s
=

.
d”

((=
P

=
w

?
r) ‘ (*(

> 2(
(
(
M
a
U
:
s
)
)
8
d
M
3
N
)
:
~
+
(
~
~
:
s
)
)
~
~
:
~
a
~
m
~
)
d
O

=
:

'8

((((v
m

=
P

r) ‘(((s)2
3
J

 1

(Jdx3:Ta)Qgu

+

(~dx3:za%Ix3:

Ta)aoad

+-

(
~
d
x
3
:
~
a
C
~
d
x
3
q
a
)
~
S

+-

((JwL:-q)Ervfl

+

((N
=)) JXNO~

+

xdxzr:a

(Jdx3:ac(mA:n))ssy

+-

(
Y
W
8
:
9
)
d
N
0
3

c-
3s:s

(*3s:s
‘* J

w
w
)
x
3
M
8

+-
ymT8:q

(
Y
W
W
l
)
9
O
l
I
d

+-
B
o
a
:
6

.
--

1IIII

z
----V

”-fi*e
m

-p

C-rlJ'1?d
P-r(

UcyssaJdx3:a

.

v
I

~azrre~
U

Q
w

e
/J

6
0

uqssax:dx3:

a

I
iX8Od

-- -
u0~ssa~:dx.v:

a
I

f4au

I
S

/
-

\
I

tId.WN
/

n
-

r
I

u
c
p
s
a
z
d
x
3
:
a

M
a
u

I1
s

tIdM3N
u
c
p
s
a
J
d
x
3
:
a

a
-

3N3HX'
\

am
y3s: s

UdO
\

dc
.

83dO
UC? qmad0:

do

\
J
d
O

-

m
a
y
3
s
:

 s

C
T

lW
S

LTLXS
mqslcs:

 s

(J. Summary and Conclusions.

Different kinds of methods and tools are being used for the

definition of programming languages, depending on the intended audience

and on personal preferences. Some general principles seem to have

emerged, however, which can be applied independently of the particular

choices.

One question which is often discussed, is the appropriate level of

generality of definition methods. If the definition is intended to be

used by mechanical aids for compiler constructian, then too powerful

methods lead to undesirable complexity of algorithms. Experience has

shown that no single tool has the right generality for defining all

aspects of a programming language for such purposes, and the only

solution is then to divide the definition into several stages, each

using its own methods and tools tuned to an appropriate level of

generality. On the other hand, when the definition is intended for

human audience, it is not the generality that counts, but how this

power can be "structured" to be used in an understandable way. In this

case, it would also be a disadvantage, if too many different methods

would be needed. The particular methods discussed in this paper are

intended purely for human audience, and it is understood that they are

much too powerful for mechanical manipulation, unless essential

restrictions are imposed.

Language definitions usually consist of syntax and semantics.

There is no sharp distinction between these two parts of definition,

in principle; syntax is Sust a first approximation. In fact, what is

included in syntax, is usually strongly influenced by the particular

definition methods selected. For instance, features not describable

by a context-free grammar are often left to semantics. On the other

hand, w-grammars are an example of a syntax formalism which is powerful

enough to include the whole definition in syntax, if one SC wishes.

For a mechanical processor, syntax determines a set of character

strings, and semantics associates meanings to a subset of syntactically

correct strings. For a human reader, syntax has another important

function in providing a basis for abstraction. In fact, it is this

25

?mct~icJn, not the generation of syntactically correct strinsst that, c! 211

<justify starting language description for humans by syntax. An abstract

conception of programs is essential for understanding a programming

language, and this seems to be the natural starting point in designing,

learning, and using a language. While it is a translator's task to

inspect arbitrary programs and to determine their meanings, a user

proceeds in the reverse direction: he has an abstract -program in mind

and wants to expre:::: it in the lsn~~age.

IJnfortunately, i-6 stems irnpossiblc to provides 3, suitahk ~th::i,-~;tc-1,:i.c~I1

01 a complex language by its ::tring syntax. In nl{;cJd f~ij I<c!por-t, fC!x

instance, this abstraction becomes quite complicated because of scvertL:l

aspects of external string representations, such as coercion rules,

equivalence of modes, and the correspondence between defining and applied

occurrences of identifiers and operators.

A natural conclusion of the above is to separate the description of

the abstract structure of programs from the string syntax of the language.

This means that language description should be started with an abstract

:; ynt ax .-m In addition to providing suitable abstraction, an abstract syntax

divides language properties in a way which seems more na;t,ural than the

(::I ar,sjAc;L.l sc~yttration of' s.ynnt,a.x 3nd. ::crrtant-ic s . T?ro-p:-r't3.c: dmt.I.:irl~; w-iihr

cth;trac:t cr string rc~-prc::cntations 01 :~tbstr;~ct J)rofy-arrS cm) t,cb c:~l lc:fl

:xrfh,cc -properties, whik f,lw rest will tjc deep -p:rqxyt,j.cc. I\i';:Llin, i 1,

depends on one's abstraction, how different -properties arc: c_1~:~ificd

into these categories. In any cast, such a classification should nol, t)f:

based on limitations in the tools used for the definition, but on an

intuitive understanding of what are the essentials in an abstraction of

programs.

As an example of a general formalism for abstract syntax, we have

proposed a system of structural productions which allows both defining

and applied occurrences of objects. Surface properties can then be

defined by attributes associated with these productions.
L Since abstract programs may still be too complex for direct semantic

definition, another level of abstraction, called a behavioral model, is

proposed. In some sense this corresponds to the idea of compiled progrcamc,

. and the same behavioral model might well be used for the semantic

definition of several languages. 'This level divides the deep properties

of a language into two subsets: those which are inherent in the behavioral

model, and those which are associated with the mapping of abstract programs

into this level. Again, there is no unique way to determine this

classification. Being an abstraction of compiled programs in execution,

I the behavioral model should reflect what is considered conceptually most

important in such processes, and it should suppress practicalities like
.

those imposed by the bounded memory size of real computers.

We have presented a simple example of a behavioral model. I t ;i. c

based on envisaging program execution as creation and interaction of a

collection of automata. This view is extended to primitive values, which

are also considered as independent automata. Creation of new variables

corresponds to creation of new automata, based on some primitive schemes

for automata. Including primitive values (together with the operations

allowed on them) and primitive schemes for variables in the behavioral

L-
model, means that at least some aspects of the concept of type will be

inherent in the behavioral model. However, "static" aspects of type

c,
i

t

consistency can best be discussed as theorems concerning the mapping

. between abstract programs and the behavioral model. As another example

W(J notice that memory allocation strategies are not -reflected in any w:qy

?)y the behavioral model. All automata will continuct to bclonjl; Lo 61~~:

L
system indefinitely, once created, even ii' they remain T'pa,ssi.ve" 2nd

inaccessible to the rest of the system. Again, sufficiency of certain

memory allocation strategies could be stated as theorems about the

mapping of abstract programs into the behavioral model.

No attempt has been made in the present paper to define a complete

programming language using the methods and principles advocated.

Therefore, the formalisms and models proposed should only be taken as

hints and fragments to be considered when defining a complex language.

In particular, we believe that the general principles presented would

help to structure the complexity of a programming language definition

in a more manageable way.

27

I:LJ

El

El

WI

15’1

I

-_
[7 I

L [9

L [101
L WI
I ml

i D31

1 D43

D51

Y "Concurrent Programming Concepts," Computing Surveys 5,

223-245, December 1973.

Dahl, O.-J., B. Myhrhaug, and K. NygaardY "The Simula 67 Common
Base Language," Norwegian Computing Centre, Oslo, 1968.

Dennis, Jack B., "On the Design and Specification of a Common Base

Language," Report MAC TR-101, Massachusetts Institute of Technology,
June 1972.

Ellis, David J., "Semantics of Data Structures and References,"

Report MAC TR-134, Massachusetts Institute of Technology, August 19'7%.

Geschke, C. M., and J. G. Mitchell, "On the Problem of TJniform

References to Data Structures," Proc. International Conference on

Reliable Software, ACM, 51-b-2, l.975.

Greif, Irene, and Carl Hewitt, "Actor Semantics of PLANNER-73 "J
Second ACM Symposium on Principles of Programming Languages, 1375.

Hoare, C. A. R., "Proof of Correctness of Data Representations,"

Acta Informatica 1, 271-281, 1972.

, "Monitors: An Operating System Structuring Concept," Comm.

&J 17, 549-557, October 1974.

Johnston, J. B., "The Contour Model of Block Structured Processes,"

S1GPLA.N Notices 6, 55-82, February 1971.

Knuth, D. E., "Semantics of Context-free Languages," Mathematical

Systems Theory 2, .7-27-l& 1968. See als3 "Correction," vol. 5,
55-96, 1971.

Kurki-Suonio, R., '%.n Approach to Data Structures," Unpublished

paper9 circulated in IFIP WG 2.2 Bulletin 3, March 1970.

Landin, I?. J., "The Mechanical Evaluation of Expressions,"

Comput. J. 6, 308-320, January 1964.

, "A Correspondence Between ALGOL 60 and Church's Lambda-

Notation," Corm-n. ACM 8, 89-101, 158-165, February/March 1965.

Liskov, B., and Zilles, S., 'I Programming with Abstract Data Types,"

SIGW Notices 9, 50-59, April 1974.

.

D-61

[I71

D91

[201

ml

WI

P31

P41

w51

Lucas, P., and K. Walk, "On the Formal Description of PL/IJff

Annual Review in Automatic Programming, vol. 6, part 3, Pergamon

Press, 1970.

McCarthy, J., "Towards a Mathematical Science of Computation,"

Information Processing 1962, 21-28, North-Holland, 1963.

Y "A Formal Description of a Subset of Algal," in Formal

Language Description Languages for Computer Programming,

(ed. T. B. Steel, Jr.), l-12, North-Holland, 1966.

Morris, James HI, Jr., "Types are Not Sets," ACM Symposium on

Principles of Programming Languages, 1973.

Naur, P. (ed.), "Revised Report on the Algorithmic Language

ALGOL 60," Regnecentralen, Copenhagen, 1962, and elsewhere.

Parnas, D. L., "On the Criteria to be Used in Decomposing Systems

into Modules," Comm. ACM 15, December 1972.

Strachey, C., "Towards a Formal Semantics,'f in Formal Language

Language Description Languages for Computer Programming,

(ed. T. B.Steel, Jr.), 198-220, North-Holland, 1966.

-9 "Fundamental Concepts in Programming Languages," NATO

International Summer School on Computer Programming, Copenhagen,

1967.
van Wijngaarden, A., et al. (ed.), "Revised Report on the

Algorithmic Language ALGOL 68," Supplement to ALGOL Bulletin

no. 36, 1974.

Walk, K., et al., "Abstract Syntax and Interpretation of PL/I,"

Technical Report TR 25.082, IBM Laboratory Vienna, June 1968.

-

29

