TOWARDS BETTER STRUCTURED DEFINITIONS OF
PROGRAMMING LANGUAGES

by

R. Kurki-Suonio

STAN-CS-75-500
SEPTEMBER 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Towards Better Structured Definitions of Programm ng Languages

Rei no Kurki - Suoni o

Abstract

The use of abstract syntax and a behavioral nodel is discussed from
the viewpoint of structuring the conmplexity in definitions of progranm ng
| anguages. A fornalismfor abstract syntax is presented which reflects
the possibility of having one defining occurrence and an arbitrary nunber
of applied occurrences of objects. Attributes can be associated with
such a syntax for restricting the set of objects generated, and for
defining character string representations and semantic interpretations
for the objects. A systemof co-operating autonata, described by another
abstract syntax, is proposed as a behavioral nodel for semantic
definition.

This research was supported in part by National Science Foundation
grant DCR72-03752 A02, | BM Cor poration, and by the Acadeny of Finland.
Reproduction in whole or in part is permtted for any purpose of the
United States Governnent.

—-

1. [nt roducti on.

Inabehavioral definition of a progranm ng |anguage, the neaning
of a programis defined in terms of its dynamc execution or interpretation.
In other words, a behavioral definition gives an abstraction of the

run-tinme behavior of programs, not only of the input-output nappings
performed by them To be useful, the abstractions introduced by the
definition should provide appropriate mental tools for intuitive
understanding of program behavior. Such nodels and tools are needed
both when inplementing and when teaching programming |anguages.

Rat her than defining directly the meaning of a programgiven as a
character string, it is useful to introduce an intermediate |evel of
abstract programs. The neaning of an abstract program can be defined
by postulating a nmachine to execute abstract programs, or by giving an
interpreting automaton for them or by providing an abstract conpiler
which translates abstract programs into some kinds of automata. The
third alternative introduces to the definition another |evel which wll
be called a behavioral nodel. This leads to the follow ng |evels of
definition:

- string representations,

- abstract prograns,

- behavi oral nodel

The nmonurental definitions of PL/I [25] and Algol 68 [24] can both
be characterized as behavioral definitions. In the forner, abstract pL/I
programs are essentially syntax trees of string programs, with some of
the conplexities of string representations renoved, and an interpreter
IS pl’OVi ded to determne their meani ngs. In the latter, careful |anguage
design and a powerful syntax formalismnmake it convenient to use syntax
trees thensel ves as abstract programs, and a machine, or "el aboration”
mechanism is given for their execution. |n addition, [24] has an
additional "surface level"” in which actual representations are provided
for the "abstract" character set used at the other [|evels.

Level s of |anguage description are intended to provide a natura
classification of |anguage properties according to their "deepness".

It is assunmed in the follow ng that abstract prograns are free from
features not essential to their structure and neaning. Those properties

which nre associaled with Lhe mapping between shring reprecentabions and
abolbract progreams can then be called surfacee properbics, while obher

propertics are deep properlies. Concerning the labler, Lhe behavioral

model is a natural level for the most fundamental concepbs underlying
the l=nguage. Ideally, these concepts should be "universals”, common
to a larger family of languages.

No | anguage definition seens to have made full uyse of such structuriag
of language concepts by levels of l|anguage description. For instance
abstract PL/T prograns indicate such surface properties as the nunber of
redundant parentheses and the particular choices for identifiers. 1In
Algol68 Report, on the other hand, the powerful syntax formalism allows
extensive use of syntactic definition. For this reason there has not
been need for clear separation between surface properties and deep
properties. It appears to the author that the lack of such separation
is a greater difficulty for an uninitiated reader of [24] than the
formalism of wgramars. The possibility of including the nost funda-
mental concepts in a behavioral nodel has not been utilized in any of
these two definitions, as abstract programs are interpreted or executed
directly.

As nentioned above, a behavioral nodel should reflect some of the
most fundamental concepts in programming. |If the nmobde.l is based on
"typical" properties of present conputers, as the inplicit nodels in the
definitions of Fortran and Cobol, it does not give any nental tools for
under st andi ng progranmi ng and programming | anguages. Even when higher-
| evel mpdels are used in a definition, they might be restricted by the
current technology. TFor-instance, a stack-oriented behavioral node
m ght be suitable for a | anguage not requiring nore general techniques
for storage allocation, but its use would be linmted to a restricted
class of |anguages. Although no universally applicable behavioral nbde
is to be expected, it appears that useful nodels could be given for
famlies of |anguages based on the same conceptual backgrounds. An
i mportant aspect of a behavioral nodel is the way it models parallel
processes. The energi ng understanding o £ how to manage cuch prococsen

shoul d provide appropriste ways ofincorporatingthe m i n Lo omodel,

The thesis of this paper is that the three |evels of |anguage
definition described above correspond in a natural way to the abstractions
that a | anguage designer has in mind. Submitting such a vision of the
| anguage to the reader would be very hel pful in |anguage definitions and
text books. The techni ques proposed for this purpose are based on a
generalization of abstract syntax [17,18] with attributes associated with
the nonterminals {11]. A sinple exanple will be used throughout to
illustrate the techniques. A system of automata, comunicating wth each
other, is outlined as a behavioral nodel

It is understood that the separation of |anguage properties according
to "deepness" is subject to similar non-objective criteria as |anguage
desi gn. In part, this is due to programm ng |anguages being man-nmade
not sonething given to us |like the physical world. In particular, any
suggestion for |anguage universals can be contradicted by designing
anot her |anguage specifically for this purpose. The behavioral node
outlined below will be directed towards block structured |anguages. Tt
is included mainly to illustrate the general ideas of the paper. For
practical purposes it should probably be extended with further capabilities
refl ecting some other fundanental concepts in programming.

The ideas devel oped in this paper have been induced and influenced
by a nunber of other papers, some of which are mentioned in the biblio-
graphy* To pick out the nost inportant ones after Al gol 0 [20], T woul d
like to acknow edge Landin's work on h-cal cul us nodel s [1%,1L], Strachey's
efforts to single out fundamental concepts of programm ng languages
[22,25], the definitions of PL/I [25] and Al gol 68 [24], Johnston's
contour nodel [10], the class concept of Simula’7 | 4| and its effect
on the devel opnent of progranm ng-concepts [1,2,3,9,19], as well ag

Knuth's idea of synthesized and inherited attributes [11].

2. Fornmalism for Abstract Syntax.

Abstract syntax deals with objects having certain kinds of structura
relationships. Mre precisely, an object may have other objects as its

i medi ate conponents. The transitive closure of this relation will be

called the conmponent relation. The set consisting of an object x and
all its components will be denoted by c(x)

CGeneralizing the concept of an abstract syntax [16], we shall allow
an object to be an inmedi ate conponent of several objects. Aso, it will
be possible for an object to be its own component, although we shall
introduce quite severe restrictions in these respects. Only finite
structures will be considered, i.e., it will be assumed that c(x) is
finite for each object x .

Abstract syntax expresses structural relationships in terns of

structural productions resenbling ordinary context-free productions

for formal |anguages. FEach nonterminal of an abstract syntax represents
a class of objects, and these classes are assumed to be disjoint for
different nonterminals. For each non-termnal there are productions
indicating the different ways in which objects of this class may- have
other objects as their inmmediate conponents. The productions for onc

cl ass are also assumed to be disjoint in the sense that no object will
consi st of immediate conponents according to nore than one production.

As an exanple, the production

e:Expr - SUM{el:Expr, e2:Expr)

indicates that an object of the class Expr may have two imediate
conmponents, both belonging to this sane class. The |label SUMis uced
to identify the production, and labels e , el , e2 are introduced Lo
identify objects in the context of this production. Coviously, triple
labelling -- nontermnal names, production names, and object names in
productions -- could be avoided in our notations. It is felt, however,
that this redundancy is a convenience when using the formalism

In order to cope with situations when an object is an i mediate
conponent of nore than one object, we distinguish between two cases of
immediate component relation, called primary and secondary inmmediate
comporent relations. furthermore, we require that every object is a

N3

primary i mredi ate conponent of at nobst one object, and that the transitive

closure of the primary i nmedi ate conponent relation, called primary

conponent relation, is non-reflexive. This neans that objects are

connected by a tree structure, with additional connections indicating
secondary conponents. The set consisting of an object x and all. its
primary components will be denoted by p(x)

In the productions a secondary conponent will be indicated by
enclosing a non-termnal in parentheses. For exanple, the production

s:St - ASS((v:Var), e:Expr)

indi cates that an object of class St may consist of a secondary
component of class Var together with a primary conponent of class Expr.
Correspondi ng to whether a component is primary or secondary, it is

called a defining or applied occurrence of that object. Correspondingly,

occurrences of nonterminals in the right-hand sides of productions wll
also be called defining or applied.

Corresponding to termnal synbols in a context-free grammar, an
abstract syntax has terminal sets which are disjoint fromthe sets
determined by the nonternminals. For instance, if N denotes the set

of nonnegative integers, the production
e: Expr ~ CONST((n:N))

indicates that an object of class Expr nmay have an arbitrary nonnegative
integer as its only conponent. Such terninals are given as applied
occurrences to enphasi ze that they have no defining occurrence in the
synt ax.

Another way to terminate a structure is provided by productions
indicating explicitly that an object of a non-terminal class is alomic
with regard to the conponent relation. This is illustrated by thc
production

viVar - ATOM().

To summarize, an abstract syntax consists of a finite famly of
termnal sets, a finite set of' non-termnals, and a finite set of

productions, where each production indicates one possibility for objects
of a nontermnal class to consist of primary and secondary conponents of

;7iren nonterminal cl asses and/or terminal sets. These possibilities are
assuned to be disjoint in the sense that each object has conponents as

i ndi cated by exactly one production. (However, several productions for

the sane nonterminal may be sinilar, except for production identifications.)

One of the nonterminals is designated as the starting non-terminal, and

an object x is generated by the abstract syntax, iff

- X belongs to the class of the starting nontermnal,
- the prinmary conponent relation inposes a tree structure on p{x) ,
- elements of c(x)-p(x) are elements of termnal sets.

Qur previous exanples of structural productions involved a fixed
nunmber of conponents. For notational -conveni ence we introduce the

notation
lab: oject*

to denote a sequence of an arbitrary finite nunber of conponents of thc
same class. For a sequence of n components, the individual nenmbers
are identified by indexing the |abel used: labl{l],. . .,lab[n|. When
used W thout indexing, the |abel will identify the whole sct. The indexz
set {1,...,n} of a label will be denoted by z(lab) .

Ac an exanple, let us consider the follow ng abstract syntax, where

N denotes the set of nonnegative integers:

. ¥
:Block — BLOCK{v:Var®,s:st)

:5t - COMP(b:Block)

p:Prog — PROG(b:Block)
b

w

- ASS{{v:var),e:Txpr)
e:Fixpr -~ CONST((n:N))
- YAR((v:7/ar)
< SUM (el upr, e2: Tupr,
- PROD(el:Txpr, e2:lzpr)
— NEG(el:Expr)
vivar - ATOM()
Intuitively this abstract syntax is neant to generate block structured

prograns with assignnent statenments involving sinple arithmetic expressions
over integers and integer variables. However, no scope rules for variables

have been incorporated at this stage.

Any object generated by an abstract syntax can be represented as «
directed graph with suitable labelling in an obvious way. For instance,
one of the objects generated by the above syntax could be represented as
the graph of Figure 1. Each node in the graph corresponds to one ob,ject.
An object is marked by its nonterminal class or by a notation for an
elenent of a terminal set. Continuous lines indicate defining occurrences,
and dotted lines indicate applied occurrences. The productions involved
are indicated by production |abels under nonterminal nanes. obj ect
identification (in the context of productions applied) is given by
attaching appropriate labels to both nodes and edges.

Synthesi zed and inherited attributes [II] can be associated with
this kind of abstract syntax in the sane way as with conventional
context-free grammars. However, no attribute definitions should be

associated with applied occurrences of nontermnals. For instance,

we can associate an attribute ¢ with the above syntax as follows:

p:Prog - PROG(b:Block) dp = 7
b :Block - BIOCK(v: var', s:5t) dy U dyg
i) T
5:5t - COMP(b:Block) . i
- ASS{(v:var),e:lxpr) := {v} va,
el Bxpr - CONST{((n:N)) a, := ;/)
- VAR{(v:var)) := {v}
- SUM{el:Expr,e? :Expr) = U .
- PROD(el:Expr,e2:Expr) =y Udﬁ.g
- NEG(el:Expr) =g

el

v:Var - ATOM{

For all nonterminals (except var) the attribute 7 is set -valued and
synthesized. Association with different objects in the context of a
production is indicated by appropriate subscripting of 7 . The
intuitive neaning of ¢ is the set of those variables which have been
used but not properly declared in the structural unit in question. The

p:Prog
PROG

b

|
b:Block
BLOCK

7
/
/
/
/
/
/
/
/
/
/
/
[

V:Va;—
ATOM

¢ b
|
e:Expr b:Block
CONST BLOCK
\
\ v[1] s[1]
n
\
\ f s:5t
\ 1S
\ 'V'/ e
\ /
e:lixpr
\ / SUM
Y EN
» /, el er
N/
/ \
\ e:Expr e:Expr

/ — -VAR CONST

—— a—— —— - _— v — -
/ \\ _ _ — —‘_n
Vv:Var 1
ATOM
Figure 1

—

cetb ol objects
{c o prop | a, - ¢

would now consist of cxactly Lhose objeele of elase

Progs which

intuitively correspond to programs whose variables nre uoeod onty when

they have been declared in an enclosing block.

Associ ating String Representations with Abstract Programs.

The attribute technique is also useful for associating concrete
character string representations with objects generated by an abstract
syntax. Since one object may, in general, have many different represen-
tations, we shall wuse nondeterministic attributes. In other words, an
attribute definition may provide a set of possible values, preceded by

the monadic selection operator o . By this notation we understand that
any element of the set can be taken as the value of the attribute in

question. When an attribute value is determined by a conditional
cxprescion, nondeterm ni sm mayalso appear in the formthatmore Lhan
one or none of the conditions hold. Tf none of the conditions hold,
the attribute value is undefined, and sone other choices for attribute
values must be changed to get out of this dead end. \Vertical bars (i\
will be used to separate alternatives in conditional expressions, and
each condation will be separated from the correspondi ng expression by
acolon (:).

As an exanple, let us assign a string-valued attribute T and an
integer-valued attribute p to the previous abstract syntax, as given
in Figure 2. The followi ng clarifications should be added to the
notations used

~ The notation C;

X, standg for the concatenatic
(‘L(V)(1) r bthe neat cnat ion

XlZXEZ ...ZX|L<V)l if lz,(*-f)‘ >1 ., for /1 i \/,('/)\ 1
and for the enmpty string if jo(v) |- .

Symbols L and D stand for the sets of lctters and digito,
correspondi ng+

10

r’s
N
Py
=/,
s

=

{

[
‘_C"‘ JL:)
{2

e
- ¢
< 10
10
c=u |
c=u

I Tus

(

< W
< u
S ow
< uw

wmy
=) o
‘ w(a Ix L

T la 253 _—
‘g-'}‘g)<A) ’ E@ MoU ulgeq

<

il

T . 2 —_—

.

"
"

SSTe
— 3
T> o
S3ITS
_ 3
N
I \-Q
“ /)
. 2S8T°
I=Uu
s = U
~ /*',;;
o u -
Z- 2
C .

So=zad1a) Wnaseaiag v 27 (e

I

il

I

1)

|

(adxg:ze ‘adxy:T8) C2ES

(axdxqg:ze ‘adxg:To) NS

((xepta))avs

((N:u)) ISNCD

(adxm:a ¢ (aeiisr))SSY

(AooTd: Q)dHOD

adx

&3]

9

11

—_— o o~ —

- Uhe ezprescione (sete) given for ctrinc-valued atbribuces e

Lo be underctood ws shrings (sebe of clrings). No nobabionnd
distinction has been made belween string expressions and

arithmetic expressions.

- Attributes can alsobe associated wi th element=; of terminal sets.
In this exanple, attribute T is defined for objects ncN , and
its definition involves making use of arithmetic operations
defined in N.

For any x e Prog , the possible values of irx are now defined as

the possible string representations of X . Nondeterminismin attribute

definitions allows for arbitrary redundancy in parenthesizing, and for

arbitrary variable names . The definition of 7T guar ant ees t hat
Block

tLhe same name cannot be used for two different variables in the same block.
In this particular case it can be easily verified that T, has

values for all objects » Prog . In general, this would not nced to

be the case, because of the "dead ends" involved in attribute definitions.

tne possi ble val ue of ':rx for the particular X given in tigure 1 is

begin new a;
a -« 1,
begin new b;
b - atl

encl

end

L. Behavi oral Model s.

Az mentioned previously, one would Wi sh u behavioral model Lo
reflect f undanental concepts of a |anguage which would be common for a
| arger group of l|anguages. Typically, such deep properties would be
related to concepts like block structure, data types, and seguential
and parallel acti ons

-

Mdel s based on h-cal culus [13,14] and the nore visual contour

" model [10] mainly ref

difficult to underst

lect block structuring, and it would be very
and block structured |anguages w thout these or

simlar nental nodels. However, data types and parallelism seem to

require different ki
The main proble
through explicit or

nds of nodels.
nme with data structures are associated with sharing

implicit pointers, and with control over access and

updating. Sharing can be expressed in ternms of relations which can be

visualized as direct
As an exanpl e,
in Algol68. For si
The rel ations used i
"refers to" a val ue,

conmponents toget her

ed graphs, as e.g. in [4,5,12].
l et us consider some properties of data structures
mplicity, routines will be omtted from the discussion.

n the behavioral nmodel are the followi ng: a "name
and a "structured" or "multiple" object has

with selectors. Superficial know edge of these

relations and analogy with other languages with simlar structures

mght lead to the incorrect visualization given in rigure 5. Different

data objects are grouped there into "plain values" V , non-structured

names N, and into

"structured" and "nmultiple" objects . Arrows

starting from N indicate the relation "to refer to" for non-structured

names, and those starting from ¢ indicate conponent relations. Al

"refer to" chains an

d component chains are assunmed to be finite

Qhjects in V are assumed to exist independently of any program

objects in N and S
relation "refer to"
of s is understood
Thi s visualizat
structured objects t

are "created" during program execution. The

is changed by assignnents; assignment to an el enent
as simultaneous assignment to all of its conponents.

ion is shown insufficient by the existence of

0 which no assignment can be nmade, even if the

conmponents can be updated individually. This leads to the modification

given in Figure 4.
elements of S are r
elements of N arer
element x of s i
t he components of x'
hjects x and vy

Non- updat abl e structured objects are grouped into ot

estricted to have no conponents in VvV or gt ;

estricted not to refer to any object in S ; each

s postulated to refer to an object x' ES such that
are the values referred to by the components of x

in Figure 4 are otherwise sinmilar, but y can be

updated only by individual assignnents to its conponents.

N
(non—structured
names)

S

(structureq and
multiple names)

N

(non-structured
rames)

5 (structureq and multiple objects)

V. (plain values)

Figure 3

(structureq and
multiple non-nameg

r/r V' plain valuers)
Z/ —

Z} 5 ®
Figure U4

14

"

lxamplegs of this Kind show the uselfulness of praphs as vicuuwl

ai ds in understanding data structures, especially when dealing with

several |anguages where similar structures are understood differently.
Such a nmodel is suitable for expressing properties of sharing, but it
is insufficient for indicating aspects of protection on data access and
updating, except for very linited special cases. Also, it tends to
treat data objects as passive objects, and this causes difficulties in
dealing with routines or procedures as data.

One way to overcome the problenms nentioned above is to treat data
obj ects as active objects, as suggested by the class concept in Sinula €7
[2]. This leads to the view that each data object is some kind of an
automaton, which is initialized when created, and which is thereafter
able to comunicate with other automata by responding to certain requests.
Access to the "value" of an object or to its "components'", and any
updating, would only be possible through such requests sent to the data
object in question. (Qperations defined for data types could al so be
evoked by such requests only. This kind of a behavioral nodel also
provides a natural framework for parallelism as all data objects would
be envi saged as automata ”living" simul taneously. Notice that such a
model deviates in several respects from Simula 67, where only
quasi parallelism is allowed, unrestricted external access to "attributes"
of' data objects is permtted, and prinitive data items are not treated
as independent active objects.

Primtive values like integers, reals, Booleans, etc., can now be
considered as prinitive automata, existing independently of any program
In other words, no such automata can be created or initialized by a
program The only way such automata can communi cate with other
automata is to respond to certain requests. Paraneters associated with
such requests, and the responses, are always automata thenmselves. For
instance, if the automaton for an integer i s asked for its negation,
the response gives the automaton for -i . Simlarly, if an automaton
for a-truth value is sent a request corresponding to if-then-elge
-operation, together with two automata as paranmeter:;, it return:: one
of the parameters as the response.

15

Vari abl co are now thought 0 1" s aulomata whi ch can be "e realod” by
Qo proforran . in obther worda, amorys Lhe objecteexiaobing " ouloide o

" T which can boe used Lo create "new™ aulomita.

program, Lherce are " cchemes
Using such a scheme results in the creation and. initialization of an
automaton, which can thereafter respond to certain requests. Ior
instance, there are primtive schemes for integer variables. After
initialization, an autonaton created by such a schene is capabl e of
responding to requests about its "value", and to update this value.
Structured objects and arrays have somewhat nore conplicated schemes,
which nmust also be primtives in the behavioral nodel.

A bl ock structured program can now be viewed as a hierarchical
structure of schemes of autonata, such that each new automaton has
certain schenes available for the creation of further automata. Program
execution is then modelled as the creation of a system of autonata
communicating with each other and creating new automata. All the "real"
work of the programis done by the primtive autonmata existing
-independently of the program

Paral |l el operation of a system of automata is c¢ontrolled by allowing
each automaton to process only one request at one tinme. Turther requests
are thought of as waiting for their turns. Since a response is expected
for each request, the requesting automaton has to wait for the request
to be processed. Parallel processes can be created by allowing the
initialization of an automaton to proceed sinultaneously wth continuing
the process which evoked this initialization.

Conparing with the definition of Algol 68, it is pointed out that
its behavioral definition is essentially based on nonoprogramm ng, as
"col lateral elaboration" is defined by "merging" the sequences of
primtive actions corresponding to the constituents. Wen the
constituents involve updating the sane data objects, that nodel doe::
not determ ne what happens, ac the primtive actions are not specificd.
Iri the nodel proposed here, «ll operations on the same data ilbem o lway o
excluie each other in time. Since integers, for instance, are congidorod
as individual automata, we get the curious restriction of parallelicr |
however, that two operations involving the same numbers rannct be
performed simultaneously. This situation could be avoided by letting

16

—

di fferent occurrences of the same nunber correspond to distinct but
simlar autonata.

This kind of a nodel for programs is conpatible with nany of the
current views of operating systens and data bases, and with the principles
of structured progranming. |In fact, simlar extensions of the ideas in
Sinmul a 67 have been applied to control parallelismin the progranmm ng
of operating systens [1,2, 9], and in the design of |anguages for
structured programmng [6,15].

An operating systemcan be characterized as a collection of
processes comunicating with each other. A though these processes are
usual |y executed on a single processor, this view becomes especially
cl ear when thinking of each process as having a processor of its own.
Such a view has advantages even when used only as a nmental nodel to
understand a conventional operating system since it seens easier to
introduce restrictions on parallelisminto an inherently parallel nodel
than to introduce suitable quasiparallelisminto a basically sequentia
nodel . However, it also appears to be quite feasible to construct
mul ti processors where different kinds of operating systemduties have
been distributed to different processors. In particular, it seems
promising to use dedicated processors for data bases. In such a case
parallelismof the nodel woul d correspond to real parallelism in the
operating system Note, however, that aspcctc of protection in operaling
systens woul d need further elaboration of the nodel

In addition to parallelism this nodel reflects the principle of
information hiding [21] in a natural way. Besides being an inportant
design principle, information hiding is needed to describe data
i ndependence in programs using data bases. |n this case it is not only
a property of the model that direct access and updating of passive data
itenms is prevented. On the contrary, it is then an essential feature
of the systemto be nodelled, that all external access nust take place
through explicit requests. For instance, a program cannot "know"
whet her a piece ofdata, which is accessible to it, is actually stored
in the menory, or whether it is conputed each tine it is requested.
Simlar independence of data representation is an essential feature in

"structured programmng", and. several efforts are being made towards

17

incorporaling cuch ddens intbo programming languages | 0,7,15 . f'rom the
viewpoint ol forma | deceription 1t docs not matter whether this
independence of representation IS a run time feature, ac it typi cally
is in data base systems, or whether program conpilation is allowed to
optim ze object prograns by making use of actual representations, as

it should be done in programm ng |anguage inplenmentation.

5. Abstract Syntax for a Behavioral Model.

The discussion in the previous section can be nade nore precise by
describing a system of automata as a structured object. Then we have
an abstract syntax both for the |anguage to be defined and for the
objects in terns of which we wish to define its senantics.

A system of automata is a dynam c object which is nodified during
its operation. New automata can be added to the system during execution,
and they can be in different stages of execution at different points of
tine. Initially, the systemconsists of only one automaton, which is in
its initial stage of execution. This initial systemis given as the
semantic attribute of a program

As terminal sets of an abstract syntax for the behavioral nodel we
have the set of primtive automata P, the set of primtive schenes
lor automata 5, and the set of operation identifications of automata |

Let us now consider objects with the follow ng structure:

5 :System 3 SYST(a:Automaton*,(p:P*)>
a:Automaton - AUTOM(sub:Scheme*,e:Expression*,op:Operation*)
s: Schene 3 SCHEME(T:Ebrmalx,sub:Schemex,e:HXpressionx,op:Oporatiunx>
op:Operation - OPER(s:Scheme, (id:T1))
f:Formal 3 FORMAL()
e:Expression - PRIM{((p:P))
- AUT{(a:Automaton))
-~ FORM{(f:Formal))
— NEW((s:Scheme), par:Expression”)
- NEWPR((s:3),par:Expression”)

- OP(target :Expression, (id:I), par:k:ipression™)

18

— -

cre g o 2 finits nuwber oF omat N i
suncresa pIF - Zsob sutomaton consists o o oseononn e ofF xuross fone
which are "evaluated" during initialization,cor Operations. and o ¢

Schenmes for the construction of further Automata. A Scheme issimilar
to an Automaton, except for having Formals for parameterization. An
Operation is sinply a Scheme together with identification id eI . An
Expression can be an automaton, a Formal, a scheme together with
parameters, or a request for an operation of a target automaton. W
shall require that every Formal appearing as a secondary conponent is
a primary conponent of an enclosing Scheme. Also, the identifications

of Cperations within one automaton and scheme are required to be distinct.

(Except for primtive automata and schemes, these requirements could
easily be expressed in terns of attributes associated with the syntax.)

The behavior of a System can now be defined as follows. Initially
a System consists of exactly one Automaton and of no primtive
automata peP . Its behavior is defined as the sequential eval uation
of Expressions e[i] of this autonaton.

The eval uation of an Expression gives an automaton as a result, and
is defined as follows:

If the Expression is an AUT (or a PRIM, the result is the
Automaton a (or the primtive automaton p).

No Expression of the form FORMw Il ever be eval uated, since
such an Expression cannot appear as an e[i] of an Autonaton.

If the Expression is a NEW (or NEWFR), a new Autonaton (or
new primtive automaton) is created using the schene s and
paraneters par[i]

, and the initialization of this new automaton
will be started. This new autonmaton is attached to the current

System as another conponent a[i] (or p[il), and it will
itself be the value given by the evaluation of the Expression.

If the Expression is an OP, the target and all par[i] are
at first evaluated in sequence. Then the id-operation of the
target is evoked using parameters par[i] . The val ue given by

the OP-Expression will be the value obtained as a response from
this operation.

19

1

An operation of an automaton is evoked as follows:

Each autonaton is assuned to have a nechani sm del ayi ng
operations so that no operation is started while the autonaton
is being initialized, or when another operation is being perforned.
For primtive automata, operations will not be specified further.
Evoking an Qperation on a non-primitive Automaton mneans
creation of a new Automaton using the Schene of that Operation and

the paraneters par[i] given in OP. The value given by the
Operation is the value given by the evaluation of the |ast

Expression of this new Autonaton.

In order to define how new automata are created, we need sone
notations for constructing structural objects of their conponents.

In general, given a production
c:Class - PROD(cl:Classl, ® ..,cn:Cassn)

and sone objects x1leClassl,..., xneClassn , the expression
¢ = PROD(el:x1,..., CN:Xxn)

will denote an object ¢ Cass with conponents x1, .. .,m according
Lo the production PROD. (Al though not indicated above, all components
Xxi need not be primary.) As each object can be a primary conponent of
at mcsv one object, it is required that for each ci with a defining
occurrence in PROD, the corresponding xi is not a primary conponent
of any other object.

In addition to constructing objects of conponents, we need a
notation for "copying" objects and "replacing" some of their secondary
conponents by others. NMore precisely, given objects x, a, b , another
object y is obtained of x by replacing applied occurrences of a
in x by b, denoted as y = XZ’ iff there is a one-one mapping
f:p(x) - p(y) with the follow ng properties: (i) f(x) = vy 3
(ii) for each z c¢p(x), objects z and f(z) belong to the sane
nonterm nal cl ass; (iii) for each z ep(x) , if z consists of

components zl,...,zn , then f(z) consists of conponents ul,...,un
such that

20

- if zi=a is a secondary conponent, then ui = b ;

else, if zi is a secondary conponent and =zi/ p(x) , then
ui = zi ;

else, ui =f(zi) ;

the production for f(z) is the sane as that for z , or, in
case z has a as a secondary conponent, a production uniquely
determ ned by the object classes of ui

In other words, primary conponent relations and secondary conponent
relations "within" X are copied into corresponding relations "within" vy ;
secondary conponents outside p(x) wll be taken directly as corresponding
components in the "copy". Notice that the last condition above prevents
the use of the notation xba if anmbiguities would arise from productions
with simlar right-hand sides. Wen applied occurrences of nore than
one object are replaced, ordered sets of the same size can be used

instead of a and b .
Wth these notation, the creation of a new automaton can be defined

as follows:

Wien a new automaton is created, it is attached as anot her
conponent ali] or pl[i] to the current System and its
initialization is started. For a non-primtive automaton
initialization means sequential evaluation of its e-Expressions.

1f |f| # |par| , the creation of a new automaton is not
def i ned.

For primtive schenes the creation of a primtive automaton

will not be further specified.
Gven a non-prinitive scheme s Scheme with the structure

* "
S = SCHEME(f:Formal ,sub:Scheme*,e:Expression*,op:Operation’),

together with parameters par(i] , such that |f| - |par| , the
new Aut omaton will be
a = AUTOM(sub:sub?ar, e:e?ar, op:opgar>

In other words, a is obtained of the sub-, e-, and op-conponents
of s Dby replacing each (applied) occurrence of f£[i] in them by
the corresponding par[i] .

21

— r—

1

Havi ng defined a behavioral nodel, we can use it for the semantic
definition of our exanple language of Section 2. 'This can be done by

associating suitable attributes with the abstract gyntux, @@ given in
Migure 5. The primtive automata in the nodel are those corresponding
to integers, denoted as P, and those which can be created by the
primtive schene new . The forner are assuned to have operations with

identifications plus , times , and neg , and the latter are assuned
to have operations value , and assign .

Most of the nonterminals have only one semantic attribute » (for
semantics). In addition, the nontermnal Block has an attribute g
(for request), and St has an attribute p . Notice that blocks are
interpreted as schemes with one operation, with identification execute .

As an exanple, Figure 6 gives the value of the semantic attribute
7, for the object x of Figure 1. For clarity, all termnal objects
are repeated in Figure 6 for each occurrence.

22

¢ eandtd

A

()IVMOL =: " F ()IOI¥ « aeA:ia
— 5
((Bsu:pt) et £:398xe1)d0 =: (adxg:Te)naAN «
s o .
({P°) s aed ¢ (F5uT3:01) < o2 308am9)d0 = (adxg:ge ‘adxg: T2)T0Md «
)
Amm ~} :aed ¢ (snTd:pT) n.mm\n" 193189)d0 =: (adxg:ge ‘adx®: To)HNS «
_ A :
((emrea:pr) ¢ (((:3))M¥0d:108709)d0 =: ((TBpn:a))avA « Q
u —
((d:d)ymIMg =0 £ ((N:uw)) ISN0D « adxd:e
S] A
g=:q ({"F)raed ¢ (TBTSSRipT) ¢ ((:3))I0L: 208489)d0 =5 F (xdxg:o ¢ (Ien:na))aqy «
d, _. s s
£ =g Yy =: 5 (S[00TE: QYdNOD « 38:s
((9qnoexa:pT) ¢ A?vg: (mou: s)) YIMAN] : xed ¢ Ap\auwvvéﬁpmmampvmo = Iy
({{(eamoexa:pr) “ ({(s)2>T | ﬁimﬁnmvgmomuwvmﬁoﬁ%
lMrla [ol)
“ {eweyog> 1T v (s)23 1 _ L% toms
€ 2 ﬁ,nf/. . . q . ¢ .
{(a)23 1| £} I)ANEHDS =2 (,387s L IBAIA)NDOTE « 3O0TE:q

(MY 2040 %) sansoznv:e) 19xs =: & ([ooTd:q)DOMd « Foad:d

9 8anSTg

TR0 Tyiwas

TBUIOL Tewzo:
.H - ——— -
zm\.. -1 ‘
KoT:]
T aNTeA UoTssaadxy: s _ _*
” d @W /,\wmhmp _ ‘
NIT¥d d0 h
uctsssadxy:s SNTd ucTssexdxy:s *
z_mm _)/ [T]aed 99818, ¥ »
I s e \ udTsse e
qd MAN P \ d0 _ Wox N
UOTssoadxy: o T \ ucTssoadxy: & uotTsseadxw; &
e, A . SN Y g
I P % \ T [1]ae 395
MIN . NWIdg / W04 d0
29Nosxa UoTssauadxy:o UoTssoadxy: g mmﬂmmm "~ UoTsseadxq:s UCTssoxdxi: o __
e ~N h nop | \
N T Fo8ss |
. J0 450 \ , HNIHDS
Mau UoTssoxdxy:s UcTssaadxy:s 89nosxs SWSYDG: §
| s ﬁmiuw .@7/\k
dd MAN i HWITHOS / 340
UCTssaadxd:s mpﬁowxm aWBYog: S / UcT geredp: do
™~ s dol —
MaAN ~ - mmmoO_ INTHDS
29Noavs UcTssouadxy: s ucTyrIadp:dc BUWSYDG: g
~ = ~ T~ [T]ans /IV\‘ —
~ 198189 < [T]d3 LL) ==
PT ~_ o~ [T]3
~ddo ~ TWEHOS
UoTssoadxy:s ~ ~— 2WYDg:S
’/
; [T]ans
Ucjeuwoqny: e '
T
ISXS
wepsLg:s

J i | | N 4 N y]

(%

(.. Sunmary and Concl usions.

Di fferent kinds of nethods and tools are being used for the
definition of programm ng |anguages, depending on the intended audience
and on personal preferences. Some general principles seem to have
~energed, however, which can be applied independently of the particular
choi ces.

One question which is often discussed, is the appropriate |evel of
generality of definition methods. |If the definition is intended to be
used by nechanical aids for conpiler constructian, then too powerful
nmet hods lead to undesirable conplexity of algorithms. Experience has
shown that no single tool has the right generality for defining all
aspects of a progranming | anguage for such purposes, and the only
solution is then to divide the definition into several stages, each
using its own nmethods and tools tuned to an appropriate |evel of
generality. On the other hand, when the definition is intended for
human audi ence, it is not the generality that counts, but how this
power can be "structured" to be used in an understandable way. In this
case, it would also be a disadvantage, if too many different nethods
woul d be needed. The particular nmethods discussed in this paper are
intended purely for human audience, and it is understood that they are
much too powerful for nechanical manipulation, unless essential
restrictions are inposed.

Language definitions usually consist of syntax and semantics.
There is no sharp distinction between these two parts of definition,
in principle; syntax is just a first approximation. In fact, what is
included in syntax, is usually strongly influenced by the particular
definition methods selected. For instance, features not describable
by a context-free grammar are often left to semantics. On the other
hand, wgrammars are an exanple of a syntax fornmalismwhich is powerful
enough to include the whole definition in syntax, if one sc wishes.

For a mechanical processor, syntax determines a set of character
strings, and semantics associ ates meanings to a subset of syntactically
correct strings. For a human reader, syntax has another inportant
function in providing a basis for abstraction. In fact, it is this

25

function, not the generation of syntactically correct strings, that o ap
Justify starting |anguage description for hunmans by syntax. An abstract
conception of prograns is essential for understanding a progranmmi ng

| anguage, and this seens to be the natural starting point in designing,
learning, and using a language. Wiile it is a translator's task to
inspect arbitrary programs and to deternmine their neanings, g3 user
proceeds in the reverse direction: he has an abstract -programin mind
and wants to exprecs it in the lanpuage.

Unfortunately, it secems impossible 10 provide g suitable abotraction
of* a conplex |anguage by its ctring syntax. Tnalpol (8 Report, Cov
instance, this abstraction becomes quite conplicated because of several
aspects of external string representations, such as coercion rules,
equi val ence of nodes, and the correspondence between defining and applied
occurrences of identifiers and operators

A natural conclusion of the above is to separate the description of
the abstract structure of programs fromthe string syntax of the |anguage.
This means that |anguage description should be started with an abstract
syt ax . In addition to providing suitable abstraction, an abstract syntax
di vi des | anguage properties in a way which seens npre natural than the
classical separation of syntax and semantic S . Proporties dealing wilh
charact cr string reprecentations ol abstracl programs can he cal led

surfucc -properties, while the rest will be decp propertics. Apnin, il

depends on one's abstraction, how different -properties arc clascificd
into these categories. |In any case, such a classification should not be
based on Iimtations in the tools used for the definition, but on an
intuitive understanding of what are the essentials in an abstraction of
prograns.

As an exanple of a general formalismfor abstract syntax, we have
proposed a system of structural productions which allows both defining
and applied occurrences of objects. Surface properties can then be
defined by attributes associated with these productions.

Since abstract prograns may still be too conplex for direct semantic
definition, another level of abstraction, called a behavioral nodel, is
pr oposed. In sone sense this corresponds to the idea of conpiled programs,

and the same behavioral nodel might well be used for the senantic

26

—

— o

——e

definition of several |anguages. 'This level divides the deep properties

of a language into two subsets: those which are inherent in the behaviora
nodel , and those which are associated with the mapping of abstract prograns
into this level. Again, there is no unique way to deternmine this
classification. Being an abstraction of conpiled progranms in execution,
the behavioral nodel should reflect what is considered conceptually nost
inportant in such processes, and it should suppress practicalities like
those inposed by the bounded menory size of real conputers.

W have presented a sinple exanple of a behavioral nodel. 1445
based on envi sagi ng program execution as creation and interaction of a
collection of automata. This viewis extended to prinitive values, which
are also considered as independent automata. Creation of new variabl es
corresponds to creation of new automata, based on some primtive schenes
for automata. Including primtive values (together with the operations
al lowed on them and primtive schemes for variables in the behaviora
nodel , neans that at |east some aspects of the concept of type will be
inherent in the behavioral nodel. However, "static" aspects of type
consistency can best be discussed as theorens concerning the mapping
between abstract programs and the behavioral nodel. As another exanple
we notice that memory allocation strategies are not reflected in any wuy
by the behavioral nodel. All automata will continue to belong Lo the
system indefinitely, once created, even it they remain "pussive" und
i naccessible to the rest of the system Again, sufficiency of certain
menory allocation strategies could be stated as theorems about the
mappi ng of abstract prograns into the behavioral nodel.

No attenpt has been nade in the present paper to define a conplete
programm ng | anguage using the nethods and principl es advocat ed.
Therefore, the formalisns and nodel s proposed should only be taken as
hints and fragnents to be considered when defining a conpl ex |anguage.

In particular, we believe that the general principles presented would
help to structure the conplexity of a programm ng | anguage definition

in a nore manageabl e way.

27

—

(1]

[6]

(7]

(8]

[9

References

Brinch llansen, Per, Operating Oystem Principles. Prentice-iall,
197>5.

5 "Concurrent Progranmng Concepts," Conmputing Surveys 5,
223-245, Decenber 1973.
Dahl, O -J., B. Mhrhaug, and K Nygaard, "The Simula 67 Cormmon
Base Language,” Norwegi an Conputing Centre, Oslo, 1968.

Dennis, Jack B., ™"on the Design and Specification of a Cormon Base
Language, " Report MAC TR-101, Massachusetts Institute of Technol ogy,
June 1972.

Ellis, David J., "Semantics of Data Structures and References,"
Report MAC TR-13k4, Massachusetts Institute of Technol ogy, August 197k.
Geschke, C. M, and J. 6. Mtchell, "on the Probl em of Uniform

References to Data Structures,” proc. International Conference on
Reliable Software, ACM 31-k2, 1975.

Geif, Irene, and Carl Hewitt, "Actor Semantics of PLANNER-73
Second ACM Synposi um on Principles of Programming Languages, 1975.
Hoare, C. A R, "Proof of Correctness of Data Representations,"
Acta Informatica 1, 271-281, 1972.

___, "Mnitors: An Operating System Structuring Concept,” Comm.
ACM 17, 549-557, Cctober 1974.

Johnston, J. B., "The Contour Mbdel of Block Structured Processes,"
SIGPLAN Notices 6, 55-82, February 1971.

Knuth, D. E, "Senmantics of Context-free Languages," Mathematical
Systens Theory 2, 127-1ks, 1968. See also "Correction," vol. 5,
£5-96, 1971.

Kurki-Suonio, R, "An Approach to Data Structures," Unpublished
paper, circulated in IFIP W 2.2 Bulletin 7, March 1970.

Landin, 1?. J., "The Mechanical Eval uation of Expressions,"

Comput. J. 6, 308-320, January 1964.

_____, "A Correspondence Between ALGOL 60 and Church's Lambda-
Notation," Comm. ACM 8, 89-101, 158-165, February/ March 1965.

Li skov, B., and Zilles, S., "Programming with Abstract Data Types,"
SIGPLAN Notices 9, 50-59, April 1974.

26

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[2h]

[25]

Lucas, P., and K Valk, "On the Formal Description of PL/I,"
Annual Review in Automatic Programming, vol. 6, part 3, Pergamon
Press, 1970.

MCarthy, J., "Towards a Mathematical Science of Conputation,"”
| nformation Processing 1962, 21-28, North-Holland, 1963.

5 "A Formal Description of a Subset of Algol,"™ in Fornal
Language Description Languages for Conputer Programmi ng,

(ed. T. B. Steel, Jr.), |-12, North-Holland, 1966.

Morris, James H., Jr., "Types are Not Sets,” ACM Synposi um on
Principles of Programm ng Languages, 1973.

Naur, P. (ed.), "Revised Report on the A gorithm c Language
ALGOL 60," Regnecentral en, Copenhagen, 1962, and el sewhere.
Parnas, D. L., "On the Criteria to be Used in Deconposing Systens
into Mdul es,” Comm ACM 15, Decenber 1972.

Strachey, C., "Towards a Formal Semantics," in Formal Language
Language Description Languages for Conputer Programmi ng,

(ed. T. B..Steel, Jr.), 198-220, North-Holland, 1966.

5 "Fundamental Concepts in Programm ng Languages,"” NATO
International Summer School on Computer Progranm ng, Copenhagen,
1967.

van Wjngaarden, A, et al. (ed.), "Revised Report on the

Al gorithmc Language ALGOL 68," Supplenment to ALGOL Bulletin
no. 36, 1974.

VWalk, K, et al., "Abstract Syntax and Interpretation of PL/I,"
Technical Report TR 25.082, |BM Laboratory Vienna, June 1968.

29

